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ABSTRACT

Despite the widespread adoption of prompting, prompt tuning and prefix-tuning
of transformer models, our theoretical understanding of these fine-tuning methods
remains limited. A key question is whether one can arbitrarily modify the behav-
ior of pretrained model by prompting or prefix-tuning it, i.e., whether prompting
and prefix-tuning a pretrained model can universally approximate sequence-to-
sequence functions. This paper answers in the affirmative and demonstrates that
much smaller pretrained models than previously thought can be universal approxi-
mators when prefixed. In fact, prefix-tuning a single attention head being sufficient
to approximate any continuous function. Moreover, any sequence-to-sequence
function can be approximated by prefixing a transformer with depth linear in the
sequence length. Beyond these density-type results, we also offer bounds on the
length of the prefix needed to approximate a function to a desired precision.

1 INTRODUCTION

Motivated by the success of few- and zero-shot learning (Wei et al., 2021; Kojima et al., 2022),
context-based fine-tuning methods do not change the model parameters but the way the input is
presented. With prompting, one fine-tunes a string of tokens (a prompt) which is prepended to the
user input (Liu et al., 2023). One can optimize the real-valued embeddings instead (soft prompting,
prompt tuning, Lester et al. 2021). A generalization to this approach is the optimization over the
embeddings of every attention layer (prefix-tuning, Li and Liang 2021). As every prompt and soft
prompt can be expressed as prefix-tuning (Petrov et al., 2024), we focus primarily on prefix-tuning.

While these context-based fine-tuning techniques have seen widespread adoption and can be com-
petitive to full fine-tuning (Liu et al., 2022), our understanding of their abilities and restrictions
remains limited. How much can the behavior of a model be modified without changing any model
parameter? Can prefix-tuning of a pretrained transformer be a universal approximator? Given a
pretrained transformer and an arbitrary target function, how long should the prefix be so that the
transformer approximates this function to an arbitrary precision? These are some of the questions
we aim to address in this work.

It is well-known that fully-connected neural networks can approximate any continuous function
(Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Telgarsky, 2015). The attention mechanism
(Bahdanau et al., 2015) has also been studied in its own right. Deora et al. (2023) derived con-
vergence and generalization guarantees for gradient-descent training of a single-layer multi-head
self-attention model, and Mahdavi et al. (2023) showed that the memorization capacity increases
linearly with the number of attention heads. On the other hand, it was shown that attention layers
are not enough as it loses rank doubly exponentially with depth if Multi-Layer Perceptrons (MLPs)
and residual connections are not present (Dong et al., 2021). However, attention layers, with a
hidden size that grows only logarithmically in the sequence lengths, were shown to be good approx-
imators for sparse attention patterns (Likhosherstov et al., 2021), except for a few tasks that require
a linear scaling of the size of the hidden layers in the sequence length (Sanford et al., 2023).

Considering universal approximation using encoder-only transformers, Yun et al. (2019) showed
that transformers are universal approximators of sequence-to-sequence functions by demonstrat-
ing that self-attention layers can compute contextual mappings of input sequences. Jiang and Li
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(2023) demonstrated universality by instead leveraging the Kolmogorov-Albert representation theo-
rem. Moreover, Alberti et al. (2023) provided universal approximation results for architectures with
non-standard attention mechanisms. The closest to our objective is the work of Wang et al. (2023).
They quantize the input and output spaces allowing them to enumerate all possible sequence-to-
sequence functions. All possible functions and inputs can then be hard-coded in a transformer using
the constructions by Yun et al. (2019). As this approach relies on memorization, the depth of the
model depends on the desired approximation precision .

In this work, we demonstrate that prefix-tuning can be a universal approximator much more effi-
ciently than previously assumed. In particular:

i. We show that attention heads are especially suited to model functions over hyperspheres,
concretely, prefix-tuning a single attention head is sufficient to approximate any continuous
function on the hypersphere S™ to any desired precision ¢;

ii. We quantify the prompt length depending on € and the smoothness of the target function;

iii. We demonstrate how this result can be leveraged to approximate general sequence-to-
sequence functions with transformers of depth linear in the sequence length and indepen-
dent of ¢;

2 BACKGROUND MATERIAL

2.1 TRANSFORMER ARCHITECTURE

The sequence fed to a transformer model is split into two parts: a prefix sequence P = (p1,...,PN
which is to be learnt or hand-crafted and an input sequence X = (1, ..., @), where x;, p; € R®.
Since we will only be interested in the output at the positions corresponding to the inputs X, we use
u(-; P) : RXINHT) _ RIXT g denote the output of u at the locations corresponding to the input
X when prefixed with P. Therefore, the k-th output of u is defined as:

iy exp(wgﬂpi)vaﬁijT:l exp(z]Hzx ;) )Wyz;
Sy exp(@) Hp) + Y, exp(x) Ha;)

where Wy, H € R?¥4, For simplicity, we only use attention blocks with a single head.

[u(X; P)]r= Q)

We consider pretrained transformers but, in the context of this work, these are constructed rather
than trained. Wy, Wq, Wi along with the parameters of the MLPs are pretrained parameters and
the prefix P is the only variable that can be modified to change the behavior of the model.

2.2 UNIVERSAL APPROXIMATION

Let X and ) be normed vector spaces. Given a concept space C C Y% and a hypothesis space
H C V¥, we are interested in how well functions in # approximate functions in C. The hypothesis
classes we consider are the set of all prefixed attention heads and the set of prefixed transformers:

Definition 1 (Prefixed Attention Heads Class (Hy’g)). This is the class of all attention heads as
defined in Equation (1) of dimension d, inpquutpdt sequence of length T', prefix of length at most
N, and fixed pretrained components H, Wy, € R?*4, For simplicity, we say that ’HTdT is dense

in C to imply that there exists a pair (H, Wy ) such that Hivg(H , Wy) is dense in C. When

considering all possible prefix lengths, we drop the N: ”HS = Unen ’HJEdT

Definition 2 (Prefixed Transformers Class (Hg’g)). A transformer consists of L layers with each
layer [ consisting of an attention head with H' and W7, followed by an MLP consisting of k; linear
layers, each parameterized as L’i (x) = AbFx 4 bYF interspersed with non-linear activation o. This
gives rise to the following hypothesis class when prefixed: Again, we say ng is dense in C, as a
shorthand, to there exists {H', W},, Ab* bi*}L | such that ngg({Hl, Wi, ALk, b”"}le) is dense in C.

In this paper, we consider several different concept classes. For reasons that will become apparent
in the following section, we focus on functions whose domain is a hypersphere S™ = {y € R™*1 |
lyll2 =1} C R™FL
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Figure 1: Approximating functions on the hypersphere with a single attention head. A. We
simplify the classical attention head into a core attention head. B. The exp(\(zx, p?))pf terms act
like kernels when x is restricted to a hypersphere. We can approximate a function f by placing
N control points p{, ..., pY; and centering a kernel at each of them. C. Increasing A results in less
smoothing, while increasing N results in more control points and hence better approximation. With
large enough A\ and N, we can approximate f to any desired accuracy. D. With the normalization
term in classical attention close to a constant, and giving x, pj; and pf orthogonal subspaces, core
attention can be represented as classical attention. Hence, a classical attention head can also approx-
imate f with arbitrary precision.

Definition 3 (Vector-valued Functions on the Hypersphere). The class of vector-valued functions
on the hypersphere is:

Com = {f: ST=R™ | [fl; € C(S™),i=1,...,m+1},
with C(S™) c R5" the space of all continuous functions defined on S with bounded norm.

Transformers are typically used to learn mappings over sequences rather than individual inputs.
Hence, we define several sequence-to-sequence concept classes.

Definition 4 (General Sequence-to-sequence Functions). Given a fixed sequence length 7" € N+,
we define the sequence-to-sequence function class as:

Crom = {f: (S™)T—=(@®R™™)T | f continuous and bounded}.

3 MAIN RESULTS

We briefly summarise our main results and leave the formal treatment for the appendix. First, we
observe that the classical attention head can be simplified in what we refer to as a core attention head
by dropping the terms depending only on x, setting H = A4, A > 0, and Wy, = I; and removing
the denominator. We also allow for different values of the prefix positions when computing the
attention and when computing the value:

he(x) = Y5, exp(Ma, pg))p), )

which gives rise to the hypothesis class:
’Hg,d = {a,' — Zgzll exp(A(a:,pg))pg, where pg,pg eRI N <N,\> O} .

