
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FOGE: FOCK SPACE INSPIRED ENCODING FOR GRAPH
PROMPTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent results show that modern Large Language Models (LLM) are indeed capable
of understanding and answering questions about structured data such as graphs.
This new paradigm can lead to solutions that require less supervision while, at the
same time, providing a model that can generalize and answer questions beyond
the training labels. Existing proposals often use some description of the graph
to create an “augmented” prompt fed to the LLM. For a chosen class of graphs,
if a well-tailored graph encoder is deployed to play together with a pre-trained
LLM, the model can answer graph-related questions well. Existing solutions to
graph-based prompts range from graph serialization to graph transformers. In this
work, we show that the use of a parameter-free graph encoder based on Fock space
representations, a concept borrowed from mathematical physics, is remarkably
versatile in this problem setting. The simple construction, inherited directly from
the theory with a few small adjustments, can provide rich and informative graph
encodings, for a wide range of different graphs. We investigate the use of this idea
for prefix-tuned prompts leveraging the capabilities of a pre-trained, frozen LLM.
The modifications lead to a model that can answer graph-related questions – from
simple graphs to proteins to hypergraphs – effectively and with minimal, if any,
adjustments to the architecture. Our work significantly simplifies existing solutions
and generalizes well to multiple different graph-based structures effortlessly.

1 INTRODUCTION

Large Language Models (LLMs) excel at tasks like question answering, sentence completion, trans-
lation, and even solving undergraduate-level math problems (Liu et al., 2024; Johansson, 2024).
However, they sometimes need additional data unavailable during training. For instance, a model
trained on data up to a specific date may struggle with the ever-changing news cycle (Vu et al.,
2023; Mousavi et al., 2024). To prevent responses from becoming outdated, or to integrate non-
public/proprietary data and domain-specific terminology, models need extra context. Retrieval
Augmented Generation (RAG) describes this process of retrieving and integrating extra information
to an LLM during its generation process. While multiple different approaches have been proposed
for the retrieval part, the most common solution to the integration of the additional information is
In-Context Learning (ICL) (Guu et al., 2020; Ding et al., 2024; Dong et al., 2022; Zoph et al., 2022;
Min et al., 2022). ICL allows additional information to be included with a prompt, guiding the model
to generate responses aligned with the extra context. This method is beneficial as it does not require
retraining the LLM and can be applied to proprietary models like GPT (Brown et al., 2020) by adding
a text description of the extra information.

ICL-type ideas are also being studied for utilizing not just additional/new data but also novel input
formats/modalities, such as tables and graphs (Sui et al., 2024; Lu et al., 2024; Wang et al., 2023;
Guo et al., 2023). While specialized models may still perform better at specific tasks, LLMs can
serve as general-purpose reasoning machines, capable of answering questions about the provided
modality beyond the training labels. Several recent results have reported success at “serializing” such
structured data-types into a text-form description that can be easily used within ICL. For tables, the
serialization is not too complicated (Sui et al., 2024; Lu et al., 2024), but more care is needed for
graphs. While different types of graphs can all be handled by the same pipeline, the efficacy of the
overall model varies from one setting to the other (Fatemi et al., 2024; Wang et al., 2023; Guo et al.,
2023). Further, it has been observed that specific design choices to “textify” the graph can influence

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

performance and additionally, prompting techniques can have more than a small impact on the results
(Fatemi et al., 2024). What will work well in a specific setting depends on both the question at hand
as well as the characteristics of the data (Perozzi et al., 2024; Chai et al., 2023).

Prefix-tuning. One option to address the mentioned issues is “prefix-tuning” (Li & Liang, 2021).
A specialized graph encoder translates the underlying graph into embeddings that can be fed directly
to an LLM, eliminating the need for a textual description. Although not training-free, the LLM
remains frozen, and only the relatively smaller graph encoder is trained. This approach has shown
impressive performance, often surpassing ICL-based methods Sun et al. (2022); Liu et al. (2023);
Tang et al. (2024). However, using a specialized graph encoder can be challenging due to the variety
of graph types, and multiple works have proposed modifications of GNNs that suit their demands.
For example, GraphToken (Perozzi et al., 2024) can encode only simple graphs, while GNP (Tian
et al., 2024) constructs a complex pipeline to handle large graphs and extract subgraphs. GraphLLM
(Chai et al., 2023) combines a transformer and a GNN (about 100M parameters), requiring detailed
text descriptions for each node. Despite sophisticated designs, adapting these models to different
graph types (e.g., protein-derived graphs or hypergraphs) is difficult, and even familiar graph types
need adjustments for new tasks.

Figure 1: Augmenting LLM’s
capabilities by prompting them
with carefully encoded graphs.

Context of this paper. ICL-based approaches for graphs pri-
marily involve converting graphs to text, while prefix-tuning with
graphs uses modules to extract richer, task-relevant structures,
requiring larger sample sizes and higher compute power. A key
question is whether we can achieve powerful, task-agnostic graph
representations that are as easy to obtain as ICL-based methods.
Could a lightweight adapter map these rich (but task-independent)
representations into the LLM embedding space, making prefix-
tuning effective for various tasks? Recent results hint that this
may be viable (Moayeri et al., 2023). For instance, a single linear
layer can transform an arbitrary image encoder’s outputs to align
with CLIP’s (Radford et al., 2021) text encoder embeddings. If
our graph encoding captures the graph’s information and structure
well enough, a similar adapter could work with a pre-trained LLM
to offer good performance. This approach’s success depends on
the quality of the graph representations. We ensure this by invoking a mature concept from mathemat-
ical physics, called Fock Spaces, whose practical instantiation yields almost lossless task-agnostic
graph embeddings. Our findings show that a linear adapter with these representations yields com-
petitive performance, handling complex graph questions and diverse structures like hypergraphs
and proteins. The main contribution of this paper is the Fock-space inspired encoding of diverse
graph-based structures, ranging from simple graphs to those obtained from proteins. We provide
open-source code for grounding LLMs using our graph encodings as prompts and carefully profile
the performance of this pipeline relative to baselines, on diverse datasets.

2 DERIVING FOCK SPACE BASED GRAPH REPRESENTATIONS

We will first review a few notations and results which will together provide the conceptual pipeline
for obtaining our representations of graphs for prompting. While graphs serve as representative
examples here, the rationale for other types of structured data such as tables is similar.

Setup/rationale. Consider a graph G = (V,E) with a vertex set V and an edge set E; | · | denotes
set cardinality. We define the incidence matrix (Hatcher, 2002), I to be of shape |V | × |E| where
Iij = 1 if edge j ends at vertex i, −1 if edge j starts at vertex i and 0 elsewhere. Let |V | = n. It
is common to represent graphs via graph spectra derived from the Laplacian’s eigenvalues. This is
effective for studying global properties of graphs like connectivity/symmetries (e.g., Courant Fischer
theorem, Fiedler’s theorem (Fiedler, 1973; 1989)) but less so for capturing localized relationships
between individual entities (nodes, edges, faces) within the graph. It turns out that an interesting
direction using Clifford Algebra, shown so far to be effective in geometric problems in machine
learning (Ruhe et al., 2023b; Chen et al., 2024; Ruhe et al., 2023b;a; Brehmer et al., 2023), provides
rigorous tools for representing various graph elements (nodes, edges, faces) in a nice algebraic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

structure Oziewicz (1998). Graphs can be embedded and manipulated in a geometric space Baylis
(2012), and in principle, their spectral properties can also be studied. We briefly summarize the
concept to lay out its benefits and challenges.

2.1 CLIFFORD ALGEBRA AND GRAPH REPRESENTATIONS

Clifford Algebra. Let K be a field, i.e., comprised of elements that can be added, subtracted,
multiplied, and divided (except by zero). Let W be a K-vector space, i.e., it is a vector space over the
field K meaning that the vectors in W can be added, subtracted, and multiplied by scalars (elements
from K) following some rules. Let W be equipped with a symmetric bilinear form ⟨·, ·⟩ (or more
generally, a quadratic form) where in case of graphs, W = C, and let T (W) denote the exterior
algebra of W , a structure on top of the vector space W to capture all possible products of vectors
w ∈ W (this will include scalar multiples and sums of products). Let I(W) be the ideal in T (W)
generated by the set {w ⊗ w + ⟨w,w⟩1}, where 1 denotes the multiplicative identity inK and w⊗w
represents the product of a vector w with itself in the exterior algebra. Recall that I(W) is a subset of
T (W), with the property that the product of an element from I(W) and an element from T (W) is
in I(W) (a closure property). For an in-depth analysis, we point the reader to Dorst et al. (2009);
Lounesto (2001).

