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ABSTRACT

As neural networks continue to grow in size but datasets might not, it is vital to
understand how much performance improvement can be expected: is it more im-
portant to scale network size or data volume? Thus, neural network scaling laws,
which characterize how test error varies with network size and data volume, have
become increasingly important. However, existing scaling laws are often appli-
cable only in limited regimes and often do not incorporate or predict well-known
phenomena such as double descent. Here, we present a novel theoretical charac-
terization of how three factors — model size, training time, and data volume —
interact to determine the performance of deep neural networks. We first establish
a theoretical and empirical equivalence between scaling the size of a neural net-
work and increasing its training time proportionally. Scale-time equivalence chal-
lenges the current practice, wherein large models are trained for small durations,
and suggests that smaller models trained over extended periods could match their
efficacy. It also leads to a novel method for predicting the performance of large-
scale networks from small-scale networks trained for extended epochs, and vice
versa. We next combine scale-time equivalence with a linear model analysis of
double descent to obtain a unified theoretical scaling law, which we confirm with
experiments across vision benchmarks and network architectures. These laws ex-
plain several previously unexplained phenomena: reduced data requirements for
generalization in larger models, heightened sensitivity to label noise in overparam-
eterized models, and instances where increasing model scale does not necessarily
enhance performance. Our findings hold significant implications for the practical
deployment of neural networks, offering a more accessible and efficient path to
training and fine-tuning large models.

1 INTRODUCTION

Progress in artificial intelligence (AI) has relied heavily on the dramatic growth in the size of models
and datasets. An active area of research focuses on understanding how test error decreases with
increases in model and data size. This work has led to the development of scaling laws which posit
that test error decreases as a power law with both. However, several theoretical aspects remain
unclear. One significant gap is understanding how test error and the existing scaling laws change as
the training time is varied (Kaplan et al., 2020; Bahri et al., 2021; Rosenfeld et al., 2020; Sharma &
Kaplan, 2022).

The practical relevance of this question is clear: under a fixed compute budget, what is the optimal
balance between scaling the model size and dataset volume, and what is the right amount of train-
ing for a given data volume? This is particularly relevant in the context of large language models
(LLMs), which are often trained for a single epoch, raising questions about the potential efficacy of
training smaller models for longer (more epochs).

Furthermore, current scaling laws do not account for other well-known phenomena in learning,
such as double descent (Belkin et al., 2019), in which model performance exhibits non-monotonic
changes with respect to training data volume, model size, and training time. In particular, double
descent theory predicts that test error should increase rapidly at the interpolation threshold, the point
at which the model interpolates the training set (Nakkiran et al., 2021; Advani & Saxe, 2017). Like
scaling laws, current theories of double descent leave several empirical phenomena unexplained:
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past explanations of double descent require it to occur, but empirically double descent is often not
observed; it is unclear whether the interpolation threshold should grow or shrink with model size;
prior theory does not explain why models in the infinite-parameter limit sometimes perform worse
than their finite-parameter counterparts.

We seek the simplest possible unified framework in which to understand learning with respect to
model size, data volume, and training time. In doing so, we aim to capture the essential scaling
properties of learning in deep neural networks. Our results unify double descent with scaling laws
and help to understand when models are sufficiently large for effective performance, how double
descent is affected by varying training time and model size, and the variability and shape of loss
curves across different problems.

The contributions of this paper are multi-fold:

• We theoretically and empirically demonstrate that scaling the size of a neural network is
functionally equivalent to increasing its training time by a proportional factor.

• Leveraging this insight, we 1) predict the performance of large-scale networks using small-
scale networks trained for many epochs and 2) predict the performance of networks trained
for many epochs using the performance of large networks trained for one epoch.

• Using scale-time equivalence, we propose a unified scaling law for deep neural networks
that provides a new explanation for parameter-wise double descent: double descent occurs
when small models, which effectively train slower than larger models, acquire noisy data
features.

• Through experiments conducted on standard vision benchmarks across multiple network
architectures, we validate that our model explains several previously unexplained phenom-
ena, including 1) the reduced data requirement for generalization in larger models, 2) the
large impact of label noise on overparameterized models, 3) why error of overparameter-
ized models often increases with scale.

2 RELATED WORK

2.1 SCALING LAWS

Neural network scaling laws describe how generalization error scales with data and model size. A
number of works have observed power-law scaling with respect to data and model size (Kaplan et al.,
2020; Rosenfeld et al., 2020; Clark et al., 2022), which has been explained theoretically (Bahri et al.,
2021; Sharma & Kaplan, 2022; Hutter, 2021; Paquette et al., 2024).

However, other work demonstrates that model scale may not be sufficient to predict model perfor-
mance (Tay et al., 2022), and casts doubt on power laws as the best model of error rate scaling (Alab-
dulmohsin et al., 2022; Bansal et al., 2022; Mahmood et al., 2022). Moreover, scaling with respect to
training time, holding data volume fixed, remains poorly understood. These observations highlight
the need for a more general framework that can predict model performance under many settings.

