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Abstract

Bayesian Reinforcement Learning (BRL) offers a decision-theoretic solution to
the reinforcement learning problem. While “model-based” BRL algorithms have
focused either on maintaining a posterior distribution on models, BRL “model-
free” methods try to estimate value function distributions but make strong implicit
assumptions or approximations. We describe a novel Bayesian framework, in-
ferential induction, for correctly inferring value function distributions from data,
which leads to a new family of BRL algorithms. We design an algorithm, Bayesian
Backwards Induction (BBI), with this framework. We experimentally demonstrate
that BBI is competitive with the state of the art. However, its advantage relative to
existing BRL model-free methods is not as great as we have expected, particularly
when the additional computational burden is taken into account.

1 Introduction

Many Reinforcement Learning (RL) algorithms are grounded on the application of dynamic pro-
gramming to a Markov Decision Process (MDP) [Sutton and Barto, 2018]. When the underlying
MDP µ is known, efficient algorithms for finding an optimal policy exist that exploit the Markov
property by calculating value functions. Such algorithms can be applied to RL, where the learning
agent simultaneously acts in and learns about the MDP, through e.g. stochastic approximations,
without explicitly reasoning about the underlying MDP. Hence, these algorithms are called model-
free.

In Bayesian RL (BRL) [Ghavamzadeh et al., 2015], we represent our knowledge about the underly-
ing MDP µ through some prior distribution β over a set M of possible MDPs. This explicit repre-
sentation of uncertainty admits algorithms that can perform near-optimal exploration, in contrast to
methods that only rely on a single empirical model of the MDP, which require exploration heuris-
tics.[c.f. Vlassis et al., 2012] While model-based BRL is well-understood, many BRL algorithms try
to become model-free by calculating distributions on value functions. Unfortunately, these methods
typically make implicit assumptions or approximations about the underlying MDP distribution.
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In the rest of this section, we provide background in terms of setting and related work. In Section 2,
we explain our Inferential Induction framework and three different inference methods that emerge
from it, before instantiating one of them into a concrete procedure. Based on this, Section 3 de-
scribes the BBI algorithm. In Section 4, we experimentally compare BBI with state-of-the art BRL
algorithms. In the appendix additional experimental results are available in Appendix B and some
implementation details in Appendix C.

1.1 Setting and Notation

In this paper, we generally use P and E to refer to probability (measures) and expectations while
allowing some abuse of notation for compactness.

Reinforcement Learning (RL) is a sequential learning problem faced by agents acting in an un-
known environment µ, typically modelled as a Markov decision process [c.f. Puterman, 2005].
Definition 1.1 (Markov Decision Process (MDP)). An MDP µ with state space S and action space
A is equipped with a reward distribution Pµ(r | s) with corresponding expectation ρµ(s) and a
transition kernel Pµ(s

′|s, a) for states s, s′ ∈ S and actions a ∈ A.

At time t, the agent observes1 the environment state st, and then selects an action at. Then, it
receives and observes a reward rt and a next state st+1. The agent is interested in the utility Ut ≜∑T

k=t γ
k−trk, i.e. the sum of future rewards rt. Here, γ ∈ (0, 1] is the discount factor and T ∈

[1,∞] is the problem horizon. Typically, the agent wishes to maximise the expected utility, but other
objectives are possible.

The agent acts in the environment using a policy π = (π1, . . . , πt, . . .) that takes an action at at
time t with probability πt(at | st, rt−1, at−1, st−1, . . . , r1, a1, s1). Dependence on the complete
observation history is necessary, if the agent is learning from experience. However, when µ is
known, the policy π∗

µ maximising expected utility over finite horizon is Markovian2 of the form
πt(at | st) and is computable using dynamic programming. A useful algorithmic tool for achieving
this is the value function, i.e. the expected utility of a policy π from different starting states and
action:
Definition 1.2 (Value Function). The state value function of policy π in MDP µ is V π

µ,t(s) ≜ Eπ
µ(Ut |

st = s) and the corresponding state-action (or Q-)value function is Qπ
µ,t(s, a) ≜ Eπ

µ(Ut | st =
s, at = a). Pπ

µ and Eπ
µ denote probabilities and expectations under the process induced by π and µ.

Finally, the Bellman operator Bπ
µV (s) ≜ ρµ(s) + γ

∑
s′∈S Pπ

µ(s
′ | s)V (s′) allows us to compute

the value function recursively through V π
µ,t = Bπ

µV
π
µ,t+1.3

Bayesian RL (BRL). In BRL, our subjective belief is represented as a probability measure β over
possible MDPs. We refer to the initial belief β as the prior distribution. By interacting with the
environment until time t, the agent obtains data Dt = (s1, a1, r1, . . . , st). This data is used to
calculate a posterior distribution β(µ | Dt) that represents agent’s current knowledge about the
MDP.4 For a given belief and an adaptive policyπβ(s), we define the Bayesian value function to be:

V
πβ

β,t (s) ≜
∫
M
V

πβ

µ,t (s) dβ(µ). (1)

The Bayesian value function is the expected value function under the distribution β. The Bayes-
optimal policy achieves the Bayes-optimal value function V ∗

β,t(s) = supπ V π
β,t. Calculating V π

β,t

involves integrating V π
µ,t for all µ, while V ∗

β,t typically requires exponential time. Information about
the value function distribution can be a useful tool for constructing near-optimal policies, as well a
way to compute risk-sensitive policies.