Definition 1. Let W be a vector space over a field K, equipped with a quadratic form q :W → K.
The Clifford algebra of (W, q), denoted Cl(W, q), is the quotient algebra T (W)/I(W, q).

We take the exterior algebra T (W) and “divide” it by the ideal I(W). The ideal acts as a “filter” to
filter out information captured by the ideal (all terms where a vector gets multiplied by itself along
with its corresponding scalar term from the bilinear form) since they do not add much to the structure
(set to scalar multiples of the identity element). But the ideal does more: it establishes an equivalence
relation that changes the multiplication operation.

Figure 2: Single, Bi- and Tri-vectors in
Clifford Algebra with wedge products.

One choice of Clifford Algebra representation. A K-
vector space allows scalar multiplication, while a K-algebra
extends this with element-wise products. A representation
of a K-algebra is a homomorphism ρ that maps elements
from the algebra to a vector space. For a K-vector space
W , let Hom(W,W) be the set of linear maps from W to
itself. Given aK-algebraA, we can define a homomorphism
ρ : A→ Hom(W,W). In the case where A is the Clifford
algebra Cln(C, q), ρ allows representing its elements as lin-
ear operators on W , making it possible to manipulate these
elements of Cln(C, q) concretely.

Practical Considerations in Clifford Algebra Operations. We can closely follow the axioms of
Clifford Algebra and through its wedge product build higher-order elements while preserving the
geometric structure at hand (e.g., hyperedges or faces to multi-vectors). While cleanly rooted in
theory, this leads to problems in practice. Implementing the full Clifford algebra structure over an
n-dimensional vector space implies working with an algebra of dimension 2n. We must also define
the multiplicative and graded structure, and, despite progress, software support is limited for higher
dimensions (see (Zhdanov et al., 2024) and projects like Grassmann.jl and GeometricAlgebra.jl).
Hence, we will need to make some design choices that balance practicality and mathematical
soundness.

2.2 FROM GRAPHS TO CLIFFORD ALGEBRA TO FOCK SPACES

Dirac operator. For graph G, we define the Graph Laplacian as ∆ = IIT ∈ R|V |×|V |, where I
is the incidence matrix of G (Casiday et al., 2024). Given the spectral decomposition ∆ = QΛQT ,
where Q ∈ R|V |×|V | is orthogonal and Λ = diag(λ1, · · · , λ|V |) is diagonal with eigenvalues λi ≥ 0,
we define the Dirac operator as: D = Q

√
ΛQT ∈ R|V |×|V |. Let {e1, · · · , e|V |} be the standard basis

for R|V |. We can express D in terms of a finite basis expansion: D =
∑|V |

k=1Ek⊗ ∂
∂ek

. Here, ∂
∂ek

are
partial differential operators corresponding to directions ek. The coefficient matrices Ek ∈ R|V |×|V |

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

gives the action of D in each coordinate direction. Specifically, we can say Ek = D · diag(ek) where
diag(ek) is the diagonal matrix with the entries of ek on its diagonal. So, the Ek matrices capture the
structure of D while respecting the basis directions. The coefficient matrices Ek are important here
since they generate a representation of the Clifford algebra Cl(R|V |, q), with q giving the quadratic
form on R|V | as before. Specifically, these matrices satisfy: EiEj + EjEi = −2q(ei, ej)Id|V |
where q(ei, ej) denotes the quadratic form evaluated on basis elements and Id is the identity matrix.
Remark 2. This discrete formulation of the Dirac operator on graphs parallels the continuous case
in differential geometry. Understanding this link helps interpret how D acts on a function f over
the vertices of G and informs practical design choices: (i) For real-valued functions, (Df)(v) can
be a weighted average of values at neighboring vertices. (ii) For vector-valued functions, D acts
on each component independently, encoding more complex relationships. (iii) For complex-valued
functions, D incorporates phase information. (iv) For spinor-valued functions, D acts on S(G), the
space of C2⌊|V |/2⌋

-valued functions, with Dvw as complex matrices. Specifically, for ψ ∈ S(G), the
Dirac operator acts as: (Dψ)(v) =

∑
w∈V Dvwψ(w) where Dvw are 2⌊|V |/2⌋ × 2⌊|V |/2⌋ complex

matrices. This case has roots in quantum mechanics, and provide useful heuristics.

Figure 3: A schematic to go from graph to
Fock space representations.

Spinors and Fock space. For the complex Clif-
ford Algebra, there exists an irreducible representa-
tion ϕ : Cl|V |(C, q)→ End(S), where End(S) denotes
the space of linear endomorphisms of S, and S is a
complex vector space of dimension 2⌊|V |/2⌋, called the
Spinor space (Lounesto, 2001). Note that End(W)
and Hom(W,W) are essentially the same object. The
Spinor space is relevant because of the following result:
the Spinor space S can be identified with the exterior
algebra ∧(C⌊|V |/2⌋), which is isomorphic to the Fock
space F =

⊕⌊|V |/2⌋
k=0 ∧k(C⌊|V |/2⌋). This isomorphism

allows us to work with the Fock space representation
instead of the complete Clifford algebra. Why is this
useful? Recall that the Dirac operator uses only the
basis elements E’s of the Clifford algebra. These basis elements act on spinors, which can be
identified with elements of the Fock space. The action of Ek on the Fock space can be decomposed
into so-called creation and annihilation operators: Ek ≃ ak+a∗k where ak is the annihilation operator
and a∗k is the creation operator. By using only the basis elements, we can significantly simplify our
computations while retaining the essential structure of the Clifford algebra: we can work directly
with creation and annihilation operators.
Remark 3. As an alternative, it is possible to represent and identify elements of the Clifford algebra
with structures in infinite-dimensional Hilbert spaces where each vertex of G will be treated as an
element in a one-particle Hilbert space. Our approach above is more direct, naturally accommodates
the finite-dimensional nature of our graph while still providing a rich algebraic structure. Importantly,
sensible approximations will be available.

2.3 TRANSLATING THEORY TO PRACTICE: INSTANTIATING A GRAPH REPRESENTATION

The Fock space formulation provides a framework for representing multi-particle systems, analogous
to encoding features from a graph. However, implementing the full structure, especially in high
dimensions, can be challenging. Vector Symbolic Architectures (VSA), as explored in recent works
(Alam et al., 2023; Ganesan et al., 2021), offer a practical approximation of Fock spaces with
computational efficiency. In VSA, the binding operation (circular convolution) approximates the
creation/annihilation operators, while the superposition operation (vector addition) resembles the
direct sum in Fock spaces. Although the VSA←→ quantum mechanics connection is not new (Wolff
et al., 2018), in this context it helps use the power of Fock spaces while offering computational
efficiency.

Representing nodes, sums, and products. In our implementation, we assign a high-dimensional
vector to each concept (node, edge, and so on). These vectors play a role analogous to the basis
elements in the expansion of the Dirac operator. While ideally, these vectors would be orthogonal,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 4: Graphs, Hypergraphs, Attributed graphs, Proteins. All these types of graphs can be
efficiently encoded using FoGE.

similar to the properties of basis elements in a Fock space, we simply approximate this by sampling
from a normal distribution N (0, 1/d). This leads to nearly orthogonal vectors, with the maximum
absolute cosine similarity between any two vectors typically below 0.1 (Blum et al., 2020).

For operations analogous to those in Fock space, we use dimensionality-preserving operations instead
of tensor products, which significantly increase dimensionality (Wolff et al., 2018). This simplifies
implementation, as all resultant embeddings maintain the same dimensionality regardless of the
encoding method. We define the sum (⊕) as element-wise addition and the product (⊗) as circular
convolution; an operation analogous to the creation and annihilation operators in Fock space. This can
be implemented as element-wise multiplication of the vectors’ Fourier representations followed by
an inverse Fourier transformation. Notice that, as d grows, these operations asymptotically approach
the algebraic properties of Fock space (i.e., the probability that we violate the algebraic properties of
Clifford algebra goes to zero) while its complexity isO(d log d). This scheme also allows us to define
the inverse vector, i.e., for any vector b, we have a vector a such that the identity a⊗ b = 1 holds. It
is known that other properties like commutation relations, super-position and self-commutation are
also mostly satisfied in VSA. Note that our experiments are not tied to this specific implementation,
and improved choices can be dropped in.

