
FEDGP: BUFFER-BASED GRADIENT PROJECTION FOR CONTINUAL
FEDERATED LEARNING

Shenghong Dai 1 Yicong Chen 1 Jy-yong Sohn 2 S M Iftekharul Alam 3 Ravikumar Balakrishnan 3

Suman Banerjee 4 Nageen Himayat 3 Kangwook Lee 1

ABSTRACT
Continual Federated Learning (CFL) has garnered significant attention in recent years due to its potential in
real-world scenarios where multiple clients (e.g., mobile phones, autonomous vehicles) continuously observe
data in a dynamic environment. However, CFL suffers from catastrophic forgetting, where the model forgets
previously learned knowledge in favor of new data. To address this issue, we propose a novel method called
buffer-based Gradient Projection (FedGP) that mitigates catastrophic forgetting by replaying local buffer samples
and using aggregated buffer gradients to preserve the previously learned knowledge across clients. Our method
can be combined with a variety of existing continual learning methods, and boost their performance in the CFL
setup. Our approach is evaluated on both standard benchmark datasets and a realistic streaming decentralized
automotive dataset generated using CARLA and OpenFL.

1 INTRODUCTION

Federated Learning (FL) is a machine learning technique
that facilitates collaborative model training among multiple
users while preserving data decentralization for enhanced
privacy and efficient communication. However, the current
FL benchmarks (Caldas et al., 2018; He et al., 2020) assume
a static data distribution across clients throughout the train-
ing process, which fails to accurately capture the dynamic
nature of real-world data. This discrepancy calls for con-
tinual federated learning (CFL), the integration of FL with
continual learning (CL) (Shmelkov et al., 2017; Chaudhry
et al., 2018a; Thrun, 1995; Aljundi et al., 2017; Chen & Liu,
2018; Aljundi et al., 2018). CL is a vital consideration that
enables models to continuously learn from incoming data,
improving their accuracy and adaptability over time.

The biggest challenge in CL (and thus in CFL) is catas-
trophic forgetting, where the model gradually shifts its focus
towards new data and unintentionally discards previously ac-
quired knowledge. Initial attempts to mitigate catastrophic
forgetting in CFL incorporated existing CL solutions at each
client of FL, such as replaying previous task data or penaliz-

1Department of Electrical and Computer Engineering, Uni-
versity of Wisconsin-Madison, Madison, USA 2Department of
Applied Statistics, Yonsei University, Seoul, Korea 3Intel Labs,
Hillsboro, OR USA 4Department of Computer Sciences, Univer-
sity of Wisconsin-Madison, Madison, USA. Correspondence to:
Shenghong Dai <sdai37@wisc.edu>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

ing the updates of weights that are crucial for preserving the
knowledge from earlier tasks. However, recent works (Ma
et al.; Yoon et al., 2021) have observed that this naive ap-
proach cannot fully mitigate the problem due to two reasons:
(i) small-scale devices participating in FL only have limited
buffer size to store the data from previous tasks, (ii) the
fact that data distributions are not identical across clients in
FL makes the problem much more challenging. Moreover,
various existing methods developed for CFL (Yoon et al.,
2021; Ma et al.; Venkatesha et al., 2022) have limitations
in that they require explicit task boundaries. Mitigating
catastrophic forgetting in practical scenarios where fixed
task boundaries are absent throughout the training process,
known as general continual learning (Buzzega et al., 2020),
remains an important open question.

This paper introduces a novel method called buffer-based
Gradient Projection (FedGP), which overcomes these exist-
ing challenges of CFL. Our approach, illustrated in Fig. 1,
involves two key components:

1. Client k uses its buffer Mk to avoid catastrophic forget-
ting on the local training examples for previous tasks.
This ensures the model retains information obtained
locally.

2. Client k computes the gradient gkref of the global model
with respect to its buffer data, and updates its local
model in the next round such that its direction is not
conflicting with gref which is computed as the average
of the buffered gradients gkref . This allows each client to
maintain global information obtained from other clients.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Client k Server

Buffer Mk

Model wk
t

Local model wk
t

Aggregated model wt

Local buffer gradient gk
ref

Aggregated buffer gradient gref

Continuous
Data Dk

t

1

2

3

4

Figure 1. An overview of FedGP method proposed for continual
federated learning. At each round t, client k receives data Dk

t

and trains a local model wk
t . To address catastrophic forgetting, a

portion of the incoming data is stored in a buffer Mk. Given the
aggregated model wt provided by the central server, each client
computes the gradient with respect to wt using its buffer data Mk.
The server averages the local buffer gradients from all clients to
obtain a global buffer gradient gref. This global buffer gradient
guides the local model update for each client k in the subsequent
round.

We conducted experiments to test the efficacy of our method
in improving the performance of existing methods devel-
oped for CL and CFL. We tested on various benchmarks
datasets (rotated-MNIST, permuted-MNIST, sequential-
CIFAR10, sequential-CIFAR100) and a realistic streaming
automotive dataset (CARLA (Dosovitskiy et al., 2017)) us-
ing OpenFL framework (Dai et al., 2023; Reina et al., 2021).
We observed that our method significantly increases the
accuracy averaged over previous tasks and decreases the
amount of forgetting when the data for distinct tasks are
consecutively loaded. We consistently observed such im-
provement for (i) different incremental learning (IL) setups
including domain-IL, class-IL, and task-IL, and for (ii) vari-
ous system settings when we change the local buffer size,
communication frequency, number of users, or whether the
clients’ model update is synchronous or asynchronous.

2 RELATED WORK

Prior work related to our paper falls into three categories:
Continual Learning (CL), Federated Learning (FL), and
Continual Federated Learning (CFL). Further details are in
Appendix E.

CL addresses the problem of learning multiple tasks consec-
utively using a single model. Catastrophic forgetting (Mc-
Closkey & Cohen, 1989; Ratcliff, 1990; French, 1999),
where a classifier trained for a current task performs poorly
on previous tasks, is a major challenge. Existing approaches
can be categorized into regularization-based (Kirkpatrick
et al., 2017; Zenke et al., 2017; Chaudhry et al., 2018a; Li &
Hoiem, 2017), architecture-based (Rusu et al., 2016; Yoon
et al., 2017; Mallya & Lazebnik, 2018; Serra et al., 2018;
Fernando et al., 2017), and replay-based methods (Ratcliff,
1990; Robins, 1995; Rebuffi et al., 2017; Shin et al., 2017;
Aljundi et al., 2019; Lopez-Paz & Ranzato, 2017; Chaudhry

et al., 2018b). FedGP is a replay-based method that allevi-
ates forgetting by reusing a portion of data from previous
tasks.

FL enables collaborative training of a model with improved
data privacy (Kairouz et al., 2021; Lim et al., 2020; Zhao
et al., 2018; Konečnỳ et al., 2016). FedAvg (McMahan
et al., 2017) is a widely used FL algorithm, but most existing
methods (Li et al., 2020; Shoham et al., 2019; Karimireddy
et al., 2020; Li et al., 2019; Mohri et al., 2019) assume static
data distribution over time, ignoring temporal dynamics.

CFL tackles the problem of learning multiple consecutive
tasks in the FL setup. FedProx (Li et al., 2020) and Fed-
Curv (Shoham et al., 2019) aim to preserve previously
learned tasks, while FedWeIT (Yoon et al., 2021) and Net-
Tailor (Venkatesha et al., 2022) prevent interference be-
tween irrelevant tasks. Other methods including CFeD (Ma
et al.) and FedCL (Yao & Sun, 2020), and GLFC (Dong
et al., 2022) use surrogate datasets, importance weights, or
class-aware techniques to distill the knowledge obtained
from previous tasks. However, existing CFL methods suffer
from several limitations, e.g., not scalable as the number of
tasks increases (Yoon et al., 2021; Venkatesha et al., 2022),
requiring a surrogate dataset (Ma et al.) or additional com-
munication overhead (Yao & Sun, 2020), and not applicable
to general continual setting that does not have fixed task
boundaries.

