Under review as a conference paper at ICLR 2025

BAT-CLIP: BIMODAL TEST-TIME ADAPTATION FOR
CLIP

Anonymous authors
Paper under double-blind review

ABSTRACT

Although open-vocabulary classification models like Contrastive Language Image
Pretraining (CLIP) have demonstrated strong zero-shot learning capabilities, their
robustness to common image corruptions remains poorly understood. Through
extensive experiments, we show that zero-shot CLIP lacks robustness to com-
mon image corruptions at increasing severity levels during test time, necessitating
the adaptation of CLIP to unlabeled corrupted images using test-time adaptation
(TTA). However, we found that existing TTA methods have severe limitations in
adapting CLIP due to their unimodal nature. To address these limitations, we pro-
pose BAT-CLIP, a bimodal TTA method specially designed to improve CLIP’s
robustness to common image corruptions. The key insight of our approach is
not only to adapt the visual encoders for better image feature extraction but also to
strengthen the alignment between image and text features by promoting a stronger
association between the image class prototype, computed using pseudo-labels, and
the corresponding text feature. We evaluate our approach on benchmark image
corruption datasets and achieve state-of-the-art results in TTA for CLIP, specif-
ically for domains involving image corruptions. Particularly, with a ViT-B/16
vision backbone, we obtain mean accuracy improvements of 9.7%, 5.94%, and
5.12% for CIFAR-10C, CIFAR-100C, and ImageNet-C, respectively.

1 INTRODUCTION

The emergence of large pre-trained vision-language models (VLMs), such as CLIP (Radford et al.,
2021)), has led to their widespread adoption in various visual recognition tasks, including segmen-
tation (L1 et al., 2022; |Luo et al.l |2023), detection (Bangalath et al., [2022; Lin & Gong, [2023)),
classification (Zhou et al., 2022bjal), and image generation (Vinker et al.,|2022; Ramesh et al., 2022;
Rombach et al., 2022)). Thanks to supervision from massive corpora of paired language and image
data, VLMs like CLIP demonstrate strong zero-shot capabilities for these downstream tasks.

Despite CLIP’s successes in such important applications, its robustness when faced with corrupted
images remains largely underexplored. Our motivation stems from the fact that the vision perception
system of humans exhibits a level of robustness that real-world vision systems are yet to achieve. For
example, models deployed for safety-critical applications like autonomous driving (Arnold et al.,
2019), could face rapid distributional shifts of blurriness, pixel changes, snowy nights, or other
weather conditions (Sakaridis et al., 2021). For instance, our findings on the zero-shot performance
of CLIP with a ResNet-101 (He et al.,[2016)) vision backbone reveals that the accuracy on the test set
of CIFAR100 (Krizhevsky et al.,[2009) with Gaussian noise of severity level 5, plummets to 10.79%
from 49% on the clean set. Similar trends are observed with ViT-B/16, -B/32, and -L/14 (Dosovit-
skiy, |2020) as backbones. Behaviors such as these could lead to severe performance degradation of
models when faced with image corruption in real-world scenarios.

This challenge is not unique to CLIP; it reflects a broader issue in computer vision tasks (Deng
et al., |2009; |[Everingham et al., |2010; |[Faster, 2015} |Chen et al., 2017)), which often rely on the
assumption that training and test data share the same distribution. When test distributions differ,
model adaptation becomes essential to accommodate this shift and maintain accurate predictions.
In response to this issue, test-time adaptation (TTA) has garnered significant interest (Wang et al.,
2021; [Dobler et al., 2023). TTA aims to adapt a pre-trained model to unlabeled batches of test
data from varying domains in an online fashion—updating the model for each test batch without
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Figure 1: Comparison of BAT-CLIP with other TTA approaches using CLIP: TPT (Shu et al.,2022),
and VTE (Dobler et al.|[2024). a) TPT optimizes text prompts only for a single test image, making it
unimodal. b) VTE considers an ensemble of prompts without model updates. Both methods consider
the generation of multiple augmentations of the test image. c¢) BAT-CLIP is a bimodal approach, that
adapts the LayerNorm parameters of the vision and text encoders, maximizing alignment between
class prototypes and text features while increasing the inter-class separability of prototypes.

access to the source dataset. Several TTA methods proposed in the literature have been effective in
mitigating domain shifts (Wang et al.l |2021; Schneider et al., 2020} Rusak et al.| |2021; Niu et al.,
2022; Sun et al., [2020; |Chen et al.,|2022). In this paper, we use the terms distributions and domains
interchangeably.

While there have been few new works on using CLIP for TTA (Shu et al.,[2022; Dobler et al.,2024),
they come with certain limitations. For example, test-time prompt tuning (TPT) (Shu et al., [2022)
tunes the text prompts on the text encoder alone and generates multiple random augmented views,
for each test image. The text prompts, initialized to pre-trained values, are optimized by minimizing
the marginal entropy of the confident model predictions. The prompts are reset after adaptation to
each image. However, such a method is expensive and slow due to performing multiple forward
passes through the vision encoder of CLIP, for each image. Also, it relies on hand-crafted prompts
for initialization, making it impractical at test-time. Another approach, Vision-Text-Space Ensemble
(VTE) (Dobler et al., 2024])), uses an ensemble of different prompts as input to CLIP’s text encoder
while keeping the encoders frozen. However, since the vision encoder remains frozen, it struggles
to adapt images with severe noise effectively.

While TPT effectively improves CLIP’s test generalization by dynamically tuning the text prompts,
it remains primarily a unimodal approach. This limits the capacity of a multi-modal model like
CLIP to fully leverage its multi-modal nature for adaptation. Specifically, it prevents the encoders
from jointly adjusting their features, resulting in suboptimal alignment between the visual and text
modalities. During TTA, there is no transfer of knowledge, via gradients, between the visual and
text encoders, as the adaptation process focuses solely on one modality. For instance, when a test
image includes common corruptions, the text prompts adapt, but the vision encoder features remain
fixed. As aresult, the learned prompts lack awareness of the test image distribution, leading to a less
effective adaptation.

To address these core limitations, we propose, BAT-CLIP, a bimodal adaptation approach of CLIP
for TTA, where both the visual and text encoders are jointly adapted by exploiting CLIP’s shared
feature space of images and text. The overall objective is to achieve a strong alignment between
image features and text features to enable more effective multi-modal learning and adaptation. The
adaptation procedure is two-fold: 1) Similar to TENT (Wang et al., 2021, we adapt the norm layers
i.e., LayerNorm layers of both encoders. However, such a model update does not consider the align-
ment of the encoder features. So, to improve the alignment between class-specific visual and text
features, we introduce a projection matching loss that maximizes the projection of the visual class
prototypes with their corresponding text features. 2) To learn more discriminative visual features,
we increase the cosine distance between the class prototypes, promoting a more distinct separation
in the image feature space. Furthermore, our method is general-purpose, as it does not rely on hand-
crafted prompt templates or their ensembles, unlike VTE (Dobler et al.,|2024). We leverage batches
of test samples for TTA, rather than focusing on single-image adaptation - making our method fast
and efficient. In Fig. [/} we show several examples of classification results, as a comparison.

To the best of our knowledge, the proposed method is the first to perform bimodal test-time adapta-
tion (TTA) of CLIP for classification tasks. We draw a comparison of our method against TPT and
VTE in Fig. |1} Our main contributions are as follows:
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* We begin by conducting a comprehensive analysis of CLIP’s zero-shot performance, for
various visual backbones, on common image corruptions, at test-time, with varying levels
of severity. We observed that while CLIP demonstrates strong zero-shot performance on
clean images, its performance declines significantly when handling corrupted images.

* To address the unimodal limitations highlighted earlier, our proposed bimodal adaptation
of CLIP encoders at test-time aims to enhance alignment by maximizing the projection of
class-wise prototypes onto their corresponding text features. Simultaneously, we increase
the cosine distance between class prototypes to encourage the learning of more discrimina-
tive features, making the test adaptation process more flexible and robust.

* We conduct extensive experiments and benchmark our results against others using CLIP
for TTA. We also adopt prior TTA approaches to use CLIP and compare them against ours.
Our method results in the state-of-the-art for CLIP test adaptation to common corruptions.