1In the partially-observable setting, the agent instead observes another variable dependent on the state.
2For infinite horizon problems this policy is also stationary.
3In the discounted setting, the value function converges to V π

µ ≡ V π
µ,1 as T → ∞.

4This is expressible in closed form. When the MDP is discrete, a Dirichlet-product prior can be used,
or when the MDP is continuous and the dynamics are assumed to be linear, a Gaussian-Wishart prior can
be used [DeGroot, 1970]. Gaussian process inference can also be expressed in a closed-form but inference
becomes approximate because the computational complexity scales quadratically with time.
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1.2 Related Work and Our Contribution

We arrange related work in the following areas. Firstly, “model-free” methods that do not explicitly
try to take into account the uncertainty about the underlying MDP. Secondly, “model-based” meth-
ods, that explicitly maintain a distribution on MDP models. Finally, we discuss approximations to
the Bayes-optimal solution, before we outline our contributions.

Model-free Bayesian Value Functions. Bayesian value function distributions have been consid-
ered extensively in model-free Bayesian Reinforcement Learning (BRL). One of the first methods
was Bayesian Q-learning [Dearden et al., 1998], which used a normal-gamma prior on the utility
distribution. However, as i.i.d. utility samples cannot be obtained by bootstrapping from value func-
tion estimates, this idea had inherent flaws. Engel et al. [2003] developed a more sophisticated
approach, the Gaussian Process Temporal Difference (GPTD) algorithm, which has a Gaussian
process (GP) prior β(V ) on value functions. It then combines this with the likelihood function
P(D | V ) ∝

∏t
i=1 exp{−|V (si) − ri − γV (si+1)|2}. However, this makes the implicit assump-

tion that the deterministic empirical MDP model is correct. Engel et al. [2005] tried to relax this
assumption by allowing for correlation between sequentially visited states. Deisenroth et al. [2009]
developed a dynamic programming algorithm with a GP prior on value functions and an explicit GP
model of the MDP. Finally, Tang and Agrawal [2018] introduced VDQN, generalising such methods
to Bayesian neural networks. The assumptions that these model-free Bayesian methods implicitly
make about the MDP are hard to interpret, and we find the use of an MDP model independently
of the value function distribution unsatisfactory. We argue that explicitly reasoning about the joint
value function and MDP distribution is necessary to obtain a coherent Bayesian procedure. Unlike
the above methods, we calculate a value function posterior P(V |D) while simultaneously taking
into account uncertainty about the MDP.

Model-based Bayesian Value Functions. If a posterior over MDPs is available, we can calculate
a distribution over value functions in two steps: a) sample from the MDP posterior and b) calculate
the value function of each MDP. Essentially, this amounts to performing posterior sampling (PSRL,
Strens [2000], Thompson [1933]) followed by policy evaluation. Dearden et al. [1999] suggested
an early version of this approach that obtained approximate upper bounds on the Bayesian value
function and sketched a Bellman-style update for performing it online. Posterior sampling approach
was later used to obtain value function distributions in the discrete case by Dimitrakakis [2011] and
in the continuous case by Osband et al. [2016]. Finally, O’Donoghue et al. [2018] derive bounds
on the variance of the value function posterior. We instead focus on whether it is possible to com-
pute complete value function distributions exactly or approximately through a backwards induction
procedure. In particular, how can we obtain P(Vi|D) from P(Vi+1|D)?

Our Contribution. We introduce Inferential Induction, a new Bayesian Reinforcement Learning
(BRL) framework, which leads to a Bayesian form of backwards induction. Our framework allows
Bayesian inference over value functions without any implicit assumption or approximation unlike its
predecessors. The main idea is to calculate the conditional value function distribution at step i from
the value function distribution at step i + 1 analogouslto backwards induction for the expectation
(Eq. (2)). Following this, we propose a simple marginalisation techniques and design an appropriate
Monte Carlo approximation for it. We can combine this procedure with a policy optimisation mech-
anism. We use a Bayesian adaptation of dynamic programming for this and propose the Bayesian
backwards induction (BBI) algorithm. Our experimental evaluation shows that BBI is competitive
to the current state of the art. Inferential Induction framework provides the opportunity to further
design more efficient algorithms of this family.