3 PRELIMINARIES

We focus on finding a single classifier f (having model
parameter w) that performs well on T consecutive tasks. We
assume that at time slot t ∈ [T], the classifier is only allowed
to be trained for task t, where we define [N] := {1, · · · , N}
for a positive integer N . We assume the feature-label pair
(xt, yt) for task t is drawn from an unknown distribution Dt.
The optimization problem for CL at time τ ∈ [T] is written
as

argmin
w

τ∑
t=1

E(xt,yt)∼Dt
[ℓ (yt, f (xt, w))] , (1)

where ℓ is the loss function, and f(xt, w) is the output of
classifier f with parameter w, for input xt. We consider a
practical scenario where we do not have enough storage to
save all the data seen for the previous task (t < τ); instead,
we employ a replay bufferM that selectively stores a subset
of data. We use the buffer data as a proxy to summarize
past samples and refine the model updates. We constrain the
model updates in a way that the loss for the data in bufferM
is not increased. Given the model wτ−1 trained on previous
tasks, the constrained optimization problem at time τ ∈ [T]

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

is represented as:

argmin
w

E(xτ ,yτ)∼Dτ
[ℓ (yτ , f (xτ , w))]

s.t. ℓ (yb, f (xb, w)) ≤ ℓ (yb, f (xb, wτ−1))
(2)

where (xb, yb) is sampled from replay bufferM. The op-
timization problem in (2) can be rephrased for various
CL methods as below. First, some methods including
DER (Buzzega et al., 2020) use regularization technique to
find the model parameter w that minimizes the loss with re-
spect to the local replay bufferM as well as current samples.
For a given regularization coefficient γ, the optimization
problem for CL with replay buffers at time τ ∈ [T] is:

argmin
w

E(xτ ,yτ)∼Dτ
[ℓ (yτ , f(xτ , w))]

+ γ
∑

(xb,yb)∈M

ℓ (yb, f(xb, w)) .
(3)

Second, some other methods, including A-GEM (Chaudhry
et al., 2018b), interpret the constraints of Eq. 2 in terms
of the gradients with respect to the current/buffer data. To
be specific, the constraint promotes the alignment of the
gradient with respect to the current data (xτ , yτ) and that
for the buffer data (xb, yb) ∈M. This optimization problem
at time τ ∈ [T] is:

argmin
w

E(xτ ,yτ)∼Dτ
[ℓ (yτ , f (xτ , w))]

s.t.
〈
∂ℓ (yτ , f (xτ , w))

∂w
,
∂ℓ (yb, f (xb, w))

∂w

〉
≥ 0

For the continual federated learning (CFL) setup where the
data is owned by K clients, we use the superscript k ∈ [K]
to denote each client, i.e., client k samples the data from
Dk

t at time t and employs a local replay bufferMk. In the
case of using FedAvg (McMahan et al., 2017), each round
of the CFL is operated as follows. First, each client k ∈ [K]
performs multiple rounds of local training on Dk

t with the
assistance of replay buffer Mk. Second, once the local
training is completed, each client sends the model updates
to the central server. Finally, the central server aggregates
the model updates and transmits them back to clients.

4 FEDGP

We propose our method FedGP, which boosts up the per-
formance of existing CL methods, under the FL setup. Our
approach, FedGP, draws inspiration from the A-GEM algo-
rithm (Chaudhry et al., 2018b), which projects the gradient
with respect to its own historical data. Building upon this
idea, we utilize the global buffer gradient, which is the av-
erage buffer gradient across all clients, as a reference to
project the current gradient. This allows us to take advan-
tage of the collective experience of multiple clients and

Algorithm 1 FedGP

Initialize random w0, and setMk = {}, gref = None
for each task t = 1 to T do

wk
t ← ClientUpdate(t, wt−1, gref), ∀ client k

wt ← 1
K

∑K
k=1 w

k
t

gkref ← ComputeBufferGrad(wt,Mk), ∀ client k
gref ← 1

K

∑K
k=1 g

k
ref

end for
Return wT , the final global model

Algorithm 2 ClientUpdate(t, w, gref) at client k

Input: Task index t, model w, buffer gradient gref
Load the dataset Dk

t , local bufferMk

n← 0
for (x, y) ∈ Dk

t do
gc = ∇w [ℓ(y, f(x,w))]
(xb, yb)← a sample fromMk

g ← RefineGradient(gc, (xb, yb))
g̃ ← g − projgref g · 1(g

⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α
Mk ← ReservoirSampling(Mk, (x, y), n)
n← n+ 1

end for
Return w to server

mitigate the risk of forgetting previously learned knowledge
in FL scenarios.

Note that FedGP can be combined with any CL methods
(e.g., DER (Buzzega et al., 2020) and A-GEM (Chaudhry
et al., 2018b)) where a memory buffer stores a subset of
data sampled for old tasks, which is used to let the model
maintain good performance on both new task and old tasks.
The local buffer at client k is denoted byMk. As the con-
tinuous data is loaded to the client, it keeps updating the
buffer so that Mk becomes a good representative of old
tasks. As illustrated in Fig. 1, our method contains the
process of sharing information (the model and the buffer
gradient) between the server and each client k ∈ [K]. Al-
gorithm 1 provides the overview of our method. For each
new task t ∈ [T], the server first aggregates the local mod-
els wk

t from client k ∈ [K], getting a global model wt.
Afterwards, the server aggregates the local buffer gradient
gkref (the gradient computed on the global model wt with
respect to the local bufferMk) from client k ∈ [K] to ob-
tain a global buffer gradient gref. Note that here we have
two functions used at the client side, ClientUpdate and
ComputeBufferGrad, which are given in Algorithm 2
and 3, respectively.

ClientUpdate shows how client k updates its local
model for task t. The client first loads the global model
w and the global buffer gradient gref which are received
from the server in the current round. It also loads the lo-

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

g

gT gref
gT

refgref
grefg̃

gref

Figure 2. Illustration of the gradient projection in Eq. 4. If the
angle between the gradient update g and global buffer gradient
(considered as a reference) gref is larger than 90◦, we project g
on gref to minimize the interference and merely update along the
directions of g̃ that is orthogonal to gref.

cal buffer Mk storing a subset of samples for previous
tasks, and the data Dk

t for the current task. For each
new data (x, y) ∈ Dk

t , the client computes the gradient
gc = ∇wl(y, f(x,w)) for the model w. To mitigate the
catastrophic forgetting issue in local training, various exist-
ing CL methods are designed, and we inherit these ideas
while combining with FedGP method. Existing ideas re-
fine the gradient gc using data (xb, yb) (for previous tasks)
sampled from the local buffer Mk. We refer to such re-
finement process as RefineGradient. Depending on
which CL method we are combining with FedGP, the
function RefineGradient is defined differently. In the
Appendix D, we added the details of RefineGradient
when FedGP is combined with DER and A-GEM, respec-
tively.

After getting the refined gradient g, the client compares the
direction of g with the direction of the global buffer gradient
gref received from the server. When the angle between g
and gref is greater than 90◦, it implies that following the
direction g will improve the performance on the current
task, at the cost of performing worse on previous tasks.
To retain the knowledge on the previous tasks, we do the
following: whenever g and gref are having a negative inner
product, we project the gradient g onto the global buffer
gradient (which can be considered as a reference) gref and
remove this component from g, i.e., define

g̃ = g − gT gref

gTrefgref
gref, (4)

following the idea suggested in (Chaudhry et al., 2018b). As
illustrated in Fig. 2, this projection helps prevent the model
updates along the direction that is harming the performance
on previous tasks.

The client updates its local model w by applying the gradi-
ent descent step with the updated gradient g̃. Finally, the
client updates the contents of the bufferMk by using the
reservoir sampling (Vitter, 1985) written in Algorithm 4 in
the Appendix. Note that the reservoir sampling selects a
random sample of |Mk| elements from a local input stream,
while ensuring that each element has an equal probability
of being included in the sample. One of the advantages of
this method is that it does not require any prior knowledge
of the size of the data stream.