2 RELATED WORKS

Online Test-Time Adaptation (TTA). The objective of TTA is to adapt a pre-trained model, with
no access to the source data, to incoming batches of unlabelled test data of a specific domain (Wang
et al., 2021 [Sun et al., 2020; [Schneider et al.l 2020; Rusak et al., 2021; Niu et al.| [2022; |Chen
et al.,[2022} |Zhang et al., 2022 |Choti et al., 2022). In this approach, the model is reset to its source-
domain pre-trained state after adapting to each target domain. As the updates are performed online,
TENT (Wang et al.,2021)) updates the affine parameters of the normalization layers and minimizes
the entropy (Shannon, |1948)) of the model predictions. BN Stats Adapt (BN-1) (Schneider et al.,
2020) changes only the statistics of the normalization layers with those of the test batch to reduce
the covariate shift due to corruptions. RPL (Rusak et al.| [2021) argues that self-learning during
adaptation via entropy minimization and pseudo-labels is beneficial. They propose the usage of a
generalized cross-entropy loss for adaptation. SAR (Niu et al., [2022) filters noisy test samples that
cause a performance drop identified from the gradient space. However, none of these works utilize
CLIP for TTA.

TTA using CLIP. Lately, CLIP has been finding extensive applications for TTA. TPT (Shu et al.,
2022) was the first work to propose prompt tuning using CLIP at test-time. However, this method is
computationally intensive for generating multiple views, per image. Additionally, a key limitation of
this approach is its reliance on using CLIP’s default hand-crafted template for prompt initialization,
with resets after adaptation to each image. A similar line of work was done in VTE (Dobler et al.}
2024) where ensembles are created in the text and vision space without any CLIP parameter update.
Sreenivas & Biswas| (2024) focus on single-image TTA for out-of-distribution detection and test
generalization (L1 et al., [2023} [Lee et al., [2023). While TPT is unimodal, our approach is bimodal,
involving the joint optimization of both encoders for test adaptation, leading to a strong multi-modal
alignment between features. We employ a single generic prompt template, eliminating the need for
prompt engineering and making our method more suitable for real-time deployment.

3 ZERO-SHOT PERFORMANCE ANALYSIS OF CLIP TO COMMON IMAGE
CORRUPTIONS

While CLIP generalizes well to new concepts across vision-language modalities (Chen et al., 2021}
Han et al.| [2021), its performance under image corruptions is less explored. This section evaluates
CLIP’s zero-shot capabilities in real-world scenarios with domain shifts caused by common corrup-
tions, focusing on two primary areas: zero-shot performance and the need for adaptation to address
domain shifts effectively.

Vision Backbones. We evaluate the robustness with a ResNet-101 (RN101) vision backbone (He
et al.,[2016)) and three Vision Transformer backbones (ViT-B/16, ViT-B/32, ViT-L/14) (Dosovitskiy},
2020). The models are tested on their zero-shot classification performance.

Datasets. For all the experiments in this paper, we utilize the CIFAR-10C, CIFAR-100C, and
ImageNet-C datasets (Hendrycks & Dietterich| [2019), each containing 15 distinct corruption types
as tasks (e.g., Gaussian noise, Shot noise, Impulse Noise, Defocus Blur, etc.). Each corruption is ap-
plied at 5 different severity levels to the test sets of CIFAR10, CIFAR100 (Krizhevsky et al., 2009),
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Figure 2: Task-wise mean accuracy (%) of zero-shot CLIP across different corruption severity lev-
els. [Top]: ResNet-101 backbone. [Bottom]: ViT-B/16 backbone. The dashed lines indicate the
performance of zero-shot CLIP (w/ respective visual backbones) on the corresponding source test
sets.

and ImageNet (Deng et al.|[2009)), acting as source test sets, and allowing us to systematically evalu-
ate the model’s performance under increasing degrees of image degradation. We provide additional
dataset details in Appendix [A1]

TTA Problem Setup. Each corruption type of a certain severity level, posed as a task 7; with B
test batches, is sequentially presented to CLIP’s vision encoder for model predictions, with each test
batch being revealed one at a time. Let a batch of images from task 7;, at time step ¢, be denoted
as z!. For the prompt template, unless explicitly mentioned, we always use the generic “a photo
of a <CLS>.” to generate C text representatlons (Z = {z.}5_,), where C is the total number of
classes. Let f,;s and f:,+ denote CLIP’s vision and text encoder, respectively. The visual feature of
the k' image in batch z is v}, ; = fuis(x}, ;). The likelihood of it belonging to class c is,

exp(sim(v,i’i, ze)/T) ) vz

. ;o osim(v, 2) = ——————
> exp(sim(vy, ;, 2;)/7) [vll2 - ||2]]2

where sim(-) is the cosine similarity and 7 is the softmax temperature from CLIP’s pre-training
stage. The text features Z, in zero-shot evaluation, are always pre-computed. We also draw a com-
parison with CLIP performance on respective source test sets and follow |I| for this implementation.
Throughout this paper, the same TTA problem setup is employed.

ply = cla, ;) = (1)

3.1 SENSITIVITY OF CLIP TO IMAGE CORRUPTION SEVERITY

We analyze CLIP’s zero-shot performance by progressively increasing corruption severity for
RN101 and ViT-B/16 visual backbones. We report mean accuracy and overall performance in Fig.
[2] Despite CLIP’s robust multimodal feature space, accuracy drops significantly with an increase in
corruption severity, regardless of the backbone. Specifically, for CIFAR-10C with a ViT-B/16 back-
bone, we observe accuracy as low as 37.92%, at a severity level of 5, for Gaussian noise. Similarly,
for CIFAR-100C and ImageNet-C, the mean accuracy rates are as low as 35.79% and 24.51% at a
severity level of 5, respectively. Results on additional vision backbones are in Appendix [A.3T]

Analysis. CLIP’s zero-shot classification accuracy varies across models and datasets. Comparing
the results to source test sets, for CIFAR10, RN101 achieves 78.8%, improving to 90.1% with ViT-
B/16. On CIFAR100, accuracies are 46.1% and 66.6%, respectively. For ImageNet, RN101 scores
61.2%, while ViT-B/16 reaches 67.7%. More importantly, the key takeaway from Fig. [2]is — even a
slight increase in severity to level 1, for a majority of the corruption tasks, leads to a noticeable drop

Uhttps://github.com/LAION-AI/CLIP_benchmark
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Table 1: Mean classification accuracy (%) across all corruption tasks with different prompt tem-
plates. For each, we report the drop in accuracy (-) (in %) compared to the performance on the
corresponding source test set.

Prompt Template Backbone CIFAR-10C CIFAR-100C ImageNet-C

“a photo of a <CLS>.” RN101 4230(-36.50)  20.62(-25.48) 14.97 (-46.23)
ViT-B/16 61.16(-28.84)  3578(-30.82) 24.51(-42.16)

ViT-B/32 59.00(-29.20) 31.79(-30.51) 23.20(-38.80)

ViT-L/14 75.84(-19.36) 47.82(-27.78)  39.55(-33.95)

“a bad photo of a <CLS>.” RN101 4273 (-36.47)  20.18(-27.02) 12.87 (-49.43)
ViT-B/16 6297 (-28.03)  36.37(-30.33) 25.84(-42.26)

ViT-B/32 60.25(-29.75)  31.30(-31.00)  23.58(-39.22)

ViT-L/14 76.08 (-19.22)  48.09 (-25.41) 39.37(-34.73)

“a blurry photo of a <CLS>.” RN101 4532 (-34.98) 20.28 (-26.12) 15.80 (-45.70)
ViT-B/16 62.49(-28.31)  35.17(-30.83) 2527(-42.03)

ViT-B/32 57.85(-30.65) 31.47(-30.85) 23.40(-38.80)

ViT-L/14 73.77(-20.73)  48.07(-25.73)  39.22(-34.18)

“a noisy photo of a <CLS>.” RNIOI  44.56(-34.34) 2071 (-25.89) 1548 (-45.72)
VIT-B/16  63.03(-27.87)  35.14(-30.76)  25.05(-41.35)

ViT-B/32 59.76 (-29.24)  31.53(-30.37) 23.11(-38.19)

ViT-L/14 7536(-19.54) 47.87(-27.63) 38.78(-34.42)

in accuracy. One plausible explanation for CLIP’s subpar performance is that the parameters of f;s
were not optimized for such corruptions during pre-training. In zero-shot classification, the visual
features from a given domain may lack the robustness and richness necessary to align well with
their corresponding text features. This results in lower likelihoods and thus, higher misclassification
rates.