As the dot product is a notion of similarity, one can interpret hg in Equation (6) as an interpolator.
The p§* vectors act as control points, while the pf vectors designate the output value at the location
of the corresponding control point. The dot product with the input « controls how much each control
point should contribute to the final result, with control points closer to « (larger dot product) con-
tributing more. However, while functions of the type in Equation (6) cannot approximate arbitrary
functions over R%, we show they can approximate any function defined over the hypersphere S™.
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Moreover, we give a Jackson-type result, that is, we quantify the number of terms N in the sum in
Equation (6) we need in order to approximate a function to a given precision. In our prefix-tuning
setting, IV coresponds to the prefix length. Our result is as following:

Informal Theorem 1. Let f : ST —R™, m > 8 satisfy some continuity conditions. Then, for
any € > 0, there exist p{, ...,p% € S™ andpf, ...,pf\, € R™HL such that

f(@) = S exp( @, p)p | < e

sup
zEesSm

with A = O(e=4) and for any N > N(e) = O(e13m2m") That is, He, m+1 is dense in C,, , with
respect to the || - |2 norm.

Now, we can bring back all the components of the classical attention head (Equation (1)) that we

removed and combine the two parts of the prefix pj} and pg . We do this by increasing the hidden
dimension of our attention head to 3(m+1) while preserving the asymptotic behaviour for A and N:

Informal Theorem 2. Let f : ST —R™t., m > 8 satisfy some continuity conditions. Then, there
exists a matrix 11 € R3HOX4) gyeh that for any 0 < e there exists a prefix for an attention
head h € HJ_V:?{(m +1) such that:

suPgegm || f(x) — (T o hoT)(x)||2 < ¢, 3)

forany N > N(X,¢/v/m+1). That is, 171 o 7—[1_73(m+1) o Il is dense in C, .

Appendix B has a detailed development of these result with the formal proofs in Appendix E, while
Figure 1 illustrates the idea behind the results.

Still, one typically uses the transformer architecture for operations over sequences rather than over
single inputs (the case with 7" > 1). By using a variant of the Kolmogorov-Arnold theorem (Kol-
mogorov, 1957) due to Schmidt-Hieber (2021), we can extend the above results to the 7" > 1 case:

Informal Theorem 3. Let f € Cr ,, satisfy some continuity conditions. Then, there exists a trans-
former with T + 2 layers, such that for any 0 < € there exists a h € HL 4 Such that

Sup max, 1[f{a:}) — (T oo ({mi})], ||, < e

This result is discussed in detail in Appendix C.

4 DISCUSSION AND CONCLUSIONS

Just like us, Wang et al. (2023) show that prefix-tuning can be a universal approximator. This
approach has several limitations: i) the model has exponential depth O(Te~™); ii) reducing the
approximation error e requires increasing the model depth; iii) the prefix length is fixed, hence a
constant function and a highly non-smooth function would have equal prefix lengths, and iv) it
effectively has memorized all possible functions and inputs, explaining the exponential size of their
constructions. In contrast, we show that memorization is not needed: attention heads are naturally
suited for universal approximation. Informal Theorem 3 showed that 7" 4 2 layers are enough, we
require shorter prefixes for more smooth functions and reducing the approximation error € can be
done by increasing the prefix length, without modifying the pretrained model.

While this work focused on prefix-tuning, the results can extend to prompting. Observe that prefix
tuning can be reduced to soft prompting by using an appropriate attention mechanism and position
embeddings. Hence, if a function f € Cr,, requires N prefixes to be approximated to precision
€ with prefix-tuning, it would require O(T'N) soft tokens to be approximated with soft prompting.
A soft token can be encoded with a sequence of hard tokens, hence f could be approximated with
O(logy (e 1)mTN) hard tokens, with V' the vocabulary size. Therefore, our universal approxima-
tion results may translate to prompting. This raises concerns as to whether it is at all possible to
prevent a transformer model to exhibit undesirable behaviors (Zou et al., 2023; Wolf et al., 2023;
Chao et al., 2023). Still, our results require specific form of the attention and value matrices and,
hence, it is not clear whether these risk translate to real-world models.
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A SOME FURTHER DEFINITIONS

Definition A.1 (Universal Approximation (Density-Type)). We say that H is a universal approxi-
mator for C over a compact set S C X if for every f € C and every ¢ > 0 there exists an h € H
such that sup, 5 || f(z) — h(x)|| < e. One typically says that # is dense in C.

Lemma A.1 (Transitivity). If A is dense in B and B is dense in C, then A is dense in C.

Definition A.2 (Approximation Rate (Jackson-Type)). Fix a hypothesis space H. Let {HY : N €
N4} be a collection of subsets of # such that # C HN*" and Jyey, HY = H. Here, N is

a measure of the complexity of the approximation candidates, and H” is the subset of hypotheses
with complexity at most /N. Then, the approximation rate estimate for C over a compact S C X isa
bound Zy:
N>7Z inf —h <eV .
2 Zu(f,e) =  if sup|f(z) —h(z)] < e VfeC
Z; gives a lower bound on the hypothesis complexity necessary to reach the target precision ¢ and
typically depends on the smoothness of f.

Lemma A.2. A Jackson bound for {H™ | N € N} with finite Zy for all f € C,e > 0 immediately
implies that | NeN, HN = H is dense in C. Hence, Jackson bounds (Definition A.2) are stronger

than density results (Definition A.1).

Definition A.3 (Scalar Functions on the Hypersphere). Define C'(S™) C R5™ to be the space of
all continuous functions defined on S™ with bounded norm, i.e.,

£l = sup |f(@)] < o0, f € C(5™) @

This is the concept class C ,, = C(S™) C RS™.

Definition A.4 (Element-wise functions). Element-wise functions operate over sequences of inputs
but apply the exact same function independently to all inputs:

there exists g € Cy,,, such that

CH,T,m: f € CT,m f(wlv '“va):(g(:nl)v ag(wT))
for all (z1, ...,xr) € (S™)T

B UNIVERSAL APPROXIMATION WITH A SINGLE ATTENTION HEAD

In this section, we will restrict ourselves to the setting when the input sequence is of length 7'=1, i.e.,
X=(x). General sequence-to-sequence functions will be discussed in Appendix C. We will show
that a single attention head can approximate any continuous function on the hypersphere, or that
Hl,ym 41 is dense in Cj ,,. To do this, we first simplify the classical attention head in Equation (1),
resulting in what we call a core attention head. Then, we show that each of the terms in the core
attention act as a kernel, meaning that it can approximate any function in C;. Finally, we show that
any core attention head can be approximated by a classical attention head, hence, Hl,’m 11 is indeed
dense in Cz. The complete pipeline is illustrated in Figure 1.

To illuminate the approximation abilities of the attention head mechanism we relax it a bit. That is,
we allow for different values of the prefix positions when computing the attention (the exp terms
in Equation (1)) and when computing the value (the right multiplication with W7y,). We will also
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Figure 2: The dot product is a measure of closeness over the hypersphere. We want large
dot product for points with lower distances. That is not the case for general p$, p§ € R™*1:
above we show larger dot product for points which are further away, i.e., (x, p$)<(x,p$) de-
spite [|[z-pf|[2<|lz-p{|2. However, if we restrict z, py, and p} to the hypersphere S™, then
the dot product measures the cosine between x and p; which is truly a measure of closeness:
(2, p7)<(@.p}) <= |z-p|2>]z-p} 2.

drop the terms depending only on x, set H = A4, A > 0, and Wy, = I;. We refer to this relaxed
version as a split attention head with its corresponding hypothesis class:

N’ o
hy(z) = Ek:l eXp(A(a},pk»pf
Ir = N o
> k=1 exp(Mz, p}))
Definition B.1 (Split Attention Head Class).

(&)

HN, = {h” asin (5), p,pl € RE N < N, A > o} .

We will later show that a split head can be represented by a classical attention head. For now, let us
simplify a bit further: we drop the denominator, resulting in a core attention head:

he(z) = S exp(Ma, pg))ph, 6)

which gives rise to the hypothesis class:

yN _]x S exp(Ax, p))pl, where .
©.d pe,pl € RN < N,A>0

We also have their scalar-valued counterparts:
N o
ho(@) = X3y exp(M, pR))py ©

yN T Zngl eXP()\<ﬂJ7p%>)p£, where .
o py €RLp) €R,N' < N,A >0

As the dot product is a notion of similarity, one can interpret hg in Equation (6) as an interpolator.

The p$* vectors act as control points, while the p? vectors designate the output value at the location
of the corresponding control point. The dot product with the input & controls how much each
control point should contribute to the final result, with control points closer to x (larger dot product)
contributing more.

Unfortunately, it is not generally true that higher dot product means smaller distance, hence the
above interpretation fails in R™*!. To see this, consider two control points p$, p$ € R™* ! such
that p§ = tp$, with t > 1. Then for z = p§ we would have (x, p®)=||p¢||3 < (z, pS)=t||pf|%:
the dot product is smaller for p{’, the control point that is closer to «, than for the much further away
p5 (see Figure 2). Therefore, the further away control point has a larger contribution than the closer
point, which is at odds with the interpolation behaviour we desire. In general, the contribution of
control points with larger norms will “dominate” the one of points with smaller norms. This has
been observed for the attention mechanism in general by Demeter et al. (2020).