2 Inferential Induction

Given a prior belief β, and data Dt = (s1, a1, r1, . . . , st) obtained by interaction of the agent with
the MDP, we wish to calculate the value function distribution from step t onwards, i.e. Pπ

β(Vt | Dt)
for a policy π under the belief β, conditioned on the data Dt. The main idea for doing this to
inductively calculate Pπ

β(Vi | Dt) from Pπ
β(Vi+1 | Dt) for i ∈ {t, . . . , T} as follows:

Pπ
β(Vi | Dt) =

∫
V
Pπ
β(Vi | Vi+1, Dt) dPπ

β(Vi+1 | Dt). (2)
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Let ψi+1 be a (possibly approximate) representation of Pπ
β(Vi+1 | Dt). If we can calculate the above

integral, then we can also obtain ψi ≈ Pπ
β(Vi | Dt) recursively, from time T up to the current time

step t. Then the estimation problem reduces to defining the term Pπ
β(Vi | Vi+1, Dt) appropriately.

In this paper, we describe a simple Monte Carlo method for solving the estimation problem and an
approximate dynamic programming algorithm for optimising the policy within this framework.

Integrating over Pπ
β(µ | Vi+1, Dt). A simple idea for dealing with the term linking the two value

functions is to directly marginalise over the MDP as follows:

Pπ
β(Vi | Vi+1, Dt) =

∫
M

Pπ
µ(Vi | Vi+1) dPπ

β(µ | Vi+1, Dt). (3)

This equality holds because given µ, Vi is uniquely determined by the policy π and Vi+1 through the
Bellman operator. However, it is crucial to note that Pπ

β(µ | Vi+1, Dt) ̸= Pβ(µ | Dt), as knowing
the value function gives information about the MDP.5 This is a crucial difference with “model-free”
Bayesian value function methods, which effectively hide strong assumptions about the MDP when
they perform value function inference. We expect that this approach would give superior results.
The remaining computations are rather straightforward Monte Carlo approximations.

The backwards induction step. To calculate the previous-step distribution from next-step dis-
tribution, let us now combine the induction step in (2) with the marginalisation in (3). We also
substitute an approximate representation ψi+1 for the next-step belief P(Vi+1 | Dt), to obtain the
following conditional probability measure on value functions:

ψi(B) ≜ Pπ
β(Vi ∈ B|Dt) =

∫
V

∫
M

1
{
Bπ

µVi+1 ∈ B
}
dPπ

β(µ|Vi+1, Dt) dψi+1(Vi+1)

Monte-Carlo approximation of the inner integral. We now have to leave generalities and com-
mit to some hard choices for defining and calculating Pπ

β(µ | Vi+1, Dt). Expanding this term we
obtain, for subsets of MDPs A ⊆ M, the following measure:

Pπ
β(µ ∈ A | Vi+1, Dt) =

∫
A
Pπ
µ(Vi+1) dβ(µ | Dt)∫

M Pπ
µ(Vi+1) dβ(µ | Dt)

, (4)

since Pπ
µ(Vi+1 | Dt) = Pπ

µ(Vi+1), as µ, π are sufficient for calculating Vi+1.

To compute Pπ
µ(Vi+1), we can sample rollouts from an arbitrary starting state distribution q and the

policy π for each sampled MDP µ and then marginalise over the resulting utility values U . In exact
form, this is done through the integral:

Pπ
µ(Vi+1) =

∫
S
dq(s)

∫ ∞

−∞
Pπ
µ(Vi+1 | U, s)Pπ

µ(U |s) dU.

In order to understand the meaning of the term Pπ
µ(Vi+1 | U, s), note that V π

i+1,µ(s) = Eπ
µ[U |

si+1 = s]. Thus, a rollout u from state s gives us partial information about the value function.
Finally, the starting state distribution q is used to measure the goodness-of-fit, similarly to e.g. fitted
Q-iteration6.

As a design choice, we define the density of Vi+1 given a rollout sample um in MDP µ from state
sm ∼ q to be a Gaussian with variance σ2 . If we generate Nµ number of MDPs µ(j) ∼ β(µ | Dt)
and set:

wjk ≜
∑n

m=1 e
− |V (k)

i+1
(sm)−u

j
m|2

2σ2

∑Nµ

j′=1

∑n
m=1 e

−

∣∣∣∣V (k)
i+1

(sm)−u
j′
m

∣∣∣∣2
2σ2

, (5)

we get E[wjk] = Pπ
β(µ ∈ M | Vi+1, Dt). The weight wjk can be interpreted as a measure of how

well the value function V (k)
i+1 matches the rollouts obtained from µ(j). This allows us to obtain value

function samples for step i,
V

(j,k)
i ≜ Bπ

µ(j)V
(k)
i+1, (6)

5Assuming otherwise results in a mean-field approximation. See Sec. 2.2. in the arXiv version of the paper.
6As long as q has full support over the state space, any choice should be fine. For discrete MDPs, we use a

uniform distribution q over states and sum over all of them, while we sample from q in the continuous case.
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each weighted by wjk, leading to the following Monte Carlo estimate of the value function distribu-
tion at step i

ψi(B) =
1

NVNµ

NV∑
k=1

Nµ∑
j=1

1
{
V

(j,k)
i ∈ B

}
wjk. (7)

Here,NV is the number value function samples V (k)
i+1. This ends the general description of the Monte

Carlo method. Detailed design of an algorithm depends on the representation that we use for ψi and
whether the MDP is discrete or continuous.