Once the updated local models {wk
t }Kk=1 are transmitted to

the server, the global model wt is updated on the server side,
and transmitted to each client. Then, each client k computes
the local buffer gradient (i.e., the gradient of the model wt

with respect to the samples in the local bufferMk) as shown
in Algorithm 3 in the Appendix.

After each client computes the local buffer gradient gkref, the
server aggregates them to update the global buffer gradient
gref. Repeating the above process for T tasks, the server
finds the final global model wT as shown in Algorithm 1.
Note that here we described the algorithm for the case when
we update the model wt and the buffer gradient gref once
per task. This can be directly extended to a general case
when we repeat such updates for R communication rounds
per task.

In summary, FedGP refines the local gradient in a way
that it has a positive correlation with the average gradient
computed from the buffer across all clients. To accomplish
this, each local client calculates the gradient of the global
model on its local buffer. Afterwards, the server computes
the average of the clients’ buffer gradients and transmits it
back to the clients as a reference vector gref, which provides
the information on the previous tasks across clients.

5 EXPERIMENTS

In this section, we assess the efficacy of our method FedGP,
and compare it with baseline CL/CFL methods with non-
IID data across clients. To evaluate these methods, we
conduct experiments on image classification tasks for bench-
mark datasets including rotated-MNIST (Lopez-Paz & Ran-
zato, 2017), permuted-MNIST (Goodfellow et al., 2013),
sequential-CIFAR10, and sequential-CIFAR100 (Lopez-Paz
& Ranzato, 2017) datasets, as well as an object detection
task on streaming CARLA dataset. (Dai et al., 2023; Doso-
vitskiy et al., 2017). We also explore FedGP on NLP tasks
in Appendix A. All experiments are averaged across five
runs, each with a different seed. For further details and
additional results, please refer to Appendix B.

5.1 Classification
5.1.1 Settings

Evaluation Datasets. We evaluate our approach on three
CL scenarios: domain incremental learning (domain-IL),
class incremental learning (class-IL), and task incremental
learning (task-IL). For domain-IL, the data distribution of
each class changes across different tasks. For example, we
use the rotated-MNIST and permuted-MNIST datasets for
domain-IL, where each task rotates the training digits by a
random angle or applies a random permutation. We create
T = 10 tasks for our experiments.

For class-IL and task-IL, we partition the set of classes
into disjoint subsets and assign each subset to a particular

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Table 1. Average classification accuracy AccT (%) on standard benchmark datasets at the final task T . The results, averaged over 5
random seeds, demonstrate the benefits of our proposed method in combination with other baselines. A buffer size of 200 is utilized
whenever methods require it.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FedAvg (McMahan et al., 2017) 68.02±3.1 79.46±4.1 (↑11.44) 17.44±1.3 18.02±0.6 (↑0.58) 70.58±4.0 80.83±2.0 (↑10.25)
FedCurv (Shoham et al., 2019) 68.21±2.6 80.53±4.3 (↑12.32) 17.36±0.7 17.86±0.5 (↑0.50) 67.77±1.4 81.28±1.1 (↑13.51)

FedProx (Li et al., 2020) 67.79±3.2 78.74±4.1 (↑10.95) 16.67±2.7 17.97±0.8 (↑1.30) 69.57±6.5 81.23±1.3 (↑11.66)
A-GEM (Chaudhry et al., 2018b) 68.34±5.6 74.74±2.3 (↑6.40) 17.82±0.9 19.44±0.9 (↑1.62) 77.14±3.1 83.16±1.6 (↑6.02)

DER (Buzzega et al., 2020) 57.73±3.6 87.13±1.1(↑29.40) 18.44±3.7 30.94±3.8 (↑12.50) 69.34±3.2 77.99±0.8 (↑8.65)
Ideal 90.00±2.7 72.84±1.4 92.70±0.5

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FedAvg 25.92±2.1 34.23±2.7 (↑8.31) 8.76±0.1 17.08±1.8 (↑8.32) 47.74±1.2 74.71±0.9 (↑26.97)
FedCurv 26.00±2.4 35.21±5.1 (↑9.21) 8.92±0.1 16.67±0.9 (↑7.76) 49.14±1.6 74.64±0.7 (↑25.49)
FedProx 25.92±2.5 35.60±4.7 (↑9.68) 8.75±0.2 16.92±1.4 (↑8.17) 47.05±3.2 73.95±0.8 (↑26.89)
A-GEM 33.43±1.4 39.09±3.5 (↑5.66) 8.90±0.1 19.53±1.3 (↑10.63) 63.84±0.8 74.84±0.5 (↑11.00)

DER 19.79±1.7 43.43±0.9 (↑23.64) 13.32±1.6 22.96±3.6 (↑9.64) 57.71±1.2 65.57±1.9 (↑7.86)
Ideal 61.16±4.8 67.09±0.6 90.06±0.3

task. For instance, in our image classification experiments
for class-IL and task-IL, we divide the CIFAR-100 dataset
(with C = 100 classes) into T = 10 subsets, each of which
contains the samples for C/T = 10 classes. Each task
t ∈ [T] is defined as the classification of images from each
subset t ∈ [T]. The difference between class-IL and task-IL
is that in the task-IL setup, we assume the task identity t
is given at inference time. That is, the model f predicts
among the C/T = 10 classes corresponding to task t. The
class-IL and task-IL settings for CIFAR-10 are defined by
splitting the CIFAR-10 dataset into T = 5 tasks, with each
task having two unique classes.

In the FL setup, we assume that the data distribution is non-
IID across the different clients. Once we define the data for
each task, we split it among K clients in a non-IID manner.
For the rotated-MNIST or permuted-MNIST dataset, each
client receives samples for two MNIST digits. To create a
sequential-CIFAR10 or sequential-CIFAR100 dataset, we
use the Latent Dirichlet Allocation (LDA) partition algo-
rithm. This algorithm partitions the dataset among multiple
clients by assigning samples of each class to different clients
based on the probability distribution p ∼ Dir(α) (Hsu et al.,
2019).

Architecture and Hyperparameters. For the rotated-
MNIST and permuted-MNIST dataset, we use a simple
CNN architecture used in (McMahan et al., 2017), and split
the dataset into K = 10 clients. Each client performs lo-
cal training for E = 1 epoch, and we set the number of
communication rounds as R = 20 for each task. For the
sequential-CIFAR10 and sequential-CIFAR100 dataset, we
use a ResNet18 architecture, and divide the dataset into

K = 10 clients. Each client trains for E = 5 epochs, and
uses R = 20 rounds of communication for each task. We
use stochastic gradient descent with a learning rate of 0.01
and 0.1, respectively, for the MNIST and CIFAR datasets
during local training.

Baselines. We evaluate FedAvg with two replay-based meth-
ods applied to clients, A-GEM (Chaudhry et al., 2018b) and
DER (Buzzega et al., 2020), and two CFL methods, Fed-
Curv (Shoham et al., 2019) and FedProx (Li et al., 2020).
A-GEM ensures the alignment between the gradient of the
model for the buffer data and that for the incoming data,
while DER utilizes the network output logits for distilling
from past experiences. FedCurv prevents updating weights
that are important for past tasks, and FedProx adds a proxi-
mal weight to constrain the local model from deviating too
far from the global model. We also compare with the ideal
scenario where the clients have enough memory to store all
incoming data from previous tasks and train all tasks jointly;
we denote this method as Ideal, the performance of which is
a valid upper bound for all CFL methods. Finally, we com-
pare with a naive method that trains only on the current task
without considering the performance on previous tasks; this
method is nothing but FedAvg, the performance of which is
a valid lower bound for all CFL methods. Unless explicitly
mentioned, we use a buffer size of 200 in the subsequent
sections of this paper.