2.2 DOUBLE DESCENT

Double descent is an empirically observed phenomenon in which generalization error of machine
learning models with respect to training data volume, model size, and training time exhibits an
initial decrease, followed by a brief, sharp increase followed by a final decrease (Belkin et al., 2019;
Nakkiran et al., 2021). Double descent with respect to model and data size has been theoretically
understood as occurring due to a high degree of overfitting at the interpolation threshold, the point
at which the model size is just sufficient to interpolate the training data (Adlam & Pennington, 2020;
D’Ascoli et al., 2020; Belkin et al., 2019; Advani & Saxe, 2017). Typically, this work uses tools
from random matrix theory to explain double descent for random feature models, in which linear
regression maps a random, fixed feature pool to the desired output (Simon et al., 2024; Atanasov
et al., 2024; Adlam et al., 2022; Bordelon et al., 2024; Maloney et al., 2022; Mei & Montanari, 2019;
Ali et al., 2019; Lin et al., 2024).
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However, these models generally do not explain double descent behavior in terms of training time.
Originally, Nakkiran et al. (2019; 2021) hypothesized that training models for longer results in an
effective increase in model size, thus allowing time-wise double descent to be explained in the same
way as scale-wise double descent. Recent works have provided an alternate explanation: time-wise
double descent occurs due to data features being learned at varying scales (Pezeshki et al., 2022;
Heckel & Yilmaz, 2021; Stephenson & Lee, 2021). Error rises as models overfit to quickly-learned
noisy features, but then falls as models more slowly learn signal features. In this work, we unify this
explanation of time-wise double descent with the traditional account of double descent.

3 SCALE-TIME EQUIVALENCE IN NEURAL NETWORKS

In this section, we demonstrate that model size and training time may be traded off with each other.
This result is consistent with and generalizes prior results demonstrating that models learn functions
of increasing complexity over time (Nakkiran et al., 2019). We establish the result theoretically
in a simplified model and validate it empirically in neural networks across several datasets and
architectures.

3.1 RANDOM SUBSPACE MODEL

Following the lines of prior double descent analyses in random feature models, we construct a ran-
dom subspace model to demonstrate scale-time equivalence theoretically. Consider a large P dimen-
sional model with parameters β, such that the function represented by the model depends only on
a low-dimensional linear projection of β. This is reasonable for neural networks: it is well known
that neural networks trained by stochastic gradient descent tend towards flat minima of their loss
landscapes, thus revealing many redundant dimensions in the network (i.e. only a low-dimensional
subspace affects the network output). Specifically, we denote the low-dimensional projection as
α ∈ Rr where r < P which is constructed as:

α = Kβ (1)

where K ∈ Rr×P is a fixed projection matrix.

Assume that we can only control a random p-dimensional (P > p > r) linear subspace of the
large model. This may again be a reasonable assumption for model classes such as neural networks:
smaller neural networks can naturally be viewed as linear subspaces of larger neural networks that
contain them architecturally (i.e. have a larger width and depth) (Hall & Li, 1993). We denote the
parameters of our controllable p dimensional subspace model as θ ∈ Rp, where:

β = Rθ + β0 (2)

for a random matrix R ∈ RP×p with elements drawn iid from a unit Gaussian and with β0 ∈ RP

fixed. We will represent time t with subscript t (i.e. β0 denotes β at time 0). Observe that any p
dimensional affine subspace of RP may be represented in the form above for some choice of R and
β0.

Under these assumptions, we can show that under gradient descent, increasing the scale p of the
model is equivalent to increasing training time:
Theorem 1. We denote the loss as a function of α: L ∈ Rr → R. Suppose L has Lipschitz constant
l and its second derivative has Lipschitz constant h. Suppose that continuous time gradient flow is
applied to θ with learning rate η from initialization θ = 0. We denote αt = K(Rθt + β0) where θt
are the parameters at time t. Denote At ∈ Rr as the solution to:

Ȧt = −ηKKT∇L(At) (3)

with initial condition A0 = Kβ0. Note that At does not depend on p. Then, with probability 1− ϵ:

||αt −Apt|| ≤
l
√
||K||4F + ||KKT ||2F
h
√
pϵ||KKT ||

(eηpth||KKT || − 1) (4)

See Appendix A for a proof. The theorem implies closeness between the function implemented by
the network, represented by αt, and another quantity Apt which only depends on the product pt. In
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Figure 1: Proportional trade-off between model scale and training time: testing the prediction
on a linear model. Red lines indicate tradeoff curves between number of training iterations and
model size. Curves are computed by, for each model size, measuring the minimum amount of train-
ing time necessary to achieve different loss levels. Different curves indicate different performance
thresholds; darker lines indicate a smaller error threshold. Margins indicate standard errors over 5
trials. Grey dashed lines represent 1:1 proportionality between scale and training iterations.

other words, the learned model only depends on the product of the number of parameters p and time
t (up to some error). Thus, we may interpret the product pt as representing the distance of a model
along the training trajectory; larger pt implies more training progress. Increasing the number of
parameters by a scale factor is equivalent to increasing the training time by the same scale factor and
vice versa: scale is equivalent to time. Intuitively, this is because each parameter allows the function
to learn at a fixed rate; thus, adding more parameters linearly increases the effective learning rate.

The result also reveals when such a scale-time equivalence cannot be made. The error bound implies
that when training progress pt is fixed, as p grows, scale and time become increasingly equivalent
(the bound approaches zero). The equivalence breaks down for small p since here, the randomly cho-
sen subspace of the model may or may not align well with K; as p grows, the amount of alignment
becomes less stochastic. Moreover, as training progress pt grows, the bound grows exponentially
because small perturbations to the model early in the training trajectory lead to exponentially larger
changes later in the trajectory. Finally, we highlight that our result holds under standard neural net-
work parameterizations in which the gradient of the model output with respect to each parameter
does not scale with p; in other parameterizations such as Neural Tangent Kernel (Jacot et al., 2018),
we may expect a different form of scale-time equivalence.

We first validate our prediction in a simple linear model in which a varying fraction of the model
parameters are controllable. See Appendix C for details. In Figure 1, we find lines of 1:1 proportion-
ality between model scale and the number of iterations required to reach a fixed loss level, validating
our theory.