Section 3 gives algorithmic details, while specifications of hyperparameters and distributions are
given in Section 4.

3 Algorithms

Algorithm 1 is a concise description of the Monte Carlo procedure that we develop. At each time
step t, the algorithm is called with the prior and data D collected so far, and it looks ahead up to
some lookahead factor H . 7 We instantiate it below for discrete and continuous state spaces.

Algorithm 1 Policy Evaluation with Method 1

1: Input: Prior β, data D, lookahead H , discount γ, policy π, Nµ, NV .
2: Initialise ψH .
3: Sample M̂ ≜

{
µ(j)

∣∣ j ∈ [Nµ]
}

from β(µ | D).
4: for i = H − 1, . . . , 1 do
5: Sample V (k) ∼ ψi+1(v) for k ∈ [NV ].
6: Generate n utility samples um
7: Calculate wjk from (5) and V (j,k)

i from (6).
8: Calculate ψi from (7).
9: end for

10: return {ψi | i = 1, . . . , H}

Discrete MDPs. When the MDPs are discrete, the algorithm is straightforward. Then the belief
β(µ | D) admits a conjugate prior in the form of a Dirichlet-product for the transitions. In that case,
it is also possible to use a histogram representation for ψi, so that it can be calculated by simply
adding weights to bins according to (7). However, as a histogram representation is not convenient
for a large number of states, we model using a Gaussian ψt. In order to do this, we use the sample
mean and covariance of the weighted value function samples V (j,k)

i :

mi =
1

NVNµ

NV∑
k=1

Nµ∑
j=1

V
(j,k)
i wjk,Σi =

1

NVNµ

NV∑
k=1

Nµ∑
j=1

(V
(j,k)
i − mi)(V

(j,k)
i − mi)

⊤wjk. (8)

such that ψi = N (mi,Σi) is a multivariate normal distribution.

Continuous MDPs. In the continuous state case, we obtain ψ through fitted Q-iteration [c.f. Ernst
et al., 2005]. For each action a in a finite set, we fit a weighted linear model Qi(si, a) = sTi ωa + ϵa,
where si, ωa ∈ Rd and ϵa ∼ N (0, σ2

a). Thus, we obtain the sample mean and covariance to be:

ma
i =

1

NVNµ

NV∑
k=1

Nµ∑
j=1

(s
(j,k)
i )Tωa,Σ

a
i =

σ2
a

NVNµ

NV∑
k=1

Nµ∑
j=1

(Q
(j,k)
i (a)− ma

i )(Q
(j,k)
i (a)− ma

i )
⊤wjk.

(9)
In practice, we often use a feature map ϕ : Rd → Rf for states.

7When the horizon T is small, we can set H = T − t.
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3.1 Bayesian Backwards Induction

We now construct a policy optimisation component to use with the inferential induction based policy
evaluation and the aforementioned two approximation techniques. We use a dynamic programming
algorithm that looks ahead H steps, and at each step i calculates a policy maximising the Bayesian
expected utility in the next i+ 1 steps. We describe the corresponding pseudocode in Algorithm 2.

Algorithm 2 Line 8: Discrete MDPs. Just as in standard backwards induction, at each step, we can
calculate πi by keeping πi+1, . . . , πH fixed:

Qi(s, a) ≜ Eβ(U | si = s, ai = a,D) =

∫
M
ρµ(s, a) +

∑
s′

P(j)
µ (s′|s, a)V πi+1,...,πH

µ,i (s′)

≈
∑
j,k

[
ρµ(j)(s, a) +

∑
s′

P(j)
µ (s′|s, a)V (k)

i+1(s
′)

]
wjk

NµNV
. (10)

Algorithm 2 Line 8: Continuous MDPs. As we are using fitted Q-iteration, we can directly use
the state-action value estimates. So we simply set Qi(s, a) = Q̂i(s, a).

The Qi estimate is then used to select actions for every state. We set πi(a|s) = 1 for a =
argmaxQi(s, a) (Line 2.9) and calculate the value function distribution (Lines 2.10 and 2.11) for
the partial policy (πi, πi+1, . . . , πH).