Performance Metrics. We assess the performance of
the global model on the test dataset, which is a union
of the test data for all previous tasks. The average ac-
curacy (measured after training on task t) is denoted as
Acct = 1

t

∑t
i=1 at,i, where at,i is evaluated on task i af-

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

1 2 3 4 5 6 7 8 9 10

60

80

Ac
cu

ra
cy

 (%
)

rotated-MNIST
Domain-IL

2 3 4 5 6 7 8 9 10
Tasks

0

20

40

Fo
rg

et
tin

g
(%

)

1 2 3 4 5 6 7 8 9 10

20

40

60

sequential-CIFAR100
Class-IL

1 2 3 4 5 6 7 8 9 10

60

80

sequential-CIFAR100
Task-IL

2 3 4 5 6 7 8 9 10
Tasks

0

25

50

75

2 3 4 5 6 7 8 9 10
Tasks

0

20

40

A-GEM
A-GEM+FedGP

DER
DER+FedGP

FedCurv
FedCurv+FedGP

FedProx
FedProx+FedGP

FedAvg
Ideal

Figure 3. Evaluating accuracy (↑) and forgetting (↓) in multiple datasets with and without FedGP using a buffer size of 200. The solid
lines indicate the results obtained either with our method or with the upper bound, while the dotted lines represent the results obtained
without our method. The results show a significant improvement in accuracy as well as reduced forgetting for all settings.

ter training up to task t. Additionally, we measure a per-
formance metric called forgetting, which is defined as the
difference between the best accuracy obtained throughout
the training and the current accuracy. This metric measures
the model’s ability to retain knowledge of previous tasks
while learning new ones. The forgetting at task t is defined
as: Fgtt =

1
t−1

∑t−1
i=1 max

j=1,··· ,t−1
(aj,i − at,i).

5.1.2 Results

Accuracy & Forgetting. Table 1 presents the average
accuracy AccT of various methods on image classifica-
tion benchmark datasets measured at the final task T . For
each experimental setting, we compare the performance of
an existing method with/without FedGP. We observe that
in all datasets, existing CL methods (A-GEM, DER) and
CFL methods (FedCurv and FedProx) are not guaranteed to
achieve higher accuracy than FedAvg, which is not designed
for continual learning. However, when these baselines are
combined with FedGP, the accuracy is consistently im-
proved for all datasets and all baselines. For example, on
the rotated-MNIST dataset in the domain-IL scenario, apply-
ing our method on DER improves accuracy by 29.4% (from
57.73% to 87.13%). Interestingly, FedGP with buffer size
of 200 achieves the performance close to the ideal scenario

of infinite buffer size in certain cases. In rotated-MNIST,
our method combined with DER achieves 87.13% accuracy,
whereas the ideal scenario with infinite memory achieves
90% accuracy. Similar results are obtained for forgetting
performance FgtT given in Table 7 in Appendix.

Fig. 3 depicts the average accuracy Acct measured at task
t = 1, 2, · · · , 10 and the average forgetting Fgtt measured
at task t = 2, 3, · · · , 10. The results for permuted-MNIST
and sequential-CIFAR10 are included in Appendix B for the
sake of brevity. The accuracy of FedAvg rapidly drops as
different tasks are given to the model, as expected. FedCurv
and FedProx perform similarly to FedAvg, while A-GEM
and DER partially alleviate forgetting, resulting in higher ac-
curacies and reduced forgetting compared to FedAvg. Com-
bining these baselines with FedGP lead to significant per-
formance improvements, which allows the solid lines in the
accuracy plot consistently remain at the top. For example,
for the experiment on task-IL for sequential-CIFAR100, the
accuracy measured at task 5 (denoted by Acc5) is 55.37%
for FedProx, while 71.12% for FedProx+FedGP. These
results demonstrate that FedGP effectively mitigates forget-
ting and enhances existing methods in CFL.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Table 2. Impact of the buffer size on AccT (%)

rotated-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

Buffer Size Methods w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

200
A-GEM

68.34±5.6 74.74±2.3 (↑6.40) 8.90±0.1 19.53±1.3 (↑10.63) 63.84±0.8 74.84±0.5 (↑11.00)
500 70.18±8.7 78.74±3.2 (↑8.56) 8.87±0.1 25.89±0.9 (↑17.02) 64.38±1.4 79.35±0.5 (↑14.97)
5120 69.97±3.2 79.17±4.3 (↑9.20) 8.85±0.1 33.30±2.5 (↑24.45) 64.99±1.5 84.52±0.3 (↑19.53)

200
DER

57.73±3.6 87.13±1.1 (↑29.40) 13.32±1.6 22.96±3.6 (↑9.64) 57.71±1.2 65.57±1.9 (↑7.86)
500 60.00±7.2 88.83±1.6 (↑28.83) 15.44±1.5 34.87±1.7 (↑19.43) 60.79±1.2 73.53±1.1 (↑12.74)
5120 58.63±3.9 89.46±1.2 (↑30.83) 18.89±1.0 45.76±3.8 (↑26.87) 62.77±1.5 83.41±1.3 (↑20.64)

Table 3. Effect of communication on AccT (%). Our method outperforms baselines when utilizing equivalent communication overhead.

Methods
R-MNIST P-MNIST S-CIFAR10 S-CIFAR100
Domain-IL Domain-IL Class-IL Task-IL Class-IL Task-IL

A-GEM 68.34±5.6 33.43±1.4 17.82±0.9 77.14±3.1 8.90±0.1 63.84±0.8

A-GEM w/ FedGP (2× comm overhead) 74.74±2.3 39.09±3.5 19.44±0.9 83.16±1.6 19.53±1.3 74.84±0.5

A-GEM w/ FedGP (equalized comm overhead) 78.19±2.7 40.72±7.2 18.55±2.5 81.36±4.4 21.08±1.6 74.95±0.7

DER 57.73±3.6 19.79±1.7 18.44±3.7 69.34±3.2 13.32±1.6 57.71±1.2

DER w/ FedGP (2× comm overhead) 87.13±1.1 43.43±0.9 30.94±3.8 77.99±0.8 22.96±3.6 65.57±1.9

DER w/ FedGP (equalized comm overhead) 88.64±1.4 41.20±3.0 21.51±2.8 75.34±1.9 24.84±1.6 69.00±1.1

Effect of Buffer size. Table 2 reports the performances
of baseline CL methods (A-GEM and DER) with/without
FedGP for different buffer sizes, ranging from 200 to 5120.
For all different datasets and all IL settings, increasing
the buffer size further improves the advantage of applying
FedGP, by providing more data for replay and mitigating
forgetting. Comparing the result of Table 2 with the result
of Table 1 reporting the performance of ideal scenario with
infinite memory (Ideal method), one can confirm that the
performance of our method (with limited memory) nearly
achieves the performance of ideal scenario (with infinite
memory) in some cases. For the example of Task-IL on
sequential-CIFAR100, our method combined with A-GEM
has 84.52% accuracy, which is close to the 90.06% achieved
by the ideal method.

Effect of communication frequency. Note that compared
with baseline methods, FedGP has extra communication
overhead for transmitting the buffer gradient from each
client to the server. This means that the required amount of
communication is doubled for FedGP. To compare base-
lines and FedGP under the same communication overhead
constraint, we consider reducing the communication fre-
quency of FedGP by a factor of two, while keeping the
computation unchanged. Table 3 compares three methods:
(i) the baseline, (ii) the baseline combined with FedGP, and
(iii) the baseline combined with FedGP with the commu-
nication frequency reduced by half. Note that (i) and (iii)
has the same amount of communication overhead, while
(ii) is having 2x communication overhead compared with

Table 4. AccT (%) for asynchronous task boundaries on the
sequential-CIFAR100 dataset.

Methods Class-IL Task-IL

FedAvg 16.22±1.2 59.04±1.7

A-GEM 16.92±1.0 69.41±1.3

A-GEM+FedGP 30.74±1.5 77.70±0.4

DER 31.95±2.6 68.28±1.5

DER+FedGP 36.29±1.0 72.02±0.7

Ideal 69.01±0.5 90.26±0.2

(i). We report the results for two baseline methods: A-GEM
and DER. One can confirm that FedGP (with equalized
communication overhead) improves the accuracy of each
baseline without additional communication resources. For
example, applying FedGP on the domain-IL setting for
rotated-MNIST dataset improves the accuracy over 30%
(from 57.73% to 88.64%), without additional overhead.