3.2 EMPIRICAL VALIDATION IN NEURAL NETWORKS

We next turn to examine whether scale-time equivalence is present empirically in neural net-
works. We conduct experiments on MNIST (Deng, 2012), CIFAR-10 (Krizhevsky, 2009), and
SVHN (Goodfellow et al., 2013) training a 7-layer convolutional neural network (CNN) and a 6-
layer multilayer perception (MLP) with stochastic gradient descent (SGD). To assess scale-time
equivalence, we measure the minimum amount of training time required to achieve non-zero gener-
alization under various network widths and by varying the dataset size by subsampling. Scale-time
equivalence predicts that wider networks will require less time to generalize in a systematically
predictable way. See Appendix C for further experimental details.

As observed in Figure 2, in all settings, we see a clear tradeoff curve between scale and training
time: increasing scale by a fixed factor is nearly equivalent to reducing training time by another
fixed factor. Importantly, the scale here is set as the effective number of network parameters, defined
as the maximum number of training points that can be fit by the network, not the absolute number
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(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 2: Proportional trade-off between model scale and training time: testing the prediction
on neural networks. Red lines indicate tradeoff curves between number of training epochs and
network scale for different datasets and architectures trained with SGD. Different curves indicate
different amounts of training data; darker lines indicate more data. Curves are computed by, for
each network scale, measuring the minimum amount of training time necessary to achieve non-
zero generalization. Margins indicate standard errors over 5 trials. Grey curves are lines of 1:1
proportionality between scale and training epochs.

of parameters. We set the effective parameter count as the cube root of the number of parameters.
Appendix B provides a heuristic argument for this scaling rate.

Under this choice of scale, we find a systematic and predictable relationship between scale and train-
ing time, demonstrating that scale-time equivalence can be empirically observed. We also note that
this phenomenon has been observed in prior literature (although not quantitatively characterized);
for instance, Nakkiran et al. (2019) find that patterns of double descent are similar with respect to
training epochs and network size. We emphasize that these results are limited to gradient descent
(the setting of our theory). With Adam optimization (Kingma & Ba, 2015), the number of epochs
for generalization first decreases with scale, then increases (see Appendix D Figure 7). We hypoth-
esize that since Adam has an adaptive learning rate, it is using a smaller effective learning rate for
very large networks. As learning rate shrinks, more epochs are needed to generalize, leading to the
observed results.

4 PREDICTING OPTIMAL NETWORK SCALE AND TRAINING TIME

Scale-time equivalence suggests it should be possible to predict the performance of large models by
training small models for many epochs and vice versa. This allows us to predict the optimal network
scale and training time for a given dataset and base architecture.

On benchmark datasets and architectures, we conduct two experiments: 1) predict performance
under varying model scales from a small network trained for long training times, 2) predict perfor-
mance over long training times by using larger networks trained for just 1 epoch. See Appendix C
for experimental details and Figures 10 and 11 for full results.

Figure 3 illustrates that scale-time equivalence can indeed be used to extrapolate performance on
large scales and training times. Predictions of test and train performance under large model scales
are particularly close to the true performance; notably, we can closely predict the scale at which
generalization starts to occur. However, there is a small discrepancy between predicted and actual
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Figure 3: By scale-time equivalence, small models trained for long times predict performance
of large models trained for small times and vice versa: test of prediction. Predicted and true test
and train error of a CNN (top row) and MLP (bottom row) trained on MNIST. Column 1: predicting
the performance of larger models over a few epochs by training smaller models for up to 100 epochs.
Column 2: predicting performance of smaller models over many epochs by training larger models
for 1 epoch. We use scale-time equivalence to predict the equivalent scale or number of epochs for
each prediction. Margins indicate standard errors over 5 trials.

performance; we believe this can be corrected with dataset and model-specific tuning of the scale-
time trade-off curve. Nevertheless, our findings reveal that scale-time equivalence can be used to
predict optimal network scale and training time.

5 A UNIFIED VIEW OF DOUBLE DESCENT W.R.T. TRAINING TIME, MODEL
SCALE AND TRAINING SET SIZE

We next leverage scale-time equivalence to obtain a more-unified understanding of the phenomenon
of double descent, with respect to training time, parameter count and training set size.

5.1 ERROR SCALING OVER TIME IN A LINEAR MODEL

Following the approach of Pezeshki et al. (2022); Heckel & Yilmaz (2021); Stephenson & Lee
(2021); Schaeffer et al. (2023), we first present a simple linear model that explains double descent
with respect to time.

Consider a linear student-teacher setting in which training set outputs Y ∈ Rn are constructed as:
Y = Xw + ε (5)

where training data X ∈ Rn×m, noise ε ∈ Rn, w ∈ Rm is the unknown true model, n is the number
of training points and m is the model dimensionality. We assume w is drawn independently from
ε. Then, the parameters θt of a linear model learned after t time of gradient flow on mean squared
error (with learning rate η) can be expressed as:

θt = X†(I − e−ηXXT t)Y (6)
The resulting prediction error xT θt − xTw on a test point x can be expressed as:

xT [X†(I − e−ηXXT t)X − I]w + xTX†(I − e−ηXXT t)ε (7)

6
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(a) Loss trajectories (b) Parameter space

Figure 4: Predicted variations in double-descent behavior, depending on training noise profile.
Schematic loss trajectories (a) and corresponding parameter space trajectories (b) of linear regres-
sion under various noise settings (different color curves). Depending on the noise profile, parameters
may experience a temporary increase in error resembling an interpolation threshold.