Fortunately, the domination of larger norm control points p§* is not an issue if all control points have
the same norm. In particular, if  and p¢* lie on the unit hypersphere S™={ycR"™*! | |ly|lo=1}
then (x, p$) = cos(Z(x, p$)) and it has the desired property that the closer  is to pg', the higher
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their dot product. By doing this, we restrict hg to be a function from the hypersphere S™ to R™*1,
While this might seem artificial, modern transformer architectures do operate over hyperspheres as
LayerNorm projects activations from R™%2 to S™ (Brody et al., 2023).

The central result of this section is that the functions of the form of Equation (7) can approximate
any continuous function defined on the hypersphere, i.e., He mt1 = Uﬁ:l Hg,m 11 is dense in
Cs,m (Definition A.3) and He m+1 = U?:l Hg,mﬂ is dense in C,, ,, (Definition 3). Furthermore,
we offer a Jackson-type approximation rate result which gives us a bound on the necessary prefix
length N to achieve a desired approximation quality.

Theorem B.1 (Jackson-type Bound for Universal Approximation on the Hypersphere). Let f €
C(S™) be a continuous function on S™, m > 8 with modulus of continuity

w(fst)=sup{|f(z)-f(y)| | &,y€S™, cos™ ((x,y)) <t} < Lt,

for some L > 0. Then, for any € > 0, there exist p{, ..., p% € S™ and pf, . ,pJﬁV € R such that

N
sup |f(x) — ZGXP(M%I’?»I’Q) <6
ZEGS"” k=1
where \ = A(E/Q) with
2 Py ejeers
(8LCR+m0+a) (1-m) f

Alo) =

_SLCHCR+20'CH

e

and any N > N (), €) with

3T(L+] flloo)Cm+1(N) exp(X) )m+1_0(6-1-3m-2m2)’ 9)

€

N 9=a(m)

with C'y being a constant depending on the smoothness of f (formally defined in the proof), Cr
being a constant not depending on f or ¢, ®(m) = O(mlogm) being a function that depends only
on the dimension m and c,, 11 being a normalization function.

Corollary B.1. H¢ 41 is dense in Cs o,
Proof. Theorem B.1 holds for all ¢ > 0 and Lemma A.2. O

Theorem B.1 is a Jackson-type result as Equation (9) gives the number IV of control points needed
to approximate f with accuracy e. This corresponds to the length of the prefix sequence. Moreover,
the smoother the target f is, i.e., the smaller L, Cy, the shorter the prefix length N. Thus, our
construction uses only as much prefix positions as necessary.

The proof of Theorem B.1 follows closely (Ng and Kwong, 2022). While they only provide a density
result, we offer a Jackson-type bound which is non-trivial and may be of an independent interest.
The idea behind the proof is as following. We first approximate f with its convolution with a kernel
having the form of the terms in Equation (7):

(f * K3MF) ()= /S et (\) exp(M, 1)) £ () duom (y). (10)

The larger the A is, the closer f x KM is to f and hence the smaller the approximation error
(Menegatto, 1997). A(¢/2) gives the smallest value for A such that this error is ¢/2. Equation (10) can
then be approximated with sums: we partition S™ into NV sets V7, ..., Vy small enough that f does
not vary too much within each set. Each control point p is placed in its corresponding V3. Then,
exp(A@, y))f(y) can be approximated with exp(A(x, pf))f(py) when y is in the k-th set V.

Hence, Equation (10) can be approximated with Zfevﬂ exp(Mz, pg)) Cf(ps) for some suitable
constant C'. By increasing /N we can reduce the error of approximating the convolution with the
sum. Equation (9) gives us the minimum N needed so that this error is ¢/2. Hence, we have error of
at most ¢/2 from approximating f with the convolution and ¢/2 from approximating the convolution
with the sum, resulting in our overall error being bounded by e. The full proof is in Appendix E and
is illustrated in Figure 4. The theorem can be extended to vector-valued functions in C, ,, with a
multiplicative factor 1/y/m+T:
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Corollary B.2. Let f : S™—R™ ! m>8 be such that each component f; satisfies the conditions in
Theorem B.1. Define || f||co=max1<i<m+1l| fillco- Then, for any e>0, there exist py, ..., pS € S™

and p) | ...,p’]B\, € R™HL such that

sup
xesSm

< e

ZeXP x, pf))py,

2

with A = A(¢/2vm+1) for any N > N(\,¢/v/m+1). That is, Hg m+1 is dense in C,, ., with respect
to the || - ||2 norm.

Thanks to Theorem B.1 and Corollary B.2, we know that functions in C, ,,, can be approximated
by core attention (Equation (6)). We only have to demonstrate that a core attention head can be
represented as a classical attention head (Equation (1)). We do this by reversing the simplifications
we made when constructing the core attention head.

Let us start by bringing the normalization term back, resulting in ”Hﬁ , the split attention head

hypothesis (Definition B.1). Intuitively, d(z) = >, _, exp(A(x, pf)) is almost constant when the
P, are uniformly distributed over the sphere as the distribution of distances from x to pg will be
similar, regardless of where x lies. We can bound how far d(x) is from being a constant and adjust
the approximation error to account for it. Appendix F has the full proof.

Theorem B.2. Let f : S —R™L m>8 be such that each component f; satisfies the conditions
in Theorem B.1. Then, for any 0 <e<2|| f|| oo, there exist p§, ..., pN€S™ such that

fa) - Zhea PO PE)IPY

sesn SN o) ||,
it SOV —
v+ 13| flloc +2L) — ¢/2

Pl = f}), Vk=1,...,N,
forany N > N (X, ¢//m+1). That is, H,; j+1 is dense in C,, ,, with respect to the || - ||2 norm.

An interesting observation is that adding the normalization term has not affected the asymptotic

behavior of A and hence also of the prefix length N. Furthermore, notice how the value pf at the
control point p¢ is simply f(pf), the target function evaluated at this control point.

We ultimately care about the ability of the classical attention head (Definition 1) to approximate
functions in C, ,, by prefixing. Hence, we need to bring back the terms depending only on the
input , combine the o and 3 parts of the prefix into a single vector and bring back the H and
Wy matrices. One can do this by considering an attention head with a hidden dimension 3(m+1)

allowing us to place x, pf and pfz in different subspaces of the embedding space. To do this, define
a pair of embedding and projection operations:

Im:s™ — RS(m+1) ot RS(m+1) — R+

T
Im+1
0m+1 x.

017’L+1

€T —

Im+1
[ x —

O'm+1

Lemma B.1. II"' o Hi,B(m+1) o Il is dense in H m+1, with the composition applied to each
function in the class.

The proof is in Appendix G. Lemma B.1 shows that every split attention head can be exactly repre-
sented as 3 times bigger classical attention head. Note that our choice for H and Wy is not unique.
Equivalent constructions are available by multiplying each component by an invertible matrix, ef-
fectively changing the basis of the system. Finally, the embedding and projection operations can
be represented as MLPs and hence can be embedded in a transformer architecture. Now, we can
provide the final result of this section, namely that the standard attention head of a transformer can
approximate any vector-valued function on the hypersphere:

10
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Theorem B.3. Let f : S™ — R™%!, m > 8 be such that each component f; satisfies the conditions

in Theorem B.1. Then, for any 0 < € < 2||f||c0, there exists an attention head h € HN!L

,3(m+1) such
that

SUPgegm || f(z) — (T o hoI)(x)[2 <, (11)
forany N > N (X, ¢/ym+1). Thatis, I o H!

nornt.

3(m1) 1L is dense in Cy o, with respect to the || - |2

Proof. The density result follows directly from Theorem B.2 and Lemma B.1 and transitivity
(Lemma A.1). The Jackson bound is the same as in Theorem B.2 as transforming the split attention
head to a classical attention head is exact and does not contribute further error. O

Therefore, we have shown that a single attention head with a hidden state 3(m+1) can approximate
any continuous function f : C'(S™)—R™*! to an arbitrary accuracy. This is for fixed pre-trained
components, that is, H and Wy, are as given in the proof of Lemma B.1 and depend neither on the
input « nor on the target function f. Therefore, the behavior of the attention head is fully controlled
by the prefix. This is a Jackson-type result, with the length N of the prefix given in Theorem B.2. To
the best of our knowledge, Theorem B.3 is the first bound on the necessary prefix length to achieve
a desired accuracy of function approximation using an attention head. Most critically, Theorem B.3
demonstrates that attention heads are more expressive than commonly thought. A single attention
head with a very simple structure can be a universal approximator.

C UNIVERSAL APPROXIMATION OF SEQUENCE-TO-SEQUENCE FUNCTIONS

The previous section showed how we can approximate any continuous f : S™ — R™T! with
a single attention head. Still, one typically uses the transformer architecture for operations over
sequences rather than over single inputs (the case with 7' > 1). We will now show how we can
leverage Theorem B.3 to model general sequence-to-sequence functions. First, we show the simpler
case of functions that apply the exact same mapping to all inputs. We then show how to model
general sequence-to-sequence functions using a variant of the Kolmogorov—Arnold theorem.