Asynchronous task boundaries. In our previous exper-
iments, we assumed synchronous task boundaries where
clients finish tasks at the same time. However, in many
real-world scenarios, different clients finish each task asyn-
chronously. Motivated by this practical setting, we ran
experiments on asynchronous task boundary setting where a
client may finish a task faster than others and move on to the
next task earlier. Table 4 shows the accuracy of each method
averaged over T tasks, under the asynchronous setting. Sim-
ilar to the synchronous case, FedGP improves the accuracy
of baseline methods including A-GEM and DER. It is worth
noting that various methods have a better performance in

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Table 5. The AccT (%) performance measured when we have K = 20 users. Similar to the results for K = 10 in Table 1, our method
improves the performance of baselines.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FedAvg 62.45±8.5 76.01±4.6 (↑13.56) 16.44±1.4 15.82±1.7 (↓0.62) 68.18±5.3 73.45±4.3 (↑5.27)
FedCurv 62.57±8.3 76.46±4.1 (↑13.89) 17.31±0.6 14.64±3.1 (↓2.67) 67.33±3.3 70.31±3.7 (↑2.98)
FedProx 62.14±8.6 75.84±4.4 (↑13.70) 16.37±1.1 16.15±1.3 (↓0.22) 66.24±1.4 74.79±3.9 (↑8.55)
A-GEM 67.66±8.0 78.10±3.6 (↑10.44) 16.15±1.9 17.36±0.8 (↑1.21) 72.39±3.4 80.61±2.6 (↑8.22)

DER 57.33±3.2 87.84±1.5 (↑30.51) 17.13±2.3 19.18±3.7 (↑2.05) 70.82±1.9 77.04±2.5 (↑6.22)
Ideal 91.50±0.7 71.67±0.9 91.94±0.5

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FedAvg 20.26±1.6 20.67±4.7 (↑0.41) 8.61±0.1 17.47±1.1 (↑8.86) 50.00±1.6 76.29±0.8 (↑26.29)
FedCurv 20.25±1.9 23.30±5.7 (↑3.05) 8.93±0.0 19.42±1.1(↑10.49) 49.83±1.4 79.58±0.6 (↑29.75)
FedProx 20.19±1.4 23.78±5.2 (↑3.59) 8.88±0.1 18.86±1.0 (↑9.98) 50.86±1.2 78.19±0.9 (↑27.33)
A-GEM 24.43±2.1 23.29±3.8 (↓1.14) 8.62±0.1 19.58±1.2 (↑10.96) 63.02±0.6 76.23±0.6 (↑13.21)

DER 17.89±1.3 46.17±3.0 (↑28.28) 11.53±0.5 26.64±2.8 (↑15.11) 57.00±1.4 69.42±1.0 (↑12.42)
Ideal 65.05±3.6 67.51±0.3 90.40±0.4

the asynchronous setting (see Table 4) compared with the
synchronous setting (see Table 1). This is because, in the
asynchronous setting, some clients receive new tasks earlier
than others, which allows the model to be exposed to more
diverse data for each round, thus reducing the forgetting
effect.

Effect of the number of users. While our previous exper-
iments are conducted for cases with K = 10 clients, Table 5
shows the results for K = 20 clients. This results demon-
strates that FedGP consistently improves the performance
of baselines, across different number of clients.

5.2 Object Detection
Here we test FedGP on realistic streaming data (Dai et al.,
2023) which leverage two open source tools, an urban driv-
ing simulator (CARLA (Dosovitskiy et al., 2017)) and a
FL framework (OpenFL (Reina et al., 2021)). As shown in
Fig. 4a, CARLA provides OpenFL with a real-time collec-
tion of continuous streaming vehicle camera output data and
automatic annotation about object detection. This streaming
data capture the spatio-temporal dynamics of data generated
from real-world applications. After loading data of vehicles
from CARLA, OpenFL performs collaborative training over
multiple clients.

We evaluate the solutions to the forgetting problem by
spawning two vehicles in a virtual town. During the training
of the tinyYOLO (Redmon & Farhadi, 2017) object detec-
tion model, we use a custom loss that combines classifica-
tion, detection and confidence losses. In order to quantify
the quality of the incremental model trained by various base-
lines, we report a common metric, namely, mean average
precision (mAP). This metric assesses the correspondence

between the detected bounding boxes and the ground truth,
with higher scores indicating better performance. To calcu-
late mAP, we analyze the prediction results obtained from
pre-collected driving snippets of vehicular clients. These
driving snippets are gathered by navigating the town over a
duration of 3000 simulation seconds.

For those experiments on realistic CARLA streaming data,
we compare the performances of Ideal, FedAvg, DER and
DER+FedGP. The last two methods are equipped with
buffer size of 200. We train for 70 communication rounds
and each round continues for about 200 simulation seconds.
The results are presented in Fig. 4b. Note that at commu-
nication round 60, one client gets on the highway, which
incurs a domain shift. One can confirm that the performance
of FedAvg degrades in such domain shift scenario, whereas
DER and DER+FedGP maintain the accuracy. Moreover,
FedGP nearly achieves the performance of the ideal sce-
nario with infinite buffer size, demonstrating the effective-
ness of our method.

6 CONCLUSION

In this paper, we present FedGP, a novel method of using
buffer data for mitigating the catastrophic forgetting issues
in continual federated learning. Specifically, we use the
gradient projection method to prevent model updates that
harm the performance on previous tasks. Our empirical
results on benchmark datasets (rotated-MNIST, permuted-
MNIST, sequential-CIFAR10 and sequential-CIFAR100)
and on a realistic streaming automotive dataset (generated
by the CARLA simulator and the OpenFL framework) show
that FedGP improves the performance of existing continual
federated learning methods.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

(a) Framework for automotive data evaluation.

0 10 20 30 40 50 60 70
Communication Rounds

0.0

0.2

0.4

0.6

0.8

1.0

m
AP

DER
DER+FedGP
FedAvg
Ideal

(b) Object detection performance comparison.

Figure 4. (a) The data loader continuously supplies data from CARLA camera outputs to individual FL clients. Each client trains on its
local data and updates its buffer to retain old knowledge. (b) The result shows the object detection performance comparison between Ideal,
FedAvg, DER, and DER+FedGP on a realistic CARLA dataset.

ACKNOWLEDGEMENTS

We’d like to thank the reviewers for their useful comments.
This work is funded by Intel/NSF joint grant CNS-2003129.

REFERENCES

Aljundi, R., Chakravarty, P., and Tuytelaars, T. Expert
gate: Lifelong learning with a network of experts. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3366–3375, 2017.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M.,
and Tuytelaars, T. Memory aware synapses: Learning
what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 139–154,
2018.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradi-
ent based sample selection for online continual learning.
Advances in neural information processing systems, 32,
2019.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual learn-
ing: a strong, simple baseline. Advances in neural infor-
mation processing systems, 33:15920–15930, 2020.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H.
Riemannian walk for incremental learning: Understand-
ing forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), pp.
532–547, 2018a.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420, 2018b.

Chen, Z. and Liu, B. Lifelong machine learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
12(3):1–207, 2018.

Dai, S., Alam, S. M. I., Balakrishnan, R., Lee, K., and
Suman Banerjee, N. H. Online federated learning based
object detection across autonomous vehicles in a virtual
world. IEEE Consumer Communications & Networking
Conference (CCNC) Demo, 2023.

Delange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X.,
Leonardis, A., Slabaugh, G., and Tuytelaars, T. A contin-
ual learning survey: Defying forgetting in classification
tasks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2021.