We then use the singular value decomposition UΣV T of X to express the prediction error:

xTV [Σ†(I − e−ηΣΣT t)Σ− I]V Tw + xTV Σ†(I − e−ηΣΣT t)V T ε

=

m∑
i=1

−(xTV )i(V
Tw)ie

−ησ2
i t + (xTV )i(V

T ε)i
1− e−ησ2

i t

σi
(8)

where σi are the singular values of X , and we denote σi = 0 for i > n when n < m (in this

case, 1−e−ησ2
i t

σi
denotes 0). Using the independence of w and ε, we finally may simply express the

expected squared prediction error as:

E[(xTw − xT θt)
2] = E[(

m∑
i=1

Sie
−ησ2

i t)2] + E[(
m∑
i=1

Ni
1− e−ησ2

i t

σi
)2] (9)

where Si = −(xTV )i(V
Tw)i, Ni = (xTV )i(V

T ε)i. The first, signal term captures how well
w can be learned in the absence of noise. In the underparameterized regime (n > m), this term
approaches 0 as t → ∞: without noise, the model can be learned perfectly. Observe that in general,
the prediction error is not predicted to decay directly as a power law with t: instead, it decays or
grows following a combination of exponential curves (though a combination of exponential decays
at different rates can mimic a power law (Reed & Hughes, 2002)).

The second, noise term initially starts at 0 and grows over time. Notably, the size of the noise term
is largest near the interpolation threshold (when m ≈ n) since the smallest singular values σi will
take small, non-zero values. As n or m grows larger than the other (distance from the interpolation
threshold increases), the size of the noise term decreases. However, the noise term’s magnitude
monotonically increases with t.

For any given singular component of X , if the noise components are large relative to signal compo-
nents (i.e. |Ni| > |Si|), we expect that error will increase at the corresponding timescale, around
t = 1

ησ2
i

and vice versa. Thus, if the small singular value components are noisy, error will increase
later during training, while if large singular value components are noisy, error will increase early
during training. Double-descent occurs when noisy components are acquired first (increase in error)
followed by signal components (decrease in error). Figure 4(a) illustrates how different acquisition
rates of noise vs. signal components may yield different loss trajectories, with some corresponding
to double descent. We may also view these trends geometrically in the parameter space; Figure 4(b)
shows that if signal and noise correspond to orthogonal parameter dimensions, then double descent
(orange curve) corresponds to a setting in which noise dimensions are learned rapidly before signal
dimensions. The optimal training time depends on which point in the parameter trajectory is closest
to the true optimum and may occur either at the end of training or at an intermediate point.
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Figure 5: Larger models require less data to interpolate: test of prediction. Test and train mean
squared error of CNN models trained on MNIST under varying levels of data. Different curves
indicate different model scales; darker colors indicate larger models. Margins indicate standard
errors over 5 trials.

5.2 EARLY NOISE ACQUISITION CAN EXPLAIN PARAMETER-WISE DOUBLE DESCENT

Next, we hypothesize that due to scale-time equivalence, parameter-wise double descent occurs due
to the same mechanism as time-wise double descent. Namely, in settings where noise is acquired
before signal, smaller scale models (which require effectively larger training time by scale-time
equivalence) fail to acquire signal.

More precisely, by combining Equation 9 and scale-time equivalence, we propose the following
scaling law in terms of the number of parameters p and time t by substituting t with pt:

error2 = E[(
∞∑
i=1

Sie
−ησ2

i pt)2] + E[(
∞∑
i=1

Ni
1− e−ησ2

i pt

σi
)2] (10)

where σi depends on the number of training points n and Si and Ni are random variables determin-
ing the strength of signal and noise respectively. This scaling law simultaneously explains double
descent in terms of both p and t. Moreover, it can explain double descent in terms of data volume n
as well: if n is set such that there are several small non-zero values of σi, the noise term becomes
amplified. This explanation for double descent in n follows prior literature (Advani & Saxe, 2017).

The explanation for parameter-wise double descent differs from conventional wisdom in which dou-
ble descent occurs due to the same reason as double descent in n: namely, when the number of
model parameters is close to n, the model is highly sensitive to noisy directions in the training data
(corresponding to small σi in a linear model), thus severely overfitting. How can we distinguish this
hypothesis from ours? We propose three tests to separate the two hypotheses.

5.3 LESS DATA REQUIRED FOR GENERALIZATION WITH MODEL SCALE

The interpolation threshold can be defined as the point when the number of data points equals the
effective complexity of a model (Nakkiran et al., 2019). Thus, for any model, the location of the
interpolation threshold with respect to data volume is the model’s effective capacity: higher capacity
models have a rightward-shifted interpolation threshold with respect to data volume. Conventional
double descent theory argues that this point corresponds to a sharp decrease in the test set error as
the amount of data grows. Starting from zero data, we would therefore expect that larger models
(which have a larger effective capacity), would experience a sharp decrease in test set error at higher
data volumes: larger models require more data to generalize. By contrast, under our explanation, as
model size grows, the amount of data needed to generalize decreases: since model size corresponds
to training time, generalization occurs more easily with larger models (equivalently, more training
time).

To test this, we conduct experiments on benchmark datasets and architectures. Figure 5 reveals
that larger models indeed require less data to generalize, thus supporting our hypothesis. (See Ap-
pendix C for experimental details and Figure 8 for full results.) Indeed, the training set errors
decrease with data volume which is at odds with conventional double descent theory in which more
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(a) MNIST, MLP (b) MNIST, MLP (c) MNIST, MLP

(d) CIFAR-10, CNN (e) CIFAR-10, CNN (f) CIFAR-10, CNN

(g) SVHN, MLP (h) SVHN, MLP (i) SVHN, MLP

Figure 6: Noise induces a persistent or growing error with training time and model scale, but
not with dataset size. Test mean squared error vs. number of epochs, model scale and training
data under noisy and noise-free labels. Each row indicates a different combination of dataset and
architecture. Margins indicate standard errors over 5 trials.

data is always harder to interpolate. Fundamentally, this is because conventional double descent
theory typically assumes complete training convergence, which does not explain phenomena under
the practically relevant setting of a fixed training budget. In summary, the increased ease of general-
ization with model scale does not neatly fit into standard theories of double descent, but readily fits
in our explanation.

