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ABSTRACT

Transformers have the capacity to act as supervised learning algorithms: by prop-
erly encoding a set of labeled training (“in-context”) examples and an unlabeled
test example into an input sequence of vectors of the same dimension, the forward
pass of the transformer can produce predictions for that unlabeled test example.
A line of recent work has shown that when linear transformers are pre-trained
on random instances for linear regression tasks, these trained transformers make
predictions using an algorithm similar to that of ordinary least squares. In this
work, we investigate the behavior of linear transformers trained on random lin-
ear classification tasks. Via an analysis of the implicit regularization of gradient
descent, we characterize how many pre-training tasks and in-context examples
are needed for the trained transformer to generalize well at test-time. We further
show that in some settings, these trained transformers can exhibit “benign overfit-
ting in-context”: when in-context examples are corrupted by label flipping noise,
the transformer memorizes all of its in-context examples (including those with
noisy labels) yet still generalizes near-optimally for clean test examples.

1 INTRODUCTION

A key feature of transformer-based large language models (LLMs) is their ability to perform in-
context learning: by providing a few labeled examples to a trained transformer with an unlabeled
example for which the user wants a prediction, LLMs can formulate accurate predictions without
any updates to their parameters (Brown et al., 2020). This ability to perform in-context learning is in-
fluenced by the interplay between tokenization of inputs (i.e. how to feed data into the transformer),
pretraining datasets, optimization algorithms used for pre-training, the particular architecture of the
transformer, as well as the properties of the in-context examples that are provided at test time.

A number of recent works have sought to develop a deeper theoretical understanding of in-context
learning by investigating transformers trained on classical supervised learning tasks. This line of
work was initiated by the experiments of Garg et al. (2022), who showed that when transformers are
trained on random instances of supervised learning problems, they learn to implement supervised
learning algorithms at test-time: e.g., when training GPT2 architectures (Radford et al., 2019) on
random linear regression tasks with weights sampled from a Gaussian prior, the transformer learns
to implement an algorithm similar to ordinary least squares. This led to a series of follow-up works
which analyzed the dynamics of gradient descent/flow over simplified linear transformer architec-
tures when trained on linear regression tasks (von Oswald et al., 2022; Akyurek et al., 2022), some
providing guarantees for how many tasks or samples were needed to generalize well (Zhang et al.,
2024; Ahn et al., 2023; Wu et al., 2024).

In this work, we analyze the behavior of linear transformer architectures which are trained by
gradient descent on the logistic or exponential loss over random linear classification tasks. We
consider a restricted linear attention model, a setting considered in prior works (Wu et al., 2024;
Kim et al., 2024). We assume that pre-training tasks are sampled from random instances of class-
conditional Gaussian mixture model data, i.e. for some R > 0, covariance matrix Λ and for each
task τ = 1, . . . , B we have

µτ
i.i.d.∼ Unif(R · Sd−1), yτ,i

i.i.d.∼ Unif({±1}), zτ,i
i.i.d.∼ N(0,Λ), xτ,i = yτ,iµτ + zτ,i.

We assume that test-time in-context examples also come from class-conditional Gaussian mixture
models as above but with two important differences. First, the signal-to-noise (determined by R) at
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Training Data (In-Context Examples)
France: Paris

UK: Glasgow

USA: DC

Transformer

Test Examples
France: ? → Paris

UK: ? → Glasgow

USA: ? → DC

Canada: ? → Ottawa

Figure 1: Benign overfitting in-context: after pre-training (not shown), when given a sequence of
in-context examples, the transformer memorizes noisy labels yet still generalizes well to unseen test
examples.

test time can differ from those seen during pre-training. Second, we allow for label-flipping noise to
be present at test time, i.e. we flip labels yi 7→ −yi with probability p.

Our first contribution is an analysis of how many pre-training tasks are needed in order to generalize
well at test-time. We find that after pre-training the transformer can tolerate smaller SNR than those
tasks which it was trained on. Moreover, we find that at test time the transformer can tolerate label-
flipping noise, even though the pre-training data does not have label-flipping noise. Thus, even when
pre-training on simple and easy-to-learn datasets, the transformer can generalize on more complex
tasks. Our proof follows by an explicit analysis of the implicit regularization due to gradient descent
during pre-training. To our knowledge, this is the first theoretical result on in-context learning for
linear classification.

Our second contribution is the finding that the trained transformer can exhibit “benign overfitting in-
context”: namely, if the test-time sequence is subject to label-flipping noise, then in some settings the
transformer memorizes the in-context training data yet still generalizes near-optimally. The precise
setting where this occurs requires the features to lie in a high-dimensional space and for the SNR to
be relatively small, a set of conditions observed in prior works on benign overfitting in classification
tasks (Chatterji & Long, 2021; Frei et al., 2022; 2023a). Figure 1 illustrates what this phenomenon
would look like in the language setting. To the best of our knowledge, no prior work demonstrated
that transformers could exhibit benign overfitting.

2 RELATED WORK

In-context learning for supervised learning tasks. Following the initial experiments of Garg
et al. (2022), a number of works sought to understand what types of algorithms are implemented
by transformers when trained on supervised learning tasks. Akyurek et al. (2022) and von Oswald
et al. (2022) used approximation-theoretic and mechanistic approaches to understand how a variety
of transformer architectures could implement linear regression algorithms. Bai et al. (2024) showed
that transformers could implement a variety of classical algorithms used for different supervised
learning tasks, e.g. ridge regression, Lasso, and gradient descent on two-layer networks. Zhang et al.
(2024), Ahn et al. (2023) and Mahankali et al. (2024) examined the landscape of single-layer linear
transformers trained on linear regression tasks, with Zhang et al. (2024) additionally developing
guarantees for convergence of (non-convex) gradient flow dynamics. There are other works which
examine training of transformers on data coming from hidden Markov chains (Edelman et al., 2024)
or nonparametric function classes (Kim et al., 2024). The most closely related work to this one
is Wu et al. (2024), who focused on a convex linear transformer architecture, as we do in this work,
trained on linear regression tasks with SGD. They provided task and (in-context) sample complexity
guarantees when training by SGD. In contrast, we develop guarantees for the classification setting,
and we develop guarantees via an analysis of the implicit regularization of GD.

Implicit regularization in transformers. The starting point for our analysis of the task complex-
ity of pre-training and the sample complexity of in-context learning is an analysis of the implicit
regularization of the optimization algorithm. We outline the most related works here and refer the
reader to the survey by Vardi (2022). The convex linear transformer architecture we study is linear
in (the vectorization of) its parameters, which by Soudry et al. (2018) implies that gradient descent
converges in direction to the max-margin solution. The more general class of linear transformer
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architectures are non-convex in general, but certain subclasses of them are homogeneous in their
parameters and hence converge (in direction) to KKT points of max-margin solutions (Lyu & Li,
2020; ?). Another line of work seeks to understand the implicit bias of GD for softmax-based trans-
formers (Ataee Tarzanagh et al., 2023; Tarzanagh et al., 2023; Thrampoulidis, 2024; Vasudeva et al.,
2024), typically with more stringent assumptions on the structure of the training data.

Benign overfitting. The ability for neural networks to overfit to noise yet still generalize
well (Zhang et al., 2017) led to a significant line of work on reconciling this phenomenon with
classical learning theory. We focus on the most directly relevant works here and point the reader to
the surveys Bartlett et al. (2021); Belkin (2021) for a more extensive review. Prior works have shown
that kernel-based methods (Belkin et al., 2019) and the ordinary least squares solution (Bartlett et al.,
2020) can exhibit benign overfitting in regression tasks, and that the max-margin solution can in clas-
sification tasks (Chatterji & Long, 2021; Frei et al., 2023a). Our proof technique comes from the
works Frei et al. (2023c;a), where it was shown that the max-margin solution over 2-layer neural
nets behaves similarly to a nearly uniform average of the training data and that this average can
exhibit benign overfitting in class-conditional Gaussian mixture models. We similarly show that the
forward pass of a pre-trained transformer behaves similarly to an average over the in-context training
examples, and use this to show benign overfitting.

3 PRELIMINARIES

In this section we introduce the pre-training distribution, the particular transformer architecture we
consider, and the assumptions on the pre-training data.

3.1 NOTATION

We denote matrices with capital letters W and vectors and scalars in lowercase. The Frobenius
norm of a matrix is denoted ∥W∥F , and its spectral norm as ∥W∥2. We use a ∧ b := min(a, b)

and a ∨ b = max(a, b). We use the standard O(·),Ω(·), and Θ(·) notations, where Õ, Ω̃, Θ̃ ignore
logarithmic factors. We use 1(x) as the indicator function, which is 1 if x is true and 0 otherwise.
We denote [M ] = {1, 2, . . . ,M} for a positive integer M . In Table 1 in the appendix, we collect all
notation used throughout the paper.

3.2 SETTING

We consider classification tasks where the labels yi ∈ {±1} and features x ∈ Rd. We assume the
pretraining data satisfies the following throughout the paper.