Dong, J., Wang, L., Fang, Z., Sun, G., Xu, S., Wang, X.,
and Zhu, Q. Federated class-incremental learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10164–10173, 2022.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. Carla: An open urban driving simulator. In
Conference on robot learning, pp. 1–16. PMLR, 2017.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D.,
Rusu, A. A., Pritzel, A., and Wierstra, D. Pathnet: Evolu-
tion channels gradient descent in super neural networks.
arXiv preprint arXiv:1701.08734, 2017.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic for-
getting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

He, C., Li, S., So, J., Zeng, X., Zhang, M., Wang, H., Wang,
X., Vepakomma, P., Singh, A., Qiu, H., et al. Fedml: A
research library and benchmark for federated machine
learning. arXiv preprint arXiv:2007.13518, 2020.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. Scaffold: Stochastic controlled averag-
ing for federated learning. In International Conference
on Machine Learning, pp. 5132–5143. PMLR, 2020.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, T., Sanjabi, M., Beirami, A., and Smith, V. Fair re-
source allocation in federated learning. arXiv preprint
arXiv:1905.10497, 2019.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A.,
and Smith, V. Federated optimization in heterogeneous
networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
40(12):2935–2947, 2017.

Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang,
Y.-C., Yang, Q., Niyato, D., and Miao, C. Federated
learning in mobile edge networks: A comprehensive sur-
vey. IEEE Communications Surveys & Tutorials, 22(3):
2031–2063, 2020.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. Advances in neural information
processing systems, 30, 2017.

Ma, Y., Xie, Z., Wang, J., Chen, K., and Shou, L. Continual
federated learning based on knowledge distillation.

Mallya, A. and Lazebnik, S. Packnet: Adding multiple tasks
to a single network by iterative pruning. In Proceedings
of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 7765–7773, 2018.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Mehta, S. V., Patil, D., Chandar, S., and Strubell, E. An em-
pirical investigation of the role of pre-training in lifelong
learning. arXiv preprint arXiv:2112.09153, 2021.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning, pp. 4615–4625. PMLR, 2019.

Ratcliff, R. Connectionist models of recognition memory:
constraints imposed by learning and forgetting functions.
Psychological review, 97(2):285, 1990.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

Redmon, J. and Farhadi, A. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7263–7271,
2017.

Reina, G. A., Gruzdev, A., Foley, P., Perepelkina, O.,
Sharma, M., Davidyuk, I., Trushkin, I., Radionov, M.,
Mokrov, A., Agapov, D., et al. Openfl: An open-
source framework for federated learning. arXiv preprint
arXiv:2105.06413, 2021.

Ring, M. B. Child: A first step towards continual learning.
In Learning to learn, pp. 261–292. Springer, 1998.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123–146, 1995.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In International Conference on Machine Learning,
pp. 4548–4557. PMLR, 2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. Advances in neural informa-
tion processing systems, 30, 2017.

Shmelkov, K., Schmid, C., and Alahari, K. Incremental
learning of object detectors without catastrophic forget-
ting. In Proceedings of the IEEE international conference
on computer vision, pp. 3400–3409, 2017.

Shoham, N., Avidor, T., Keren, A., Israel, N., Benditkis,
D., Mor-Yosef, L., and Zeitak, I. Overcoming forgetting
in federated learning on non-iid data. arXiv preprint
arXiv:1910.07796, 2019.

Thrun, S. Is learning the n-th thing any easier than learning
the first? Advances in neural information processing
systems, 8, 1995.

Venkatesha, Y., Kim, Y., Park, H., Li, Y., and Panda, P.
Addressing client drift in federated continual learning
with adaptive optimization. Available at SSRN 4188586,
2022.

Vitter, J. S. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1):
37–57, 1985.

Yao, X. and Sun, L. Continual local training for better initial-
ization of federated models. In 2020 IEEE International
Conference on Image Processing (ICIP), pp. 1736–1740.
IEEE, 2020.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. arXiv
preprint arXiv:1708.01547, 2017.

Yoon, J., Jeong, W., Lee, G., Yang, E., and Hwang, S. J.
Federated continual learning with weighted inter-client
transfer. In International Conference on Machine Learn-
ing, pp. 12073–12086. PMLR, 2021.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Confer-
ence on Machine Learning, pp. 3987–3995. PMLR, 2017.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convolu-
tional networks for text classification. Advances in neural
information processing systems, 28, 2015.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

A NLP TASK

In addition to image classification, we also extended the eval-
uation of our method on text classification task (Mehta et al.,
2021). For this purpose, we utilized the YahooQA (Zhang
et al., 2015) dataset which comprises texts (questions and
answers), and user-generated labels representing 10 differ-
ent topics. Similar to the approach taken with the CIFAR10
dataset, we partitioned the YahooQA dataset into 5 tasks,
where each task consisted of two distinct classes. Within
each task, we used LDA to partition data across 10 clients in
a non-IID manner. To conduct the experiment, we employed
DistilBERT (Sanh et al., 2019) with linear classification
layer. We freeze the DistilBERT model and only fine-tune
the additional linear layer. The results of this experiment can
be found in Table 6. Analyzing the table, we can observe
that FedGP enhances the accuracy (AccT), particularly in
class-IL scenarios.

B ADDITIONAL RESULTS

We present the complementary information to Table 1 in
Table 7, illustrating the extent of FgtT observed across
multiple benchmark datasets. Our method exhibits excep-
tional effectiveness in mitigating forgetting. Remarkably,
it demonstrates consistent performance across all datasets
and baselines, making it a versatile solution. As mentioned
in Fig.3, we present the average accuracy (Acct) and av-
erage forgetting (Fgtt) results for permuted-MNIST and
sequential-CIFAR10 in Fig.5. This figure reinforces the
main message conveyed by Fig. 3, highlighting the superior
performance of FedGP in terms of higher accuracy and
lower forgetting across tasks t = 1 to t = 10.

In the main body of our study, we examined the influence
of different buffer sizes on the performance metric AccT ,
utilizing rotated-MNIST and sequential-CIFAR10 datasets.
To further augment our analysis, we have included two addi-
tional datasets in Table 8, incorporating various buffer sizes.
By evaluating AccT (where higher values indicate better
performance), we discovered that our proposed method,
referred to as FedGP, consistently enhances the average
accuracy across these two datasets.

In line with the presentation of forgetting in Table 7, we
present the forgetting analysis when the number of clients
is set to 20 in Table 9. Notably, our method exhibits con-
sistent and impressive performance across varying numbers
of users. It consistently proves its effectiveness regardless
of the specific user count, showcasing its robustness and
reliability.

C ADDITIONAL ALGORITHMS

In this section, we present the pseudo-code for the
ComputeBufferGrad algorithm (see Algorithm 3),

which calculates the gradient of the model on buffer data.
Additionally, we describe the ReservoirSampling
algorithm (see Algorithm 4). In the initial phase,
when the buffer is not yet full (i.e., n ≤ |Mk|),
ReservoirSampling stores each new sample (x, y) in
the buffer. After the buffer is full, the algorithm determines
two things: (1) whether it should replace an element in the
buffer with the new sample, and (2) which element in the
buffer it will replace.

Algorithm 3 ComputeBufferGrad(w,Mk)

Input: global model w, local bufferMk

(x1, y1), . . . , (xm, ym)←m random samples fromMk

g = 1
m

∑m
i=1∇w [ℓ(yi, f(xi, w))]

Return g to server

Algorithm 4 ReservoirSampling(Mk, (x, y), n)
(Vitter, 1985) at client k

Input: local buffer Mk, incoming data (x, y) and the
number of observed samples n
if n ≤ |Mk| then

Add data (x, y) into local bufferMk

else
i← Uniform{1, 2, · · · , n}
if i ≤ |Mk| then
Mk[i]← (x, y)

end if
end if
ReturnMk, the updated local buffer

D CONTINUAL LEARNING METHODS WITH
FEDGP

We provide detailed information regarding the operation
(denoted as RefineGradient) in Algorithm 2, along
with two examples of continual learning methods using
FedGP.