5.4 PERSISTENT VS LOCAL EFFECTS OF NOISE ON ERROR CURVES

Another key distinction is how the two explanations behave under varying levels of noise. Under
the conventional explanation, as the noise (|Ni|) increases, the error increases mostly locally around
p ≈ n, near the interpolation threshold. This is because in Equation 9, the noise coefficients Ni

multiply terms that are largest near the interpolation threshold and decrease as either data volume or
model scale grow larger than the other (Schaeffer et al., 2023). In contrast, under our hypothesis, as
the noise increases, the error monotonically grows with both model scale and time (see Equation 10).
In other words, when the noise level changes, our hypothesis predicts a global performance change
with respect to model scale while the conventional explanation predicts a primarily local change.

We conduct experiments on benchmark datasets and architectures to validate this. We add label
noise to the training set and evaluate performance as a function of epochs, model scale and data size.
Appendix C includes experimental details. Noise leads to an increase in error in all cases, Figure 6
(See Appendix D for additional plots), with a persistent or growing error with training time (epochs)
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and model scale. However, it leads to only localized increases in error in terms of the dataset size:
in the case of MNIST and SVHN, for instance, there is nearly no change in error at the highest data
volume.

5.5 SHAPE OF LOSS CURVE: UPTURN WITH MODEL SIZE

A final key distinction between the two explanations is their prediction of the shape of the loss curve.
Under the conventional explanation of double descent, past the interpolation threshold, increasing
model size always improves performance. However, under our hypothesis, increasing model size
may in certain cases worsen performance, if signal features are learned before noisy features. In
Figure 6, we find that CIFAR-10 and SVHN indeed exhibit a U-shaped error curve with respect to
model scale such that larger models do worse. This departure from a conventional double descent
curve is consistent with our model.

6 DISCUSSION

In this work, we demonstrate that model scale and training time can be traded off with each other.
This enables us to re-frame parameter-wise double descent as occurring due to the same mechanism
as epoch-wise double descent, which occurs due to the early acquisition of noise features during
training. This framing of parameter-wise double descent has a number of surprising implications
unexplained by standard explanations of double descent: 1) generalization requires less data with a
larger model, 2) label noise significantly increases test error even for highly overparameterized mod-
els, 3) increasing model scale for overparameterized models need not always improve performance.

How can we reconcile our findings with conventional theory and experimental findings on double de-
scent and scaling laws? Note that in past work, the presence of double descent with respect to model
scale is often dependent on the choice of dataset, model, and whether label noise is added (Nakki-
ran et al., 2021). While past explanations of parameter-wise double descent necessitate that it must
occur, our explanation is more flexible: double descent need not occur if noisy features are acquired
later in training than signal features. Indeed, our theory explains why local increases in test error in
terms of model scale are often relatively modest in contrast to the sharp spike predicted by conven-
tional theory (Belkin et al., 2019). Thus, our explanation is more consistent with the variability of
double descent observed in the literature.

Regarding scaling laws, our predicted scaling law in Equation 10 is more flexible than the power law
scalings predicted in prior literature; indeed, with the proper settings of signal and noise parameters
Si and Ni, we may recover power-law scalings of error with respect to time, model scale and data
volume. However, our approach retains the flexibility to explain error scalings in settings where a
power law does not explain empirical error trends, as we see in our experimental results.

Given the parametric flexibility of our scaling law, how can we use it to predict performance as model
scale or training time increases? We demonstrate that by scale-time equivalence, performance under
varying training times can be used to predict performance under varying model scales and vice versa.
Our approach eliminates the need for strong parametric assumptions in the form of scaling law to
make extrapolation predictions. This is particularly useful in cases where error increases with scale
for overparameterized models since our approach can be used to predict an optimal model size.
On the other hand, we require empirically evaluating the performance of models (under either a
smaller scale or lower training time). We believe our approach can be valuable to practitioners who
have the flexibility to run some limited empirical small-scale experiments before full-scale training.
Finally, our results suggest that smaller models trained for a longer time may behave as well as larger
models, which we empirically observe on vision benchmarks. This is particularly important in the
age of LLMs, where very large models are trained for a small number of epochs (often just one).

We also highlight some important limitations of our work. Our experiments are all conducted on
standard vision benchmarks; we believe testing our theory on the language domain is a critical future
direction. Another limitation is that we do not yet have a fundamental understanding of what sets
the appropriate model scale of a neural network. Experimentally, we found that the cube root of
the number of model parameters is appropriate, but without a strong theoretical basis; this deserves
further study. Overall, we believe our contributions not only shed light on neural scaling laws, but
also present exciting directions for future work.
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A PROOF OF THEOREM 1

First, observe that gradient descent applied to θ corresponds to:

θ̇ = −ηRTKT∇L(α) (11)

This yields a change in α of:
α̇ = −ηKRRTKT∇L(α) (12)

Properties of KRRTKT First, we investigate the properties of the r × r random matrix
KRRTKT . Since the elements of R are drawn iid from a unit Gaussian, E[RRT ] = pI . Thus,

E[KRRTKT ] = pKKT (13)