Assumption 3.1. Let Λ ≻ 0 be a symmetric positive-definite d × d matrix and let B,N ≥ 1 and
R > 0. Let τ = 1, . . . B and i = 1, . . . , N + 1.

1. Let µτ
i.i.d.∼ Unif(R · Sd−1) be uniform on the sphere of radius R in d dimensions.

2. Let zτ,i
i.i.d.∼ N(0,Λ), and yτ,i

i.i.d.∼ Unif({±1}), where µτ , zτ,i and yτ,i are mutually
independent.

3. Set xτ,i := yτ,iµτ + zτ,i.

We therefore assume each task is a random instance of a class-conditional Gaussian mixture model,
where the signal-to-noise ratio is governed by how large R is relative to d: when R is larger, learning
is easier.

We tokenize samples to be fed into the transformer in the following way: for a sequence of N labeled
examples (xi, yi)

N
i=1 which we use to formulate a prediction for an unlabeled test example xN+1,

we concatenate the (xi, yi) pairs into a d + 1 dimensional vector and tokenize the test example as
(xN+1, 0),

E =

(
x1 x2 · · · xN xN+1

y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (1)
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In the standard softmax-based attention with a single head (Vaswani et al., 2017), the transformer is
defined in terms of parameters WV ∈ Rde×de , WK ,WQ ∈ Rdk×de . If θ = (WK ,WQ,WV ) then
softmax attention computes

f(E; θ) = E +WV E · softmax

(
(WKE)⊤WQE

ρN,de

)
,

where ρN,de is a normalization factor which is not optimized (but which may depend on N and de).
In linear transformers, the softmax is replaced with the identity function. Following prior work (von
Oswald et al., 2022; Zhang et al., 2024; Ahn et al., 2023), we merge the K and Q matrices into
WKQ := (WK)⊤WQ and we consider an objective function where the aim is to use the first N
columns of (1) to formulate predictions for xN+1, whereby the bottom-right corner of the output

matrix of f(E; θ) serves as this prediction. Writing W∆ =

(
W∆

11 w∆
12

(w∆
21)

⊤ w∆
22,

)
for ∆ ∈ {V,KQ},

for the linear transformer architecture, this results in the prediction

ŷ(E; θ) =
(
(wV21)

⊤ wV22
)
· 1

N
EE⊤ ·

(
WKQ

11

(wKQ21 )⊤

)
xN+1.

Due to the product of matrices appearing above, the resulting objective function is non-convex,
which makes the analysis of its training dynamics complex. In this work, we follow Wu et al.
(2024); Kim et al. (2024) and instead consider a convex parameterization of the linear transformer
which results from taking wKQ21 = wV21 = 0 and setting wV22 = 1. This results in the following
prediction for the label of xN+1,

ŷ(E;W ) =

(
1

N

N∑
i=1

yixi

)⊤

WxN+1. (2)

That is, ŷ(E;W ) corresponds to the predictions coming from a linear predictor trained by one
step of gradient descent on the logistic or squared loss (initialized at 0) but where the parameter
W is a (learned) matrix preconditioner. Prior work by Zhang et al. (2024) showed that when a
single-layer linear transformer architecture is trained by gradient flow on linear regression tasks, it
learns a function of the same type, where the preconditioner was found to correspond to the inverse
covariance matrix of the pretraining data.

For each task τ , denote the embedding matrix Eτ as the one formed using labeled examples
(xτ,i, yτi)

N
i=1 from Assumption 3.1 as per (1). We consider linear transformers which are trained on

the prediction of the last token using the logistic or exponential loss, namely

L̂(W ) :=
1

B

B∑
τ=1

ℓ
(
yτ,N+1 · ŷ(Eτ ;W )

)
), ℓ ∈ {q 7→ log(1 + exp(−q)), q 7→ exp(−q)}.

We are interested in the behavior of gradient descent on this objective,

Wt+1 = Wt − α∇L̂(Wt).

Note that ŷ(E;W ) is homogeneous in W (linear in vec(W )) and so by Soudry et al. (2018) we
know that gradient descent has an implicit bias towards maximum-margin solutions, as we recall in
the following theorem:

Theorem 3.2 (Soudry et al. (2018)). Define the ℓ2-max margin solution as

WMM := argmin

{
∥U∥2F :

(
1/N

∑N
i=1 yτ,ixτ,i

)⊤
Uyτ,N+1xτ,N+1 ≥ 1, ∀τ = 1, . . . , B

}
. (3)

If there exists U which satisfies the constraints in (3), then provided α is sufficiently small, then
W (t) converges in direction to WMM, i.e. for some constant c > 0 we have Wt/∥Wt∥ → cWMM.

This theorem shows that the max-margin solution (3) characterizes the limiting behavior of gra-
dient descent. In the remainder, we will focus on the max-margin solution and derive all of the
generalization guarantees as a consequence of the properties of the max-margin solution.
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We next introduce the assumptions we need to ensure that the max-margin solution is well-behaved
enough that we can later derive in-context learning guarantees. We fix a probability threshold δ ∈
(0, 1), and we shall show that all of our results hold with probability at least 1 − δ provided the
absolute constant C > 1 appearing below is a large enough universal constant (independent of d, B,
Λ, and δ).

(A1) R is large enough so that

R2 ≥ C2
√
d tr(Λ2) ∨ C2

(
tr(Λ)

d
∨
√

tr(Λ2)

N
∨ ∥Λ∥2

)
log(2B/δ)

(A2) For some cB > 0, we have B ≥ cBd, and

(A3) d ≥ C log4(2B2/δ).

The first assumption (A1) guarantees that the signal-to-noise ratio is sufficiently large (recall that Λ
is the covariance of zτ,i in the identity xτ,i = yτ,iµτ + zτ,i); provided B is polynomial in d, this
assumptions is satisfied for Λ = I when R ≫

√
d. The second assumption (A2) specifies how many

pre-training sequences we (pre-)train on; we shall see later on that the generalization error achieved
for in-context examples is determined in part by how small cB ∧ 1 is (cB ∧ 1 larger ensures better
generalization). Note that we allow cB to be non-constant (so that od(d) tasks as permitted). The
assumption (A3) is needed for a technical reason, namely to ensure certain concentration bounds
regarding sub-exponential random variables. Finally, note the near-independence of these assump-
tions on the number of examples N per task during training: in many situations (e.g., Λ = I), we
only require a single demonstration (i.e., N = 1) of the form (xτ,1, yτ,1).

Finally, we introduce the distribution on the test-time in-context examples. We allow for a more
general distribution at test-time than the one used during pre-training, where the in-context examples
can have label-flipping noise and a potentially smaller cluster mean, corresponding to a potentially
smaller signal-to-noise ratio. We assume, for i = 1, . . . ,M ,

1. ỹi ∼ Unif({±1}).
2. yi = ỹi w.p. 1− p and yi = −ỹi w.p. p (label flipping noise).

3. µ ∼ R̃ · Unif(Sd−1).

4. zi ∼ N(0,Λ) and xi = ỹiµ+ zi.

We assume the random variables ỹi, µ, zi are all mutually independent. We allow for the size of the
cluster mean R̃ at test-time to potentially be different than the size of the cluster mean R from the
pretraining data, and indeed we shall see in Theorem 4.1 below that we can permit a smaller R̃ than
what we require for R. Also note that we allow for a potentially different sequence length at test-
time (M ) than was observed during training (N ); prior work in the linear regression setting showed
that the transformer’s behavior can depend quite differently on M vs. N (Zhang et al., 2024).

4 MAIN RESULTS

4.1 GENERALIZATION

Recall that the transformer with parameters W makes predictions by embedding the set
{(xi, yi)}Mi=1 ∪ {(xM+1, 0)} into a matrix E and then using sign(ŷ(E;W )) as our prediction for
yM+1. Our goal is to understand the expected risk of the max-margin solution, i.e. the probability
of misclassification of the test example (xM+1, yM+1): using (2),

R(WMM) = P(xi,yi)
M+1
1 , µ(sign(ŷ(E;WMM)) ̸= yM+1)

= P

[ 1

M

M∑
i=1

yixi

]⊤
WMMyM+1xM+1 < 0

 . (4)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Our main result regarding generalization is the following theorem.

Theorem 4.1. Let δ ∈ (0, 1) be arbitrary. Suppose that p = 1/2 − cp where cp ∈ (0, 1/2] is
an absolute constant. There are absolute constants C > 1, c > 0 depending only on cp such that
if assumptions (A1), (A2), and (A3) hold, then with probability at least 1 − 10δ over the draws of
{µτ , (xτ,i, yτ,i)N+1

i=1 }Bτ=1, when sampling a new task {µ, (xi, yi)M+1
i=1 }, the max-margin solution (3)

satisfies

P(xi,yi)
M+1
i=1 , µ

(
sign(ŷ(E;WMM)) ̸= yM+1

)
≤ (p+ 2 exp(−cM))1(p > 0) + 2 exp

(
−cρ

√
d
)
+ 4 exp

(
− cρR̃

∥Λ1/2∥2

)
+ 2 exp

(
−cρM1/2R̃2

∥Λ∥2
√
d

)
,

where ρ := cB∧1
log2(2B2/δ)

.