Algorithm 2 Bayesian Backwards Induction (BBI) with Method 1

1: Input: Prior β, data D, lookahead H , discount γ, Nµ, NV .
2: Initialise ψi.
3: Sample M̂ ≜

{
µ(j)

∣∣ j ∈ [Nµ]
}

from β(µ | D).
4: for i = H − 1, . . . , 1 do
5: Sample V (k) ∼ ψi+1(v) for k ∈ [NV ].
6: Generate n utility samples ui
7: Calculate wjk from (5).
8: Calculate Qi from (10) or fitted Q-iteration.
9: Set πi(a|s) = 1 for a ∈ argmaxQi(s, a).

10: Calculate wjk from (5) and V (j,k)
i from (6) with policy πi: V

(j,k)
i ≜ Bπi

µ(j)V
(k)
i+1.

11: Calculate ψi from (8) or (9).
12: end for
13: return π = (π1, . . . , πH).

4 Experimental Analysis

For performance evaluation, we compare Bayesian Backwards Induction (BBI, Alg. 2) with explo-
ration by distributional reinforcement learning [VDQN, Tang and Agrawal, 2018]. We also com-
pare BBI with posterior sampling [PSRL, Strens, 2000, Thompson, 1933] for the discrete MDPs
and with Gaussian process temporal difference [GPTD, Engel et al., 2003] for the continuous MDPs.
First, we describe the experimental setup and the priors used for implementation. In Section 4.1, we
analyse the results obtained for different environments in terms of average reward obtained over
time. Comparisons with Multi-MDP Backwards Induction [Dimitrakakis, 2011, MMBI], Bayesian
Sparse Sampling [Wang et al., 2005, BSS] and Bayesian Q-Learning [Dearden et al., 1998, BQL]
are available in the appendix.

Parameters. We run the algorithms for the infinite-horizon formulation of value function with
discount factor γ = 0.99. Each algorithm updates its policy at steps tk = k(k+1)

2 , where k increases
as 1, 2, . . .. This sequence of tk’s causes a total of 1413 updates in 106 steps. We set the lookahead
H to 100 and 20 for discrete and continuous MDPs respectively. More implementation details can
be found in the appendix.

Prior. For discrete MDPs, we use Dirichlet Dir(α) priors over each of the transition probabilities
P(s′|s, a). The prior parameter α for each transition is set to 0.5. We use separate NormalGamma
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Figure 1: Evolution of average reward for NChain, DoubleLoop, LavaLake 10 × 10, Maze and
InvertedPendulum. The results are averaged over 30 runs of length 105 for the continuous Inverted
Pendulum. The discrete environment runs are of length 106 (106 for Maze) with 50 runs for NChain
and DoubleLoop and 30 runs for Maze and LavaLake 10×10. The runs are exponentially smoothed
with a half-life 1000 and 2500 before averaging for the discrete and continuous runs respectively.

NG(µ, κ, α, β) priors for each of the reward distributions P(r|s, a). We set the prior parameters to
[µ0, κ0, α0, β0] = [0, 1, 1, 1].

For continuous MDPs, we use factored Bayesian Multivariate Regression [Minka, 2001] models as
priors over transition kernels and reward functions for the continuous environments. This implies
that the transition kernel P(s′|s, a) and reward kernel P(r|s, a) modelled as N (ATrans

a s,Σ) and
N (AReward

a s, σ2). Σ is sampled from inverse Wishart distribution with corresponding d × d di-
mensional scale matrix, while σ is sampled from inverse Gamma with prior parameters ( 12 ,

1
2 ). For

transitions, we set the prior parameters to Ψ0 = 0.001I and degrees of freedom ν0 = rank(Ψ0).

Feature Map. For InvertedPendulum we use the 10 dimensional feature map ϕ : Rd → Rf used
by Lagoudakis and Parr [2003] for BBI and GPTD such that the modelling becomes P(s′ |ϕ(s), a)
and P(r |ϕ(s), a). VDQN works directly on the underlying state s as it uses a neural network. We
also add a regularizing term, λI , λ = 0.01 to the diagonal of the fitted Q-iteration fit. The choice of
state distribution q(s) is of utmost importance in continuous environments. In the continuous envi-
ronment, we experimented with a few options, trading of sampling states from our history, sampling
from the starting configuration of the environment and sampling from the full support of the state
space.

Description of Environments We evaluate the algorithms on four discrete (NChain [Strens, 2000],
DoubleLoop [Strens, 2000], LavaLake [Leike et al., 2017] and Maze [Strens, 2000]) and one con-
tinuous environment (InvertedPendulum Lagoudakis and Parr [2003]). See the appendix for more
details.

4.1 Experimental Results

The following experiments are intended to show that the general methodological idea is indeed
sound, and can potentially lead to high performance algorithms. More results, comparative experi-
ments, as well as tests of convergence, are provided in the appendix.