3.2 SENSITIVITY OF CLIP TO PROMPT TEMPLATES

In this analysis, we evaluate the impact of prompt engineering by providing “relevant” prompt tem-
plates to fy,; for TTA. Each prompt adds context to help CLIP extract more relevant text features.
We report the mean classification accuracy (in %) across RN101, ViT-B/16, ViT-B/32, and ViT-L/14
backbones at an image corruption severity level of 5 for all datasets, with results summarized in
Table [I] The absolute accuracy drop compared to zero-shot performance on the source test set is
also reported.

Analysis. It is interesting to observe that, irrespective of the backbones used, we do not see any
drastic changes in the mean accuracy, for different “relevant” prompt templates. However, the major
concern arises in the performance gap of each model and the zero-shot CLIP performance on the
corresponding source test set, for the same prompt template. This discrepancy highlights the limited
robustness of CLIP’s text encoder f;,; to prompt selection in the context of image corruption. A
key reason for this is that, despite the use of “relevant” prompts, the text and visual features remain
largely independent and unaware of one another.

As expected, RN101 performs worse than the ViT-based backbones, primarily due to its lack of
global attention-based modeling inherent to transformers (Vaswani, [2017). Therefore, for the re-
mainder of the experiments in this paper, we focus on ViT-based backbones, specifically ViT-B/16
and ViT-B/32. Due to GPU memory limitations, we do not use ViT-L/14 for model adaptation.

Unsuitability of prompt template selection at test-time. Additionally, at test-time, it is impracti-
cal to perform prompt engineering or optimize prompt vectors since 1) Choosing different prompt
templates for generating text features is extremely tedious and time-consuming. 2) In real-time
deployment involving prompt-tuning, such prompts cannot quickly estimate the distribution of in-
coming test batches. TPT (Shu et al.| 2022) optimizes pre-trained text prompts for each test image,
turning out to be suboptimal since the prompts are optimized ignorant of the distribution of the test
image.
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Figure 3: BAT-CLIP not only adapts the visual encoder for highly discriminative image features
but also promotes a strong alignment between image and text features by adapting the text encoder
too, leading to improved performance following test-time adaptation. We adapt only the LayerNorm
parameters of CLIP encoders.

4 BAT-CLIP

The comprehensive analysis in Section E] reveals that the zero-shot vision encoder f,;s of CLIP is
very sensitive to image corruption with increasing severity. Similarly, the performance of the text
encoder fi,+ is invariant to the different text prompt templates and is also impractical to tune at
test-time. Therefore, for efficient adaptation, both the image and text features of CLIP need to be
adapted to the incoming domain of test batches. We illustrate our proposed framework, BAT-CLIP,

in Fig.

From unimodal adaptation to bimodal adaptation. The goal of TTA is to enhance a model’s
performance in the current domain to ensure accurate predictions. To handle the complexities of
CLIP adaptation to a specific domain of image corruption, we dissect our analysis of each encoder’s
adaptation. Consider the unimodal adaptation of the vision encoder f,;s via entropy minimization
(Wang et all 2021). While the image features are adjusted for a specific test batch and domain,
the text features remain fixed, still being optimized for the data from CLIP pre-training, as seen in
Fig. |3| (top row). Likewise, if only the text encoder f;,; is updated in this manner, the generated
text features may not align properly with the distribution of the incoming data, potentially causing a
misalignment between the image and text features.

To benefit from the feature space and learn richer representations across both modalities, we propose
adapting both f,;s and f;;; to a domain, enabling an input-aware knowledge transfer between the
encoders and enhancing domain-specific adaptation. While the encoders can be updated based on
entropy minimization, they come with inherent limitations. Though entropy models the prediction
uncertainty, it does not guarantee increasing the likelihood of alignment between the image and
text features. Additionally, due to the image corruption, for images within a test batch, there could
be a possible overlap of visual features belonging to different classes (Kurakin et al., [2016). The
robustness of CLIP would be challenged in such a case. To address these limitations, we propose
two loss components that facilitate more efficient and effective bimodal adaptation of CLIP to new
domains at test-time. The losses focus on maximizing alignment between the visual and text features
while increasing separation between the visual features to learn good decision boundaries.

Projection matching between the visual and text features. We propose learning visual and text
features that are domain-specific and mutually aware by jointly updating the encoders, as in Fig[3|
(middle row). From Eq. , the visual feature Ui,i of the k*" image in batch ! needs to have a high
similarity with the text feature z. of class ¢ for good alignment. To quantify this similarity, a possible
direction is to project the visual feature onto the text feature i.e., compute the scalar projection —
v,t“ - Z., where Z. is the normalized text feature of Z. i.e., Z. = szﬁ Geometrically speaking,
maximizing this projection leads to more similarity between the corresponding features and hence,
a better alignment.
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A possible approach would be to compute the projection for each class-specific visual feature in
a test batch. However, within the batch, due to the image corruption, the predicted labels could
be wrong/noisy. Instead, we propose modeling the projection of the class prototype with its corre-
sponding text feature. A prototype is useful, in such a scenario, because it encompasses the entire
class distribution without relying on individual visual features (Snell et al., 2017). In particular, we
compute a class prototype as,

1 B

- Zle 1y =c ;2

i.e., we compute the mean feature of all the support visual features constituting a class c. g refers to
the predicted labels computed via Eq. [I]and v, is the class prototype of class c¢. Based on the class
prototype, the projection matching loss is,

1
‘Cpm: Ezac'éc 3)

Eq. [3]encourages a class prototype to have a larger projection on its corresponding text feature. In
this way, during the adaptation of CLIP to a certain domain, both encoders learn to generate richer
visual and text features with maximum alignment by maximizing Eq. [3} Fig. [3| (middle row) shows
such an illustration.

1[j = v} § = argmax p(y|z}) 2)
C

Ve

Inter-class separability between class prototypes. The projection matching loss introduced in
Eq. encourages the f,;s and fy,+ encoders to produce domain-specific, well-aligned, and input-
aware features via jointly updating the encoders. However, when TTA occurs at a batch level with
image corruption, visual features within the batch could overlap, leading CLIP to poorly differentiate
between classes. This ultimately hinders effective class separation. Hence, with a desire to obtain
separation between visual features from different classes, as illustrated in Fig. E] (last row), we
propose maximizing the distance between the class prototypes. Since the visual and text features
align across modalities via Eq. [3| class separation, in addition, is needed for good generalization,
robustness, and adaptation. So, we increase the cosine distance between the class prototypes and
enhance the discriminative nature as,

Lop=> Y 1[I #cJ(1— cos(t, 1)) (4)

leC ceC

Optimization. TENT (Wang et al., [2021) optimizes the output logits by minimizing the entropy
Shannon| (1948). When applied to CLIP, the entropy, with output logits /, is defined as,

Lent ==Y plle)logp(le) ©)

where p(l.) is the likelihood for class ¢ that is computed via Eq. The overall optimization
objective for our approach is as,

argmin(Lent — Lpm — Lsp) (6)

d’v a¢t

where ¢, and ¢; refer to the parameters of the vision and text encoder, respectively. We update
only the LayerNorm parameters of f,;s and f;,¢, as outlined by the critical analysis provided by
Sreenivas & Biswas| (2024). This constitutes updating ~ 0.044% of all CLIP model parameters.
For every new task, we reset the model parameters of CLIP following TENT (Wang et al.| [2021)
since our goal is to adapt to a single domain in an online manner. We use a generic hand-crafted
prompt template “a photo of a <CLS>.” at all times, thus avoiding the need for a prompt
search. In summary, our bimodal test-time adaptation approach jointly updates the LayrNorm affine
parameters of the CLIP encoders that are optimized synergistically through loss components aware
of the input domain, leading to a more robust multimodal learning process.

5 EXPERIMENTS AND RESULTS

5.1 ONLINE TEST-TIME ADAPTATION

Baselines. We compare our approach with zero-shot CLIP and other proposed TTA methods using
CLIP - TPT (Shu et al, 2022) and VTE (Doébler et al., [2024). TPT was the first work to propose
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Table 2: Mean accuracy (%) on CIFAR-10C, CIFAR-100C, and ImageNet-C - TTA mean accuracy
of the 15 corruptions (tasks) at a severity level of 5, using ViT-B/16 and ViT-B/32. + and - denote
the absolute gain/loss w.r.t the next best performance. We contrast our results against zero-shot
ViT-B/16 and /32, TPT (Shu et al.|[2022), and VTE (Dobler et al., [2024).