Let us make a few observations on the above theorem. For simplicity let us assume that the covari-
ance matrix Λ = Id, so that ∥Λ1/2∥ = ∥Λ∥ = 1, and let us assume we want the results to hold with
a fixed probability threshold of δ = 0.001. Then assumptions (A1) through (A3) are satisfied for
any N ≥ 1 examples per task so long as R = ∥µτ∥ ≫ C

√
d. For the test error, there are a number

of different regimes which require different considerations.

• Due to the dependence on ρ, the test error degrades when cB gets smaller, and we require
cB = Ω̃(d−1/2) to achieve a non-vacuous generalization bound, i.e. B = Ω̃(d1/2) pre-
training tasks suffices if R̃ and M are large enough.1

• While we require pre-training signal R = Ω(
√
d), to achieve test error near the noise rate

at test-time the signal R̃ can be as small as R̃ = Ω̃(1) provided M is large enough and
ρ = Ω̃(1). This means the signal-to-noise ratio at test-time can be significantly smaller
than what was observed during pre-training.

• When p = 0, there is no label-flipping noise. Here it is possible to have as few as one
example per task (M = 1) provided R̃ = Ω̃(d1/4), and ρ = Ω̃(1).

• When p > 0, there is label-flipping noise. The same analysis holds as in the p = 0 setting
except that we always require M = Ω̃(1), which makes intuitive sense (with label noise,
one must see more than one example to guarantee generalization w.h.p.). Notably, there
was no label noise during pre-training, yet the transformer can generalize under label noise
at test time.

4.2 BENIGN OVERFITTING

In this subsection we shall assume that the covariance matrix Λ = Id. This is needed for technical
reasons of the proof. We could more accommodate a covariance matrix of the form Λ where c1I ⪯
Λ ⪯ c2I but we just present the case Λ = I for simplicity.

Our goal will be to show that the max-margin transformer can exhibit benign overfitting in-context.
By this we mean that in its forward pass, the transformer memorizes all of the in-context examples,
yet still generalizes well for new test examples. To make this more precise, for a sequence of train-
ing examples {(xi, yi)}Mi=1, denote E(x) as the embedding matrix corresponding to the sequence
(xi, yi)

M
i=1, (x, 0); recall that the examples (xi, yi)Mi=1 are used to formulate predictions for x. We

say that the transformer exhibits benign overfitting in-context if,

• All training examples are memorized: with high probability (over µ and (xi, yi)
M
i=1), for

each example (xk, yk), k ≤ M , we have sign(ŷ(E(xk);W )) = yk.

• Test examples are classified near-optimally: Pµ, (xi,yi)
M+1
i=1

(sign(ŷ(E(xM+1);W ) =

yM+1) ≤ p+ ε for some vanishing ε.

1We also require B = O(poly(d)), this comes from using a union bound over the pre-training tasks to
ensure the max-margin solution is well-behaved.
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Figure 2: Cluster separation R̃ affects both (in-context) train and test accuracy, with small R̃ leading
to overfitting, and large R̃ leading to better test accuracy; in between, benign overfitting occurs.

In Figure 1 we provide a schematic of what this phenomenon would look like in language tasks,
where a user provides a sequence of country-capital pairs, some of which have errors, and the trans-
former repeats these errors at test time for those countries which it has seen with noisy labels, yet
still generalizes well for never-before-seen countries.

To prove this phenomenon holds, we need to show both memorization and generalization. Theo-
rem 4.1 in the previous subsection proved the generalization part, thus all that remains is to show that
memorization can co-occur with generalization. The next theorem demonstrates that this is possible
if the dimension d is sufficiently large with respect to the number of in-context examples M .
Theorem 4.2. Assume Λ = I and let δ ∈ (0, 1) be arbitrary. Suppose p = 1/2 − cp where
cp ∈ (0, 1/2) is an absolute constant. There are absolute constants C > 1, c > 0 depending only
on cp such that if assumptions (A1) through (A3) hold, then the following holds. With probability at
least 1−10δ over the draws of {µτ , (xτ,i, yτ,i)N+1

i=1 }Bτ=1, for all τ ∈ [B], when sampling a new task
{µ, (xi, yi)M+1

i=1 }, the max-margin solution (3) satisfies,

• In-context training examples are memorized: for ρ := cB∧1
log2(2B2/δ)

,

P(xi,yi)Mi=1, µ
(∃k ∈ [M ] s.t. sign(ŷ(E(xk);WMM)) ̸= yk)

≤ 4M exp

(
−cρ

√
d√

M

)
+ 8M exp

(
− cρd

M(R̃2 ∨ R̃)

)
.

• In-context test example achieves test error close to the noise rate:

P(xi,yi)
M+1
i=1 , µ

(
sign(ŷ(E(xM+1);WMM)) ̸= yM+1

)
≤ p+ 2 exp(−cM) + 2 exp

(
−cρ

√
d
)
+ 4 exp

(
−cρR̃

)
+ 2 exp

(
−cρM1/2R̃2

√
d

)
,

The claim regarding generalization in the above theorem is the same as in Theorem 4.1 (we fo-
cus here on the case p > 0 since label noise is essential for overfitting), and the same comments
following that theorem apply here as well. But a natural question is whether one can satisfy both
memorization and near-noise-rate test error, i.e. benign overfitting. This is indeed possible, and
can be seen most easily in the following setting: let δ = 0.001, let M be a large constant satis-
fying p + 2 exp(−cM) ≤ p + 0.0001, and assume B = d so ρ = 1/ log2(2d2/δ). If R̃ = dβ

for β ∈ (1/4, 1/2), then w.p. at least 99.9% over the pre-training data, since β < 1/2 memoriza-
tion occurs with probability 1 − od(1), and since β > 1/4 the test error for the fresh test example
xM+1 is at most p + 0.0001 + od(1). More generally, one can see that memorization occurs when
d ≫ M(R̃2 ∨ R̃) and d ≫ M , i.e. when the dimension is large relative to the number of samples
and when the signal of the test-time sequence is not too large relative to the dimension divided by
the number of in-context samples.

While Theorem 4.1 and Theorem 4.2 apply for the infinite-time limit of gradient descent, a natural
question is whether gradient descent trained for finite steps has similar behavior, and we indeed find
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Figure 3: In-context test accuracy improves as the number of pre-training tasks (batch size) B
approaches the ambient dimension d, provided R̃ is large enough, with fewer B needed for large R̃.

that it does. Figure 2 examines the role of high dimensionality and R̃, illustrating three qualitatively
different phenomena: overfitting without generalization, when R̃ is small and d/M is large; benign
overfitting, when R̃ is in the sweet spot for generalization; and optimal test performance without
overfitting, which occurs when R̃ is very large. In Figure 3, we show the effect of the number of
pre-training tasks B on the in-context test accuracy, again showing improved performance for more
pre-training tasks with fewer pre-training tasks needed for optimal performance when R̃ is large, as
suggested by Theorem 4.2. In both figures, we have GD-trained networks with step size η = 0.01
for 300 steps. Details on experiments and a link to our codebase are provided in Appendix E.

5 PROOF SKETCH

We will first discuss a sketch of the proof of generalization given in Theorem 4.1 when Λ = I . For
notational simplicity let us denote W = WMM, µ̂ := 1

M

∑M
i=1 yixi, and let us drop the M + 1

subscript so that we denote (xM+1, yM+1, ỹM+1) = (x, y, ỹ). Then the test error is given by the
probability of the event,

{sign(ŷ(E;W )) ̸= yM+1} = {µ̂⊤Wyx ≤ 0, y = ỹ} ∪ {µ̂⊤Wyx ≤ 0, y = −ỹ}.

The test error can thus be bounded as

P(ŷ(E;W ) ̸= yM+1) ≤ P(µ̂⊤Wỹx ≤ 0) + P(y = −ỹ) = P(µ̂⊤Wỹx ≤ 0) + p.

Let us denote the examples (xi, yi) in the test-time sequence which have clean labels yi = ỹi as
i ∈ C, while those with noisy labels yi = −ỹi as i ∈ N . Then

∑M
i=1 yixi = (|C| − |N |)µ +∑M

i=1 yizi = (M − 2|N |)µ+
∑M
i=1 yizi. If we denote p̂ := |N |/M then by standard properties of

the Gaussian, we have for z, z′ i.i.d.∼ N(0, I),

µ̂
d
= (1− 2p̂)µ+M−1/2z,

ỹx
d
= µ+ z′.

We thus have

P(ŷ(E;W ) ̸= yM+1)

≤ p+ P
((

(1− 2p̂)µ+M−1/2z
)⊤

W (µ+ z′) < 0
)

= p+ P
(
(1− 2p̂)µ⊤Wµ < −(1− 2p̂)µ⊤Wz′ −M−1/2z⊤Wµ−M−1/2z⊤Wz′

)
.