Dealing with infinitely many concepts. In some datasets in our experiments, each vertex comes
with a text description. Defining one vector per word or sentence at random is not ideal anymore. To
avoid this problem, we use a text encoder. Models like CLIP (Radford et al., 2021), BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and others are effective at mapping whole text passages to
vectors in a way that the information is preserved while similar sentences are mapped to similar areas
in space. So, we initialize our construction by defining the vectors as such an encoding. In this way,
(a) we can create infinitely many vectors, and (b) similar vectors represent similar concepts. When
the dimensionality permits, we keep the default sampling approach, and note the use of text-encoders
explicitly in the experiments.

Other Works using Vector Symbolic Architectures. There is a growing body of results in the
literature using Vector Symbolic Architecture (VSA) (Schlegel et al., 2022) albeit for other problems.
The idea has its roots in symbolic AI, where VSA sought to benefit from the high dimensional
representations in addition to well-defined logical rules for combining these symbols/vectors in some
manner. Many works using VSA describe the construction mechanistically, deriving specific ways to
generate the underlying symbols as well as implementing the “merge” operations. The possibility of
using Fock space for symbolic manipulation (Wolff et al., 2018) has been identified by others with
example results reported regarding its utility in trajectory analysis. Vector symbolic representations
have also been recently used for computational efficiency considerations related to self-attention
calculation in HRRFormers (Plate, 1995; Alam et al., 2023).

3 FOCK GRAPH ENCODER (FOGE)

Based on the concepts from Section §2, we use a parameter-free scheme (denoted FoGE) to obtain rich
graph embeddings. Our approach is general and can handle a large spectrum of different graph types,
and its extension to novel graph-types is straightforward. Diverse graph types such as hypergraphs,
attributed graphs, as well as proteins (Fig. 4) can all be modeled easily providing an alternative or a
good initialization for more intensive trainable models. This approach translates the abstract concepts
of Fock spaces into a practical and efficient method for graph representation, where graph features
obtained by the encoding are analogous to multi-particle states in a Fock space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For a graph G = (V,E) we have a vector pi, using i to index the nodes. We also use an extra vector s
for the graph’s size, a practical design choice we will explain shortly. Then, with these n+ 1 vectors,
we obtain a lossless Fock-space based representation g as:

g =
(
s⊗ pn

)
⊕

⊕
(i,j)∈E

(
pi ⊗ pj

)
(1)

Our formulation follows from §2. Each edge’s endpoints are fused together using ⊗ and then we
aggregate all edges together using ⊕. Finally, the graph’s size is also added using the special vector s.

Lossless representation. The above representation is lossless. Assuming we use (1) to get a graph’s
embedding g. Then, simply by evaluating the expression pT

j (p
−1
i ⊗ g), we can determine whether

the edge (i, j) exists in the edge set of that particular graph. In this way, we can recover, one by one,
all edges of the graph and correctly reconstruct it, if desired. It is instructive to check the importance
of s. By evaluating the expression pT

i (s
−1 ⊗ g), ∀i, we can first obtain the size of the graph. This

can inform the edge retrieval above because an expression of the form pT
n+x(p

−1
i ⊗ g) could, in

practice, produce a number close to 1, although there is no such edge. By first obtaining the size of
the graph, we have a “safeguard” against such phantom edges beyond the real vertex-set.

Vertex attributes. Consider a graph G = (V,E,Attr), where the set Attr (with |Attr| = |V |)
consists of attributes, one for each vertex. There is no restriction on the type of attributes: it can
denote numerical values or text or any other concept. Let ai be the vector associated with the attribute
of vertex i ∈ V (using an appropriate text-encoder if needed). Then, we can augment (1) to absorb
the extra information in the following way:

g =
(
s⊗ pn

)
⊕

⊕
(i,j)∈E

(
pi ⊗ pj

)
⊕
⊕
i∈V

(
pi ⊗ ai

)
(2)

The graph is again, fully reconstructable. We have also encoded each vertex’s attribute (which can
be recovered by the expression aTj (p

−1
i ⊗ g)). We should think of proteins as a graph with vertex

attributes where each vertex is a specific amino acid (possibly with 3-D coordinates).

Hypergraphs (Theory versus Practice). Hypergraphs are generalizations of graphs: each edge
is connected to an arbitrary number of vertices, instead of just 2 (Fig. 4). In theory, we can easily
augment (1) so that we can handle hypergraphs as follows:

g =
(
s⊗ pn

)
⊕

⊕
(k1,···km)∈E

m⊗
i=1

pki (3)

In practice, aggregating many multiple vectors together may be unstable. This is true for our particular
design choices for calculations (e.g., circular convolution), so we use an alternative approach. We
can start by observing that each edge can be interpreted as a unique cluster of vertices, so we simply
assign a unique vector ei, i ∈

[
|E|

]
to each edge in the hypergraph. This modification allows us to

encode the hypergraph similar to how a graph is encoded as a dictionary, in the following way:

g =
(
s⊗ pn

)
⊕

(|E|⊕
i=1

(
ei ⊗

⊕
j∈Ei

pj

))
(4)

3.1 FOCK SPACE-BASED GROUNDING OF LLMS (FOGE-LLM)

Recent works showed that (a) textualizing a graph and pre-appending it to a question results in
better-than-random responses from the LLM (although far from perfect), and (b) using a specialized
graph encoder such as a GNN or a graph transformer and training along with a frozen LLM results
in a big improvement in performance, resulting essentially in LLMs that can understand, to some

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: FoGE-LLM overview. Using a parameter-free graph encoder we get graph embeddings for a range of
different graphs. Then, we use linear adapters with a frozen LLM for prefix tuning.

extent, graphical structures. One takeaway is that we can bypass the most tedious stage of designing
application-specific graph encoders. Instead, we can use a parameter-free method for a wide range
of graph types, as we described above. Thus, the only trainable parts of the pipeline are simple
linear adapters that convert the raw graph encodings to a format “understandable” by an LLM. Our
FoGE-LLM is shown in Fig. 5. After getting the graph encodings, we train one/more linear adapters
and append the transformed encodings to the question’s embeddings fed to the LLM.

Summary and Takeaway. We highlight some qualitative advantages. First, our graph encoding is
parameter-free and efficient. The complexity of aggregation is O(d log d) (d is vectors’ dimension)
and the number of aggregation operations is linear (in graph size). Second, our encoder is not
restricted to specific graph types: it works easily for simple graphs, for proteins and for hypergraphs
just via small modifications. In contrast, GraphToken (Perozzi et al., 2024) uses a specific GNN
whose output size is dependent on the underlying task whereas GraphLLM (Chai et al., 2023) uses
a transformer model together with a GNN (also specific to the underlying task). These properties
simplify our training and eliminates any tunable components. Third, our open-source code offers
a scalable way to train FoGE-LLM even on consumer GPUs, by using FSDP (Zhao et al., 2023).
As a reference, GraphToken (Perozzi et al., 2024) is trained on TPUs (code unavailable) whereas
GraphLLM (Chai et al., 2023) has a large memory/compute footprint (trained on A100 80GB).

4 EXPERIMENTAL RESULTS

We examine our Fock-space based encoding in two separate settings: (a) as a stand-alone input of a
simple model, and (b) as an extra prefix in a frozen LLM (FoGE-LLM), for graph prompting.

Table 1: Results on two real-world protein datasets from OBNB.
Our method appears to be the stronger unsupervised scheme to
obtain node embeddings, especially for the DisGeNet task. Its
performance is comparable to trainable, graph-specific models
(GCN and GAT). More details on all baselines are in (Liu &
Krishnan, 2024).

BioGRID HumanNet

Model DisGeNet GOBP DisGeNet GOBP

LabelProp 0.931 1.885 3.059 3.806
Adj + LR 0.743 2.528 3.053 3.964
Node2Vec + LR 0.836 2.571 2.433 4.036
LapEigMap + LR 0.864 2.149 2.301 3.778
FoGE 1.062 2.433 3.254 3.916

GCN (Bruna et al., 2014) 1.012 2.572 3.116 3.812
GAT (Liu & Zhou, 2020) 1.063 2.562 3.065 3.963

Datasets and Models. We performed
experiments on multiple graph rea-
soning datasets: from simple graph-
understanding tasks to hypergraphs
and proteins and aim to cover dif-
ferent aspects of graph understand-
ing/reasoning. Specifically, we consider
the 6 following datasets/dataset collec-
tions: (i) GraphQA (Fatemi et al., 2024)
(ii) GraphReasoning (Chai et al., 2023)
(iii) HyperGraphQA (iv) PPI (Hamil-
ton et al., 2017) (v) OBNB (Liu & Krish-
nan, 2024) (vi) SabDab (Dunbar et al.,
2013). More details about the datasets
can be found in the appendix. Exploring
various graph reasoning datasets allows us to analyze the performance and generalization capabilities
of our proposed model across different graph structures and domains. From traditional graph-based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

question-answering tasks to more complex hypergraph understanding and biological network analysis.
By tackling these varied datasets, we aim to gain a comprehensive understanding of the capabilities
and limitations of our approaches in graph reasoning tasks. Additionally, the inclusion of real-world
datasets such as PPI, BioGRID, and HumanNet underscores the practical relevance of our research,
with potential applications in biological research, network analysis, and beyond.