Next, consider the element at the ith row and jth column of KRRTKT . This may be expressed as:

Ki,:RRTKT
:,j =

∑
l

Ki,:R:,lR
T
l,:K

T
:,j =

∑
l

(Ki,:R:,l)(Kj,:R:,l) (14)

where we express different columns of R as R:,l. Note that each term in the summand is independent
from one another since R has iid elements. Observe that Ki,:R:,l =

∑
k Ki,kRk,l and each term

Ki,kRk,l is an independent mean zero Gaussian with variance K2
i,k. Thus, Ki,:R:,l is a mean zero

Gaussian with variance Ki,:K
T
:,i. Moreover, since the expectation of Ki,:RRTKT

:,j is pKi,:K
T
:,j ,

Ki,:R:,l and Kj,:R:,l are jointly Gaussian with covariance Ki,:K
T
:,j .

Now, consider the expectation of (Ki,:RRTKT
:,j)

2:

E[(Ki,:RRTKT
:,j)

2] = E[
∑
l

(Ki,:R:,l)(Kj,:R:,l)
∑
l′

(Ki,:R:,l′)(Kj,:R:,l′)] (15)

since (Ki,:R:,l)(Kj,:R:,l) and (Ki,:R:,l′)(Kj,:R:,l′) are independent for l ̸= l′:

E[(Ki,:RRTKT
:,j)

2] = E[
∑
l

(Ki,:R:,l)
2(Kj,:R:,l)

2] + p(p− 1)E[(Ki,:R:,l)(Kj,:R:,l)]
2 (16)

E[(Ki,:R:,l)(Kj,:R:,l)] is simply Ki,:K
T
:,j . Since Ki,:R:,l and Kj,:R:,l are jointly Gaussian, we may

reparameterize them as:
Ki,:R:,l = azi (17)

Kj,:R:,l = bzi + czj (18)

where zi and zj are independent unit Gaussians, a =
√

Ki,:KT
:,i, b =

Ki,:K
T
:,j

a , c =
√
Kj,:KT

:,j − b2.

Then, (Ki,:R:,l)
2(Kj,:R:,l)

2 may be expressed as:

(Ki,:R:,l)
2(Kj,:R:,l)

2 = (azi)
2(bzi+czj)

2 = a2z2i (bzi+czj)
2 = a2b2z4i +2a2bcz3i zj +a2c2z2i z

2
j

(19)
Taking the expectation:

E
[
a2b2z4i + 2a2bcz3i zj + a2c2z2i z

2
j

]
= a2b2E[z4i ] + 2a2bcE[z3i zj ] + a2c2E[z2i z2j ] (20)

Using the moments of unit Gaussians, we have E[z4i ] = 3, E[z3i zj ] = 0, E[z2i z2j ] = 1. Thus, we
have

E[(Ki,:R:,l)
2(Kj,:R:,l)

2] = 3a2b2 + a2c2 = a2(3b2 + c2)

= a2(Kj,:K
T
:,j + 2

(Ki,:K
T
:,j)

2

a2
) = Ki,:K

T
:,iKj,:K

T
:,j + 2(Ki,:K

T
:,j)

2 (21)

Finally, we may express the expectation of (Ki,:RRTKT
:,j)

2 as:

E[(Ki,:RRTKT
:,j)

2] = p(Ki,:K
T
:,iKj,:K

T
:,j + 2(Ki,:K

T
:,j)

2) + p(p− 1)(Ki,:K
T
:,j)

2 (22)
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Decomposition into expectation and noise We now decompose KRRTKT into an expectation
term and a mean-zero noise term:

KRRTKT = pKKT +N (23)

where N ∈ Rr×r is a mean-zero matrix. Note that each element of N has variance:

E[N2
i,j ] = E[(Ki,:RRTKT

:,j)
2]− p2(Ki,:K

T
:,j)

2 = p(Ki,:K
T
:,iKj,:K

T
:,j + (Ki,:K

T
:,j)

2) (24)

Thus, the squared Frobenius norm of N has expectation:

E[||N ||2F ] =
∑
i,j

E[N2
i,j ] = p

∑
i,j

Ki,:K
T
:,iKj,:K

T
:,j + (Ki,:K

T
:,j)

2 = p(||K||4F + ||KKT ||2F ) (25)

We express the dynamics of α as:

α̇ = −ηpKKT∇L(α)− ηN∇L(α) (26)

Now suppose we have two copies of α: one copy (α(1)) with noise-free dynamics, and a second
copy with noise:

α̇(1) = −ηpKKT∇L(α(1)) (27)

α̇(2) = −ηpKKT∇L(α(2))− ηN∇L(α(2)) (28)

We define the discrepancy between them as δ = α(2) − α(1), which has dynamics:

δ̇ = −ηpKKT [∇L(α(2))−∇L(α(1))]− ηN∇L(α(2)) (29)

Consider the rate of change of the ℓ2 norm of δ:

d

dt
||δ|| ≤ ||δ̇|| ≤ ηp||KKT [∇L(α(2))−∇L(α(1))]||+ η||N∇L(α(2))|| (30)

Using the Lipschitz bounds on ∇L and L:

d

dt
||δ|| ≤ ηph||KKT ||||δ||+ η||N ||l (31)

where the matrix norms in the expression denote ℓ2 operator norm.