This decomposition allows for us to show the test error is near the noise rate p if we can show that
(1 − 2p̂)µ⊤Wµ is large and positive while all of the other terms involving µ⊤Wz′, z⊤Wµ, and
z⊤Wz′ are small in comparison. Now if µ were a standard Gaussian, or if it were sub-Gaussian
with independent components, then µ⊤Wµ would be close to its mean tr(W ), with fluctuations
determined from its mean determined by ∥W∥F , via a standard Hanson-Wright inequality. However,
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since µ ∼ Unif(R̃ · Sd−1), the components of µ are not independent, and so we derive a modified
version of Hanson-Wright (Lemma C.2) which applies in this setting where we show µ⊤Wµ is close
to its mean R̃2

d tr(W ) with fluctuations from its mean determined by ∥W∥F . Thus, in order to show
that the max-margin solution achieves (in-context) test error close to the noise rate p, we must show
the following:

• A lower bound for tr(W ), so that the mean of µ⊤Wµ is large and positive.
• An upper bound on ∥W∥F , so that we can control the fluctuations of µ⊤Wµ from its mean.
• An upper bound on p̂ so that (1− 2p̂) is positive.

• Upper bounds on the quantities |(1−2p̂)µ⊤Wz′|, |M−1/2z⊤Wµ| and |M−1/2z⊤Wz′| so
that these quantities are smaller than the positive term coming from the mean of µ⊤Wµ.
These, in turn, will require upper bounds on ∥W∥F .

Thus provided we have control over tr(W ) and ∥W∥F , we can apply straightforward concentration
inequalities to show that the (in-context) test error is near the noise rate. So let us now describe how
to derive such bounds.

The starting place for our analysis is the definition of the max-margin solution (3). For notational
simplicity let us define µ̂τ := 1

N

∑n
i=1 yτ,ixτ,i and let us denote xτ,N+1, yτ,N+1 as xτ , yτ so that

the max-margin solution can be written

W := argmin{∥U∥2F : µ̂⊤
τ Uyτxτ ≥ 1, ∀τ = 1, . . . , B}. (5)

Since ∇ŷ(Eτ ;W ) = µ̂τx
⊤
τ , the KKT conditions imply that there exist λ1, . . . , λB ≥ 0 such that

W =

B∑
τ=1

λτyτ µ̂τx
⊤
τ , (6)

and moreover we have λτ = 0 whenever yτ µ̂
⊤
τ Wxτ ̸= 1. By a careful analysis of the KKT

conditions (see Lemma B.1), we can derive nearly-matching upper and lower bounds for
∑
τ λτ ,

tr(W ), and ∥W∥F : if we assume that cB > 0 is an absolute constant (i.e. the number of tasks B is
greater than a constant multiple of the input dimension d) then these bounds take the form

B∑
τ=1

λτ = Θ̃(d/R4), tr(W ) = Θ̃(d/R2), ∥W∥F = Θ̃(
√
d/R2). (7)

These bounds, together with the concentration inequalities outlined above, suffice for proving The-
orem 4.2.

As for the possibility of benign overfitting in-context shown in Theorem 4.2, since Theorem 4.1
guarantees generalization, the only task that remains to be shown is that overfitting occurs: namely,
we want to ensure that for every example (xk, yk), if we denote E(xk) as the embedding matrix
with input sequence (xi, yi)

M
i=1 but with test example xk, then we want to show that

sign (ŷ(E(xk);W )) = yk ⇐⇒ µ̂⊤Wykxk > 0.

Now, since tr(cI) = cd and ∥cI∥F = c
√
d, the identities in (7) suggest that W has properties

similar to that of a scaled identity matrix. If W were indeed a scaled identity matrix, then the goal
would be to show that

Mµ̂⊤ykxk =

(
M∑
i=1

yixi

)⊤

ykxk = ∥xk∥2 +
∑
i ̸=k

⟨yixi, ykxk⟩ ≥ ∥xk∥2 −
∑
i ̸=k

|⟨xi, xk⟩| > 0.

That is, we would need to ensure that the examples {xi}Mi=1 are nearly-orthogonal in a particular
sense (Frei et al., 2023c). This occurs provided the ambient dimension d is much larger than the
number of examples M and the signal strength R̃2 = ∥µ∥2, and has been shown in prior work on
benign overfitting in neural networks (Frei et al., 2022; 2023a). In our setting, W is not a multiple
of the identity matrix so this proof technique does not directly apply, but at a high level the proof
ideas are similar, and appear in Section D.
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6 CONCLUSION

In this work we developed task complexity and sample complexity guarantees for in-context learning
class-conditional Gaussian mixture models with a single-layer linear transformer architecture. We
analyzed the implicit regularization of gradient descent to characterize the algorithm implemented
by the transformer after pre-training. This allowed for us to quantify how many in-context samples
are needed in order to achieve small test error, which to the best of our knowledge has not been
explored in the classification setting prior to this work. We also showed how the trained transformer
can exhibit benign overfitting in-context, i.e. in its forward pass the transformer can memorize noisy
examples yet still achieve near-optimal test error.

There are a number of natural directions for future research. We relied upon a convex linear trans-
former architecture which allows for us to identify the pre-trained transformer as the global max-
margin solution in parameter space. More general linear transformer architectures are not convex
but are often homogeneous in their parameters. In this setting we thus know (Lyu & Li, 2020; Ji
& Telgarsky, 2020) that GD has an implicit bias towards first-order stationary (KKT) points of the
max-margin problem in parameter space. It may be possible to analzye the consequences of the
KKT conditions to develop generalization guarantees (Safran et al., 2022; Frei et al., 2023b;a). For
softmax-based transformer architectures, it would be interesting to see if prior works on implicit
regularization of GD over these architectures (Ataee Tarzanagh et al., 2023; Tarzanagh et al., 2023;
Thrampoulidis, 2024; Vasudeva et al., 2024) can be used to understand in-context learning.

Finally, we assumed that the signal-to-noise ratio in the pre-training data was quite large (see (A1)),
and that the pre-training data did not have noisy labels. It would be interesting to understand if
pre-training on more difficult or noisy data would result in a qualitatively different algorithm im-
plemented by the pre-trained transformer. We believe the theoretical analysis of pre-training with
noisy labels would be significantly different: if we aimed to use the implicit regularization approach
based on analyzing solutions to our equation (3), in this setting there may not be a U which satisfies
the constraints of (3), and even if such a U does exist then we would be investigating the behavior
of a pre-trained transformer which has memorized noisy labels. In this setting it is not clear that
generalization is possible.
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Table 1: Notation used throughout the paper.

Symbol Description
µ Cluster mean, µ ∈ Rd
x Features, x ∈ Rd, xτ,i = yτ,iµτ + zτ,i
y Labels, y ∈ {±1}
z Noise variables, z ∈ Rd
d Feature dimension
Λ Cluster noise covariance matrix
δ Probability of failure
R Norm of cluster means during pre-training
R̃ Norm of cluster means at test time
B Number of pre-training tasks
cB Quantity such that B ≥ cBd
ρ (cB ∧ 1)/(log2(2B2/δ)), appears in generalization bounds
N Number of samples per pre-training task
M Number of samples per test-time task
p Label noise flipping rate

E Data matrix E =

(
x1 x2 · · · xN xN+1

y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1)

µ̂ Mean predictor: 1
M

∑M
i=1 yixi

ŷ(E(x);W ) Neural net output: 1
M

∑M
i=1 yix

T
i Wx = µ̂TWx

L̂(W ) Logistic loss

A PROPERTIES OF THE PRE-TRAINING DATASETS

We begin by developing guarantees for various properties of the pre-training datasets, which will
form the basis for understanding properties of the max-margin solution (3).
Lemma A.1. There is an absolute constant c0 > 1 such that with probability at least 1− 10δ over
the draws of {µτ , (xτ , yτ ), (xτ,i, yτ,i)Ni=1}Bτ=1, for all τ ∈ [B] and q ̸= τ ,∣∣∥µ̂τ∥2 −R2

∣∣ ≤ c0R
√
tr(Λ) log(2B/δ)√

Nd
+ 4

tr(Λ) ∨ c0∥Λ∥2 log(2B/δ)

N
,

|∥xτ∥2 −R2| ≤
2c0R

√
tr(Λ) log(2B/δ)√

d
+ 4 (tr(Λ) ∨ c0∥Λ∥2 log(2B/δ)) ,

|⟨µ̂q, µ̂τ ⟩| ≤ c0

(
R2

√
d
+

R
√

tr(Λ)√
Nd

+

√
tr(Λ2)

N

)
log(2B2/δ),

|⟨xτ , xq⟩| ≤ c0

(
R2

√
d
+

R
√

tr(Λ)√
d

+
√
tr(Λ2)

)
log(2B2/δ),

∣∣⟨µ̂τ , yτxτ ⟩ −R2
∣∣ ≤ c0

([
1 +

1√
N

]
R
√
tr(Λ)√
d

+

√
tr(Λ2)√
N

)
log(2B/δ)

Proof. By definition of µ̂τ and properties of the Gaussian distribution, there is z′τ ∼ N(0,Λ) such
that

µ̂τ =
1

N

N∑
i=1

yτ,i(yτ,iµτ + zτ,i) = µτ +
1

N

N∑
i=1

yτ,izτ,i = µτ +
1√
N

z′τ .