Figures 1a, 1b, 1c, 1d illustrate the evolution of average reward for BBI, PSRL and VDQN on
the discrete MDPs.8 BBI is competitive with PSRL, which has good exploration properties, while
VDQN generally performs worse. Figure 1e shows a comparison with state-of-the art algorithms,
such as VDQN and GPTD. Our algorithm is competitive, and in particular performs much better
than GPTD, while it performs similarly to VDQN, which is slightly worse initially and slightly
better later in terms of average steps survived. This performance could partially be explained by the
use of a linear value function Q(ϕ(s), a), in contrast to VDQN which uses a neural network.

4.2 Comparison of Computation Times

In Table 1 we can see the timing results for the different algorithms when run on Intel(R) Core(TM)
i9-9900K CPU @ 3.60GHz. Here we can see that PSRL is faster and scales better due to the simplic-
ity of using a single MDP. It is probable that BBI could obtain speedups through improve sampling

8More detailed figures with error bars and percentiles as well as comparisons with MMBI, BSS and BQL
are available in the appendix.
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Table 1: CPU-time (in seconds) used for each algorithm. Chain has 5 states and is run for 5000 steps
(100 policy updates) while Maze has 264 states and is run for 20 steps (5 policy updates).

BBI PSRL MMBI

Chain 14 5 19
Maze 921 6 256

methods, alternative kernels, or a different marginalisation. We also compared it with MMBI, which
samples of multiple MDP models from the posterior and performs approximate dynamic program-
ming to obtain a policy, with the main difference being that MDPs are sampled only once, instead
of at every backwards induction step.

5 Discussion and Future Work

New Insights. We offered a new perspective on Bayesian value function estimation. The central
idea is to calculate the conditional value function distribution Pπ

β(Vi | Vi+1, D) using the data and
to apply it inductively for computing the marginal value function distribution Pπ

β(Vi | D). We
then designed a straightforward Monte Carlo approximation and combined it with a suitable policy
optimisation mechanism and showed that it can be competitive with the state of the art.

In order to place it in context, standard backwards induction (i.e. value iteration) calculates
Vi = Bπ

µVi+1 and distributional reinforcement learning methods calculate Pπ
µ(Ui | Ui+1), both

for a given, underlying MDP. In an RL setting, this can be replaced either through stochastic approx-
imation, such as Q-learning, or through an explicit empirical model.

Inferential Induction differs from existing Bayesian value function methods, which essentially cast
the problem into regression. For example, GPTD [Engel et al., 2003] can be written as Bayesian
inference with a GP prior over value functions and a data likelihood that uses a deterministic em-
pirical model of the MDP. While this can be relaxed by using temporal correlations as in [Engel
et al., 2005], the fundamental problem remains. Even though such methods have practical value,
we show that Bayesian estimation of value functions requires us to explicitly think about the MDP
distribution as well.

Algorithm Design. We use specific approximations for discrete and continuous MDPs to propose
the Bayesian Backwards Induction (BBI) algorithm. The algorithm we developed from this family
appears promising, as we are able to outperform methods that implicitly use the empirical model
of the MDP, such as GPTD. This shows that the inference is inherently sound. We see that BBI is
also competitive with state-of-the art methods like PSRL, and it generally outperforms algorithms
relying on approximate inference, such as VDQN.

Limitations. We have observed that the particular method, BBI, that we have developed requires a
significant number of samples for it to obtain a good performance, which makes it inherently slow.
Our timing analysis in Table 1 shows that methods like PSRL may work significantly faster as they
have to keep track of only one MDP and are also simpler to implement. It is probable that BBI
could obtain speedups from using sparse posteriors or sampling from state space in the importance
sampling step of the algorithm.

For the continuous environments, we have used weighted linear model and linear priors for updating
and tracking the value function distribution. Thus, we rely on pre-defined features (e.g. the fea-
tures from Lagoudakis and Parr [2003]) which are problem specific, not always efficient, and can
be replaced more efficient functional approximators, such as neural networks (similar to Tang and
Agrawal [2018]).

Since our aim has been to propose the framework, we have emphasised one policy evaluation and
used simpler methods, such as Q-update and fitted Q-iteration, for policy update. It is possible
to incorporate this method with policy gradient methods to design more efficient algorithms. This
point shows the flexibility of our approach as a framework and weakness as a specifically designed
algorithm, which is a topic of future investigation.
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A Description of Environments

NChain. This is a discrete stochastic MDP with 5 states, 2 actions [Strens, 2000]. Taking the first
action returns a reward 2 for all states and transitioning to the first state. Taking the second action
returns 0 reward in the first four states (and the state increases by one) but returns 10 for the fifth state
and the state remains unchained. There is a probability of slipping of 0.2 with which its action has
the opposite effect. This environment requires both exploration and planning to be solved effectively
and thus acts as an evaluator of posterior estimation, efficient performance and effective exploration.

DoubleLoop. This is a slightly more complex discrete deterministic MDP with with two loops of
states [Strens, 2000]. Taking the first action yields traversal of the right loop and a reward 1 for
every 5 state traversal. Taking the second action yields traversal of the left loop and a reward 2 for
every 5 state traversal. This environment acts as an evaluator of efficient performance and effective
exploration.