Now, returning to ||N ||2F , note that by Markov’s inequality, with probability 1− ϵ:

||N ||2F ≤ p

ϵ
(||K||4F + ||KKT ||2F ) (32)

Using the fact that ||N || ≤ ||N ||F , with probability 1− ϵ:

d

dt
||δ|| ≤ ηph||KKT ||||δ||+ η

√
p

√
ϵ

√
||K||4F + ||KKT ||2F l (33)

This is a differential inequality in ||δ||. Observe that ||δ|| takes its maximum possible trajectory at
equality. Assuming ||δ|| = 0 at time t = 0, this differential inequality may be solved by simply
solving the equality case and setting the solution as the upper bound on δt (with subscript denoting
time t):

||δt|| ≤
η
√
p√
ϵ

√
||K||4F + ||KKT ||2F l
ηph||KKT ||

(eηph||KKT ||t−1) =

√
||K||4F + ||KKT ||2F l√

pϵh||KKT ||
(eηpth||KKT ||−1)

(34)

Solving the noise-free dynamics Now, we consider the noise-free dynamics:

α̇(1) = −ηpKKT∇L(α(1)) (35)

Note that Apt solves the dynamical equation for α(1) by the chain rule:

d

dt
Apt = p(−ηKKT∇L(Apt)) = −ηpKKT∇L(Apt) (36)

Thus, we may simply express α(1)
t as Apt.
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Final result Combining and reexpressing our previous results, we may write that with probability
1− ϵ:

||α(2)
t −Apt|| = ||α(2)

t − α
(1)
t || = ||δt|| ≤

l
√
||K||4F + ||KKT ||2F
h
√
pϵ||KKT ||

(eηpth||KKT || − 1) (37)

Thus, the true dynamics deviate from Apt by a bounded amount.

B MEASURING EFFECTIVE PARAMETER COUNT

In this section, we aim to provide a justification for why the cube root of the absolute number of
parameters of a network is a good proxy for the effective number of parameters. Finding the effective
number of parameters requires defining the parameter count at which the interpolation threshold
occurs; this number is the effective parameter count. Unfortunately, in most models, training data
is not perfectly interpolated by the model; thus defining the interpolation threshold location exactly
is nontrivial. Instead, we identify a property of the interpolation threshold in the training error of
linear models, then identify at which parameter count this property also holds in nonlinear models.

Training error in linear models Suppose we are provided a training set X ∈ Rn×p and corre-
sponding training labels Y ∈ Rn where n is the number of data points. Assume that X has elements
drawn uniformly from a unit Gaussian. We aim to find a parameter θ ∈ Rp such that:

Y ≈ Xθ (38)

The minimum norm solution minimizing the mean squared error is:

θ = X†Y (39)

where † denotes pseudoinverse. Denoting the predicted training labels as Ŷ , the mean squared error
is then:

1

n
||Y − Ŷ ||22 =

1

n
||Y −XX†Y ||22 =

1

n
Y T (I −XX†)Y (40)

Finally, assuming that Y 2
i = 1 for all i, we may write the mean training error as:

1

n
||Y − Ŷ ||22 = max(1− p

n
, 0) (41)

Thus, for a linear model, the training error decreases linearly at rate − 1
n with respect to p before

the interpolation threshold (p = n), and then is zero after the interpolation threshold. We extract
a key property around the interpolation threshold from the linear model: the training error is 1

n at
p = n− 1 = O(n). Note that for any α < 1, the training error is 1

nα before O(n).

Power law training rate decay Next, we consider power-law decays of training rate error and
characterize which power laws are consistent with the interpolation threshold properties outlined
above. Consider a power law decay of the mean training error of nα

pβ . Note that in order to satisfy
condition (2), we must have:

1

n
= O(

nα

nβ
) (42)

where we set p = O(n). Thus, β − α = 1. Power-law decays of the form nα

pα+1 are consistent with
the interpolation threshold property.

Error scaling in neural networks Next, we turn to model training error scaling in neural net-
works. We make the following heuristic argument: to fit n training points, a network of width m
needs to encode O(mn) numbers corresponding to m + 1 numbers for each training point (to rep-
resent the features and labels of each training point). On the other hand, the network has O(m2)
parameters since its intermediate layer weights have m2 parameters. We expect that scaling both the
network’s capacity of O(m2) and the required capacity of O(mn) at the same rate will not change
the training error. Thus, we expect the training error to be a function of mn

m2 = n
m .
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To find which function of n
m models the training error, we introduce another argument. We assume

that the network can be approximated as an ensemble of O(m2) submodels, each with O(1) param-
eters. Suppose the model output is the average of the outputs of the submodels. Then, assuming that
the distribution of the submodel outputs on any given training point has variance O(1) over different
model initializations, the variance of the ensemble output is O( 1

m2 ). Thus, over model initialization,
the model output at any given training point will center around a mean value with deviations on the
order of O( 1

m ). Assuming that as the network capacity goes to ∞, the training error goes to 0, the
mean value of the predicted output on a training point must be the true value; thus, the predicted
output differs from the true output by O( 1

m ). This corresponds to a mean squared error on the train-
ing points scaling as O( 1

m2 ). Finally, to get the dependence on n, we use the observation that the
error must depend on only the fraction n

m . Thus, the mean squared training error scales as O( n2

m2 ).

Finally, we know by the argument above that power law error rate scaling of the form nα

pα+1 are
consistent with the interpolation threshold property, where p is the effective number of parameters.
Equating this with the neural network scaling result of O( n2

m3 ), we must have that α = 2, yielding:

O(
n2

p3
) = O(

n2

m2
) (43)

Equating the denominators, we have p3 = m2, or p = m2/3. In other words, the effective number
of parameters is m2/3. Since the absolute number of parameters in the network is m2, the effective
number of parameters is the cube root of the absolute parameter count.
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C EXPERIMENTAL DETAILS

C.1 MODEL TRAINING

We used three benchmark datasets: CIFAR-10, MNIST, and SVHN. Each dataset was subject to
preprocessing involving standard normalization. For CIFAR-10 and SVHN, the normalization was
performed using means and standard deviations of (0.5, 0.5, 0.5). For MNIST, the normalization
used a mean and standard deviation of 0.5.