We use the Llama2 (7B) model (Touvron et al., 2023) as the frozen LLM, and we employ only
extra linear adapters for the graph embeddings we obtain using our formulation. We adjust vector
dimensionality from 512 to 2048 and use just a single adapter for the entire model or one adapter
per layer in FoGE-LLM.

4.1 PROOF OF PRINCIPLE EVALUATIONS FOR GRAPH UNDERSTANDING

Table 2: Using a small neural network with a single layer on the obtained graph representations allows us to
perform almost perfectly in tasks such as number of nodes and number of edges in a graph, for both synthetic
and real data.

GraphQA HyperGraphQA Jaffe
num nodes num edges has cycle num nodes num edges num acids num links

MSE/Acc 0.67 0.03 98.7% 1.12 0.63 2.95 11.9
Model size 32K 8K 16K 32K 4K 32K 16K

Setup and Results. While our key goal is graph-prompting, we first perform multiple preliminary
checks of the effectiveness of our graph encoding. We conduct three different types of experiments.

First, we evaluate whether our graph embeddings are informative (i.e., they preserve the graph’s
structure), by using a small, 1-hidden-layer FFN for basic graph-understanding tasks, e.g., number of
nodes and edges. We use 3 different classes of graphs (simple graphs, hypergraphs, and proteins) and
the results show that our representations are rich and informative (Table 2) and only few parameters
suffice to achieve almost-perfect performance on such tasks.

Second, we examine whether our graph encodings preserve important biological markers of the data.
To test this, we use a small dataset of about 900 proteins (SabDab) which are accompanied by affinity
data that corresponds to each protein’s clade. Briefly, clades are protein superfamilies, based on
common ancestry (more information can be found in the appendix). In theory, proteins from the
same clade are more similar than across clades, so we examine whether this is also preserved in our
obtained embeddings. Although the dataset has only few samples and some of the clades are scarcely
populated, we can observe that there is a clear separation between the most populated clades in the
embeddings space (Fig. 8).

Table 3: Micro F1-score on PPI. Our ap-
proach is better than the best unsupervised
approaches and better/comparable to the su-
pervised approaches.

Model F1

Random 39.2
Node2Vec (Yun et al., 2022) 40.9
Raw features (Yun et al., 2022) 42.2

U
ns

up
er

vi
se

d GraphSAGE-min (Hamilton et al., 2017) 46.5
GraphSAGE-max (Hamilton et al., 2017) 50.2
DGI (Veličković et al., 2019) 63.8
GRACE (Zhu et al., 2020) 66.2
FoGE 99.2

Su
pe

rv
is

ed

GraphSAGE-min (Hamilton et al., 2017) 50.0
GraphSAGE-max (Hamilton et al., 2017) 61.2
LGCN (Gao et al., 2018) 77.2
GAT (Liu & Zhou, 2020) 97.3
GCNII (Chen et al., 2020) 99.5

Third, we examine if the same encoding practice can gen-
erate rich node-level encodings, by encoding for each
node, the subgraph that is generated by itself and its neigh-
bors. We examine the performance in nineteen real pro-
tein datasets (PPI (Hamilton et al., 2017) and OBNB (Liu
& Krishnan, 2024)) in Tables 1, 3, and 9. We see that
our approach is, in all datasets, among the best unsuper-
vised approaches, and is also competitive (if not better)
than specialized supervised approaches that leverage train-
able, graph-specific models such as GCN (Bruna et al.,
2014) and GAT (Liu & Zhou, 2020). Specifically, we
achieve state-of-the-art performance in PPI while we are
the best-performing method (among both unsupervised
and supervised) in seven out of the eighteen datasets of
OBNB.

These results provide encouraging evidence that (a) our
approach gives “rich” graph embeddings for a range of
different graph types and styles, and (b) our graph embed-
dings can be used as an extra, grounding input to a powerful LLM without the need to design/train
a specialized model, e.g., GNN (Scarselli et al., 2009; Wu et al., 2022) or a Graph Transformer
(Dwivedi & Bresson, 2020).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 GROUNDING LLMS WITH GRAPH PROMPTING

Table 4: GraphToken vs FoGE-LLM on GraphQA. Col-
umn 1 stands for a single embedding for the entire graph;
O(n) stands for a single embedding per node. In all 6
tasks, although we use a parameter-free, predetermined
graph encoding, we see a performance similar/better rel-
ative to a trainable graph encoder linked with a larger
LLM (PaLM-2). For reference, we also include the best
performance with any ICL-based technique (Fatemi et al.,
2024; Perozzi et al., 2024).

ICL GraphToken FoGE-LLM

Tokens O(n2) 1 O(n) 1

num of nodes 26.9% 99.6% - 97.2%
num of edges 12.8% 42.6% - 45.1%
cycle existence 83.2% 95.6% - 97.9%
num of triangles 16.2% 34.8% - 37.7%
node degree 28.0% - 96.2% 62.7%
edge existence 54.4% - 73.8% 74.3%

Graph Understanding. In our first experi-
ment, we examine whether an LLM can an-
swer questions about a graph’s structure, such
as the number of nodes, the presence of cycles,
and so on. We use GraphToken and conduct
a suite of six different experiments. Although
our method’s encodings are not specific to each
underlying task, it performs competitively with
specialized models, as shown in Table 4. Even
when GraphToken uses different embeddings
for each node (node degree) or edge (edge ex-
istence), our model still achieves comparable
results using a single embedding for the entire
graph, except for node degree prediction, where
GraphToken’s node-specific embeddings offer
an advantage.

Table 5: GraphLLM vs FoGE-LLM. Although
we are using the same, predetermined graph em-
bedding for each task, we enjoy a performance
similar to GraphLLM which leverages 5 graph em-
beddings, specific to the task at hand. The vectors
stands for the two approaches we follow in generat-
ing them: (a) randomly generated (almost) orthog-
onal vectors (ignoring the node’s text description),
and (b) using RoBERTa (Liu et al., 2019) and uti-
lizing all vertices’ information.

GraphLLM FoGE-LLM

model size 100M 25M
question specific output Yes No
graph embeddings 5 1
vectors - random RoBERTa

substructure count 99.9% 97.3% 95.6%
max triplet sum 95.7% 94.6% 94.7%
shortest path 97.2% 95.7% 95.8%
bipartite match 99.8% 98.1% 97.3%

Advanced Graph Reasoning Going beyond “sim-
ple” graph understanding tasks, we also examine our
performance on more complicated graph-reasoning
tasks, using a recent dataset (Chai et al., 2023).
GraphToken is not applicable here since each node
is accompanied by a textual description which can-
not be handle by that model. So, our main baseline
is GraphLLM, which uses a transformer combined
with a GNN to merge the graphical/textual informa-
tion into one or more embedding vectors. Similar
to GraphToken (Perozzi et al., 2024), GraphLLM
(Chai et al., 2023) also utilizes a different approach
for each task, using multiple graph embeddings for
each task. In contrast, we achieve comparable perfor-
mance using a single graph embedding, showcasing
the versatility/richness of the graph embeddings. Fur-
ther, we see that using a pretrained text encoder such
as RoBERTa (Liu et al., 2019) to generate the vectors
is reasonable, and results in a similar performance.
This is a strong improvement over traditional symbolic methods, by allowing a large set of “sym-
bols”/vectors. Dealing with proteins is similar to advanced graph reasoning, since both datasets are
graphs with additional node information. In Table 6, we show the accuracy of FoGE-LLM for three
protein-related tasks on Jaffe. Although the size of the proteinic graphs is more than 10× larger
compared to the ones in GraphQA and GraphReasoning, our model is able, up to some extent, to
understand the provided protein, as a whole (number of amino acids and number of links) as well as
at an individual-node level for the task type of amino acid (where we prompt the model to determine
the type of a specific vertex in the protein).

Table 6: FoGE-LLM performance against ICL tech-
niques for hypergraphs and proteins.