Thus for τ ̸= q there are z′τ , z
′
q

i.i.d.∼ N(0,Λ) such that

⟨µ̂q, µ̂τ ⟩
d
= ⟨µτ +N−1/2z′τ , µq +N−1/2z′q⟩

= ⟨µτ , µq⟩+N−1/2⟨z′τ , µq⟩+N−1/2⟨z′q, µτ ⟩+N−1⟨z′τ , z′q⟩. (8)
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We first derive an upper bound for this quantity when q ̸= τ . Now, since µq, µτ are independent and
sub-Gaussian random vectors with sub-Gaussian norm at most cR/

√
d (Vershynin, 2018, Theorem

3.4.6) for some absolute constant c > 0, by Vershynin (2018, Lemma 6.2.3), we have for some
c′ > 0 it holds that for any β ∈ R, if g, g′ i.i.d.∼ N(0, Id),

E[exp(βµ⊤
q µτ )] ≤ E[exp(c′R2d−1βg⊤g′)].

By Vershynin (2018, Lemma 6.2.2), for some c1 > 0, provided c|β|R2/d ≤ c1, it holds that

E[exp(cR2d−1βg⊤g′)] ≤ exp(c1β
2R4d−2∥Id∥2F ) = exp(c1β

2R4d−1).

Since µq, µτ are mean-zero, by Vershynin (2018, Proposition 2.7.1) this implies the quantity µ⊤
q µτ

is sub-exponential with ∥µ⊤
q µτ∥ψ1

≤ c2R
2/
√
d for some absolute constant c2 > 0. We therefore

have, for some absolute c3 > 0, w.p. at least 1− δ, for all τ ∈ [B],

|⟨µτ , µq⟩| ≤ c3R
2d−1/2 log(2B/δ). (9)

Again using Lemmas 6.2.2 and 6.2.3 from (Vershynin, 2018), since µq has sub-Gaussian norm at
most cR/

√
d and z′τ = Λ1/2g′′ where g′′ has sub-Gaussian norm at most c, we have

E[exp(βµ⊤
q z

′
τ )] ≤ E[exp(cRd−1/2βg⊤Λ1/2g′)],

and thus provided cRd−1/2|β| ≤ c1/∥Λ1/2∥2 we have

E[exp(cRd−1/2βg⊤Λ1/2g′)] ≤ exp(c′R2d−1β2∥Λ1/2∥2F ) = exp(c′R2d−1β2 tr(Λ)).

In particular, the quantity µ⊤
q z

′
τ is sub-exponential with sub-exponential norm ∥µ⊤

q z
′
τ∥ψ1

≤
c4Rd−1/2

√
tr(Λ), and so for some absolute c5 > 0 we have with probability at least 1 − δ, for

all q, τ ∈ [B] with q ̸= τ ,

|⟨µq, z′τ ⟩| ≤ c5Rd−1/2
√
tr(Λ) log(2B2/δ). (10)

For ⟨z′q, z′τ ⟩ with τ ̸= q we can directly use the MGF of Gaussian chaos (Vershynin, 2018, Lemma
6.2.2): ⟨z′q, z′τ ⟩ = g⊤Λg′ for i.i.d. g, g′ ∼ N(0, Id) so that for β ≤ c/∥Λ∥2,

E[exp(β⟨z′q, z′τ ⟩)] ≤ exp(c6β
2∥Λ∥2F ) = exp(c6β

2 tr(Λ2)).

In particular,
∥∥⟨z′q, z′τ ⟩∥∥ψ1

≤ c7
√
tr(Λ2) so that sub-exponential concentration implies that with

probability at least 1− δ, for any q, τ ∈ [B] with q ̸= τ ,

|⟨z′τ , z′q⟩| ≤ c7
√
tr(Λ2) log(2B2/δ). (11)

Putting (9), (10), and (11) into (8) we get for q ̸= τ ,

|⟨µ̂q, µ̂τ ⟩| = c8

(
R2

√
d
+

R
√

tr(Λ)√
Nd

+

√
tr(Λ2)

N

)
log(2B2/δ). (12)

As for ∥µ̂τ∥2, from (8) we have

∥µ̂τ∥2 = ∥µτ∥2 + 2N−1/2⟨z′τ , µτ ⟩+N−1∥z′τ∥2 (13)

From here, the same argument used to bound (10) holds since that bound only relied upon the
fact that µq and z′τ are independent, while µτ and z′τ are independent as well. In particular, with
probability at least 1− δ, for all τ ∈ [B],

|⟨µτ , z′τ ⟩| ≤ c5Rd−1/2
√
tr(Λ) log(2B/δ). (14)

Next, we have that ∥z′τ∥2
d
= g⊤Λg = ∥Λ1/2g∥2 for g ∼ N(0, Id). Therefore Vershynin (2018,

Theorem 6.3.2) implies ∥∥z′τ∥2 −∥Λ1/2∥F ∥ψ2 ≤ c∥Λ1/2∥2 for some absolute constant c > 0. Note

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

that ∥Λ1/2∥F =
√
tr(Λ). And thus by sub-Gaussian concentration, we have for some constant

c9 > 0, with probability at least 1− δ, for all τ ∈ [B],

|∥z′τ∥2 −
√
tr(Λ)| ≤ c

1/2
9 ∥Λ1/2∥2

√
log(2B/δ) =⇒ ∥z′τ∥ ≤ 2(

√
tr(Λ) ∨ c

1/2
9 ∥Λ1/2∥2

√
log(2B/δ)).

In particular,

∥z′τ∥2 ≤ 4 (tr(Λ) ∨ c9∥Λ∥2 log(2B/δ)) . (15)

Putting (15) and (14) into (13) and using that ∥µτ∥2 = R2, we get with probability at least 1− 2δ,∣∣∥µ̂τ∥2 −R2
∣∣ ≤ c5R

√
tr(Λ) log(2B/δ)√

Nd
+ 4

tr(Λ) ∨ c9∥Λ∥2 log(2B/δ)

N
.

As for ∥xτ∥2, by definition,

∥xτ∥2 = ∥µτ∥2 + 2⟨µτ , zτ ⟩+ ∥zτ∥2 = R2 + 2⟨µτ , zτ ⟩+ ∥zτ∥2.
Since zτ ∼ N(0,Λ) has the same distribution as z′τ , the same analysis used to prove (14) and (15)
yields that with probability at least 1− 2δ, for all τ ∈ [B],

|⟨µτ , zτ ⟩| ≤ c5Rd−1/2
√

tr(Λ) log(2B/δ),

∥zτ∥2 ≤ 4(tr(Λ) ∨ c9∥Λ∥2 log(2B/δ).

Substituting these into the preceding display we get

|∥xτ∥2 −R2| ≤
2c5R

√
tr(Λ) log(2B/δ)√

d
+ 4 (tr(Λ) ∨ c9∥Λ∥2 log(2B/δ))

Thus provided R is sufficiently large, then we also have ∥xτ∥2 = Θ(R2).

Next we bound |⟨xτ , xq⟩|: There are z′τ , z
′
q

i.i.d.∼ N(0,Λ) such that

⟨yτxτ , yqxq⟩
d
= ⟨µτ + z′τ , µq + z′q⟩.

It is clear that the same exact analysis we used to analyze (8) leads to the claim that with probability
at least 1− δ, for all q ̸= τ :

|⟨xq, xτ ⟩| ≤ c9

(
R2

√
d
+

R
√
tr(Λ)√
d

+
√
tr(Λ2)

)
log(2B2/δ). (16)

Finally, we consider yτ µ̂⊤
τ xτ . Just as in the previous analyses, there are zτ , z

′
τ ∼ N(0,Λ) such that

⟨µ̂τ , yτxτ ⟩
d
= ⟨µτ +N−1/2zτ , µτ + z′τ ⟩
= ∥µτ∥2 +N−1/2⟨zτ , µτ ⟩+ ⟨z′τ , µτ ⟩+N−1/2⟨zτ , z′τ ⟩.

Again using an analysis similar to that used for (8) yields that with probability at least 1− δ, for all
τ ∈ [B], ∣∣⟨µ̂τ , yτxτ ⟩ −R2

∣∣ ≤ c10

([
1 +

1√
N

]
R
√
tr(Λ)√
d

+

√
tr(Λ2)√
N

)
log(2B/δ). (17)

Taking a union bound over each of the events shows that all of the desired claims of Lemma A.1
hold with probability at least 1− 10δ.