£ 2 5 . s g s © @

z s 5 & £ £ § 5 5§ & £ s §F 5 &£
Method 0"? & .SS' sz & $ IS 5 & I3 4_5‘*; Qg 4.54 § & Mean
ViT-B/16 37.92 41.7 5442 7175 40.89 6793 73.62 73.89 7735 70.22 8445 6236 53.81 47.65 5943 | 61.16
&) TPT 37.74 4224 6057 7288 4480 69.69 7537 7596 7884 72.12 8568 62.04 5890 55.14 62.64 | 63.64
S VTE 4242 4626 64.23 71.10 4558 6850 73.66 7675 7827 71.02 8528 5724 59.54 60.59 61.85 | 64.15
D Ours 61.13 6409 6576 80.51 5496 80.65 81.94 83.04 8419 80.84 8895 8215 69.16 62.68 66.64 | 73.85
A Gain/Loss(%) | +18.71 +17.83 +1.53 +7.63 +9.38 +10.96 +6.57 +6.29 +535 +8.72 +327 +19.79 +9.62 +2.09 +4.00 | +9.70
é VIT-B/32 3547 3994 4323 6995 4143 6450 70.13 7085 7233 66.66 8137 6457 59.69 4828 56.62 | 59.00
6 TPT 43.11 4653 4829 7131 4780 66.89 7196 7400 7600 6881 84.12 66.35 63.86 51.86 58.01 | 62.59
VTE 47.59 50.18 53.15 7139 5386 6792 7290 7637 7630 70.78 8327 61.07 69.00 58.57 61.14 | 64.90
Ours 52.39 5599 5254 7679 54.04 7490 75.79 77.67 79.10 7531 8633 7734 6741 57.06 6129 | 68.26
Gain/Loss(%) | +4.80 +5.81 -0.61 +5.40 +0.18 +6.98 +2.89 +1.30 +2.80 +4.53 +2.21 +1099 -1.59 -1.51 +0.15 | +3.36
VIiT-B/16 19.64 2140 2526 4254 20.03 43.17 4795 4835 49.74 4157 57.02 3458 29.15 2396 3243 | 3579
Q TPT 17.95 1951 27.13 4353 20.08 42.65 48.63 49.11 4948 4214 5735 3326 31.13 2759 3275 | 36.15
8 VTE 17.96 1872 28.17 4038 19.60 39.50 4533 4824 46.87 40.73 5531 30.04 3247 3035 3145 | 35.01
- Ours 2491 2773 33.66 50.11 2627 4849 54.85 5235 51.62 4838 6327 4521 3474 3238 3731 | 42.09
oz, Gain/Loss(%) | +5.27 +6.33  +549 +6.58 +6.19 +532 +6.22 +3.24 +1.88 +6.24 +592 +10.63 +2.27 +2.03 +4.56 | +5.94
é ViT-B/32 16.23 17.83 17.57 39.07 17.63 3855 43.81 4232 4346 39.71 5032 2934 2874 2285 2942 | 31.79
= TPT 16.08 17.65 17.54 3921 1947 3891 4401 4345 4446 40.15 5093 2777 3091 2336 29.55 | 32.23
© VTE 16.84 1833 1894 39.63 22.88 39.13 43.80 44.56 44.88 3921 4937 2837 3413 2687 30.12 | 33.14
Ours 2135 2471 2232 4626 23.07 44.64 50.12 4723 46.88 4492 5855 3852 3456 27.73 33.19 | 37.60
Gain/Loss(%) | +4.51 +6.38 +3.38 +6.63 +0.19 +5.51 +6.11 +2.67 +2.00 +4.77 +7.62 +9.18 +0.43 +0.86 +3.07 | +4.46
ViT-B/16 11.18 12.54  12.04 2336 15.18 2450 2258 3232 29.88 3588 54.18 1720 1272 3096 33.26 | 2451
&) TPT 8.48 9.46 1020 2398 15.16 25.10 2400 3394 3212 37.08 5564 1654 13.68 34.06 33.58 | 24.87
A VTE 9.18 10.76 1078 24.72 1430 2436 2524 3538 3246 38.16 5556 16.14 1426 3872 33.98 | 25.60
2 Ours 19.32 2138 19.60 26.58 21.94 30.88 29.02 3648 32.00 4098 56.72 26.14 23.74 37.67 38.34 | 30.72
© Gain/Loss(%) | +8.14 +8.84 +7.56 +1.86 +6.76 +5.78 +3.78 +1.10 -0.46 +2.82 +1.08 +8.94 +9.48 -1.05 +4.36 | +5.12
%D ViT-B/32 12.88  13.04 1290 2442 11.86 2272 2020 2570 25.84 3028 5054 17.32 1896 3220 29.12 | 23.20
é TPT 12.04 12.64 1252 2538 1228 22.68 20.78 2636 26.64 30.78 51.02 1650 1990 33.62 30.62 | 23.58
VTE 11.96 1232 1344 2506 11.70 2258 2240 27.38 27.02 3228 5152 16.84 1994 3480 32.82 | 24.14
Ours 16.84 1820 16.10 2504 20.90 2890 2524 2942 27.18 36.02 50.18 17.66 27.68 36.20 3542 | 27.39
Gain/Loss(%) | +3.96 +5.16  +2.66 -0.34 +8.62 +6.18 +2.84 +2.04 +0.16 +3.74 -1.34 +0.34 +7.74 +1.40 +2.60 | +3.25

prompt-tuning at test-time, using CLIP. 63 random augmentations are generated for a single test
image in the vision space. Based on a threshold, the marginal entropy of confident predictions is
minimized to optimize the prompts. In the text space, VTE considers an ensemble of hand-crafted
prompts for a test image, to get the final predictions (Eq. [I). Alongside this, they also consider
multiple random augmentations of the test image, with frozen CLIP encoders. We also contrast our
work against prior TTA methods i.e., TENT (Wang et al.,|2021), BN Stats Adapt (BN-1) (Schneider
et al.l 2020), RPL (Rusak et al.l 2021}, and SAR (Niu et al., [2022). In essence, we adopt these
approaches to use CLIP. Following the guidelines as set by |Dobler et al.[(2024)), for such a setup, we
update only the vision encoder f,;;. The model predictions can then be computed as in Eq. [I| We
mention the training details of each TTA method in the Appendix [A.2]

Implementation Details. We query the text encoder f;,; with a general and fixed hand-crafted
prompt template “a photo of a <CLS>.” for all the datasets, as motivated earlier. We opti-
mize both the vision encoder f,;s and text encoder f;,;. For CIFAR-10C, we use an AdamW opti-
mizer at a learning rate of 10~3. Similarly, for CIFAR-100C and ImageNet-C, Adam and AdamW
optimizers are respectively used, at a fixed learning rate of 5x10~*, with the model being reset
after each task. The batch sizes are set to 200, 200, and 64 for the datasets, following various TTA
benchmarks, at a corruption severity level of 5 for each task. As visual backbones, we report results
on ViT-B/16 and ViT-B/32 (Dosovitskiy} 2020), where all of our experiments are run on a single
NVIDIA RTX A5000 GPU.

Results on CIFAR-10C, CIFAR-100C, and ImageNet-C. We present the TTA results in Table
[2l Our method significantly improves the mean accuracy across all tasks and datasets for both
visual backbones. Unlike TPT (Shu et al., 2022) and VTE (Dobler et al.| [2024), which process a
single test image at a time and therefore incur substantial time, our approach operates at the batch
level. This allows us to leverage the semantic relationships within the batch. By updating the
parameters of f,;s and f;,; through the projection matching loss and enhancing the cosine distance
between the class prototypes, our method effectively strengthens the alignment between visual and
text features and learns discriminative visual features. This leads to an efficient adaptation to each
domain. In Fig. [Z_f], we show certain t-SNE (Van der Maaten & Hinton) 2008)) plots of visual and
text features and compare them against zero-shot ViT-B/16 for CIFAR-10C. It highlights how our
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Figure 4: BAT-CLIP yields more discriminative visual features that exhibit stronger alignment with
their corresponding text features. The t-SNE plots show visual (o) and text () features for CIFAR-
10C, comparing zero-shot ViT-B/16 with our approach.

approach enhances alignment with text features, fosters better class separation, and forms more
distinct clusters, leading to significant improvements compared to zero-shot CLIP. Appendix [A.3.3]
shows detailed t-SNE plots for CIFAR-10C and CIFAR-100C. Concerning compute time per task,
on ImageNet-C, our method takes about 45 s, compared to 40 mins for TPT and 4 mins for VTE.
This makes our approach deployment-friendly for quick classification with large improvements.
Results against prior TTA methods.