LavaLake. This is a stochastic grid world [Leike et al., 2017] where every state gives a reward of -1,
unless you reach the goal, in which case you get 50, or fall into lava, where you get -50. We tested
on the 5 × 7 and a 10 × 10 versions of the environment. The agent moves in the direction of the
action (up,down,left,right) with probability 0.8 and with probability 0.2 in a direction perpendicular
to the action.

Maze. This is a grid world with four actions (ref. Fig. 3 in [Strens, 2000]). The agent must obtain
3 flags and reach a goal.There are 3 flags throughout the maze and upon reaching the goal state
the agent obtains a reward of 1 for each flag it has collected and the environment is reset. Similar
to LavaLake, the agent moves with probability 0.9 in the desired direction and 0.1 in one of the
perpendicular directions. The maze has 33 reachable locations and 8 combination of obtained flags
for a total of 264 states.

InvertedPendulum. To extend our results for the continuous domain we evaluated our algorithm
in a classical environment described in [Lagoudakis and Parr, 2003]. The goal of the environment
is to stabilize a pendulum and to keep it from falling. If the pendulum angle θ falls outside [−π

2 ,
π
2 ]

then the episode is terminated and the pendulum returned to its starting configuration. The state
dimensionality is a tuple of the pendulum angle as well as its angular velocity, θ̇, s = (θ, θ̇). The
environment is considered to be completed when the pendulum has been kept within the accepted
range for 3000 steps. For further environment details, see [Lagoudakis and Parr, 2003].

B Additional Results

Here we present some experiments that examine the performance of inferential induction in terms of
value function estimation, inference and utility obtained. For the latter we present additional results
against other algorithms, as well as one new continuous environment.

B.1 Bayesian Value Function Estimation

In this experiment, we evaluate the Bayesian (i.e. mean) value function of the proposed algorithm
(BBI) with respect to the upper bound on the Bayes-optimal value function. The upper bound is
calculated from

∫
M maxπ V

π
µ dβ(µ | D). We estimate this bound through 100 MDP samples for

NChain. We plot the time evolution of our value function and the simulated Bayes bound in Figure 2
for 105 steps. We observe that this is becomes closer to the upper bound as we obtain more data.

B.2 Value Function Distribution Estimation

Here we evaluate whether inferential induction based policy evaluation (Alg. 1) results in a good
approximation of the actual value function posterior. In order to evaluate the effectiveness of esti-
mating the value function distribution using inferential induction (Alg. 1), we compare it with the
Monte Carlo distribution and the mean MDP. We compare this for posteriors after 10, 100 and 1000
time steps, obtained with a fixed policy in NChain that visits all the states, in Figure 3 for 5 runs
of Alg. 1. The fixed policy selects the first action with probability 0.8 and the second action with
probability 0.2. The Monte Carlo estimate is done through 1000 samples of the value function vector
(γ = 0.99). This shows that the estimate of Alg. 1 reasonably captures the uncertainty in the true
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Figure 2: Comparisons of the achieved value functions of BBI with the upper bound on Bayes-
optimal value functions. Upper bound and BBI are calculated from 100 MDPs and plotted for 105
time steps.

distribution. For this data, we also compute the Wasserstein distance [Fournier and Guillin, 2015]
between the true and the estimated distributions at the different time steps as can be found in Table 2.
There we can see that the distance to the true distribution decreases over time.
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Figure 3: Comparison of value function posteriors obtained by inferential induction and Monte Carlo
evaluations at different time steps for a fixed policy. We plot for five runs of inferential induction at
each time step. The value of the mean MDP is shown by a vertical line.

Table 2: Wasserstein distance to the true distribution of the value function, for Alg. 1 and the mean
MDP model, for NChain. For Inferential Induction, the distances are averaged over 5 runs. The
distances correspond to the plots in Figure 3.

Time steps Inf. Induction Mean MDP

10 22.80 30.69
100 16.41 17.90
1000 4.18 4.27

B.3 Further Comparisons on Discrete Environments: MMBI, BSS, BQL

We have also run additional experiments with other Bayesian algorithms. In particular, here we show
comparisons with MMBI [Dimitrakakis, 2011], BSS [Wang et al., 2005] and BQL Dearden et al.
[1998].