The events of Lemma A.1 hold with probability at least 1 − 10δ, independently of the assump-
tions (A1), (A2), and (A3).2 Our results will require this event to hold, and so we introduce the
following to allow for us to refer to this in later lemmas.
Definition A.2. Let us say that a good run holds if the events of Lemma A.1 hold.

2Note, however, that the quantities appearing on the right-hand sides of each inequality in the lemma are
only small when these assumptions hold; this is the reason for these assumptions.
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B ANALYSIS OF MAX-MARGIN SOLUTION

In this section we derive a number of properties of the max-margin solution (3).

Lemma B.1. On a good run, for any cB > 0 and for C > 1 sufficiently large under Assump-
tions (A1) and (A2), the max-margin solution W of Problem 3,

W =

B∑
τ=1

λτyτ µ̂τx
⊤
τ ,

is such that the λτ ≥ 0 satisfy the following:

(cB ∧ 1)d

8c20R
4 log2(2B2/δ)

≤
B∑
τ=1

λτ ≤ 4d

R4
,

where c0 > 1 is the constant from Lemma A.1. Further, we have the inequalities

(cB ∧ 1)
√
d

16c20R
2 log2(2B2/δ)

≤ ∥W∥F ≤ 2
√
d

R2
,

and
(cB ∧ 1)d

16c20R
2 log2(2B2/δ)

≤ tr(W ) ≤ 6d

R2
.

Proof. We first derive an upper bound on ∥W∥F by showing that the matrix U = Id satisfies the
constraints of the max-margin problem (3).

yτ µ̂
⊤
τ Ixτ = ⟨µ̂τ , yτxτ ⟩

(i)

≥ R2

(
1− 2c0

(√
tr(Λ)

R
√
d

+

√
tr(Λ2)

NR4

)
log(2B/δ)

)
(ii)

≥ R2

(
1− 4c0

C

)
≥ 1

2
R2. (18)

Inequality (i) uses Lemma A.1, while inequality (ii) holds for C > 8c0 sufficiently large via As-
sumption (A1). Thus the matrix 2Id/R

2 separates the training data with margin at least 1 for every
sample. Since W is the minimum Frobenius norm matrix which separates all of the training data
with margin 1, this implies

∥W∥F ≤ ∥2Id/R2∥F =
2
√
d

R2
. (19)

On the other hand, by the variational definition of the norm, since ∥Id/
√
d∥F = 1 we know

∥W∥F ≥ ⟨W, Id/
√
d⟩, and hence

∥W∥F ≥ 1√
d
⟨W, Id⟩

=
1√
d

〈
B∑
τ=1

λτ µ̂τyτx
⊤
τ , Id

〉

=
1√
d

B∑
τ=1

λτ ⟨µ̂τ , yτxτ ⟩

≥ 1√
d
· 1
2
R2

B∑
τ=1

λτ , (20)
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where the last line uses (18). Putting this and the preceding display together, we get
B∑
τ=1

λτ ≤ 4d

R4
. (21)

Next, we note that by the feasibility conditions of the max-margin problem, we have for any τ ,

1 ≤ yτ µ̂
⊤
τ Wxτ

= µ̂⊤
τ

(
B∑
q=1

λqyqµ̂qx
⊤
q

)
yτxτ

=

B∑
q=1

λq⟨µ̂τ , µ̂q⟩⟨yτxτ , yqxq⟩

= λτ∥µ̂τ∥2∥xτ∥2 +
∑
q: q ̸=τ

λq⟨µ̂τ , µ̂q⟩⟨yqxq, xτyτ ⟩. (22)

Now by Lemma A.1, we have∣∣∣∣∥µ̂τ∥2R2
− 1

∣∣∣∣ ≤ c0
√
tr(Λ) log(2B/δ)

R
√
Nd

+ 4
tr(Λ) ∨ c0∥Λ∥2 log(2B/δ)

NR2
,

and ∣∣∣∣∥xτ∥2R2
− 1

∣∣∣∣ ≤ c0
√
tr(Λ) log(2B/δ)

R
√
d

+ 4
tr(Λ) ∨ c0∥Λ∥2 log(2B/δ)

R2
.

Using Assumption (A1) we see that for C sufficiently large we have

∥µ̂τ∥2∥xτ∥2 ≤ R4

(
1 +

c0
NC

+
4c0
NC

)
·
(
1 +

c0
C

+
4c0
C

)
≤ 3

2
R4, (23)

where the inequality uses Assumption (A1). Likewise, we have

∥µ̂τ∥2∥xτ∥2 ≥ 1

2
R4. (24)

As for the cross terms, again using Lemma A.1, for all τ ̸= q,
|⟨µ̂τ , µ̂q⟩| · |⟨xτ , xq⟩|

≤ c20

(
R2

√
d
+

R
√
tr(Λ)√
Nd

+

√
tr(Λ2)

N

)
·

(
R2

√
d
+

R
√

tr(Λ)√
d

+
√
tr(Λ2)

)
log2(2B2/δ)

=
c20R

4

d

(
1 +

√
tr(Λ)

R
√
N

+

√
d tr(Λ2)

R2N

)
·

(
1 +

√
tr(Λ)

R
+

√
d tr(Λ2)

R2

)
log2(2B2/δ)

(i)

≤ c20R
4

d

(
1 +

1

C
√
N

+
1

4N

)
·
(
1 +

1

C
+

1

4

)
log2(2B2/δ)

(ii)

≤ 2c20R
4 log2(2B2/δ)

d
. (25)

Inequality (i) uses Lemma A.1 and (ii) uses that C is large enough. Putting this together with (23)
and substituting these into the consequences of the feasibility condition (22) we get for any τ ,

1 ≤ 3

2
R4λτ +

2c20R
4 log2(2B2/δ)

d

∑
q: q ̸=τ

λq. (26)

We now show that this implies
∑B
q=1 λq ≥

(cB∧1)d
8c20R

4 log2(2B2/δ)
. Towards this end, let us first consider

the case that there exists some τ with λτ ≤ cBd
4R4B . Then the preceding display implies

1 ≤ 3

2
R4 · cBd

4R4B
+

2c20R
4 log2(2B2/δ)

d

∑
q: q ̸=τ

λq

≤ 3

4
+

2c20R
4 log2(2B2/δ)

d

∑
q: q ̸=τ

λq.
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The final inequality uses Assumption (A2), i.e. B ≥ cBd. Rearranging we see that
B∑
q=1

λq ≥
∑
q: q ̸=τ

λq ≥
d

8c20R
4 log2(2B2/δ)

≥ (cB ∧ 1)d

8c20R
4 log2(2B2/δ)

.

Let us now consider the only remaining case, whereby for each τ we have λτ > cBd
4R4B . Then,

B∑
q=1

λq >

B∑
q=1

cBd

4R4B
=

cBd

4R4
≥ (cB ∧ 1)d

8c20R
4 log2(2B2/δ)

,

where the final inequality uses that c0 ≥ 1. We therefore have
∑B
q=1 λq ≥

(cB∧1)d
8c20R

4 log2(2B2/δ)
, which

together with (21) completes the proof for the upper and lower bounds of
∑B
q=1 λq . The upper

bound for the Frobenius norm of W follow by (19), while the lower bound follows by
∑B
q=1 λq ≥

(cB∧1)d
8c20R

4 log2(2B2/δ)
and (20).

For the trace term, we have,

tr(WMM) = tr

(
B∑
τ=1

λτyτ µ̂τx
⊤
τ

)

=

B∑
τ=1

λτ tr(yτ µ̂τx
⊤
τ )

=

B∑
τ=1

λτyτx
⊤
τ µ̂τ

(i)

≥
B∑
τ=1

λτR
2/2

(ii)

≥ (cB ∧ 1)d

16c20R
2 log2(2B2/δ)

(27)

Inequality (i) uses (18) while inequality (ii) uses the lower bound for
∑
τ λτ . Similarly, by

Lemma A.1 we have

|⟨µ̂τ , yτxτ ⟩| ≤ R2

(
1 + c0

([
1 +

1√
N

] √
tr(Λ)

R
√
d

+

√
tr(Λ2)√
R4N

)
log(2B/δ)

)
≤ 3

2
R2,

where the last inequality uses Assumption (A1). Therefore,

tr(WMM) =

B∑
τ=1

λτyτx
⊤
τ µ̂τ

≤
B∑
τ=1

λτ ·
3

2
R2

≤ 6d

R2
,

where the last inequality uses the upper bound for
∑B
τ=1 λτ proved earlier.