In Table [3] we compare our method Taple 3: Mean accuracy (%) for CLIP adopted for TTA

With existing TTA approaches, includ- approaches at a corruption severity level of 5, using ViT-
ing TENT (Wang et al| [2021), BN-1 B/16 and ViT-B/32.

(Schneider et al., [2020), RPL (Rusak

et al, 2021), and SAR (Niu et al. Dataset Backbone ZS TENT BN-I RPL SAR Ours
2022), all adopted for CLIP. We report CIFAR-10C  ViT-B/16 61.16 6206 61.16 6152 67.37 73.85
mean accuracy across all tasks. While VIT-B/32  59.00 5635 59.10 5651 65.13 68.26

CIFAR-100C ~ ViT-B/16 3579 3796 3579 3847 41.19 42.09

most TTA methods outperform zero- VIT-B/32 3179 3161 3178 3000 37.81 37.60
shot CLIP on average, our approach ImageNet-C ~ ViT-B/I6 2451 2515 2452 2508 29.73 30.72
Cons]stent]y matches or exceeds the per- ViT-B/32 2320 24.05 23.19 23.62 28.07 27.39

formance of these methods across all

datasets and visual backbones. Detailed per-task accuracies are provided in Appendix [A.3.2] No-
tably, BN-1 performs similarly to zero-shot CLIP across backbones. This is because BN-1 updates
the normalization statistics (mean and variance) based on the test batch, while keeping the model’s
affine parameters fixed. Since CLIP is pre-trained on diverse distributions, such minor updates to
input normalization have little effect on performance. SAR (Niu et al., [2022)) performs comparably
to our method, except on CIFAR-10C. SAR addresses performance degradation in TTA caused by
batch normalization and batch-agnostic layers by filtering noisy test samples, from large gradients,
with a stable entropy loss function. While SAR operates solely in the vision space, our approach
leverages CLIP’s joint vision-language feature space, resulting in superior TTA performance.

5.2 ABLATION STUDY AND ANALYSIS

X80 45 35 5
> * * * * Y * 4
19} 4
S ViT-B/16(zero-shot) w .
< | vitB/i6(zero-shot) 357" st 25+ MiTB/16(zero-shot) 5
< 60
(]
= 1 3 5 4 35 7 3 3 & 35 20— 2 !
# lterations # lterations # Iterations
a) CIFAR-10C b) CIFAR-100C ¢) ImageNet-C

Figure 5: Analysis on increasing # multiple iterations: Mean accuracy for # iterations, on each
test batch, for CIFAR-10C, CIFAR-100C, and ImageNet-C using a ViT-B/16 backbone.

Adaptation for multiple iterations. We perform adaptation of models, at test-time, in an online
manner i.e., one model update per batch. Here, we analyze an important factor that could affect the
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performance of our method - adapting for multiple iterations on a single batch. In Fig. [5] we illus-
trate the mean accuracy, across all 15 tasks, on the benchmark datasets using the ViT-B/16 visual
backbone. Continuous adaptation of the normalization parameters to a single batch can lead to over-
fitting causing the mean and variance to bias towards the batch and degrading generalization. This
could also lead to a decline in the loss of CLIP pre-trained knowledge. In Appendix[A.3.4] we report
the post-adaptation results back on source test sets - CIFAR10 and CIFAR100. From Fig. [ our
approach still maintains a significant advantage over zero-shot CLIP evaluation. Despite a gradual
decline in mean accuracy across datasets, the performance gap remains notably better, particularly
on CIFAR-10C and ImageNet-C. This suggests that the proposed loss components contribute to the
robustness of our method, preserving its effectiveness even under these challenging conditions.

Contribution of each loss component. In

Eq. [6l we propose the final loss function to  Table 4: Ablation on the impact of different loss

_]Oll‘ltly OptimiZC the VlSiOIl and text enCOderS Components_ Mean accuracy (ln %) on CIFAR_
of CLIP for TTA. In this study, we validate 10C, CIFAR-100C, and ImageNet-C.
the effectiveness of each component of the pro-

posed objective. We progressively add each Backbone ~ CIFAR-10C CIFAR-100C ImageNet-C
loss component to the final objective and re- ViT-B/16

port the mean accuracy across all the tasks in =~ = 7 4965 38.17 24.03
Table ] The task-wise results are reported in Lent+Lpm 62.60 39.32 2521
Appendix We observe that the addition ~_Lent+Lpm+Lsp 7385 42.09 30.72
of the loss components L,,, and L, largely ViT-B/32

improve model performance than doing simple Lent 54.83 33.50 21.50
entropy minimization via L.,;. In fact, the ad- Lent+Lpm 59.96 35.67 21.87

.- . . Lent+Lypm+Lsp 68.26 37.60 27.39
dition of L, to increase the inter-class separa- Lom e

bility of prototypes brings larger improvements, proving that f,;s produces discriminative features.
Interestingly, simple entropy minimization via L.,; achieves better or comparable accuracy than
zero-shot CLIP, as the encoders work in synergy through gradient optimization while adapting to
the input domain. Hence, the proposed loss components are robust and help in good CLIP adapta-
tion at test-time to image corruptions.

Effect of different prompt templates. In all of our prior experiments, we use a generic prompt
template “a photo of a <CLS>.” for all of the datasets and methods. Here, we replace this
with “relevant” prompt templates to show the independence of such a prompt selection, at test-time,
and report the results in Table 5} As seen, the performance gain over zero-shot ViT-B/32 is fairly
large for all the prompt templates. Though TPT (Shu et al.,[2022) fine-tunes a pre-trained prompt on
each test image, and VTE (Dobler et al.,|2024)) uses an ensemble of prompts, our method is agnostic
to the prompt template being used, making it favorable for real-time deployment.

Table 5: Prompt template selection. + denotes the accuracy gain over zero-shot ViT-B/32.

Prompt Template CIFAR-10C CIFAR-100C  ImageNet-C

“a low contrast photo of a <CLS>.” 6853 (+7.81) 37.09 (+4.97) 27.31 (+3.71)
“a blurry photo of a <CLS>.” 68.84 (+10.96) 36.80 (+5.33) 26.92 (+3.52)

“a photo of a big <CLS>.” 67.49 (+10.10)  35.79 (+4.87) 25.64 (+3.29)

6 CONCLUSION

In this paper, we propose BAT-CLIP, a bimodal online test-time adaptation framework for CLIP
aimed at handling diverse image corruptions simulating real-time environments (Hendrycks & Di-
etterich, [2019). Our in-depth analysis of CLIP’s zero-shot performance under increasing corrup-
tion severity reveals significant shortcomings in generalization, highlighting the need for effective
adaptation. While prior works on TTA for CLIP have predominantly been unimodal focusing on
prompt-tuning (Shu et al.| [2022) or prompt ensemble (Dobler et al.l [2024) with no model updates,
our approach encourages learning rich class-separated visual features via vision encoder updates and
strengthens alignment between the image class prototype and corresponding text feature via the text
encoder updates. Empirical studies, including ablation results, demonstrate the robustness and sub-
stantial performance improvements of our approach over existing methods on benchmark corruption
datasets - CIFAR-10C, CIFAR-100C, and ImageNet-C, through synergistic CLIP encoder updates.

10
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A APPENDIX

In this work, we study the problem of test-time adaptation (TTA) of CLIP towards common image
corruptions and propose improved schemes for increasing the robustness of CLIP. We put forward a
bimodal domain adaptation scheme, wherein we exploit the shared feature space of CLIP. In essence,
leaning towards a more effective multi-modal learning and adaptation method, we propose loss com-
ponents that improve alignment between the class-specific visual prototype and corresponding text
features via maximizing the projection. We also increase the cosine distance between the class pro-
totypes to enhance discrimination between visual features. In this Appendix, we provide additional
insights and experimental results, organized as follows,

1. [AT]offers a detailed discussion of the datasets used, supplemented with visual illustrations.

2. To ensure full transparency, we outline the implementation details of all methods in[A.2]
including those for prior TTA approaches (Wang et al., 2021 |Schneider et al., |2020; [Rusak!
et al.,[2021} |Niu et al.} 2022) adapted for use with CLIP.

3. Section[A.3|presents further results and analysis:

e In we explore the limitations of zero-shot CLIP when using ViT-B/32 and ViT-
L/14 backbones under increasing image corruption severity.