Algorithm 5 incorporates Dark Experience Replay (DER)
into the local update process on client k ∈ [K]. At time t,
when the server sends the global model wt−1 to client k, the
client calculates the output logits or pre-softmax response
z. In addition, the client samples past data (x′, y′) and the
corresponding logits z′ from the buffer Mk. To address
forgetting, the regularization term considers the Euclidean
distance between the sampled output logits and the current
model’s output logits on buffer data. The gradient g is then
refined using this regularization term to minimize the dis-
crepancy between the current and past output logits, thereby
mitigating forgetting. The following steps are the same as
in the main text.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Table 6. Average classification accuracy AccT (%) on text classification datasets at the final task T .

sequential-YahooQA (Class-IL) sequential-YahooQA (Task-IL)

w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FedAvg 17.86±0.6 30.67±4.4(↑12.81) 80.87±1.2 88.04±1.4(↑7.17)
A-GEM 20.86±0.3 47.02±1.9(↑26.16) 87.29±1.3 90.20±0.2(↑2.91)

DER 43.64±2.1 54.28±1.3(↑10.64) 89.57±0.2 90.48±0.2(↑0.91)
Ideal 66.11±1.0 91.60±0.2

Table 7. Average forgetting FgtT (%) (lower is better) on benchmark datasets at the final task T .

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FedAvg 25.98±3.2 11.66±2.7(↓14.32) 80.69±3.6 78.62±4.3(↓2.07) 15.37±4.8 4.49±1.9(↓10.88)
FedCurv 25.80±2.4 11.18±2.7(↓14.62) 80.90±6.6 79.85±3.9(↓1.05) 19.37±4.8 4.77±1.6(↓14.60)
FedProx 25.74±3.1 11.76±2.9(↓13.98) 84.35±2.4 80.24±2.5(↓4.11) 18.24±4.9 4.17±1.0(↓14.07)
A-GEM 26.30±5.7 15.18±2.4(↓11.12) 82.18±6.6 80.38±2.5(↓1.80) 10.00±3.0 4.15±0.7(↓5.85)

DER 21.42±4.0 5.51±1.2(↓15.91) 60.98±14.6 47.88±7.2(↓13.10) 6.34±4.9 2.73±1.3(↓3.61)
Ideal 0.25±0.2 9.05±1.4 0.10±0.1

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FedAvg 43.47±5.3 21.40±4.9(↓22.07) 77.69±0.5 67.02±2.3(↓10.67) 34.38±1.6 5.39±0.8(↓28.99)
FedCurv 42.88±5.0 22.85±3.5(↓20.03) 78.40±0.9 67.75±0.8(↓10.65) 33.71±2.2 5.86±0.7(↓27.85)
FedProx 42.59±5.6 20.77±5.6(↓21.82) 77.35±0.4 66.81±2.2(↓10.54) 34.79±3.6 5.69±0.9(↓29.10)
A-GEM 35.61±5.3 24.05±2.4(↓11.56) 77.97±0.7 63.99±2.0(↓13.98) 16.92±1.1 5.16±0.5(↓11.76)

DER 45.33±5.0 34.71±5.0(↓10.62) 69.37±1.7 53.84±6.7(↓15.53) 22.43±0.7 14.16±1.7(↓8.27)
Ideal 3.45±0.7 3.47±0.4 0.38±0.1

Table 8. Impact of the buffer size on AccT (%)
permuted-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

Buffer Size Methods w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

200
A-GEM

33.43±1.4 39.09±3.5 (↑5.66) 17.82±0.9 19.44±0.9 (↑1.62) 77.14±3.1 83.16±1.6 (↑6.02)
500 33.35±1.0 42.45±6.9 (↑9.10) 18.39±0.2 20.34±0.6 (↑1.95) 78.43±3.0 85.95±0.6 (↑7.52)
5120 32.72±1.4 40.07±2.5 (↑7.35) 16.41±2.6 20.64±2.2 (↑4.23) 73.89±3.3 86.82±1.5 (↑12.93)

200
DER

19.79±1.7 43.43±0.9 (↑23.64) 18.44±3.7 30.94±3.8 (↑12.50) 69.34±3.2 77.99±0.8 (↑8.65)
500 19.17±1.6 43.38±2.4 (↑24.21) 20.81±3.6 29.78±4.3 (↑8.97) 71.17±1.5 74.98±3.5 (↑3.81)
5120 18.57±1.4 44.68±2.4 (↑26.11) 34.75±2.2 42.38±4.5 (↑7.63) 78.22±2.3 81.94±1.7 (↑3.72)

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Table 9. The FgtT (%) (lower is better) performance measured when we have K = 20 users.

rotated-MNIST (Domain-IL) sequential-CIFAR10 (Class-IL) sequential-CIFAR10 (Task-IL)

w/o FedGP w/ FedGP w/o FedGP w/ FedGP w/o FedGP w/ FedGP

FedAvg 31.00±9.5 13.45±3.6 (↓17.55) 82.62±3.1 73.39±4.5 (↓9.23) 17.93±2.7 6.14±4.9 (↓11.79)
FedCurv 30.73±9.3 12.97±3.8 (↓17.76) 79.55±3.8 75.38±5.3 (↓4.17) 18.19±3.0 9.14±3.1 (↓9.05)
FedProx 31.04±9.7 13.31±3.4 (↓17.73) 82.94±1.1 78.67±4.2 (↓4.27) 20.60±2.6 8.52±3.0 (↓12.08)
A-GEM 25.22±8.8 11.02±3.0 (↓14.20) 82.39±2.4 80.25±4.1 (↓2.14) 12.29±2.2 4.00±2.4 (↓8.29)

DER 28.93±6.6 5.18±1.1 (↓23.75) 55.10±9.8 60.90±3.8 (↑5.80) 3.20±1.6 2.71±1.7 (↓0.49)
Ideal 0.15±0.1 9.15±1.3 0.34±0.4

permuted-MNIST (Domain-IL) sequential-CIFAR100 (Class-IL) sequential-CIFAR100 (Task-IL)

FedAvg 24.27±5.2 8.67±7.0 (↓15.60) 73.05±0.5 62.71±0.9 (↓10.34) 27.07±1.7 2.48±0.7 (↓24.59)
FedCurv 24.02±5.4 8.10±5.4 (↓15.92) 80.07±0.5 68.58±1.1 (↓11.49) 34.63±1.7 3.48±0.6 (↓31.15)
FedProx 23.01±5.7 5.93±5.1 (↓17.08) 79.46±0.5 68.40±0.9 (↓11.06) 32.82±1.4 4.13±0.7 (↓28.69)
A-GEM 22.12±4.9 9.45±5.4 (↓12.67) 72.97±1.1 60.27±1.3 (↓12.70) 12.54±1.3 2.66±0.2 (↓9.88)

DER 32.26±1.1 27.30±4.2 (↓4.96) 67.07±0.8 47.74±3.8 (↓19.33) 19.78±1.7 8.67±1.4 (↓11.11)
Ideal 1.35±0.4 1.66±0.3 0.14±0.1

1 2 3 4 5 6 7 8 9 10
20

40

60

Ac
cu

ra
cy

 (%
)

permuted-MNIST
Domain-IL

2 3 4 5 6 7 8 9 10
Tasks

0

20

40

Fo
rg

et
tin

g
(%

)

1 2 3 4 5

25

50

75

sequential-CIFAR10
Class-IL

1 2 3 4 5

70

80

90

sequential-CIFAR10
Task-IL

2 3 4 5
Tasks

25

50

75

2 3 4 5
Tasks

0

10

20

A-GEM
A-GEM+FedGP

DER
DER+FedGP

FedCurv
FedCurv+FedGP

FedProx
FedProx+FedGP

FedAvg
Ideal

Figure 5. Evaluating accuracy and forgetting in multiple datasets with and without FedGP using a buffer size of 200. The solid lines
indicate the results obtained with our method or upper bound, while the dotted lines represent the results obtained without our method.
The experimental results demonstrate a significant improvement in accuracy for all settings.

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Algorithm 6 applies Gradient Projection twice. First, the
client computes the gradient gc with respect to the new data
from Dk

t . After replaying previous samples (x′, y′) stored
in the local bufferMk, the client computes the gradient gb
with respect to this buffered data. If these gradients differ
significantly in terms of their direction, the client projects
gc onto gb to remove interference.

E ADDITIONAL RELATED WORK

We summarize the prior works that are related to our pa-
per, which are categorized as continual learning, federated
learning, and continual federated learning.