Zero-Shot Few-Shot FoGE-LLM

H
yp

er
Q

A num of nodes 04.5% 16.8% 85.0%
num of edges 03.9% 27.0% 95.4%
node degree 02.1% 10.1% 53.9%
edge existence 65.9% 79.4% 87.9%

Ja
ff

e num of amino-acids 03.9% 17.1% 99.3%
num of links 03.8% 06.1% 13.2%
amino-acid type 01.4% 12.3% 37.7%

Hypergraphs. Existing works focus on specific
forms of graphs and rarely applicable (or easily
modifiable) to different graph types. One common
family of graphs in applications is hypergraphs.
Here each edge is a subset of the nodes, of arbi-
trary size (Fig. 4). Our formulation can handle
such a generalization of the typical graphs with
only minor modifications to the encoding formu-
lation (Eq. 4). Here, we show that our design can
indeed answer questions about such complicated
structures, using our encodings as an extra prefix
(graph prompting). Using the proposed dataset (HyperGraphQA), we assess the performance of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

FoGE-LLM on four common tasks. Since GraphToken as well as GraphLLM cannot handle such
data, we compare our model’s performance against two of the most common prompt-engineering
methods: 1. zero-shot, where the model is given the graph in text form along with the corresponding
question, and 2. few-shot, where the model is given pairs of textualized graphs with the corresponding
question/answer pair and it is asked to produce the answer to a new combination of graph/question.
The results are presented in Table 6. Interestingly, even though hypergraphs have a much more
complicated structure than “simple” graphs, our model achieves a performance very close to basic
graph understanding (Table 4), or even better at some tasks.

5 RELATED WORK

Geometric Algebra in Machine Learning. There is growing interest in application of geometric
algebra in machine learning, particularly for developing neural networks that maintain geometric
properties. While these ideas have been leveraged in the context of equivariance/symmetry trans-
formations in deep learning (Cohen et al., 2019; Bronstein et al., 2021; Banerjee et al., 2022; Zhu
et al., 2018; Finzi et al., 2020), the theory is finding interesting uses in recent works. For example,
(Zhdanov et al., 2024) recently proposed Clifford Neural Layers to model dynamical systems in
fields like fluid dynamics and (Ruhe et al., 2023b) described Geometric Clifford Algebra Networks
(GCANs), specifically designed to respect symmetry group transformations. Beyond classical ma-
chine learning, geometric algebra finds more direct applications in quantum computing as well:
(Trindade et al., 2023) leveraged the isomorphism between Pauli matrices and Clifford Algebra to
represent multidimensional data, to define specialized transforms for machine learning tasks.

Graphs & LLMs. The body of work describing ways to infuse extra, graphical information into a
frozen LLM is sizable and growing. As discussed earlier, initial approaches focused on converting
the underlying graph into natural language form, such as “node 1 is connected to node 3, node 5 is
connected to node 4, . . . ” (Wang et al., 2023; Guo et al., 2023; Fatemi et al., 2024). These works
while far from perfect showed viability: that a frozen LLM has the capability to reason about the
given graph and answer graph-related questions, such as “is there a cycle in the graph?”. Practical
difficulties involving the format of graph serialization is an important factor in the performance and
the results tend to be only moderately better than random. The perspective taken in (Perozzi et al.,
2024; Chai et al., 2023) was fresh and led to an alternative approach: infusing the graph information
directly at the embedding level, by encoding the graph using a model such as a Graph Neural Network
(GNN) (Scarselli et al., 2009; Wu et al., 2022; Perozzi et al., 2024) or a Graph Transformer (Dwivedi
& Bresson, 2020; Chai et al., 2023). These works significantly improved the state of the art, showing
that carefully crafted graph embeddings are key to a successful grounding of an LLM.

6 CONCLUSIONS

We have described a novel strategy to encode a graph into a vector form for direct downstream use
or to augment prompts fed to LLMs. Our approach, grounded in Clifford algebra and Fock space
operations, is rigorous and offers numerous advantages in practice demonstrated via experiments.
We can obtain encodings of arbitrary graphs instantly, with no trainable parameters that nicely
encapsulates the important information content in the underlying graph. Using these encodings, we
introduced FoGE-LLM, a way to fuse the graph information for graph-prompting with a pre-trained,
frozen LLM, allowing it to “understand” and reason about graphs. Our model, accompanied with a
simple-to-train open-source codebase, performs favorably relative to highly specialized models while
at the same time handling classes of graphs where other alternatives fall short or need adjustments.

Limitations. A key strength of our method is its generality; it is a parameter-free way to obtain rich
graph embeddings. However, if our method fails to produce informative-enough graph embeddings
for graphs in a specific application, the parameter-free nature offers us very few knobs to turn to
improve the performance. The fix, we believe, is to build representation learners on top of the
embeddings derived by our model which we conjecture is happening to some extent in FoGE-LLM
anyway. Additionally, as noted before, when we need to deal with a potentially infinitely large set of
vectors, generating them at random is infeasible. While, for our experiments, RoBERTa appears to be
a sensible option, the efficacy may not translate to other new datasets.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohammad Mahmudul Alam, Edward Raff, Stella Biderman, Tim Oates, and James Holt. Recasting
self-attention with holographic reduced representations. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 490–507. PMLR, 23–29 Jul 2023. URL https://proceedings.
mlr.press/v202/alam23a.html.

Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod.
Phys., 74:47–97, Jan 2002. doi: 10.1103/RevModPhys.74.47.

Monami Banerjee, Rudrasis Chakraborty, Jose Bouza, and Baba C. Vemuri. Volterranet: A higher
order convolutional network with group equivariance for homogeneous manifolds. IEEE Trans.
Pattern Anal. Mach. Intell., 44(2):823–833, feb 2022. ISSN 0162-8828. doi: 10.1109/TPAMI.
2020.3035130. URL https://doi.org/10.1109/TPAMI.2020.3035130.

William E Baylis. Clifford (Geometric) Algebras: with applications to physics, mathematics, and
engineering. Springer Science & Business Media, 2012.

Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science. Cambridge
University Press, 2020.

Johann Brehmer, Pim de Haan, Sönke Behrends, and Taco S Cohen. Geometric algebra transformer.
In Advances in Neural Information Processing Systems, pp. 35472–35496, 2023.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally con-
nected networks on graphs. In International Conference on Learning Representations (ICLR2014),
CBLS, April 2014, 2014.

Beata Casiday, Ivan Contreras, Thomas Meyer, Sabrina Mi, and Ethan Spingarn. Laplace and dirac
operators on graphs. Linear and Multilinear Algebra, pp. 325–365, 2024.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 1725–1735. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/chen20v.html.

Siqi Chen, Pierre-Philippe Dechant, Yang-Hui He, Elli Heyes, Edward Hirst, and Dmitrii Riabchenko.
Machine learning clifford invariants of ade coxeter elements. Advances in Applied Clifford
Algebras, 34(3):20, 2024.

Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002. doi: 10.1073/pnas.
252631999. URL https://www.pnas.org/doi/abs/10.1073/pnas.252631999.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional
networks and the icosahedral CNN. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 1321–1330. PMLR, 09–15 Jun 2019. URL https://
proceedings.mlr.press/v97/cohen19d.html.

11

https://proceedings.mlr.press/v202/alam23a.html
https://proceedings.mlr.press/v202/alam23a.html
https://doi.org/10.1109/TPAMI.2020.3035130
https://proceedings.mlr.press/v119/chen20v.html
https://proceedings.mlr.press/v119/chen20v.html
https://www.pnas.org/doi/abs/10.1073/pnas.252631999
https://proceedings.mlr.press/v97/cohen19d.html
https://proceedings.mlr.press/v97/cohen19d.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Yujuan Ding, Wenqi Fan, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meets llms: Towards retrieval-augmented large language models. arXiv
preprint arXiv:2405.06211, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric algebra for computer science (revised
edition). The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, 2009.

James Dunbar, Konrad Krawczyk, Jinwoo Leem, Terry Baker, Angelika Fuchs, Guy Georges, Jiye
Shi, and Charlotte M. Deane. SAbDab: the structural antibody database. Nucleic Acids Research,
42, 2013. ISSN 0305-1048. doi: 10.1093/nar/gkt1043. URL https://doi.org/10.1093/
nar/gkt1043.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

P Erdös and A Rényi. On random graphs i. Publicationes Mathematicae Debrecen, pp. 290–297,
1959.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:
//github.com/Lightning-AI/lightning.

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for large
language models. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=IuXR1CCrSi.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):
298–305, 1973. URL http://eudml.org/doc/12723.

Miroslav Fiedler. Laplacian of graphs and algebraic connectivity. Banach Center Publications, 25(1):
57–70, 1989. URL http://eudml.org/doc/267812.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In Hal Daumé III
and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 3165–3176. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/v119/finzi20a.html.