* Table 3] provided mean accuracy for all TTA approaches. [A.3.2]expands on this with
task-specific accuracies for CIFAR-10C, CIFAR-100C, and ImageNet-C, along with
a detailed performance discussion.

. and [A.3.4] present the detailed loss ablation study and post-adaptation zero-shot
generalization on source test sets, respectively.

* Lastly, we include task-wise t-SNE visualizations in [A.3.5] for CIFAR-10C and
CIFAR-100C, comparing our method against zero-shot CLIP (ViT-B/16), illustrating
the effectiveness of BAT-CLIP.

A.1 DATASETS

We employ the CIFAR-10C, CIFAR-100C, and ImageNet-C datasets, for our experiments, as
introduced by Hendrycks & Dietterich| (2019). Each dataset includes 15 distinct types of image
corruptions, referred to as tasks in a test-time adaptation setting, applied to the test sets of CIFARI0,
CIFAR100 (Krizhevsky et al.l [2009), and ImageNet (Deng et al. 2009). These corruptions are
applied at 5 different severity levels, ranging from mild to severe. For each task, CIFAR-10C and
CIFAR-100C contain 10,000 test samples, whereas ImageNet-C has 5000 samples.

The image corruptions are categorized into four primary groups: noise, blur, weather, and digital
distortions. Noise-based corruptions include Gaussian, Shot, and Impulse noise, which introduce
random pixel-level variations. The blur category encompasses Defocus, Glass, Motion, and Zoom
blur effects, all of which simulate different types of distorted imagery. Weather-related corruptions,
such as Snow, Frost, and Fog, replicate environmental conditions that obscure image details. Lastly,
digital distortions include effects like Brightness, Contrast, Elastic Transform, Pixelate, and JPEG
compression, which reflect various forms of post-processing or compression artifacts that degrade
image quality.

These corruption types, as proposed by Hendrycks & Dietterich| (2019), provide a comprehensive
framework for assessing model robustness, which has been and is still being studied (Hendrycks
& Gimpell, 2016; [Metzen et al., |2017; |Papernot et al.l 2016; |Subbaswamy et al., 2021} [Liu et al.,
2024). Their ability to emulate real-world image degradation scenarios is advantageous, allowing
for a more realistic evaluation of a model’s robustness. We provide corruption visualizations, via an
image example, in Fig. [6] For further inspection, we urge the readers to check out [Hendrycks &
Dietterich|(2019)).

A.2 IMPLEMENTATION DETAILS

In this subsection, we summarise the implementation details of all the baseline methods that have
been mentioned in the main paper, including ours. We build our approach on the open-source code
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Shot Defocus Glass

Gaussian Impulse

Brightness  Contrast

F T .

Figure 6: We provide visualizations of an image from ImageNet-C (Hendrycks & Dietterich), 2019)
for different corruption types, at an image severity level of 5.

CLIP (ViT-B/16) VTE TPT Ours
GT: valley @ GT: valley @ GT: valley @ GT: valley @

Prediction: valley Prediction: alp Prediction: CRT screen| |Prediction: valley

GT: hook skirt @ GT: hook skirt @ GT: hook skirt @ GT: hook skirt @

Prediction: overskirt

Prediction: television

Prediction: hook skirt

Prediction: hook skirt

Prediction: orangutan

Prediction: gorilla

Prediction: orangutan

GT: stage ® GT: stage @ GT: stage ® GT: stage ©
Prediction:front curtain| |Prediction: television | |Prediction: projector Prediction: stage
GT: orangutan @ GT: orangutan @ GT: orangutan @ GT: orangutan @

Prediction: orangutan

Figure 7: Comparison of classification predictions across various methods (Zero-shot CLIP (ViT-
B/16), VTE (Débler et al 2024), TPT 2022), and Ours) on ImageNet-C samples with
Gaussian noise. Each row illustrates a unique example, displaying the ground truth (GT) label
alongside the predictions from each method. Correct predictions are highlighted in green, while
incorrect ones are marked in red. Our approach demonstrates enhanced robustness and higher accu-
racy, especially in challenging image corruption conditions.

base El a standard TTA benchmark codebase, that also houses the hyperparameters and training
details of all the prior TTA methods. CLIP-like models are used as provided by OpenCLIP. Only

the vision encoder is updated for online TTA methods (Wang et al.l 2021} [Schneider et al., 2020}
[Rusak et all, 2021} Niu et al.} [2022)) adopted for CLIP.

Zhttps://github.com/mariodoebler/test-time-adaptation/tree/main
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BAT-CLIP (Ours): For domain-specific test adaptation, we conducted experiments using ViT-B/16
and ViT-B/32 (Dosovitskiy, 2020) as the vision backbones. For CIFAR-10C, both the vision encoder
(fvis) and text encoder (f,:) were updated using the AdamW optimizer with a learning rate of
10~3. Similarly, for CIFAR-100C and ImageNet-C, we employed the Adam optimizer and AdamW
optimizer, respectively, with a learning rate of 5x10~%. The batch size B used was set to 200 for
CIFAR-10C and CIFAR-100C, and 64 for ImageNet-C. Throughout, the prompt template is fixed to
“a photo of a <CLS>.”".

TPT (Shu et al.}2022): For each test image, 63 augmentations are generated based on random re-
sized crops, yielding a batch of 64 images, in addition to the original test image. The prompt/context
vectors are initialized based on “a photo of a <CLS>.” and tokenized using pre-trained CLIP
weights. The confidence threshold is set to 10% i.e., the marginal entropy over the 10% confident
samples is minimized. For all the datasets, we follow their core implementation and optimize the
prompt vectors using an AdamW optimizer with a learning rate of 5x 1073,

VTE (Dobler et al., 2024): In VTE, an ensemble of different prompt templates is considered
based on the idea of |[Radford et al. (2021). An example of templates includes “a photo of a
<CLS>.”, “a sketch of a <CLS>.”, “a painting of a <CLS>.”, etc. The prompt
templates are then averaged. On the vision side, similar to TPT (Shu et al., 2022), a batch of random
augmentation is created for a test image.

TENT (Wang et al., 2021): We follow all the hyperparameters that are provided by TENT in their
official implementation [’} To update the vision encoder, we use Adam as the optimizer with a
learning rate of 10~3 for CIFAR-10C and CIFAR-100C. For ImageNet-C, we update using SGD
with a learning rate of 25x 1075,

BN Stats Adapt (BN-1) (Schneider et al., 2020): BN-1 recomputes the statistics of the batch
normalization layers based on the input test batch, consisting of corruption of a certain domain.
Hence, this requires no model updates.

RPL (Rusak et al.,[2021): We use an Adam optimizer with a learning rate of 1e-3 for CIFAR-10C
and CIFAR-100C. For ImageNet-C, the update rule is SGD with a learning rate of 5x10~%. To
compute the generalized cross-entropy loss, g is set to 0.8 for all the datasets.

SAR (Niu et al.,|2022): The training details/hyperparameters for SAR are the same as RPL (Rusak
et al., [2021) for CIFAR-10 and CIFAR-100. For ImageNet-C, the learning rate is set to 25x107°
with an SGD update rule. The entropy threshold Ej is 0.4xIn(C), where C is the number of classes.
p is set to a default of 0.05. The moving average factor is 0.9 for e,, and eq is set to 0.2. We
completely follow the implementation details as outlined in their main paper.

A.3 ADDITIONAL RESULTS

A.3.1 ZERO-SHOT PERFORMANCE ANALYSIS OF VIT-B/32 AND VIT-L/14

In Section [3| of the main paper, we analyze and evaluate the zero-shot performance of ResNet-101
(RN101) (He et al., 2016) and ViT-B-16 (Dosovitskiy}, [2020) and conclude that such CLIP back-
bones are extremely sensitive, in terms of classification accuracy, to increasing severity levels of
image corruption. This could be a major concern in situations involving real-time deployment of
CLIP. Here, we present a similar analysis in Fig. [§] using ViT-B/32 and ViT-L/14 as backbones. Our
analysis, from the main paper, carries forward. To summarise, irrespective of the CLIP visual back-
bone, the robustness towards image corruption is limited. The classification performance degrades
with an increase in the severity of corruption in an image.