Element-wise functions Theorem B.3 can be extended to element-wise functions where the
exact same function is applied to each element in the input sequence, i.e., the concept class
Cj,r,m from Definition A4. If f € Cjr;m, then there exists a g € C,,m such that
fley,...,xr)=(9(x1),...,g9(xr)). By Theorem B.3, there exists a prefix p, ..., p that approx-
imates g. As the construction in Lemma B.1 prevents interactions between two different inputs x;

and x;, an attention head rT € ”Hfg(m 1) for a T-long input (Equation (1)) with the exact same
prefix p1, ..., py approximates f:
Corollary C.1. TI"! o ’Hfﬁ(mﬂ)

element-wise. That is, for every € > 0, there exists h' € ’Hf;{(

o Il is dense in C|| ,,, with respect to the || - ||2 norm applied

1) such that:

(ot 2B yr 12855 |1 i) — (™ on o) ()], l, < e

with I and 11~ applied element-wise, [-]); selecting the k-th element, and approximate rate bound
on N as in Theorem B.3.

General sequence-to-sequence functions Ultimately, we are interested in modeling arbitrary
functions from sequences of inputs (1, ..., xr) to sequences of outputs (yi,...,yr), that is, the
Cr,m. We will use a version of the Kolmogorov—Arnold representation Theorem. The theorem is
typically defined over functions over the unit hypercube [0, 1]™. As there exists a homeomorphism
between [0, 1]™ and a subset of S™ (Lemma G.1), for simplicity, we will ignore this technical detail.
Our construction requires only 7" 4 2 attention layers, each with a single head.

The original Kolmogorov-Arnold representation theorem (Kolmogorov, 1957) identifies every con-
tinuous function £ : [0, 1]¢ — R with univariate functions g, 1, , such that:

f(@1,... 2a) = Zzio Yq (Z$=1 wp,q(xp)> :

11
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In other words, multivariate functions can be represented as sums and compositions of univariate
functions. As transformers are good at summing and attention heads are good at approximating
functions, they can approximate functions of this form. However, g, and 1, 4 are generally not
well-behaved (Girosi and Poggio, 1989), so we will use the construction by Schmidt-Hieber (2021)
instead.

Lemma C.1 (Theorem 2 in (Schmidt-Hieber, 2021)). For a fixed d, there exists a monotone func-
tions v : [0,1] — C (the Cantor set) such that for any function f : [0,1]¢ — R, we can find a
function g : C — R such that

. d -
i S ma) = g (3552377 U(y). (12)
ii. if f is continuous, then g is also continuous,

iii. if |f(x) — f(y)| < QT — Y|oo, for all x,y € [0,1]? and some Q, then |g(z) — g(y)| <
2Q.Vx,y € C.

In comparison with the original Kolmogorov—Arnold theorem, we need a single inner function
which does not depend on the target function f and only one outer function g. Furthermore, both 1)
and g are Lipschitz. Hence, we can approximate them with our results from Appendix B.

We need to modify Lemma C.1 a bit to make it fit the sequence-to-sequence setting. First, flatten
a sequence of T’ (m + 1)-dimensional vectors into a single vector in [0, 1](™+17T. Second, define
U,y : [0,1]¢ — R9 to be the element-wise application of ¥: Wy({x;}¢_,) = {v(z;)}¢,. We can
also define G; : C — R™*! i =1,... T and extend Equation (12) for our setting:

F(@1, oy zr) = (G1(R),. .., Gr(R)), with

m-+1

T
R=3% 30N " gry(z; ) (13)
i=1 p=1

3t 1"

T

— 3 Z 3-(1—1)(m+1) E \I/m+1 (mz)
i=1 3—(m+1)

Equation (13) can now be represented with a transformer with 7' 4 2 attention layers. W, is
applied element-wise, hence, all ¥, 1 (;) can be computed in parallel with a single attention head
(Corollary C.1). The dot product with the [3'1 e 3’(’”*1)] vector can be computed using a

single MLP. The product with the 3 "1 (+1) scalar is a bit more challenging as it depends on the
position in the sequence. However, if we concatenate position encodings to the input, another MLP
can use them to compute this factor and the multiplication. The outer sum over the 7" inputs and
the multiplication by 3 can be achieved with a single attention head. Hence, using only 2 attention
layers, we have compressed the whole sequence in a single scalar R. '

The only thing left is to apply G1,...,Gr to R to compute each of the 7" outputs. As each one
of these is Lipschitz, we can approximate each with a single attention head using Theorem B.3.
Each G; is different and would need its own set of prefixes, requiring 7" attention heads arranged
in T attention layers. Using the positional encodings, each layer can compute the output for its
corresponding position and pass the input unmodified for the other positions. The overall prefix size
would be the longest of the prefixes necessary to approximate ¥,,,1,G1,...,Gr.

Hence, we have constructed an architecture that can approximate any sequence-to-sequence function
[ € Cr,, with only T'+2 attention layers. Thus, HZ , is dense in Cr .

D BACKGROUND ON ANALYSIS ON THE SPHERE

As mentioned in the main text, the investigation of the properties of attention heads naturally leads to
analysing functions over the hypersphere. To this end, our results require some basic facts about the

"Yun et al. (2019) use a similar approach but use discretization to enumerate all possible sequences and
require O (e~ ™) attention layers. In our continuous setting, R is computed with 2 layers.

12
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analysis on the hypersphere. We will review them in this appendix. For a comprehensive reference,
we recommend (Atkinson and Han, 2012) and (Dai and Xu, 2013).

Define P, (R™*1) to be the space of polynomials of degree at most k. The restriction of a polynomial
p € Pr(R™*1) to the unit hypersphere S™ = {x € R™T! | |lz|s = 1} is called a spherical
polynomial. We can thus define the space of spherical polynomials:

P1(S™) = {p|sm for p € Px(R™1)}.

Define by Hj,(R™*+1) the space of polynomials of degree k that are homogeneous:

m—+1
1 Qm41
Hy (R™) =< (21, .+, Tng1) > 27 X o0 X x, g o, =k
i=1

Its restriction to the sphere Hy, (S™) is defined analogously to P, (S™). Finally, we can define the
space Y(R™T1) of harmonic homogeneous polynomials:

82
oz2 P

Y (S™) which is the restriction of Y (R™*1) to S™ is the set of spherical harmonics of degree k.
Spherical harmonics are the higher-dimensional extension of Fourier series.

Y (R™H) = {p € Hi(R™) | (x) =0, Vx € Rm“} .

Notably, even though
Yk(Sm) C Hk(Sm) C IP’k(Sm),
the restriction of any polynomial on S™ is a sum of spherical harmonics:
Pp(S™) = Yo(S™) @ -+ & Yi(S™),
with @ being the direct sum (Atkinson and Han, 2012, Corollary 2.19).

We define C'(S™) to be the space of all continuous functions defined on S™ with the uniform norm

[flloc = sup [f(2)], f € C(S™). (14)
zes™

Similarly, £,(5™),1 < p < oo is the space of all functions defined on S™ which are integrable
with respect to the standard surface measure dw,,. The norm in this space is:

1 1/p
1= (o [ @ dun@) . 1€ £yt (15)
with the surface area being
27T(7n+1)/2
Wy = . dwm = m (16)

We will use V,,, to denote any of these two spaces and || - ||, the corresponding norm.

A key property of spherical harmonics is that sums of spherical harmonics can uniformly approxi-
mate the functions in C'(S™). In other words, the span of [ J,—, Y (S™) is dense in C(S™) with
respect to the uniform norm || - || . Hence, any f € C'(S™) can be expressed as a series of spherical
harmonics:

fl@)=> Y (@), with Y™ € Yi(S™), k.
k=0

We will also make a heavy use of the concept of spherical convolutions. Define the space of kernels
L™ to consist of all measurable functions K on [—1, 1] with norm

1
Wm—1 m—
1 K][1,m = " / |K()|(1—t)m=2/2 gt < .

m -1

Definition D.1 (Spherical convolution). The spherical convolution K * f of a kernel K in £1'™ with
a function f € V,,, is defined by:
1 m
(K= f)(@x)=— [ K({z,9))f(y) dwn(y), zc ™

wm Sm

13
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A=10 Log Value

Figure 3: Plots of the von Mises-Fisher kernel K}MF((x, y)) for A = 1,5, 10 and fixed y in three
dimensions (m = 2). The larger A is, the more concentrated the kernel is around y.

Spherical convolutions map functions f € V,, to functions in V,,. Furthermore, the spherical
harmonics are eigenfunctions of the function generated by a kernel in £1/™:

Lemma D.1 (Funk and Hecke’s formula (Funk, 1915; Hecke, 1917; Estrada, 2014)).
KxY" =al"(K)Y,", when K € LY, V™ € Y),(S™),k=0,1,..

where aj* (K) are the coefficients in the series expansion in terms of Gegenbauer polynomials asso-
ciated with the kernel K :

*

S (m—l)/2(t)
a(K) = —/ K(t)W(l—tz)(m_m/Q dt,k=0,1,.... (17)
Wm J-1 Qk (1)

Here, Q;Cm_l)/ % is the Gegenbauer polynomial of degree k.