C PROOF OF THEOREM 4.1

Our goal is to bound
R(WMM) = P(xi,yi)

M+1
1 , µ(sign(ŷ(E;WMM)) ̸= yM+1)

= P

[ 1

M

M∑
i=1

yixi

]⊤
WMMyM+1xM+1 < 0

 . (28)
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The probability above is over the draws of µ and of (xi, yi)M+1
i=1 and µ. The matrix WMM is the

max-margin solution when training on the in-context tasks (3). To prove the risk is close to the
label-flipping noise rate p, it suffices to show that the error on clean examples is small:

R(WMM) = P (yM+1 · sign(ŷ(E;WMM) < 0, yM+1 ̸= ỹM+1)

+ P (yM+1 · sign(ŷ(E;WMM) < 0, yM+1 = ỹM+1)

≤ p+ P (yM+1 · sign(ŷ(E;WMM) < 0, yM+1 = ỹM+1) . (29)

For notational simplicity, let us denote ŷ := ŷ(E;WMM). Let us also denote the event Ã as

Ã := {yM+1ŷ < 0} = {yM+1ŷ − E[yM+1ŷ] < −E[yM+1ŷ]},

so that R(WMM) = P(Ã). Further, let us introduce the sets C,N ⊂ [M ] as the clean and noisy test
examples respectively (|C|+ |N | = M ) so that

yi = ỹi ∀i ∈ C, yi = −ỹi ∀i ∈ N .

Then we have the identities

yixi = µ+ yizi, i ∈ C,
yixi = −µ+ yizi, i ∈ N .

Therefore there exist independent ζ, ζM+1 ∼ N(0,Λ) such that

1

M

M∑
i=1

yixi
d
=

(
1− 2|N |

M

)
µ+

1√
M

ζ, ỹM+1xM+1
d
= µ+ ζM+1,

where we have used that |C| − |N | = M − 2|N |.
In particular, if we define

A :=
{(

(1− 2|N |/M)µ+M−1/2ζ
)⊤

W (µ+ ζM+1)− E[yM+1ŷ] < −E[yM+1ŷ]
}

then we have

P (yM+1ŷ − E[yM+1ŷ] < −E[yM+1ŷ], yM+1 = ỹM+1) = P(A).

Continuing from (29) this means for any α0, α1, α2, α3 > 0,

R(WMM)

≤ p+ P
((

(1− 2|N |/M)µ+M−1/2ζ
)⊤

W (µ+ ζM+1)− E[yM+1ŷ] < −E[yM+1ŷ]

)
≤ p+ P(|N |/M ≤ α0) + P(|M−1/2ζ⊤WMMµ| > α1)

+ P(|M−1/2ζ⊤WMMζM+1| > α2) + P((1− 2|N |/M)|µ⊤WMMζM+1| > α3)

+ P

(
A ∩ {|N |/M ≤ α0} ∩ {|M−1/2ζ⊤WMMµ| ≤ α1}

∩ {|M−1/2ζ⊤WMMζM+1| ≤ α2} ∩ {|µ⊤WMMζM+1| ≤ α3}

)
. (30)

In particular, to derive an upper bound on the risk it suffices to derive a lower bound on
µ⊤WMMµ and upper bounds on each of the absolute values of the four quantities |N |/M ,
ζ⊤WMMµ, ζ

⊤WMMζM+1 and µ⊤WζN+1. We shall do so in what follows.

C.1 |N |/M

Lemma C.1. There is some constant c > 0 such that for any t ≥ 0, we have{
|N | = 0, p = 0,

P
(∣∣∣ |N |

M − p
∣∣∣ ≥ t

)
≤ 2 exp(−2t2M), p > 0.

(31)
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Proof. If p = 0, there is no label flipping noise and so |N | = 0 deterministically. For the p > 0

case, by definition, |N | =
∑M
i=1 1(yi ̸= ỹi) is a sum of M independent random variables bounded

between 0 and 1 with mean p. By Hoeffding’s inequality, for any u ≥ 0 we have

P(| |N | −Mp | ≥ u) = P(| |N |/M − p | ≥ u/M) ≤ 2 exp

(
−2u2

M

)
.

Setting u = Mt completes the proof.

C.2 µ⊤Wµ

The quantity µ⊤Wµ is a quadratic form, and we can provide a concentration inequality for this in
the following lemma.

Lemma C.2 (Hanson-Wright for uniform on the sphere). Let R̃ > 0 and Q ∈ R̃d×d be a matrix. If
µ ∼ Unif(R̃ · Sd−1), then for any t ≥ 0,

P

(∣∣∣∣∣µ⊤Qµ− R̃2

d
tr(Q)

∣∣∣∣∣ ≥ t

)
= P

(∣∣µ⊤Qµ− E[µ⊤Qµ]
∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t2d2

R̃4∥Q∥2F
,

td

R̃2∥Q∥2

))
.

Since µ⊤Qµ is a quadratic form, we would like to use the Hanson-Wright inequality here. But the
trouble is that for µ ∼ R̃Unif(Sd−1), the components of µ are not independent, so the standard
Hanson-Wright inequality is not directly applicable, but requires some additional work. Our proof
instead leverages the following:
Theorem C.3 (Adamczak (2015), Theorem 2.5). Let X be a mean-zero random vector in Rd. If
X satisfies the K-convex concentration property, i.e. there exists K such that for every 1-Lipschitz
convex function ϕ : Rd → R we have E|ϕ(X)| < ∞ and for every t > 0,

P(|ϕ(X)− Eϕ(X)| ≥ t) ≤ 2 exp(−t2/K2),

then there exists c > 0 such that for any matrix Q ∈ Rd×d and every t > 0,

P(|X⊤QX − E[X⊤QX]| ≥ t) ≤ 2 exp

(
−cmin

(
t2

2K4∥Q∥2F
,

t

K2∥Q∥2

))
.

Proof of Lemma C.2. By Adamczak (2015), a sufficient condition for a Hanson-Wright-type in-
equality to hold is that the random vector µ satisfies Lipschitz concentration. By Vershynin (2018,
Theorem 5.1.4) we have that for some constant c > 0, for any 1-Lipschitz function f on the sphere√
d · Sd−1 and for X ∼ Unif(

√
dSd−1),

P(|f(X)− E[f(X)]| ≥ t) ≤ 2 exp(−ct2).

Thus if we consider g : R̃ · Sd−1 → R which is 1-Lipschitz and is defined on the sphere of radius
R̃, then Y = R̃√

d
X where X is uniform on the sphere of radius R̃. In particular, the function

g(Y ) := g( R̃√
d
X) is the composition of a 1-Lipschitz function and a R̃/

√
d-Lipschitz function

defined on the sphere of radius
√
d, and we therefore see that

P(|g(Y )− Eg(Y )| ≥ t) ≤ 2 exp(−ct2d/R̃2).

That is, any 1-Lipschitz function on the sphere of radius R̃ satisfies the K-convex concentration
property with K = R̃/

√
d. Thus Theorem C.3 implies for any matrix Q,

P(|µ⊤Qµ− E[µ⊤Qµ]| ≥ t) ≤ 2 exp

(
−cmin

(
t2d2

R̃4∥Q∥2F
,

td

R̃2∥Q∥2

))
.

Finally, note that by rotational symmetry we have E[µ] = 0 and E[µ2
i ] = R̃2/d for each i ∈ [d].

Additionally, for distinct components i ̸= j, E[µiµj ] = E[µi(−µj)] = 0 and hence E[µ⊤Qµ] =∑d
i=1 E[µ2

iQii] =
R̃2

d tr(Q).
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C.3 µ⊤Wζ AND µ⊤WζM+1

Lemma C.4. Let µ ∼ R̃ · Unif(Sd−1), g ∼ N(0, Id) (independent of µ) and let Q ∈ Rd×d be a
matrix. There is an absolute constant c > 0 such that for any t ≥ 0,

P
(
|µ⊤Qg| ≥ t

)
≤ 2 exp

(
− ct

√
d

R̃∥Q∥F

)
.

Proof. The uniform distribution on the sphere of radius R̃ is sub-Gaussian with sub-Gaussian norm
satisfying ∥µ∥ψ2

≤ cR̃/
√
d by Vershynin (2018, Theorem 3.4.6), while ∥g∥ψ2

≤ c, for some
absolute constant c > 0. By Vershynin (2018, Lemma 6.2.3), this implies that for independent
g1, g2 ∼ N(0, Id) and any β ∈ R,

E exp

(
β

√
d

R̃
µ⊤Qg

)
≤ E exp

(
c1βg

⊤
1 Qg2

)
.

Then using the moment-generating function of Gaussian chaos (Vershynin, 2018, Lemma 6.2.2), for
β satisfying |β| ≤ c2/∥Q∥2 we have

E exp

(
β

√
d

R̃
µ⊤Qg

)
≤ E exp

(
c1βg

⊤
1 Qg2

)
≤ exp(c3β

2∥Q∥2F ).

That is, the random variable R̃−1
√
dµ⊤Qg is mean-zero and has sub-exponential norm at most

max(c−1
2 , c3)∥Q∥F . There is therefore a constant c4 > 0 such that for any u ≥ 0,

P(|R̃−1
√
dµ⊤Qg| ≥ u) = P

(
|µ⊤Qg| ≥ R̃u√

d

)
≤ 2 exp(−cu/∥Q∥F ).