A.3.2 RESULTS AGAINST PRIOR TTA METHODS

In Table [3| we present the mean accuracy, across all the tasks, for prior TTA methods (Wang et al.,
2021} |Schneider et al., [2020; Rusak et al., 2021} |[Niu et al.| 2022)) adapted for CLIP vs ours. Here,
we provide the fine-grained results i.e., the task-wise mean accuracy to demonstrate the efficacy
of our method (the higher the better). The results are reported in Tables [6] [7} and [§] Across all

*https://github.com/DequanWang/tent
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Figure 8: Task-wise mean accuracy (%) of zero-shot CLIP across different corruption severity levels.
[Top]: ViT-B/32 backbone. [Bottom]: ViT-L/14 backbone. The dashed lines indicate the perfor-
mance of zero-shot CLIP (w/ respective visual backbones) on the corresponding source datasets.

Table 6: Mean accuracy (%) on CIFAR-10C - TTA mean accuracy of the 15 corruptions (tasks)
at a severity level of 5, using ViT-B/16 and ViT-B/32. We contrast our results against zero-shot

backbones, TENT 2021), BN-1 (Schneider et al., 2020), RPL (Rusak et al., 2021), and
SAR (Niu et al.} [2022).

<
§ & N~ 5 4 g 3 L
' s < J3) & .S s 3 23 & I g 5 5 (@]
Method g ] g S g 3 S S S S g 5 g b} & | Mean
g & S & <) < \j 5 £ < o 5 5 5 g
& § & © 5 N g & g ¢ & &£ 5

ViT-B/16 | 37.92 41.70 5442 71.75 40.89 6793 73.62 73.89 7735 7022 8445 6236 5381 47.65 5943 | 61.16
TENT 1549 1828 38.12 81.59 21.73 7632 8235 84.62 82.19 80.60 91.83 80.55 63.52 5857 54.71 | 62.03
BN-1 37.99 4173 5440 71.70 4091 6792 73.61 73.89 7741 7026 8447 6229 5382 47.60 59.40 | 61.16
RPL 1547 1743 40.73 8176 20.08 69.89 82.93 8443 83.19 81.84 91.80 7942 64.89 5407 5490 | 61.52
SAR 4798 53.60 60.56 7430 47.56 73.15 7643 7791 7988 7566 86.79 71.62 5834 62.03 64.71 | 67.37
Ours 61.13 64.09 6576 80.51 54.96 80.65 8194 83.04 8419 80.84 8895 8215 69.16 62.68 67.64 | 73.85

ViT-B/32 | 3547 39.94 4323 69.95 4143 6450 70.13 7085 7233 66.66 81.37 64.57 59.69 4828 56.62 | 59.00
TENT 20.09 2345 3447 6985 23.01 39.79 6035 7683 77.49 76.07 88.88 81.38 6535 57.01 51.19 | 56.35
BN-1 3558 40.07 43.16 6998 41.50 6451 70.19 7080 7234 66.66 8138 6451 59.66 48.16 56.58 | 59.10
RPL 15.89 19.08 34.04 77.84 1872 4122 6239 7817 78.86 7631 8383 8l.15 6898 54.19 5191 | 56.51
SAR 50.28 54.12 49.65 73.08 5198 71.17 7465 7373 7522 7099 8425 7208 6393 5157 6032 | 65.13
Ours 5239 5599 5254 7679 54.04 7490 7579 77.67 79.10 7531 8633 7734 6741 57.06 61.29 | 68.26

CIFAR-10C

Table 7: Mean accuracy (%) on CIFAR-100C - TTA mean accuracy of the 15 corruptions (tasks)
at a severity level of 5, using ViT-B/16 and ViT-B/32. We contrast our results against zero-shot

backbones, TENT (Wang et al.,2021)), BN-1 (Schneider et al.}[2020), RPL (Rusak et al.,[202T)), and
SAR (Niu et al.,[2022).

s :3) 2] s >3 2]
g s g 5 & 5 g 2 5 & 5 § 5 o
Method g S 5 s .F 5 S S s & F s g oy & | Mean
§ 5 & 5 & &£ 8§ & & £ 3 5§ F§ £F£ &
S £ 4 5 S >

VIiT-B/16 | 19.64 2140 2526 42.54 20.03 43.17 4795 4835 49.74 4157 57.02 3458 29.15 2396 3243 | 3579
TENT 7.60 821 833 51.81 795 5245 5534 5416 36.17 5092 65.63 5451 3652 43.99 3581 | 37.96
BN-1 19.57 2139 2526 4246 20.08 43.19 4798 4844 4970 41.69 57.00 3447 2921 2393 3247 | 3579
RPL 644 709 709 5216 11.81 5233 5550 5420 3883 5199 66.07 5445 36.86 42.83 39.45 | 38.47
SAR 2530 27.19 3278 47.12 2342 47.16 51.70 51.94 5248 4877 61.54 4450 3226 33.67 38.06 | 41.19
Ours 2491 2773 33.66 50.11 2627 4849 54.85 5235 51.62 4838 6327 4521 3474 3238 37.31 | 42.09

VIiT-B/32 | 16.23 17.83 17.57 39.07 17.63 38.55 43.81 4232 4346 39.71 5032 2934 2874 2285 29.42 | 31.79
TENT 553  7.64 685 4960 447 4845 5235 4977 2677 3750 63.05 50.53 13.89 27.00 30.80 | 31.61
BN-1 1620 1782 1755 39.06 17.68 3859 4383 4230 4337 3959 5038 2936 28.78 22.86 29.40 | 31.78
RPL 450 580 961 5026 443 48.88 52.61 50.27 2236 2534 63.36 5031 9.10 18.65 34.53 | 30.00
SAR 24.63 27.14 2125 4457 2298 4395 4840 48.01 47.76 4485 5776 4211 32.69 28.02 33.08 | 37.81
Ours 21.35 2471 2232 4626 23.07 44.64 50.12 4723 46.88 4492 5855 3852 3456 2773 33.19 | 37.60

CIFAR-100C

the backbones and datasets, we see that our method BAT-CLIP achieves the best or comparable
performance against all the baseline TTA approaches adopted for CLIP.
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Table 8: Mean accuracy (%) on ImageNet-C - TTA mean accuracy of the 15 corruptions (tasks)
at a severity level of 5, using ViT-B/16 and ViT-B/32. We contrast our results against zero-shot
backbones, TENT (Wang et al.,|2021)), BN-1 (Schneider et al., 2020), RPL (Rusak et al.,2021), and
SAR (Niu et al.,2022).

-
i~ 3) < =3 5 3}
g s < 5 s S g 2 5 N g g & 5 ©
Method 5 S S~ S < S S S S S 5 g & T & | Mean
5 & S oy 5 $ \J 5 £ IS ] § ol 5 )
& 5 q © < N @ & S S Q & =

ViT-B/16 | 11.18 12.54 12.04 2336 15.18 2450 22.58 3232 29.88 3588 54.08 1720 12.72 30.96 33.26 | 24.51
TENT 514 570 744 2522 1934 26.80 24.16 33.56 3042 37.74 5424 2250 1390 35.02 36.08 | 25.15
BN-1 1112 1252 1198 2332 1522 2452 2268 3230 30.00 3582 5404 1726 1272 31.06 33.24 | 24.52
RPL 9.04 1004 1096 2440 1740 2628 23.76 3270 30.62 36.64 5404 1938 1324 33.14 34.60 | 25.08
SAR 17.96 2046 20.68 2572 23.04 2952 26.04 3492 3274 39.00 5500 27.14 19.64 36.66 37.50 | 29.73
Ours 1932 2138 19.60 26.58 2194 30.88 29.02 36.48 32.00 4098 56.72 26.14 23.74 37.68 38.34 | 30.72

ViT-B/32 | 12.88 13.04 1290 2442 1186 2272 2020 2570 25.84 3028 5054 1732 1896 3220 29.12 | 23.20
TENT 9.18 8.50 1042 26.02 1572 26.06 21.64 27.12 26.18 31.60 50.58 22.28 20.12 34.06 31.30 | 24.05
BN-1 12.84 13.02 1282 2444 1184 2272 2024 2570 25.86 30.18 5050 17.38 18.92 3230 29.10 | 23.19
RPL 11.68 1098 12.10 25.68 13.24 2398 2084 2632 26.12 3086 50.62 1930 1948 33.14 29.92 | 23.62
SAR 19.82 2036 2092 25.78 2040 2834 23.10 28.12 28.38 3474 51.10 24.60 2438 36.54 34.40 | 28.07
Ours 16.84 1820 16.10 25.04 2090 2890 2524 2942 27.18 36.02 50.18 17.66 27.58 3620 3542 | 27.39

ImageNet-C

Table 9: Task-wise loss ablation results (accuracy) on CIFAR-10C, CIFAR-100C, and ImageNet-C.