Two types of neural network architectures were evaluated:

• Convolutional Neural Network (CNN): Our CNN architecture consisted of six ReLU acti-
vated convolutional layers, with kernel sizes (3, 3, 3, 3, 3, 2 for CIFAR-10/SVHN or 1 for
MNIST), strides (2, 1, 2, 1, 1, 1), and number of filters (5s, 10s, 20s, 40s, 80s) where s is a
width parameter. This was followed by a fully connected layer.

• Multilayer Perceptron (MLP): The MLP architecture comprised six fully connected layers
with hidden layer width 10s where s is a scale parameter.

The width parameter was set to values of 1, 2, 5, 10, 20, 50, and 100. When we refer to ”model
scale”, we quantify this as the cube root of the number of network parameters rather than the value
of the width parameter. We tested two learning rates (0.001 and 0.01) in combination with two
optimizers (Adam and SGD respectively). Label noise was introduced at levels of 0.0 (no noise)
and 0.2 (20% noise) to evaluate the robustness of the models. The number of training samples
was varied among 100, 200, 500, 1000, 2000, 5000, 10000, 20000, and 50000. The samples were
randomly selected from their respective base training sets. A constant batch size of 32 and 100
training epochs were used across all experiments. Mean Squared Error (MSE) was used as the loss
function. Model performance was assessed using Mean Squared Error (MSE) on both training and
test sets. For reproducibility, we set a manual seed for the PyTorch random number generator. Five
different seeds (101, 102, 103, 104, 105) were used to assess the variance in results due to random
initialization.

C.2 SCALE-TIME TRADEOFF VALIDATION

Linear model We construct a loss function as:

L(θ) = ||K(Rθ + β0)− α∗||2 (44)

where α∗ is a target value of α. K, R, β0 and α∗ are all independently sampled from unit Gaussians,
and θ is initialized from a unit Gaussian. We set P = 1000 and r = 3. We train θ via gradient
descent with learning rate 10−6 and evaluate the number of iterations required to reach various
values of the loss for varying values of p. This setup corresponds to a linear classifier trained with
gradient descent on mean squared error using a training batch of k = 3 points where only p of the
P = 1000 parameters are controllable.

Neural networks To evaluate the scale time tradeoff, for each model, we compute the minimum
number of epochs necessary to achieve a test set MSE below 0.09.

C.3 SHIFTING INTERPOLATION THRESHOLD

Experimental results are shown for networks trained with SGD.

C.4 IMPACT OF NOISE AND SHAPE OF LOSS CURVE

Experimental results are shown for networks trained with Adam; since Adam trains faster, this
allows us to examine training trends at later points in training.
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C.5 OPTIMAL SCALE PREDICTIONS

To predict error over scale using error over time or vice versa, we treat the quantity pt as a predictor
of performance, where p is the effective number of network parameters. Thus, if we wish to know
the error of a network at (p1, t1) and we know the error of the network for all p0, then we may
predict the error at (p1, t1) as the error at (p0, (p1

p0
)t1).

C.6 COMPUTING INFRASTRUCTURE

Experiments were run on a computing cluster with GPUs ranging in memory size from 11 GB to 80
GB.
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D ADDITIONAL EXPERIMENTS

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 7: Red lines indicate tradeoff curves between number of training epochs and network scale for
different datasets and architectures trained with Adam. Different curves indicate different amounts
of training data darker lines indicate more data. Curves are computed by, for each network scale,
measuring the minimum amount of training time necessary to achieve non-zero generalization. Mar-
gins indicate standard errors over 5 trials. Grey curves are lines of 1:1 proportionality between scale
and training epochs.
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(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 8: Test and train mean squared error of MLP and CNN models trained on benchmark datasets
under varying levels of data. Different curves indicate different model scales; darker colors indicate
larger models. Margins indicate standard errors over 5 trials.
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(a) MNIST, CNN (b) MNIST, CNN (c) MNIST, CNN

(d) MNIST, MLP (e) MNIST, MLP (f) MNIST, MLP

(g) CIFAR-10, CNN (h) CIFAR-10, CNN (i) CIFAR-10, CNN

(j) CIFAR-10, MLP (k) CIFAR-10, MLP (l) CIFAR-10, MLP

(m) SVHN, CNN (n) SVHN, CNN (o) SVHN, CNN

(p) SVHN, MLP (q) SVHN, MLP (r) SVHN, MLP

Figure 9: Test mean squared error vs. number of epochs, model scale and training data under
noisy and noise-free labels. Each row indicates a different combination of dataset and architecture.
Margins indicate standard errors over 5 trials.
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(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 10: Predicted and true test and train mean squared error of MLP and CNN models trained
on benchmark datasets under varying model widths for 10 epochs. Margins indicate standard errors
over 5 trials. Predictions are generated by training a small model for 100 epochs and using scale-
time equivalence to predict the equivalent scale.

(a) MNIST, CNN (b) CIFAR-10, CNN (c) SVHN, CNN

(d) MNIST, MLP (e) CIFAR-10, MLP (f) SVHN, MLP

Figure 11: Predicted and true test and train mean squared error of MLP and CNN models trained on
benchmark datasets under over training time for a medium-sized model. Margins indicate standard
errors over 5 trials. Predictions are generated by training models of varying sizes for 1 epoch and
using scale-time equivalence to predict the equivalent number of training epochs.
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