Ashwinkumar Ganesan, Hang Gao, Sunil Gandhi, Edward Raff, Tim Oates, James Holt,
and Mark McLean. Learning with holographic reduced representations. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 25606–25620. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/d71dd235287466052f1630f31bde7932-Paper.pdf.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’18, pp. 1416–1424, New York, NY, USA, 2018. Association
for Computing Machinery. ISBN 9781450355520. doi: 10.1145/3219819.3219947. URL
https://doi.org/10.1145/3219819.3219947.

Jiayan Guo, Lun Du, and Hengyu Liu. Gpt4graph: Can large language models understand graph
structured data? an empirical evaluation and benchmarking. arXiv preprint arXiv:2305.15066,
2023.

12

https://aclanthology.org/N19-1423
https://doi.org/10.1093/nar/gkt1043
https://doi.org/10.1093/nar/gkt1043
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://openreview.net/forum?id=IuXR1CCrSi
http://eudml.org/doc/12723
http://eudml.org/doc/267812
https://proceedings.mlr.press/v119/finzi20a.html
https://proceedings.neurips.cc/paper_files/paper/2021/file/d71dd235287466052f1630f31bde7932-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d71dd235287466052f1630f31bde7932-Paper.pdf
https://doi.org/10.1145/3219819.3219947

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 3929–3938. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/guu20a.html.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Jung-Hoon Han, Sarah Batey, Adrian A Nickson, Sarah A Teichmann, and Jane Clarke. The folding
and evolution of multidomain proteins. Nature reviews. Molecular cell biology, pp. 319—330, 2007.
ISSN 1471-0072. doi: 10.1038/nrm2144. URL https://doi.org/10.1038/nrm2144.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

Sohyun Hwang, Chan Yeong Kim, Sunmo Yang, Eiru Kim, Traver Hart, Edward M. Marcotte, and
Insuk Lee. Humannet v2: Human gene networks for disease research. Nucleic acids research,
47(D1):D573–D580, January 2019. ISSN 0305-1048. doi: 10.1093/nar/gky1126. Publisher
Copyright: © 2018 The Author(s).

David B. Jaffe, Payam Shahi, Bruce A. Adams, Ashley M. Chrisman, Peter M. Finnegan, Nandhini
Raman, Ariel E. Royall, Funien Tsai, Thomas Vollbrecht, Daniel S. Reyes, and Wyatt J. McDonnell.
Functional antibodies exhibit light chain coherence. Nature, 611:352 – 357, 2022. URL https:
//api.semanticscholar.org/CorpusID:248421668.

Moa Johansson. What can large language models do for theorem proving and formal methods?
In Bernhard Steffen (ed.), Bridging the Gap Between AI and Reality, pp. 391–394, Cham, 2024.
Springer Nature Switzerland. ISBN 978-3-031-46002-9.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.353.
URL https://aclanthology.org/2021.acl-long.353.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei
Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory and
application proficiency of llms with a hierarchical mathematics benchmark. 2024.

Renming Liu and Arjun Krishnan. Open biomedical network benchmark: A python toolkit for
benchmarking datasets with biomedical networks. In David A. Knowles and Sara Mostafavi (eds.),
Proceedings of the 18th Machine Learning in Computational Biology meeting, volume 240 of
Proceedings of Machine Learning Research, pp. 23–59. PMLR, 30 Nov–01 Dec 2024. URL
https://proceedings.mlr.press/v240/liu24a.html.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. In Proceedings of the ACM Web Confer-
ence 2023, WWW ’23, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9781450394161. doi: 10.1145/3543507.3583386. URL https://doi.org/10.1145/
3543507.3583386.

Zhiyuan Liu and Jie Zhou. Graph Attention Networks, pp. 39–41. Springer International Publishing,
Cham, 2020. ISBN 978-3-031-01587-8. doi: 10.1007/978-3-031-01587-8_7. URL https:
//doi.org/10.1007/978-3-031-01587-8_7.

13

https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.1038/nrm2144
https://api.semanticscholar.org/CorpusID:248421668
https://api.semanticscholar.org/CorpusID:248421668
https://aclanthology.org/2021.acl-long.353
https://proceedings.mlr.press/v240/liu24a.html
https://doi.org/10.1145/3543507.3583386
https://doi.org/10.1145/3543507.3583386
https://doi.org/10.1007/978-3-031-01587-8_7
https://doi.org/10.1007/978-3-031-01587-8_7

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pertti Lounesto. Clifford Algebras and Spinors. London Mathematical Society Lecture Note Series.
Cambridge University Press, 2 edition, 2001.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. arXiv preprint arXiv:2402.05121, 2024.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 11048–11064, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main.759.

Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, and Soheil Feizi. Text-to-concept (and back)
via cross-model alignment. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
25037–25060. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
moayeri23a.html.

Seyed Mahed Mousavi, Simone Alghisi, and Giuseppe Riccardi. Is your llm outdated? benchmarking
llms & alignment algorithms for time-sensitive knowledge. arXiv preprint arXiv:2404.08700,
2024.

Zbigniew Oziewicz. The dirac operator as graph and the clifford hopf-gebra. PITMAN RESEARCH
NOTES IN MATHEMATICS SERIES, pp. 210–224, 1998.

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou, and
Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024.

T.A. Plate. Holographic reduced representations. IEEE Transactions on Neural Networks, 6(3):
623–641, 1995. doi: 10.1109/72.377968.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/radford21a.html.

David Ruhe, Johannes Brandstetter, and Patrick Forré. Clifford group equivariant neural networks.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023a.

David Ruhe, Jayesh K. Gupta, Steven De Keninck, Max Welling, and Johannes Brandstetter. Geo-
metric clifford algebra networks. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023b.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi:
10.1109/TNN.2008.2005605.

Kenny Schlegel, Peer Neubert, and Peter Protzel. A comparison of vector symbolic architectures.
Artificial Intelligence Review, 55, 08 2022. doi: 10.1007/s10462-021-10110-3.

Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike
Tyers. Biogrid: a general repository for interaction datasets. Nucleic acids research, 34(Database
issue):D535—9, January 2006. ISSN 0305-1048. doi: 10.1093/nar/gkj109. URL https:
//europepmc.org/articles/PMC1347471.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can large lan-
guage models understand structured table data? a benchmark and empirical study. In Proceedings of
the 17th ACM International Conference on Web Search and Data Mining, WSDM ’24, pp. 645–654,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400703713. doi:
10.1145/3616855.3635752. URL https://doi.org/10.1145/3616855.3635752.

14

https://aclanthology.org/2022.emnlp-main.759
https://proceedings.mlr.press/v202/moayeri23a.html
https://proceedings.mlr.press/v202/moayeri23a.html
https://proceedings.mlr.press/v139/radford21a.html
https://europepmc.org/articles/PMC1347471
https://europepmc.org/articles/PMC1347471
https://doi.org/10.1145/3616855.3635752

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’22, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539249.
URL https://doi.org/10.1145/3534678.3539249.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’24, pp. 491–500, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400704314. doi: 10.1145/3626772.3657775. URL https://doi.org/10.1145/
3626772.3657775.

Yijun Tian, Huan Song, Zichen Wang, Haozhu Wang, Ziqing Hu, Fang Wang, Nitesh V. Chawla,
and Panpan Xu. Graph neural prompting with large language models. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(17):19080–19088, Mar. 2024. doi: 10.1609/aaai.v38i17.
29875. URL https://ojs.aaai.org/index.php/AAAI/article/view/29875.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Marco A. S. Trindade, Vinícius N. A. Lula-Rocha, and S. Floquet. Clifford Algebras, Quantum
Neural Networks and Generalized Quantum Fourier Transform. Adv. Appl. Clifford Algebras, 33
(3):38, 2023. doi: 10.1007/s00006-023-01279-7.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and Devon Hjelm.
Deep graph infomax. In ICLR 2019, May 2019. URL https://www.microsoft.com/
en-us/research/publication/deep-graph-infomax/.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung,
Denny Zhou, Quoc Le, et al. Freshllms: Refreshing large language models with search engine
augmentation. arXiv preprint arXiv:2310.03214, 2023.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 30840–30861. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/622afc4edf2824a1b6aaf5afe153fa93-Paper-Conference.pdf.

Matthias Wolff, Günther Wirsching, Markus Huber, Peter beim Graben, Ronald Römer, and Ingo
Schmitt. A fock space toolbox and some applications in computational cognition. In Alexey
Karpov, Oliver Jokisch, and Rodmonga Potapova (eds.), Speech and Computer, pp. 757–767,
Cham, 2018. Springer International Publishing. ISBN 978-3-319-99579-3.