As can be seen in Figures 4 to 6, BBI performs similarly to to MMBI and PSRL. This is to be
expected, as the optimisation algorithm used in MMBI is close in spirit to BBI, with only the in-
ference being different. In particular, this algorithm takes k MDP samples from the posterior, and
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Figure 4: Evolution of average reward for NChain and DoubleLoop environments, averaged over 50
runs of length 106 for each algorithm. For computational reasons BSS is only run for 104 steps. The
runs are exponentially smoothened with a half-life 1000 before averaging.

then performs backward induction in all the MDP simultaneously to obtain a Markov policy. In turn,
PSRL can be seen as a special case of MMBI with just one sample. This indicates that the BBI
inference procedure is sound. The near-optimal Bayesian approximation performs slightly worse in
this setting, perhaps because it was not feasible to increase the planning horizon sufficiently.9 Fi-
nally, the less principled approximations, like VDQN and BQL do not manage to have a satisfactory
performance in these environments.
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Figure 5: Evolution of average reward for 5 × 7 and 10 × 10 LavaLake environments. The results
are averaged over 20 and 30 runs respectively with a length of 106 for each algorithm. The runs are
exponentially smoothened with a half-life 1000 before averaging.

B.4 Analysis of Variation in Performance

In Figures 7 to 11, we illustrate the variation in performance of the different algorithms for each en-
vironment. The black lines illustrate the standard error and the 5th and 95th percentile performance
is highlighted. The results indicate that BSS is the most stable algorithm, followed by BBI, MMBI
and PSRL, which nevertheless have better mean performance. VDQN is quite unstable, however.

9For computational reasons we used a planning horizon of two with four next state samples and two reward
samples in each branching step. We hope to be able to run further experiments with BSS at a later point.
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C Implementation Details

In this section we discuss some additional implementation details, in particular how exactly we per-
formed the rollouts and the selection of some algorithm hyperparameters, as well as some sensitivity
analysis.

C.1 Computational Details of Rollouts

To speed up the computation of rollouts, we have used three possible methods that essentially boot-
strap previous rollouts or use value function samples:

uµ,πt

t (s) = r(s, a) + γu
µ,πt+1

t+1 (s′) (11)

uµ,πt

t (s) =
∑
s′

r(s, a) + γP (s′|s, a)uµ,πt+1

t+1 (s′) (12)

uµ,πt

t (s) =
∑
s′

r(s, a) + γP (s′|s, a)Vt+1(s
′) (13)

where Vt+1 ∼ ψt+1. In experiments, we have found no significant difference between them. All
results in the paper use the formulation in (13).

C.2 Hyperparameters

For the experiments, we use the following hyperparameters.

We use 10 MDP samples, a planning horizon T of 100, γ = 0.99 and we set the variance of the
Gaussian to be σ2 = V 2

span10
−4, where Vspan is the span of possible values for each environment

(obtained assuming maximum and minimum reward). We use Eq. 13 for rollout computation with
10 samples from Vt+1 and 50 samples from Vt (20 for LavaLake 10× 10 and Maze). If the weights
obtained in (5) are numerically unstable we attempt to resample the value functions and then double
σ until it works (but is reset to original value when new data is obtained). This is usually only a
problem when very little data has been obtained.

Varying Horizon T . In order to check the sensitivity on the choice of horizon T , we perform a
sensitivity analysis with T = 10, 20, 50, 100. In Figure 12, we can see that varying the horizon has
a very small impact for NChain and Maze environments.
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Figure 6: Evolution of average reward for the Maze environment. The results are averaged over 30
runs with a length of 106 for each algorithm. The runs are exponentially smoothened with a half-life
1000 before averaging.
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Figure 7: Evolution of average reward for NChain environment with runs of length 106 for each
algorithm. For computational reasons BSS is only run for 104 steps. The runs are exponentially
smoothened with a half-life 1000. The mean as well as the 5th and 95th percentile performance is
shown for each algorithm and the standard error is illustrated with black lines.
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Figure 8: Evolution of average reward for DoubleLoop environment with runs of length 106 for each
algorithm. For computational reasons BSS is only run for 104 steps. The runs are exponentially
smoothened with a half-life 1000. The mean as well as the 5th and 95th percentile performance is
shown for each algorithm and the standard error is illustrated with black lines.
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Figure 9: Evolution of average reward for LavaLake 5× 7 environment with runs of length 106 for
each algorithm. The runs are exponentially smoothened with a half-life 1000. The mean as well
as the 5th and 95th percentile performance is shown for each algorithm and the standard error is
illustrated with black lines.
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Figure 10: Evolution of average reward for LavaLake 10× 10 environment with runs of length 106

for each algorithm. The runs are exponentially smoothened with a half-life 1000. The mean as well
as the 5th and 95th percentile performance is shown for each algorithm and the standard error is
illustrated with black lines.
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Figure 11: Evolution of average reward for Maze environment with runs of length 107 for each
algorithm. The runs are exponentially smoothened with a half-life 1000. The mean as well as the
5th and 95th percentile performance is shown for each algorithm and the standard error is illustrated
with black lines.
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Figure 12: Illustration of the impact of varying the horizon T in BBI. The results are averaged over
50 and 30 runs respectively with a length of 106 for each algorithm. The runs are exponentially
smoothened with a half-life 1000 before averaging.
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