Note also that with a change of variables we have:

K((,9)) dun () = wm— / K(#)(1 — £2)m=2/2 g (18)
sm -1

Ideally, we would like a kernel that acts as an identity for the convolution operation. In this case,
we would have || K * f — f|lco =0, f € C(S™) which would be rather convenient. However, there
is no such kernel in the spherical setting (Menegatto, 1997). The next best thing is to construct a
sequence of kernels {K,,} € £1'™ such that ||K,, x f — f||lm — 0asn — oo forall f € V,,,. This
sequence of kernels is called an approximate identity. The specific such sequence of kernels we will
use is based on the von Mises-Fisher distribution as this gives us the exp({(zx, y)) form that we also
observe in the transformer attention mechanism.

Definition D.2 (von Mises-Fisher kernels, (Ng and Kwong, 2022)). We define the sequence of von
Mises-Fisher kernels as:

KXMF(t) - Cm+1(>‘) exp()\t), te [*17 1]a

where .
WA 2 L

& +1(A) = m-+1 b)

" (2m) 5 T, (\)

2

with I, being the modified Bessel function at order v.

Note that a von Mises-Fisher kernel can also be expressed in terms of points on S™. In particular,
for a fixed y € S™ we have K\M*((x,y)), 2 € S™. The parameter ) is a “peakiness” parameter:
the large \ is, the closer K\MF((z, y)) approximates the delta function centered at y, as can be seen
in Figure 3. It is easy to check that || KXMF||; ,, = 1, VA > 1,m > 1 and hence the sequence is
in £5™, meaning they are valid kernels. Ng and Kwong (2022, Lemma 4.2) show that { K}MF} is
indeed an approximate identity, i.e., | K\MFx f — f||,, — 0as A — oo forall f € V,,,.2 As we want
a Jackson-type result however, we will need to upper bound the error || K\MF % f — f||,,, as a function

of ), that is a non-asymptotic result on the quality of the approximation by spherical convolutions
with K{MF. We do that in Lemma E.5.

>The Wy, term in the normalization constant ¢,,+1() is not in (Ng and Kwong, 2022). However, without
it KM are not an approximate identity.

14
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| ' ‘

Target functlon Convolution with Partition of f is approximately  Approximating dot product Sum over
von Mises-Fisher kernel sm constant in each cell ~with a point in the partition lhe partition
KYMF s« f (@, y) ~ (x,br)when y € V;
Z& exp(Mz, by))

Figure 4: Intuition behind the proof of our Jackson-type bound for universal approximation
on the hypersphere. A. We want to approximate a function f over the hypersphere S™. This
illustration is in three-dimensional space, so m = 2. B. In order to get the exp(A(:, y)) form that we
want, we convolve f with the K\ () = ¢;,41(A) exp(At) kernel. C. We partition S™ into N cells
V1,...,Vn. D. Our choice of N is such that f does not vary too much in each cell and hence can
be approximated by a function that is constant in each V. E. As each cell is small, the dot product
of  with any point in the cell Vj; can be approximated by the dot product of  with a fixed point
by, € V.. F. This allows us to approximate the integral in the convolution K /V\MF with a finite sum.

E A JACKSON-TYPE BOUND FOR UNIVERSAL APPROXIMATION ON THE
UNIT HYPERSPHERE

The overarching goal in this section is to provide a Jackson-type (Definition A.2) bound for ap-
proximating functions f : S™ — R™*! on the hypersphere S™ = {x € R™*! | ||z|2 = 1} by
functions of the form

x) = Zé‘k exp(A(z, by)) (19)

To this end, we will leverage results from approximation on the hypersphere using spherical convo-
lutions by Menegatto (1997) and recent results on the universal approximation on the hypersphere
by Ng and Kwong (2022). While these two works inspire the general proof strategy, they only offer
uniform convergence (i.e., density-type results, Definition A.1). Instead, we offer a non-asymptotic
analysis and develop the first approximation rate results on the sphere for functions of the form of
Equation (19), i.e., Jackson-type results (Definition A.2).

The high-level idea of the proof is to split the goal into approximating f with the convolution f
KMF and approximating the convolution f * KM with a sum of terms that have the exp(t(z, b))
structure resembling the kernel K\MF (Definition D.2):

N
1f = F o BV 4 (1 KM = eexp(A(, b))
k=1

Equation (21) / Lemma E.5 °
Lemma E.7
(20)

sup
xesS™m

N
=) &rexp(Ma, bk>)|
k=1

This is also illustrated in Figure 4.

Let’s focus on the first term in Equation (20). It can be further decomposed into three terms by
introducing W, € P,(S™), the best approximation of f with a spherical polynomial of degree ¢:

”KVMF*f fHoo < HKVMF f _K/V\MF*W Hoo+ HKVMF*WQ - Wq||oo+||Wq - f”oo (21)

Lemma E.2 Lemma E.4 Lemma E.1

There are a number of Jackson-type results for how well finite sums of spherical polynomials ap-
proximate functions f € V,, (the last term in Equation (21)). In particular they are interested in
bounding

i — Wy, 1< p< oo. 22
qup}:l(lsm)llf allp, 1<p<o0 (22)

15
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Figure 5: The coefficients a}" for the von Mises-Fisher kernels K\MF for m = 2 and k € {1,2,3}
as well as the lower bound from Lemma E.3.

We will use a simple bound by Ragozin (1971):
Lemma E.1 (Ragozin bound). For f € C(S™) and q € Nx it holds that:

1
i —W,lle<C =), 23
wqerﬁ?sm)”f ol < Rw(f q) @9

for some constant Cr that does not depend on f or q and w being the first modulus of continuity of
f defined as:

w(f;t) = sup{|f(x) - f(y)| | z,y € S, cos(z"y) < t}.

We recommend Atkinson and Han (2012, Chapter 4) and Dai and Xu (2013, Chapter 4) for an
overview of the various bounds proposed for Equation (22) depending on the continuity properties
of f and its derivatives. In particular, the above bound could be improved with a term 1/»* if f has
k continuous derivates (Ragozin, 1971).

We can upper-bound the first term in Equation (21) by recalling that the norm of the kernel K}MF is
1:

Lemma E.2.
B 5 f = KM 5 Wl < I = Wollm-

Hence:
Vi Vi 1
IS = R Wyl <17 = Wil < G (£2).
Proof. Convolution is linear so ||[KMF x f — K\MF « W, ||, = [|[KMF « (f — Wy)||m. Using

the Holder inequality (Dai and Xu, 2013, Theorem 2.1.2) we get [|[KXMF % f — KMF« W, ||, <
I ESMEN | f = Wollm. As || KMy, = 1 forall A > 0,m > 1, we obtain the inequality in the
lemma. For the uniform norm, we also use the Ragozin bound from Lemma E.1. [

Only the second term in Equation (21) is left. However, before we tackle it, we will need a helper
lemma that bounds the eigenvalues of the von Mises-Fisher kernel (Equation (17)):

Lemma E.3 (Bounds on the eigenvalues a}'(KYMY)). The eigenvalues o}, as defined in Equa-
tion (17), for the sequence of von Mises-Fisher kernels (Definition D.2) are bounded from below
and above as:

0< <ap (KM <1

A
(252 4 k) + /2 + (252 4 k)

16
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Proof. We have

MF Wm—1 ! MF I(cm 1)/2(t) 2 2)/2
o () = 2t [ R e 1 — ) gy

Wyn an_l)/Z(l)
1 (m—1)/2
Wp—1 k (t) 2\ (m—2)/2
- i1 (N expA) 2 gy dt
o [ e e S )
* I’”T*‘Jrk(/\)
RO

with * solved using Mathematica. From here we can see that af'(K\MF) = 1 for all m > 1,\ >
1. Furthermore, for v > 1 and A > 0 the modified Bessel function of the first kind I,,()) is

monotonically decreasing as v increases. Therefore, af (K\MF) < af*(KYMF) = 1, which gives us
the upper bound in the lemma.

For the lower bound, we will use the following bound on the ratio of modified Bessel functions by
Amos (1974, Eq. 9):

Lon(@) z v>0,2>0.