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: Foundation,
frontiers and applications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, pp. 4840–4841, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3542609. URL
https://doi.org/10.1145/3534678.3542609.

Seongjun Yun, Minbyul Jeong, Sungdong Yoo, Seunghun Lee, Sean S. Yi, Raehyun Kim, Jaewoo
Kang, and Hyunwoo J. Kim. Graph transformer networks: Learning meta-path graphs to improve
gnns. Neural Networks, 153:104–119, 2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2022.05.026. URL https://www.sciencedirect.com/science/article/
pii/S0893608022002003.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on

15

https://doi.org/10.1145/3534678.3539249
https://doi.org/10.1145/3626772.3657775
https://doi.org/10.1145/3626772.3657775
https://ojs.aaai.org/index.php/AAAI/article/view/29875
https://www.microsoft.com/en-us/research/publication/deep-graph-infomax/
https://www.microsoft.com/en-us/research/publication/deep-graph-infomax/
https://proceedings.neurips.cc/paper_files/paper/2023/file/622afc4edf2824a1b6aaf5afe153fa93-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/622afc4edf2824a1b6aaf5afe153fa93-Paper-Conference.pdf
https://doi.org/10.1145/3534678.3542609
https://www.sciencedirect.com/science/article/pii/S0893608022002003
https://www.sciencedirect.com/science/article/pii/S0893608022002003

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848–3860, aug 2023. ISSN 2150-
8097. doi: 10.14778/3611540.3611569. URL https://doi.org/10.14778/3611540.
3611569.

Maksim Zhdanov, David Ruhe, Maurice Weiler, Ana Lucic, Johannes Brandstetter, and Patrick Forré.
Clifford-steerable convolutional neural networks. arXiv preprint arXiv:2402.14730, 2024.

Xuanyu Zhu, Yi Xu, Hongteng Xu, and Changjian Chen. Quaternion convolutional neural networks.
In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss (eds.), Computer Vision
– ECCV 2018, pp. 645–661, Cham, 2018. Springer International Publishing. ISBN 978-3-030-
01237-3.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020.

Barret Zoph, Colin Raffel, Dale Schuurmans, Dani Yogatama, Denny Zhou, Don Metzler, Ed H. Chi,
Jason Wei, Jeff Dean, Liam B. Fedus, Maarten Paul Bosma, Oriol Vinyals, Percy Liang, Sebastian
Borgeaud, Tatsunori B. Hashimoto, and Yi Tay. Emergent abilities of large language models.
TMLR, 2022.

16

https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A DATASET DETAILS

In our experiments, we used the following datasets:

1. GraphQA (Fatemi et al., 2024): It includes 6 different graph-understanding tasks (number
of nodes, number of edges, cycle existence, number of triangles, node degree, and edge
existence) on 7 different graph structures (Erdos-Renyi (Erdös & Rényi, 1959), Scale-
Free, Barabasi-Albert (Albert & Barabási, 2002), Stochastic Block Model, Star, Path and
Complete).

2. GraphReasoning (Chai et al., 2023): Recently introduced in (Chai et al., 2023) to better
assess the model’s graph understanding ability, it consists of 4 more advanced graph-
understanding tasks (substructure count, maximum triplet sum, shortest path, and bipartite
graph matching). Each graph node is accompanied by extra information in the form of a text
description, making this dataset a suitable testbed for our RoBERTa-based vector encoding.

3. HyperGraphQA: We extend GraphQA to Hypergraphs. Specifically, we consider 4 different
graph-understanding tasks (number of nodes, number of edges, node degree, and edge
existence) on 2 different hypergraph structures (Erdos-Renyi (Erdös & Rényi, 1959), and
Chung-Lu (Chung & Lu, 2002)). The training dataset consists of only 2000 instances,
making it hard for large models to avoid overfitting.

4. Jaffe (Jaffe et al., 2022): Jaffe is a recent dataset consisting of approximately 1.6 million
natively paired human antibody sequences from healthy donors. To our knowledge, this
represents by far the largest publicly available dataset of its kind.

5. PPI (Hamilton et al., 2017): PPI consists of 24 proteins collected from human tissue, with
each node associated with 121 binary labels. Compiled from experimental techniques like
yeast two-hybrid screening and mass spectrometry, as well as computational predictions,
such a dataset provides critical insights into the functional organization of the proteome. By
understanding how proteins interact, scientists can uncover the molecular underpinnings of
cellular processes and develop targeted therapeutic strategies.

6. OBNB (Liu & Krishnan, 2024): OBNB (Open Biomedical Network Benchmark) is a
collection of 15 datasets (including well-known datasets such as BioGRID (Stark et al.,
2006) and HumanNet (Hwang et al., 2019)). Each dataset’s sample consists of a gene
accompanied by 3 vectors (named DISEASES, DisGeNET, GOBP) of node-level binary
labels.

7. SabDab (Dunbar et al., 2013): SabDab (Structural Antibody Database) is a collection of 919
publicly available, annotated antibody structures (proteins). Each structure is accompanied
by multiple annotations, such as the heavy and light chain pairing.

B FOGE-LLM: TRAINING DETAILS

We train the LLM-based construction with a batch size of 16 and a learning rate of 1e-3. The model
required less than 10 epochs to convergence, in contrast to other works that require more training
time due to the ellaborate graph encoders (e.g., Chai et al. (2023)). Our implementation is based on
Pytorch Lightning Falcon & The PyTorch Lightning team (2019), which allows us to split and train
the model on multiple GPUs using FSDP. This implementation allows the user to train this, or any
similar, model to conventional GPUs with less memory while, at the same time, speed up the process
by preloading all the obtained lightweight graph embeddings to the GPUs. The merging of the graph
embedding with the LLM is based on the idea of prefix tuning Li & Liang (2021), i.e., pre-append the
embedding to the input text embeddings and, in our case, this is happening with the use of a linear
adapter. We experimented both with a single linear adapter on the input layer, as well as a linear
adapter per layer and the difference was only marginal in the final results.

C FOGE-LLM: INFERENCE DETAILS

Besides the low training time, FoGE-LLM enjoys an extremely low inference time, due to two reasons.
First, we always “reserve” only a single token for the provided graph. In contrast, zero/few-shot

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

approaches that textualize the graph require a large number of tokens, prohibitively large as the graph
grows. This leads to an explosion of the inference time, due to the transformer’s quadratic dependency
on the number of input tokens. Second, FoGE-LLM employs one or more linear adapters and does
not require any specialized architectures, like existing solutions Chai et al. (2023); Perozzi et al.
(2024). This, as we observed in our experiments, impacts the inference time, casting FoGE-LLM one
of the fastest graph-augmented Language Models. In Table 7 we present the average inference time
required for each approach.

Model Inference time (s) ↓
zero-shot 0.175 (±0.05)
few-shot 0.541 (±0.10)
GraphLLM Chai et al. (2023) 0.052 (±0.01)
FoGE-LLM 0.031 (±0.01)

Table 7: Average inference time for each approach on Llama-7B. FoGE-LLM is significantly lower
than zero/few shot approaches since the number of input tokens does not grow with the graph size,
while it enjoys a 40% improvement over GraphLLM dues to its simpler encoder/adapter.

D ICL PROMPTING FOR HYPERGRAPHS

In Table 6 we demonstrate FoGE’s superiority over In-Context Learning approaches, like zero-shot
and few-shot prompting. Here we explain how we created the textual descriptions of the hypergraphs,
that were used in both zero- and few-shot prompting. Following similar works for graph textualization
Perozzi et al. (2024); Fatemi et al. (2024), we first assign a number to each node and then, in a new
line, we explain which nodes are part of each hyperedge. An example can be seen below.

G describes a hypergraph among 0, 1, 2, 3, 4, 5, 6, 7, and 8.
In this hypergraph:
Hyperedge 1 connects nodes 2, 3, 6.
Hyperedge 2 connects nodes 1, 4, 5, 7.
Hyperedge 3 connects nodes 1, 2.
Hyperedge 4 connects nodes 3, 5, 7, 8.

After the hypergraph textualization, the question follows in the case of zero-shot, while both the
question and the answer follow in the case of few-shot.

E LOSSLESS REPRESENTATIONS

One advantage of the obtained embeddings is that fact that the underlying structures are recoverable.
This allows us to obtain unbiased vector estimates of complicated structures, such as graphs with
multiple edge and node attributes. Here, we show how this property manifests in our specific
formulation as well as more generally for pairs of key-item.