E.1 Continual Learning (CL)
CL is a problem of learning multiple different tasks consec-
utively using a single model (Ring, 1998; Delange et al.,
2021). For example, when the tasks are classification prob-
lems, CL focuses on the scenario when a classifier is trained
for one task in the first phase, and then trained for another
task in the second phase, and so on. In general, the data
loaded at the current phase has a different distribution com-
pared to the data at the previous phases, known as domain
distribution shift or class distribution shift. Unfortunately,
since the learner has a limited amount of memory to store
data, the classifier is only allowed to access the data for the
current task, not for the previous tasks. In such a setting,
catastrophic forgetting (McCloskey & Cohen, 1989; Rat-
cliff, 1990; French, 1999) is a notorious problem, where a
classifier that performs well for the task from the current
round does not perform well on the tasks from the pre-
vious rounds. There has been extensive work to address
this issue and can be divided into three major categories:
regularization-based methods, architecture-based methods
and replay-based methods.

Regularization-based methods Some CL methods add
a regularization term in the loss used for the model update;
they penalize the updates on weights that are important for
previous tasks. EWC (Kirkpatrick et al., 2017), SI (Zenke
et al., 2017), Riemannian Walk (Chaudhry et al., 2018a) are
methods within this category. EWC uses Fisher information
matrix to evaluate the importance of parameters for previous
tasks. Besides, LwF (Li & Hoiem, 2017) leverages knowl-
edge distillation to preserve outputs on previous tasks while
learning the current task.

Architecture-based methods A class of CL methods as-
signs a subset of model parameters to each task, so that
different tasks are learned by different parameters. This
class of methods is also known as parameter isolation meth-
ods. Some methods including PNN (Rusu et al., 2016)
and DEN (Yoon et al., 2017) uses dynamic architectures
where the architecture changes dynamically as the number
of tasks increases. These methods have issues where the

number of required parameters grows linearly with the num-
ber of tasks. To tackle this issue, fixed network are used in
the recent methods including PackNet (Mallya & Lazebnik,
2018), HAT (Serra et al., 2018) and PathNet (Fernando et al.,
2017).

Replay-based methods To avoid catastrophic forgetting,
a class of CL methods employs a replay buffer to save a
small portion of the data seen in previous tasks and reuse it
in the training of subsequent tasks.One of the early works in
this area is ER (Ratcliff, 1990; Robins, 1995). More recent
work, such as iCaRL (Rebuffi et al., 2017) stores exemplars
of data from previous tasks and adds distillation loss for old
exemplars to mitigate the forgetting issue. Deep Generative
Replay (Shin et al., 2017) retains the memories of the previ-
ous tasks by loading the synthetic data generated by GANs
without replaying the actual data for the previous tasks.
GSS (Aljundi et al., 2019) optimally selects data for replay
buffer by maximizing the diversity of samples in terms of
the gradient in the parameter space. GEM (Lopez-Paz &
Ranzato, 2017) and its variant A-GEM (Chaudhry et al.,
2018b) leverage an episodic memory that stores part of seen
samples for each task to prevent forgetting old knowledge.

General continual learning Prior works on CL often rely
on the information about the task boundaries. For example,
some replay-based methods perform specific steps specifi-
cally at task boundaries, some regularization-based methods
store network responses at these boundaries; architecture-
based methods update the model architecture after one task
is finished. However, when dealing with streaming data in
practical settings, task boundaries are not clearly defined.
This scenario, where sequential tasks are learned contin-
uously without explicit knowledge of task boundaries, is
referred to as general continual learning (Buzzega et al.,
2020; Aljundi et al., 2019; Chaudhry et al., 2018b). To
address general continual learning, replay-based methods
can utilize reservoir sampling (Vitter, 1985), which allows
sampling throughout the training rather than relying on task
boundaries. In our work, we specifically focus on general
continual learning with reservoir sampling, particularly in
the context of federated learning setups.

E.2 Federated Learning (FL)
There is a rapidly increasing level of interest in FL from
both industry and academia, especially due to its benefits on
enabling multiple users to collaboratively train a model with
improved data privacy (Kairouz et al., 2021; Lim et al., 2020;
Zhao et al., 2018; Konečnỳ et al., 2016). FedAvg (McMahan
et al., 2017) is a widely used algorithm in FL where each
round consists of three steps: first, each client updates its
local model using its data and transmits the updated local
model to the server; second, the central server aggregates
the updated local models and updates the global model in
the direction of the average of local updates; third, the global

FedGP: Buffer-based Gradient Projection for Continual Federated Learning

Algorithm 5 DER ClientUpdate(t, w, gref) at client k

Input: Task index t, model w, buffer gradient gref
Load the dataset Dk

t , local bufferMk

n← 0
for (x, y) ∈ Dk

t do
z ← h(x,w) where f(x,w) := σ (h(x,w))
(x′, z′, y′)←Mk

ℓreg ← λ ∥z′ − h(x′, w)∥22
g = ∇w [ℓ(y, f(x,w)) + ℓreg]
g̃ ← g − projgref g · 1(g

⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α
ReservoirSampling(Mk, (x, z, y), n)
n← n+ 1

end for
Return w to server

Algorithm 6 A-GEM ClientUpdate(t, w, gref) at client
k

Input: Task index t, model w, buffer gradient gref
Load the dataset Dk

t , local bufferMk

n← 0
for (x, y) ∈ Dk

t do
gc = ∇w [ℓ(y, f(x,w))]
(x′, y′)←Mk

gb = ∇w [ℓ(y′, f(x′, w))]
g ← gc − projgbgc · 1(g

⊤
b gc ≤ 0)

g̃ ← g − projgref g · 1(g
⊤
refg ≤ 0)

w ← w − αg̃ for some learning rate α
ReservoirSampling(Mk, (x, y), n)
n← n+ 1

end for
Return w to server

model is broadcasted to each client and the local model is
redefined as the global model; we repeat these three steps
for multiple communication rounds. Variants of FedAvg
were suggested in recent years (Li et al., 2020; Shoham
et al., 2019; Karimireddy et al., 2020; Li et al., 2019; Mohri
et al., 2019), but most existing works assume that the data
distribution is static over time, which fails to capture the
temporal dynamics of real-world data.

E.3 Continual Federated Learning (CFL)
CFL is a problem of learning multiple consecutive tasks in
the FL setup. Several CFL methods have been proposed
in the literature. FedProx (Li et al., 2020) adds a proximal
term to limit the impact of variable local updates, while
FedCurv (Shoham et al., 2019) adds a penalty term using
the diagonal of the Fisher information matrix to protect the
important parameters for each task. Both methods aim to
preserve previously learned tasks while training new ones.
Although FedProx (Li et al., 2020) and FedCurv (Shoham
et al., 2019) are effective approaches to mitigate forgetting
in CFL, they have been shown to achieve suboptimal perfor-
mance when applied in a naive manner. Other approaches,
such as FedWeIT (Yoon et al., 2021) and NetTailor (Venkate-
sha et al., 2022), have attempted to prevent interference be-
tween irrelevant tasks by decomposing network parameters
or using a dynamic architecture approach. However, these
methods may not be practical for a large number of tasks
as the number of parameters scale linearly and require a
clear understanding of all task identities or boundaries in
advance, which may not be feasible in real-world scenarios.
CFeD (Ma et al.) and FedCL (Yao & Sun, 2020) utilize
surrogate datasets or global importance weights to distill
learned knowledge and constrain local model updates, re-
spectively. However, these methods require extra effort to
generate or collect auxiliary data and may consume extra

communications or storage overhead. GLFC (Dong et al.,
2022) is another approach that uses a class-aware gradient
compensation loss and a class-semantic relation distillation
loss to overcome catastrophic forgetting, but it only consid-
ers class-incremental learning scenarios.

Unlike previous methods, our approach does not require
explicit task boundaries, making it more practical for real-
world applications. Our method achieves this by aligning the
gradients of the current model with those of the global buffer,
which contains past experiences from multiple clients. By
leveraging this collective experience, FedGP can effectively
mitigate forgetting of previously learned knowledge in FL
scenarios with continuous data and real-world temporal
dynamics.