L(@) ~ (v+1)++/22+ (v+1)2
As mentioned above, 0 < L}%g) < 1. Furthermore, these ratios are decreasing as v increases, i.e.,

Lypa(@) I“I“(x) forallv > 0 and x > 0 (Amos, 1974, Eq. 10). Combining these facts gives us:

Iv+1(x) - ,,(m)
k
= i . (24)
(v+k)+ 22+ (v+ k)2

Toi(z) < Ly () >
- )
We can now give the lower bound for a}* (KYMF) using Equation (24) :

Iv(l') ]v+]€,1($

k
(KVMF) _ I;zl"r’(ﬁ)(\;\) 2 A -
mrt (2 + k) + \//\2+ (22 + k)
The lower bound for m = 2 is plotted in Figure 5. O

We can now provide a bound for the second term in Equation (21):

Lemma E.4. Take an f € C(S™). Furthermore, assume that there exists a constant Cy > 0 that
upper-bounds the norms of the spherical harmonics of any best polynomial approximation W of f:

q
forallg> 1, W, =YY", V" € Y(S™), IV lloo < Cr, ¥k =0,...,q, where W, = arg gun I F=hl|o-
k=0
Then
q

||K‘MF* Wi =Wyl <Crq |1~

+\/>\2 mol 1 g)®

Proof. Using that W, is a spherical polynomial of degree ¢ and hence can be expressed as a sum of
spherical harmonics W, = >"{_, Y™, we get:

q
|KVMF*Wq—Wq||m=HK“MF ZYk )= Vi)
k=0

oo
q

Z KM Y™ () — Ykm(ff))

k=0

o0

17
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M=

| (KM Y () = Y (2)) | (Triangle inequality)

oo

E
I
=

| (ap (KM)Y™(2) — V™ (2)) | (from Lemma D.1)

|
M=

k=0 >
q
= @ &M - 1) vt @)l
k=0
q
= lap (K™ = 1 V™ (@)l
k=0
q
<Y lap (KM = 1] Crr
k=0
k
I A
<Cx Z 1- - (from Lemma E.3)
k=0 (mT—1+k)+\/A2+(mT‘1+k)
k
- A
<Cpy Z 1 - (as k < q)
S| e g e (5 1)
B
q
=Cyx|q+1- ZB’“)
k=0
<Cr(qg+1—(1+¢B%) (using that 0 < B < 1)
< Cuq(1—B9).

O

We can finally combine Lemmas E.1, E.2 and E.4 in order to provide an upper bound to Equa-
tion (21):

Lemma E.5 (Bound on || K\MF x f — f| ). Take an f € V,,, with modulus of continuity w(f;t) <
Lt. As in Lemma E.4, assume that there exists a constant C'g > 0 that upper-bounds the norms of
the spherical harmonics of any best polynomial approximation W of f:

q
Hg>1,W,=> Y, Y € Y(S™), [Vi"loo < Cu, Yk =0,...,q, where W, = a i —h|so-
Jorallq>1,W, kz::[) W Yy (™), 1Yl < Cu q, where W, rgheg:trslm)l\f |

If A > A(e), where

(8LCR + me + ¢) (1 — %) TLCRte 13 5
Ale) = 82LCHCR+2 Ci _0 ( C’,ZCR> . 25)
€ ALC pFe €
€ (1 - (1 - m) et )

then ||f — K3MF « flo < e

Proof. As we want to upper-bound Equation (21) with €, we will split our € budget over the three
terms.

For the first and the third terms, using the Ragozin bound from Lemma E.1 we have:
< CrL

1
Hf—WNwéC%w<ﬁq)_ R 26)

18
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We want to select an integer ¢ large enough so that || f — W ||oc < ¢/4. Thatis ¢ = [292L]. This
will be how we bound the first and last terms in Equation (21).

Let’s focus on the second term. Pick W, to be the best approximation from the Ragozin bound.
From Lemma E.4 we have that

K 5 Wy = Wylloo < Crrq (1 - BY),

where

A
(25 +q) + /3 + (252 +¢)°

The error budget we want to allocate for the | K\MF « W, — W, || term is ¢/2. Hence:

B =

l/q
€ v €
B> (120Hq) =D = ||KnMF*quWq||w§§. 27)
We just need to find the minimum value for A such that Equation (27) holds. We have:
A A
B= = . (28)
2 2
(m;1+q)+\/>\2+<m;1+q)2 E+VAN+E
E

Then, combining Equations (27) and (28) we get:

A
——>D
E+V N +E?

\ > 2DE
~1-D?*

Finally, replacing D and E with the expressions in Equations (27) and (28), upper-bounding ¢ =
[@W asq > @ + 1 and simplifying the expression we get our final bound for . If A > A(e),
with

€2 ﬁ
(8LCR+me+6) (1~ sromcmmen )
) 2e )
€ (1 - (1 - m) “”R*/)

then || KMF 5« W, — W || < /2.

Ale) =

Hence, for any A\ > A(e) we have:
KM % f = flloo < KM f = KM % Wolloo + [ KX 5 Wy = Wolloo + [Wy = flloo
€
< ”f - Wquo + 2 + ”Wq - fHoo

€+6+6
4 2 4
€.

IA

This concludes our bound on Equation (21).

Finally, to give the asymptotic behavior of A(¢) as ¢ — 0 we observe that the Taylor series expansion
of A around € = 0 is:

128L3CHC3 16L2%(m — 1)CyC? 1
Ale) = R (mg)HRJrO(z),
€ € €
hence:
L3CyC3
Ae) =0 (e{jﬁ‘> .
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Lemma E.5 is our bound on Equation (21) which is also the first term of Equation (20). Recall that
bounding Equation (20) is our ultimate goal. Hence, we are halfway done with our proof. Let’s focus
now on the second term in Equation (20), that is, how well we can approximate the convolution of
f with the von Mises-Fisher kernel using a finite sum:

N
Hf « IOMF = " &exp(A(:, by))
k=1

oo

The basic idea behind bounding this term is that we can partition the hypersphere S™ into IV sets
({V4,...,Vn}), each small enough so that, for a fixed z € S™, the K((x,y))f(y) term in the

convolution )
(K= f)(®)=— [ K((z,9))f(y) dwn(y)

W Jgm

is almost the same for all values y € V}, in that element of the partition. Hence we can approximate
the integral over the partition with estimate over a single point bg:

g K((z,y))f(y) dwm(y) ~ [V K((2, bi)) f (b)-

The rest of this section will make this formal.

First, in order to construct our partition {V1, ..., Viy} of S™ we will first construct a cover of S™.
Then, our partition will be such that each element V}; is a subset of the corresponding element of the
cover of S™. In this way, we can control the maximum size of the elements of the cover.

Lemma E.6. Consider a cover {B;s(b1),...,Bs(bny)} of S™ by N§* hyperspherical caps

Bs(x) ={y € S™ | (x,y) > 1 -6} for 0 < & < 1. By cover we mean that Uﬁ: Bs(b;) = S™,
with N§" being the smallest number of hyperspherical caps to cover S™ (its covering number).
Then, for m > 8 we have:
2 P )
I p— < Né” < (m) il 5”(:3’
Is2-o)) (% 3) (5(2 — §))™

with I being the regularized incomplete beta function and ®(m) = O(mlogm) being a function
that depends only on the dimension m.

Proof. Define ¢ = cos™1(1 —§):

Bs(x) g

Q

Naturally, the area of the caps needs to be at least as much as the area of the hypersphere for the set
of caps to be a cover. This gives us our lower bound. The area of a cap with colatitude angle ¢ as

above is (Li, 2010):
1 1
wf:z = §wmfsin2¢ (T;, 2) .

Assin ¢ = sin (cosH(1 = §)) = /1 — (1 — )% = 1/6(2 — &), we have our lower bound:
W 2 2
> e m 1) m 1
win Lsinzg (5:3) Loy (%:3)
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For the upper bound, we can use the observation that if a unit ball is covered with balls of radius r,
then the unit sphere is also covered with caps of radius r. From (Rogers, 1963, intermediate result
from the proof of theorem 3) we have that for m > 8 and 1/» > m + 1, a unit ball can be covered
by less than

1 1

e((m + 1)log(m + 1) 4+ (m + 1) loglog(m + 1) + 5(m + 1)) = ®(m) FmAL

,rm—i-l

balls of radius r. For high m, this is a pretty good approximation since most of the volume of the
hypersphere lies near its surface. Our caps B; can fit inside balls of radius » = sin ¢. Hence, we
have the upper bound:

®(m) ®(m)

m+1

™o (52— 0))"

NP <

O

Now we can use a partition resulting from this covering in order to bound the error between the
integral and its Riemannian sum approximation:

Lemma E.7 (Approximation via Riemann sums). Lef g(x,y) : S™ x S™ — R with m > 8 be
a continuous function with modulus of continuity for both arguments w(f(-;y),t) < Lt, Yy €
S™ and w(f(x,-);t) < Lt, V& € S™. Take any 0 < 0 < 1. Then, there exists a partition

Vi, ..., VNp} of S™ into N§* = [®(m)/sm+1] subsets, as well as by, ..., by» € S™ such that:
NG
max € / g(x,y) dwn,(y) — Zg(a: by) Wy (Vi)| < 3Lcos™ (1 —0)
x€S™ Wy | Jgm T " = ’ " - '

Here, ®(m) = O(mlogm) is a function that depends only on the dimension m.