g " g 5 > § s 2 s ,;'?’ g £ § <)
Method g S ,§ é’ 5 5 S s g & g 5 g T & Mean
g 7§ 4 ¢ 5 N & & 58 5 T F S
VITB/16 |
Q Lent 1462 1729 4925 8106 2023 7427 8110 8425 8193 8093 91.86 7892 53.09 5118 49.79 | 60.65
S Lewtlpm | 1658 1989 4269 7945 2341 77.03 8095 8174 7845 80.66 90.52 8255 6256 6435 58.16 | 62.60
o Lenrtlpm+Lsp | 6113 6409 6576 8051 5496 80.65 8194 8304 84.19 8084 8395 8215 6916 6268 67.64 | 7385
é VITB/32 |
) Lent 1630 19.83 33.86 6722 1855 4253 6387 7521 7516 7475 89.40 8128 6741 4606 50.45 | 54.83
Lon+Lpm | 2631 2938 37.02 75.16 40.52 5637 7226 76.18 77.14 7432 8742 7707 66.69 49.57 54.03 | 59.96
Lont+Lpm+Lep | 5239 5599 5254 7679 54.04 7490 7579 77.67 79.10 7531 8633 77.34 6741 57.06 6129 | 68.26
VIT-B/16 |
9 Lent 771 1005 1152 4942 1249 4936 5379 5411 5076 49.92 64.32 47.07 3340 38.63 39.95 | 38.17
S Lewtlym | 1226 1262 13.14 4890 2622 4899 5310 53.10 5243 4944 6336 4678 3327 3777 3836 | 39.32
T LontLlpm+Le | 2491 2773 33.66 50.11 2627 4849 5485 5235 51.62 4838 63.27 4521 3474 3238 3731 | 42.09
[+ -
< VITB/32 |
=] Lent 991 1071 990 47.61 7.65 4596 5130 49.25 3823 4490 60.04 4153 2947 21.67 3522 | 33.50
O Lowtlpm | 1237 1519 1052 4678 1333 4542 5016 4876 4873 4669 59.33 42.64 3309 2882 3328 | 3567
Lon+Lpm+Lop | 2135 2471 2232 4626 23.07 44.64 50.12 47.23 4688 44.92 5855 3852 3456 27.73 33.19 | 37.60
VITB/16 |
Q Lent 090 106 116 2912 13.02 3214 2734 3532 1L14 4092 5690 2378 778 39.62 40.22 | 24.03
S Lew+Lpm | 090 116 130 2890 17.04 3156 2624 3626 1222 4212 57.92 3034 1036 40.66 41.20 | 25.21
7, Lentlpm+Lyy | 1932 2138 1960 26.58 2194 30.88 29.02 3648 3200 4098 5672 26.14 2374 37.68 3834 | 30.72
[0}
S VITB32 |
= Lent 254 206 240 2806 816 3038 2168 23.14 1068 2122 5268 2512 1646 40.06 37.90 | 21.50
= LewtLpm 282 228 270 27.62 1010 2874 1836 24.16 1138 27.78 5240 25.66 17.62 39.16 37.22 | 21.87
Len+Lom+Lyy | 1684 1820 1610 2504 2090 2890 2524 2942 27.18 3602 50.18 17.66 27.58 3620 3542 | 27.39

A.3.3 DETAILED RESULTS FROM THE LOSS ABLATION STUDY

In Table [ of the main paper, we provide ablation of loss components i.e., the mean accuracy across
all the tasks for ViT-B/16 and ViT-B/32 on the benchmarks corruption datasets. Here, we provide
additional task-wise accuracy in Table El Indeed, the addition of loss components L,,, and L, to
entropy loss L.,; indeed helps in improving the robustness of CLIP to different corruption tasks.

Table 10: Zero-shot performance on CIFAR10 (source) after adaptation of BAT-CLIP on a task.

3 ° o & P o
s 5 f 5§z s 5 2 z § g ¥ 50
Method & S K S 3 5 B $ S & g IS & ol & Zero-Shot
K &£ £ I
s % § 4 ©° 5 N = F g ¢ & & 5
ViT-B/16 90.1
Ours | 84.51 8429 88.69 8848 8644 8646 87.04 9138 91.01 90.22 90.87 88.12 88.13 7474 87.48 | 87.19 (mean)
ViT-B/32 88.3

Ours ‘6741 68.28 8423 80.50 7537 79.75 7855 87.67 8636 8583 90.04 80.89 8156 82.74 8236 ‘ 80.77 (mean)

18



Under review as a conference paper at ICLR 2025

Table 11: Zero-shot performance on CIFAR100 (source) after adaptation of BAT-CLIP on a task.

3 ° ° g 5 )
5 s < 3 E § 5 2 5 g g s 5 ©
Method < £ g S 5 s S S S & 5 s g by & Zero-Shot
E; >3 g S S S 15 I~ &£ . IS5 5 £ Q
$ § g ° 5 N~ & & 5§ ¢ @ & 5
ViT-B/16 66.6

ViT-B/32 62.3

Ours ‘6709 67.12 67.08 7031 6370 66.83 70.12 70.10 68.19 69.55 71.05 6649 65.13 59.98 67A60‘67A36(mean)
Ours ‘4599 4690 60.86 63.62 57.73 59.59 61.66 66.21 6150 63.61 6639 57.05 62.13 62.82 65437‘60A09(mean)

A.3.4 POST-ADAPTATION RESULTS ON SOURCE TEST SETS

Thanks to the natural language supervision and also due to the pre-training on large amounts of
(image, text) pairs, CLIP has shown strong generalization capabilities. However, for an efficient
adaptation to a downstream task, fine-tuning the full model is infeasible due to large model updates.
The primary reason is the loss of useful pre-trained knowledge of CLIP, which could eventually
lead to overfitting to a downstream task. In our bimodal test-adaptation scheme, BAT-CLIP, we
take inspiration from |Sreenivas & Biswas| (2024) and update only the LayerNorm parameters of
the CLIP encoders to a specific corruption task, which makes it parametric-efficient. Now, with
continual adaptation to a corruption task, it gets difficult to preserve CLIP’s pre-trained knowledge.
Then, a natural question arises -

Given that CLIP has been adapted to a specific corruption task, will the zero-shot generalization
still hold back on its source test set?

In this crucial experiment, we challenge our BAT-CLIP and evaluate its zero-shot generalization
performance back on the source test set, to check the preservation of pre-trained CLIP Knowledge.
After the adaptation of CLIP on each corruption task, we report the adapted model’s zero-shot
performance on its corresponding source test set. We report results for CIFAR-10C and CIFAR-
100C in Tables [10| and using ViT-B/16 and ViT-B/32 backbones. For all of the results, we
use the prompt template “a photo of a <CLS>.”. As an example, for CIFAR-10C, upon
adaptation of CLIP to Gaussian noise following our approach, we report the adapted model’s zero-
shot accuracy on its source test set - CIFAR10 test set.

From Table[I0] we observe that, on average, there is a 2.91% drop in accuracy compared to a zero-
shot evaluation using pre-trained CLIP ViT-B/16. Similarly, for ViT-B/32, we see a drop of about
7.53% in mean accuracy. In Table for CIFAR-100C using a ViT-B/16 backbone, we see an
improvement of 0.76% in mean accuracy.

On the whole, we conclude that since the adaptation for a task happens over multiple test batches,
the zero-shot performance back on the source data largely depends on the distribution of the im-
age corruption. Overall, ViT-B/16 visual backbones preserve larger amounts of CLIP pre-trained
knowledge. This proves the effectiveness of our method BAT-CLIP, on average.
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A.3.5 T-SNE VISUALIZATIONS ON CIFAR-10C AND CIFAR-100C
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Figure 9: BAT-CLIP (w/ ViT-B/16): The t-SNE plots show visual (o) and text (%) features for
CIFAR-10C.
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Figure 10: Zero-shot ViT-B/16: The t-SNE plots show visual (o) and text (¥ ) features for CIFAR-
10C.

20



Under review as a conference paper at ICLR 2025

Gaussian Impulse
i M
o ko

5
-10
—20 0 20
Motion

20
10

0
-10

-20 -10 0 10

Contrast

Figure 11: BAT-CLIP (w/ ViT-B/16): The t-SNE plots show

CIFAR-100C.
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Figure 12: Zero-shot ViT-B/16: The t-SNE plots show visual (o) and text () features for CIFAR-

100C.
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