E.1 CAPACITY

One of the typical ways to examine the performance of such a construction is by assuming a vector u
as being the bundling of multiple binded pairs, as in the following equation

u =

n⊕
i=1

ki ⊗ vi (5)

and then examine how accurately we can recover each vector vi, given the corresponding ki. In
theory, the vector vi can be easily recovered using the operation:

ṽi = k−1
i ⊗ u (6)

In Fig. 6 we examine the cosine similarity of the obtain vector ṽi with the correct one (vi) as well as
with all the rest ({vj}j ̸=i). We observe that the results follow closely the theoretical results above,
with a perfect separation of up to 100 pairs, and a small overlap for 200− 300 pairs of vectors.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: Given a vector R4096 ∋ u = ⊕n
i=1ki ⊗ vi, how correctly we can recover all pairs of keys-

values back, as the number of pairs (n) grows. Worst-case wrong CS corresponds to the maximum
cosine similarity of the recovered value vector with all value vectors but the correct one, and correct
CS corresponds to the cosine similarity with the correct value vector.

E.2 GRAPH RECONSTRUCTION

In our specific application, we deal with graphs and, as we analyzed in §3, the graph representations
we obtain are, in theory, lossless, i.e., we can recover back the original graph from the vector
representation using the inverse vectors. Here, we examine whether this claim holds in practice
too. In Fig. 7 you can observe the strength of each edge after reconstruction, for 3 different vector
dimensionalities. We can observe that, even for a moderately large dimension, there is a clear
separation between the true edge set and the rest of the edges.

Figure 7: Lossless representations: even for small vector dimension, we can obtain back the true edge
set. The numbers show the cosine similarity of the obtained vector with the true edge vector, and it
can be used to estimate the true edge set.

F PRESERVATION OF CLADE INFORMATION ON SABDAB

Given that the SabDab proteins (Dunbar et al., 2013) are annotated with the heavy/light chain pairing,
we can extract the clades and visualize their embeddings with respect to that information. As a brief
reminder, the clades correspond to superfamilies of proteins that share a common ancestor (Han
et al., 2007). To extract the clades we used the V gene heavy chain and chose seven families. It
is well known from biology that antibodies that belong to the same clade are more similar than
antibodies across different clades, so, here, we examine if this real-world, biological property is
reflected on our embeddings. Specifically, after obtaining each protein’s embedding using FoGE (in
an unsupervised fashion without using the clade annotations), we apply a T-SNE transformation on
the high-dimensional vectors so that we are able to plot them, with a significant amount of noise,
in just two dimensions. Although we reduce the dimensionality significantly, and, even worse, we
deal with a extremely small dataset of just 919 proteins (Table 8), in Fig. 8 we can observe that the
proteins of each clade cluster together. This is a different, qualitative indicator, which shows that
FoGE is able to preserve all the information that is encapsulated in the inputted structures.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Distribution of samples across the different clades. In total there are 919 samples, with clades 1, 3, 4
being the most frequent.

Clade 1 2 3 4 5 6 7 Total

Count 325 28 414 101 25 3 23 919

Figure 8: T-SNE plot of the SabDab embeddings. Although the dataset is very small, each one of
the populated clades occupies a different region and, interestingly, clades 1 and 7 are very similar,
just like in real life. The T-SNE plot was robust to different choices of hyperparameters, with no
significant differences beyond simple translations of the space.

G ADDITIONAL RESULTS ON OBNB

OBNB (which stands for Open Biomedical Network Benchmark) is a collection of multiple, real-
world protein datasets, where each node (or amino-acid) of each protein is accompanied by multiple
binary labels. A detailed analysis of the datasets and their labels can be found in (Liu & Krishnan,
2024) and the corresponding repository. In Table 9 we present the results on all 18 reported datasets
of OBNB. FoGE is one of the best-performing methods across all benchmarks, showcasing once
more the capabilities of our obtained embeddings.

H IMPACT OF VECTOR DIMENSION

One of few the hyperparameters of FoGE is the dimensionality of the vectors (i.e. graph embeddings).
Using GraphQA, we perform an ablation study on the impact of the dimension on the final accuracy
of the model (Fig. 9). Relative accuracy is calculated as the actual accuracy for each dimensionality,
divided by the best one, for each task respectively, and it allows us to compare different tasks with
completely different best performances (Table 4).

From this study, a few important remarks surface that we observe to hold true for the other datasets
too. First of all, a larger dimensionality does not always “translate” to better results. We observe that
for some tasks (cycle existence), we achieve the optimal performance with a dimension significantly
lower than the maximum we consider (2048), matching essentially GraphToken’s performance with
less than 20K trainable parameters, while in some cases there is a small drop as we go from 1024 to
2048. Finally, as with most of the tunable hyperparameters in machine learning models, there is no
predetermined best strategy for choosing the dimensionality. For instance, when we consider cycle
existence or the number of triangles we can have a highly performing model with a dimensionality of
less than 128, while for tasks such as edge and node count the performance drops significantly as we
reduce the dimensionality.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: FoGE vs multiple unsupervised and supervised methods. After obtaining our embeddings, we use a
Random Forest to predict the corresponding node’s label. The evaluation is based on the APOP metric (Liu &
Krishnan, 2024) and we can observe that FoGE is always comparable to the best methods, while in almost half
of the cases it is the best one.

Network Model DISEASES DisGeNET GOBP

BioGRID

LabelProp 1.210 0.931 1.858
LogReg 1.556 1.026 2.571
GCN+BoT 1.511 1.014 2.442
SAGE+BoT 1.486 1.031 2.402
GIN+BoT 1.410 1.007 2.386
GAT+BoT 1.609 1.037 2.624
GatedGCN+BoT 1.547 1.038 2.517
FoGE 1.599 1.062 2.433

HumanNet

LabelProp 3.728 3.098 3.806
LogReg 3.812 3.158 4.053
GCN+BoT 3.552 3.053 3.921
SAGE+BoT 3.401 3.052 3.816
GIN+BoT 3.513 3.054 3.861
GAT+BoT 3.761 3.100 3.809
GatedGCN+BoT 3.677 3.086 3.889
FoGE 3.853 3.254 3.916

COMPPIHumanInt

LabelProp 1.352 1.106 2.076
LogReg 1.644 1.240 2.806
GCN+BoT 1.648 1.211 2.685
SAGE+BoT 1.694 1.210 2.629
GIN+BoT 1.608 1.219 2.611
GAT+BoT 1.665 1.230 2.755
GatedGCN+BoT 1.672 1.218 2.735
FoGE 1.660 1.241 2.586

BioPlex

LabelProp 0.964 0.939 1.714
LogReg 1.358 0.939 2.587
GCN+BoT 1.324 0.911 2.553
SAGE+BoT 1.246 0.865 2.513
GIN+BoT 1.349 0.868 2.504
GAT+BoT 1.355 0.873 2.548
GatedGCN+BoT 1.301 0.859 2.590
FoGE 1.273 0.879 2.599

HuRI

LabelProp 0.545 0.598 1.086
LogReg 0.650 0.656 1.084
GCN+BoT 0.634 0.693 1.129
SAGE+BoT 0.593 0.679 1.190
GIN+BoT 0.583 0.702 1.143
GAT+BoT 0.667 0.687 1.174
GatedGCN+BoT 0.596 0.695 1.195
FoGE 0.684 0.729 1.070

OmniPath

LabelProp 1.358 0.897 1.593
LogReg 1.542 1.093 2.125
GCN+BoT 1.577 1.068 2.071
SAGE+BoT 1.478 1.062 1.986
GIN+BoT 1.452 1.073 1.993
GAT+BoT 1.552 1.048 2.068
GatedGCN+BoT 1.516 1.049 2.071
FoGE 1.511 1.085 2.102

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 9: Accuracy versus vectors dimensionality. Although there is a positive trend between the two quantities,
the dependency on the dimension is not equally strong or always positive in all tasks.

22

	Introduction
	Deriving Fock space based Graph Representations
	Clifford Algebra and Graph Representations
	From Graphs to Clifford Algebra to Fock Spaces
	Translating Theory to Practice: Instantiating a Graph Representation

	Fock Graph Encoder (FoGE)
	Fock Space-based grounding of LLMs (FoGE-LLM)

	Experimental results
	Proof of Principle Evaluations for Graph Understanding
	Grounding LLMs with Graph prompting

	Related Work
	Conclusions
	Dataset details
	FoGE-LLM: training details
	FoGE-LLM: inference details
	ICL prompting for hypergraphs
	Lossless representations
	Capacity
	Graph reconstruction

	Preservation of Clade information on SabDab
	Additional results on OBNB
	Impact of vector dimension