Proof. This proof is a non-asymptotic version of the proof of Lemma 4.3 from Ng and Kwong
(2022). First, we can use Lemma E.6 to construct a covering {Bs(b1), ..., Bs(bym)} of S™. If
we have a covering of S™ it is trivial to construct a partition of it {V3,..., Vyr }, Ufc\g Vi = S™,
VinV; = (b, # j such that Vi, C Bj(by,), Vk. This partition can also be selected to be such that all
elements of it have the same measure w,,, (V1) = w, (V;), Vi (Feige and Schechtman, 2002, Lemma

21). While this is not necessary for this proof, we will use this equal measure partition in Lemma F.2
and Theorem F.1.

We can then use the triangle inequality to split the term we want to bound in three separate terms:

m
Né

[ oy dunt) = - gl bi) Vi) <
) k=1

[ ate.) dunts) = [ g(bny) duny)

Ny
4 / 9(bery) dum(y) — 3 g(bs, bi) wn (Vi)
m k=1
29)
Ny Ny
+ Zg(b*abk) wm(Vk) - Zg(w7bk) wm(Vk) )
k=1 k=1

where b, is the center of one of the caps whose corresponding partition contains x, i.e., b, =
b, < x €V, Dueto{Vy,..., VNgn} being a partition, b, is well-defined as x is in exactly one
of the elements of the partition.

Observe also that the modulus of continuity gives us a Lipschitz-like bound, i.e., if (x,y) > 1—¢
forx,y € S™ and w(f;t) < Lt, then

[f(@) = f(y)] < w(fscos™ ((z,y))) < w(ficos™ (1 ~4)) < Leos™ (1 —6).  (30)
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Let’s start with the first term in Equation (29). Using the fact that we selected b, to be such that
(by, ) > 1 — 6 and Equation (30), we have:

[ st dunt) - [ oo dwnn)| -

[ (o) = a0 ) )
< [ lat@.w) = 9oy dunly)
< / Lcos ™ (1= 6) dw,,(y)

= Lcos (1 — 5)/ dw,, (y)
= Lcos H(1 — &) wp,.

We can similarly upper-bound the second term of Equation (29) using also the fact that {V;} is a
partition of S™:

NI Ng" NG
/ 9(be,y) dwm(y) = Y g(be,br) win(Vi)| = | / 9(bs,y) dma(y) = > 9(bs, bi) wm (Vi)
m 1 k=17 Vk k=1
Ng®
= ];/Vk (9(bs,y) — g(bs, br)) dmy,(y)
Ng®

<Z No(bery) —g(bu, b)) dmu(y)

N5

< kz_:l/vk Lcos™ (1 —06) dmy(y)
= Lcos™ (15);/‘4 dmy, (y)

= Lcos (1 — §)wy,.

And analogously, for the third term we get:

N NI N
Zg b*abk) Wm Vk Zg T bk wm(vk) = Z(g(b*,bk) _g(wabk‘))wm(vk)
k=1 k=1 k=1

< Z|g b, br) — g(x, by)| Wi (Vi)

5
< Lecos (1 —6) Zwm(Vk)

= Lcos (1 — §)wy,.

Finally, observing that the above bounds do not depend on the choice of & € S™ and combining the
three results we obtain our desired bound. O

By observing that we can set g(z,y) = KM ((x,y)) f(y), it becomes clear how Lemma E.7 can
be used to bound the second term in Equation (20). For that we will also need to know what is the
modulus of continuity of the von Mises-Fisher kernels K :’\MF .

Lemma E.8 (Modulus of continuity of KYMF). The von Mises-Fisher kernels K\MF have modulus
of continuity w(KMF; t) < ¢inp1(N) exp(N).
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Proof. Recall that KMF(2) is defined on ¢ € [—1,1]. K}MF(¢) and its derivative are both monoton-
ically increasing in ¢. Hence:

WK\ 1) = sup {|[KM (2, 2)) — KM ((2,9)) | &,y € 5™, cos ™' ({=,y)) <t}
KVMF( ) KVMF(COSt)
= mi1(M) (xp() — exp(A cost))
< a1 (A) exp(A).
O

Our final result, a bound on Equation (20), combines Lemma E.5 and Lemma E.7, each bounding
one of the two terms in Equation (20).

Theorem E.1 (Jackson-type bound for universal approximation on the hypersphere, Theorem B.1
in the main text). Let f € C(S™) be a continuous function on S™ with modulus of continuity
w(f;t) < Lt for some L € Rsg and m > 8. Assume that there exists a constant Cp > 0 that
upper-bounds the norms of the spherical harmonics of any best polynomial approximation W of f:

q
forallg > 1, W, = ZYkm, V" e Y(S™), |Yi"loo < Cu, Yk =0,...,q, where W, = arg mggl : Ilf—=Phlloo-
k=0
Then, for any € > 0, there exist&1,...,En € Rand by, ..., by € S™ such that

sup
xresSm™

<e

N
=) &rexp(Ma, b))
k=1

where A = A(¢/2) (Equation (25)) and for any N such that
3m(L + || fllso)em+1(A) exp(A)

€

N > N(\€) = ®(m) ( )mﬂ = Qe 13m=2m®y (3

Proof. Recall the decomposition in Equation (20). We will split our error budget € in half. Hence,
we first select A such that approximating f with its convolution with K}’\MF results in an error at
most »/2. Then, using this A\, we find how finely we need to partition S™ in order to be able to
approximate the convolution with a sum up to an error ¢/2.

Let’s select how “peaky” we need the kernel K/V\MF to be, that is, how big should A\ be. From
Lemma E.5 we have that if A\ = A(¢/2), then we would have || f — f x K\MF||o < ¢/2.

Now, for the second term in Equation (20), consider Lemma E.7 with g(z, y) = K\MF((z, y)) f (y).
From Lemma E.8 we have that the modulus of continuity of KMF is w(KY VM, it) <
t cima1(A) exp(A). Hence, we have modulus of continuity for g(x, y) bemg bounded as:
w(gst) < M oow(f5t) + [1f llow (K35 )
< K1) Lt + (| flloocm+1(A) exp(A) ¢
= cmt1(A) exp(A) Lt + || flloocm+1(A)
= cm41(A) exp(A) (L 4[| flloo) t-

exp(A) t

Take

B ( 2¢ )2
67 (L + || flloo)cmr1(N) exp(A) )
Then, by Lemma E.7, there exists a partition {V;,...,Vx} of S™ and by, ..., by € S™ for N as
in the lemma such that:
N

LS K (G, b)) £(by) wn (Vi)

w,
M k=1

As (22/x)? < 1 — cos(x) (Bagul and Panchal, 2018, Theorem 1), we have:

max < 3(L + || flloo)ems1 exp(A) cos™H(1 — §).

xesSm

[ R (o) ) dum) -

2e 2 €
_<67T(L+||foo)cm+1(/\)exp(/\)> < 1_COS<6(L+||f|oo)cm+1(/\)exp(/\)>' 32
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Hence:

1

N
e | = [ K () ) du ) = o SR bi) () w1, (V)
M =1

<3(L A+ [|£lloo)em-+1 exp(A) cos™ (1 — 4)

< 3(L + ”f”oo)cm-‘rl eXp()\) COS?l <COS <6(L + ||f||oo>cm+1()\) eXp()\)>)
= ¢/2.

Combining the two results we have:

<= FK M oo +
<e€f2+¢/2
=

f—EZKVMF z,bi)) f(y) win (Vi)

VMF ZKVMF x, b)) f(y) wm (Vi)

o0

Now, the only thing left is to show that this expression can be expressed in the form of Equation (19).

Ngfl NEYL
S WY (G bi) (k) wn (Vi) = D i (A) exp(A@,bi)) £ (Br) wn (Vi)
m ’C:l ]C:l m
Ngn,

= Z & exp(MNa, b)),
k=1

with v
6 = empn (0 (o) Lm0,

If we have chosen a partition of equal measure this further simplifies to

(33)

&= 7cm§\1[()\) f(br).

Hence, for this choice of A, N and b, and &, constructed as above, we indeed have

sup
xesSm

kaexp z,by))| <

Finally, let’s study the asymptotic growth of N as ¢ — 0. We have:
L 00 )Cm, A A m+1
N\ e) = B(m) (377( + £ llso)ema1 (M) exp( )> |

€
®(m) is constant in € so we can ignore it. Expanding ¢, and dropping the terms that do not

depend on € gives us:
m+1 m+1
ATl exp(\)
O| ————= . 34

< € Inz;—l_l()\) (34

The asymptotics of the modified Bessel function of the first kind are difficult to analyse. However,
as we care about an upper bound, we can simplify the expression by lower-bounding I, () using
Equation (24) and that Io(\) > Cexp(N)/yx for A > 1/2 (Barnett, 2021):

Lz e (W)m

) I

for some constant C'. Plugging this in Equation (34) and replacing A with its asymptotic growth ¢ ~*
gives us:
m—+1

_l(m
gmEt G y/(m-1)+ % (6%)7,42(64( (m—1)2 +7_m+1)) 5(m+1)

€
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20(67173m72m2)’

with the last simplification coming from taking the Taylor series expansion at for e — 0. O

We can easily extend Theorem E.1 to vector-valued functions:
Corollary E.1 (Corollary B.2 in the main text). Let f : S™ — R™*tL m > 8 be such that

each component f; is in C(S™),i = 1,...,m + 1 and satisfies the conditions in Theorem E.I.
Furthermore, define || f||co = InaX1<z<7n+1 ||fz||oo Then, for any € > 0, there exist &1,...,En €
R™ 1 and by, ..., by € S™ such that
N
sup - Z Erexp(M(z, by))|| <k,
xres™ =1

2
with A = A(¢/2vm+1) for any N > N (), ¢/v/m+1).

Proof. The proof is the same as for Theorem E.1. As the concentration parameter A of the ker-
nels K /V\MF depends only on the smoothness properties of the individual components and these are
assumed to be the same, the same kernel choice can be used for all components f;. Furthermore,
the choice of partition is independent of the function to be approximated and depends only on the
concentration parameter of the kernel. Hence, we can also use the same partition for all components
fi- We only need to take into account that:

m-+1

le—=ylla = \| D |2 — wil?> < V(m+ 1)e2 = Vm+ 1, Va,y € R™ o —yi < ei=1,...,
i=1

which results in the factor of Vm + 1. O

F A JACKSON-TYPE BOUND FOR APPROXIMATION WITH A SPLIT
ATTENTION HEAD

LemmaF.1. Leta,b:R? - R, c,d: R = R, ¢(z),d(z) # 0,Vx € Rand e, 5 > 0 be such that:
sup [la(y) —b(y)l2 < &

yERI
sup|c(z) — d(z)| = |¢ — d|so < €2.
z€R
Then for all x € R and y € R%:
ay) by €1/¢loo + €2 8UPy cga [la(y)|2
c(x) dz)|l, ~ |c(x) d(z))|

Proof. For afixed x € R and y € RY, using the triangle inequality gives us

aly) by | _ | a(y) dx) = by) c(x)
c(z) d(z)|l, c(x) d(x) >
_ lla(y) d(z) — b(y) ez,
|e(x) d(z)]
_ lla(y) d(x) — a(y) c(x) + a(y) c(z) - by) c(@)]],
|e(x) d(z)]|
< llaly) (d(z) — c(@))ll5 + lle(x) (aly) = bY))I,
- |c(x) d(z)]
e2lla(y)ll2 + ele(x)]
=7 o) dio)
€1/coc + €2 5upyega [a(y)ll2
B |c(x) d()]
And as this holds for all 2z € R and y € R?, the inequality in the lemma follows. [

25
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Lemma F.2. Let f : S™ — R™Y m > 8 satisfy the requirements in Corollary E.1. Then,
given an € > 0 and taking \, N, and by, ... , by € S™ as prescribed by the lemma, we have that

fo:l exp(A(zx, by)) is close to being a constant:

- C’”“ Zexp ., b)) (35)

sup
xesm

= 2vm (L+ 1£lloc)”

Proof. We can use Lemma E.7 by taking g(z,y) = KM ((z,y)). From Lemma E.8 we have
that the modulus of continuity of K{MF is w(KMF;t) < ¢ ¢;p41(X) exp()). Observe that using
Equation (18) we have

[ st = [ KN (e )dun) = v / M () (1= )" 2t =

S m

The value for § has to be selected as in Corollary E.1 (Equation (32)):

2¢ €

- (&W T+ [ flloo)emra (V) expm) < deos (GW FI(L A+ [[flloo)emir(\) exp(N)

Now, using the same partition from Lemma E.7, and recalling that we constructed it such that each
element of the partition has the same measure w,, (V1) = w,,,(V;), Vi, we have:

1 VMF
:,I,rel%i(n m o 9(x,y)dwn,(y) — — ’;K (x, b)) wm (Vi)
= wnel%)?% 1—— Z Cm+1 eXp <.’13, bk>)wm(Vk)

_ ¢ 1
= max m+ E exp(A(zx, by))
xesS™

< 3¢ma1 exp(A) cos™ (1 - (5)

< 3¢m41 exp(A) cos™

1 cos ¢
( <6\/m+1(L+ f||oo)cm+1(/\)exp()‘))>
_ 3cm+1 exp(A)e
6vm + 1(L + || flloc)em+1(A) exp(A)

S 2VmA I+ flle)

O

Theorem F.1. Let f : S™ — R™Y m > 8 satisfies the conditions in Corollary E.1. Define
I fllcc = maxi<i<mt1 || filloo- Forany 0 < € < 2||f||co, there exist by, ..., by € S™ such that f
can be uniformly approximated to an error at most €:

SN & exp(A\(, b))

T S (M@ b))

sup
xesSm

2

with:

_ 2¢(| fllc + L) .
A=A (\/m(?)”foo ol - e) from Equation (25),

31(L + [|f o)V F L i (V) exp(A))m“

€

)

NZ@(m)(
& = f(by), Vk=1,...,N.
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Proof. From Corollary E.1 we know that Zszl & exp(A(zx, by)) approximates f(x) and from

Lemma F.2 we know that L}\}(A) chvzl exp(A{x, by)) approximates 1. Using Lemma F.1 we can
combine the two results to bound how well

i &k exp(M, b))
o Y exp(Az, b))
approximates f(xz)/1 = f(x). The fact that % Zk:l exp(A(x, b)) is notidentically 1 means

that we will need to increase the precision of approximating the numerator by reducing € in order to
account for the additional error coming from the denominator. In particular, we have

N
sup - Z{k exp(Mz, by))|| <€,
xresSm — 9

cm+1 €

sup |1 — exp(AMz, by))| < )
P, Z ‘ 2 T 1L + 1)
sup 1/ ()ll2 < vm+ 1| f]l,
x m

N

Cm+1(A) ¢

sup |————= exp(A{x, by, <1+ .
i N e BEC ”’ 2 T T+ 1]

Hence, applying Lemma F.1 gives us:

S € exp(Aa, by))

flx) — -
(x) wz;f\;l exp(A(x, by)) 9

1 %MZ;C\;l exp(Mz, by)) ||,

’

Hf(w) SN & exp(Az, b))

e +

IN

€

LW e (g
_dvm+ 13| flloo +2L)
o/ £ 1|l + L) + €

Therefore, if we want this error to be upper bounded by €, we need to select

o< 2evm A 1(||fllc +L)
T Vm+ 13| flloe +2L) — €

The denominator must be larger than 0 but that is always the case for € < 2| f|| oo, Which is the largest
non-trivial value one can select for e. From Corollary E.1 (Equation (25)) that can be achieved by

selecting
Y
Vm + 13| flle +2L) — e
and o
N> o) (3w<L 1 o)V T T s (V) exp(A)) |
€
Finally, observe that the ¢m+1(X)/n factor can be folded in the &), terms (Equation (33)):
N wm(Vk)
= ——f(br) cmy1(A = f(bk),

&k Cm+1()\)f( k) Cmt1(A) o, f(br)

with &, nicely reducing to be the evaluation of f at the corresponding control point by. O

G ADDITIONAL RESULTS

Lemma G.1. Let f : [0,1]™ — R be a continuous function such that each component f; is L-
Lipschitz with respect to the || - ||2 norm, i = 1,... ,m. Define the stereographic projection and its
inverse:

Y, 8™ — R™
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(xla"'7xm+l)'_>( & Yty Tm )

]-_merl 1_xm+1
Lo R™ 5 8™

(o )H< 2y1 2Ym Z?lly?1>
s PRS- D DUEE - S AN DY

with S™ the part of S™ that gets mapped to [0,1]™, i.e., S™ = X1([0,1]™). 3, and ;! are
continuous and inverses of each other and there exist L=, and L,,%;l such that w(X,,;t) < L2t
and w(S; 1) < L%{lt. Furthermore, X, o H}J,S(m—s-l) o X1 is dense in the set of continuous
Sfunctions [0,1]™ — R™.

Lemma G.2 (Lemma B.1 in the main text). 117! o H£,3(m+1) o Il is dense in H 1, with the
composition applied to each function in the class.

Proof. We can prove something stronger. For all f € H,; ;41 there exists a g € HL 3(m41) such
that f =T togolIl. If f € Hymy1, then

_ S PEesp M@ pR) o om
@) = S5 ety C

for some NV, A, pf, pf. Define:

0
pr= | AP} | € R3]
Py
MI I O 0 0 I ‘ ‘
H[O 0 O]7WV |f) 00 ERJ(m+1)><3(m+1)’
0 0O 0 0O
With M a negative constant tending to —oo. Then:
N
ZeXP(fBTHpi)vari—exp(wTHm)WVw
i=1

g(x) =

3

N
Z exp(z| Hp;) + exp(z' Hzx)

i=1
isin H1 3(mt1) and f = 1171 o g o IL. As this holds for all f € H 1, it follows that H ;11 C
m!o ’;'-[1_73(m+1) oII. Hence, I o 7—[,1_73(m+1) oIl is dense in H y41. O
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