Setting u = t
√
d/R̃ we get

P
(
|µ⊤Qg| ≥ t

)
≤ 2 exp

(
− ct

√
d

R̃∥Q∥F

)

C.4 ζ⊤WζM+1

Lemma C.5. Let ζ, ζ ′ i.i.d.∼ N(0,Λ) and let Q ∈ Rd×d be a matrix. There is a constant c > 0 such
that for all t ≥ 0,

P(|ζ⊤Wζ ′| ≥ t) ≤ 2 exp

(
− ct

∥Λ1/2QΛ1/2Q∥F

)
≤ 2 exp

(
− ct

∥Λ∥2∥Q∥F

)
.

Proof. We can write ζ⊤WζM+1 as g⊤1 Λ
1/2WΛ1/2g2 where g1, g2 ∼ N(0, Id) are independent,

i.e. it is a Gaussian chaos random variable. By Vershynin (2018, Lemma 6.2.2) this random vari-
able is sub-exponential with sub-exponential norm at most c∥Λ1/2WΛ1/2∥F . Then standard sub-
exponential concentration (e.g. Vershynin (2018, Proposition 2.7.1)) completes the proof.

C.5 E[µ⊤WMMµ]

Lemma C.6. On a good run, for any cB > 0 and for C > 1 sufficiently large under assump-
tions (A1) through (A3), the max-margin solution WMM satisfies

(cB ∧ 1)R̃2

16c20R
2 log2(2B2/δ)

≤ E[µ⊤WMMµ] ≤
6R̃2

R2
.
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Proof. By definition,

E
[
µ⊤WMMµ

]
=

R̃2

d
tr(WMM). (32)

We therefore need only upper and lower bounds on tr(WMM). Using the bounds on tr(WMM) from
Lemma B.1, we get the desired inequalities.

C.6 PUTTING IT ALL TOGETHER

Let’s denote R(WMM) the test error for a clean example (yM+1 = ỹM+1). Returning to the decom-
position (30) and using (29), we have

R(WMM) ≤ p+ P

(
(1− 2|N |/M)µ⊤Wµ− E[yŷ]

< −E[yŷ]−M−1/2ζ⊤Wµ− (1− 2|N |/M)µ⊤WζM+1 −M−1/2ζ⊤WζM+1

)
(33)

We’ll consider two cases, depending upon whether the label-flipping noise rate p = 0 or p > 0. For
notational simplicity let’s denote ρ as the quantity

ρ :=
cB ∧ 1

16c20 log
2(2B2/δ)

∈ (0, 1).

Then Lemma C.6 states

ρ · R̃
2

R2
≤ E[µ⊤Wµ] ≤ 6R̃2

R2
. (34)

Noiseless case (p = 0). Since p = 0 we know |N | = 0. From (33) we have

R(WMM)

= P

(
µ⊤Wµ− E[µ⊤Wµ] < −E[µ⊤Wµ]−M−1/2ζ⊤Wµ− µ⊤WζM+1 −M−1/2ζ⊤WζM+1

)
(i)

≤ P

(
µ⊤Wµ− E[µ⊤Wµ] < −ρR̃2

R2
−M−1/2ζ⊤Wµ− µ⊤WζM+1 −M−1/2ζ⊤WζM+1

)

≤ P

(
µ⊤Wµ− E[µ⊤Wµ] < −ρR̃2

2R2

)
+ P

(
|M−1/2ζ⊤Wµ| ≥ ρR̃2

8R2

)
+ P

(∣∣µ⊤WζM+1

∣∣ ≥ ρR̃2

8R2

)

+ P

(∣∣∣M−1/2ζ⊤WζM+1

∣∣∣ ≥ ρR̃2

8R2

)
. (35)

Inequality (i) uses Lemma C.6. We now proceed by bounding each of the remaining terms in the
inequality above.

For the first term we can use Lemma C.2 with t = ρR̃2/2R2. To do so we need to examine the
quantity td

R̃2∥W∥F
, which we have

td

R̃2∥W∥F
=

ρd

2R2∥W∥F
≥ ρd

2R2 · 2
√
dR−2

=
ρ
√
d

4
.
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Let’s assume for the moment that ρ
√
d/4 > 1. We can then apply Lemma C.2 (noting that this

lemma holds if we replace the ∥Q∥2 with ∥Q∥F ),

P

(
µ⊤Wµ− E[µ⊤Wµ] < −ρR̃2

2R2

)
≤ 2 exp

(
−cmin

(
d2

R̃4∥W∥2F
· ρ

2R̃4

4R4
,

d

R̃2∥W∥F
· ρR̃

2

2R2

))

≤ 2 exp

(
− cdρ

2∥W∥FR2

)
(i)

≤ 2 exp

(
−cρ

√
d

4

)
. (36)

Note that if ρ
√
d/4 ≤ 1 then the above bound still holds since P(·) ≤ 1 is a trivial inequality. This

completes the bound for the first term in (35).

The second and third terms in (35) can be bounded using Lemma C.4: since ζM+1 = Λ1/2g for
g ∼ N(0, Id),

P

(
|µ⊤WζM+1| ≥

ρR̃2

8R2

)
= P

(
|µ⊤WΛ1/2g| ≥ ρR̃2

8R2

)

≤ 2 exp

(
− c

√
d

R̃∥WΛ1/2∥F
· ρR̃

2

8R2

)

≤ 2 exp

(
− c

√
d

R̃∥Λ1/2∥2∥W∥F
· ρR̃

2

8R2

)
(i)

≤ 2 exp

(
− cρR̃

√
d

8R2∥Λ1/2∥2 · 2
√
dR−2

)

= 2 exp

(
− cρR̃

16∥Λ1/2∥2

)
. (37)

The inequality (i) uses the upper bound ∥W∥ ≤ 2
√
d/R2 from Lemma B.1.

For the final term in (35) we can use Lemma C.5,

P

(∣∣∣M−1/2ζ⊤WζM+1

∣∣∣ ≥ ρR̃2

8R2

)
= P

(∣∣ζ⊤WζM+1

∣∣ ≥ ρM1/2R̃2

8R2

)

≤ 2 exp

(
− c

∥Λ∥2∥W∥F
· ρM

1/2R̃2

8R2

)
(i)

≤ 2 exp

(
− c

∥Λ∥2 · 2
√
dR−2

· ρM
1/2R̃2

8R2

)

= 2 exp

(
−cρM1/2R̃2

16∥Λ∥2
√
d

)
. (38)

Again (i) uses Lemma C.5.

Putting together (36), (37), (38) we get

R(WMM) ≤ 2 exp

(
−cρ

√
d

4

)
+ 4 exp

(
− cρR̃

16∥Λ1/2∥2

)
+ 2 exp

(
−cρM1/2R̃2

16∥Λ∥2
√
d

)
.

Noisy case. Returning to (33): as before, the ‘signal’ in the problem comes from the term (1 −
2|N |/M)µ⊤Wµ, which ideally is large and positive. It is natural that we should require more
samples M the closer the noise rate p gets to 1/2 (namely, the smaller cp is), since otherwise with
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nontrivial probability we will see more noisy examples than clean ones and learning should be
impossible. To this end, let’s assume that p ≤ 1

2 − cp for some absolute constant cp ∈ (0, 1/2).
Continuing from (31) which shows that

P
(
1− 2|N |/M >

1

2
cp

)
= P

(
2|N |
M

− 1 + 2cp ≤
6

4
cp

)
≤ 2 exp

(
−
18c2pM

16

)
≤ 2 exp(−c2pM).

(39)
Let’s call the event

E :=

{
1− 2|N |

M
>

1

2
cp

}
.

Continuing from (33), since 1− 2|N |/M > 0 on E we have

R(WMM) ≤ p

+ P
(
µ⊤Wµ− E[yŷ]

(1− 2|N |/M)
< −E[yŷ]−M−1/2ζ⊤Wµ− (1− 2|N |/M)µ⊤WζM+1 −M−1/2ζ⊤WζM+1

(1− 2|N |/M)

)
≤ p+ P(Ec)

+ P
(
E , µ⊤Wµ− E[yŷ]

(1− 2|N |/M)
< −E[yŷ]−M−1/2ζ⊤Wµ− (1− 2|N |/M)µ⊤WζM+1 −M−1/2ζ⊤WζM+1

(1− 2|N |/M)

)
(i)

≤ p+ 2 exp(−c2pM)

+ P
(
E , µ⊤Wµ− E[yŷ]

(1− 2|N |/M)
< −E[yŷ]−M−1/2ζ⊤Wµ− (1− 2|N |/M)µ⊤WζM+1 −M−1/2ζ⊤WζM+1

(1− 2|N |/M)

)
≤ p+ 2 exp(−c2pM)

+ P

(
E , µ⊤Wµ− E[yŷ]

(1− 2|N |/M)

<
−E[yŷ]

1− 2|N |/M
+ 2c−1

p

[
M−1/2|ζ⊤Wµ|+ |1− 2|N |/M| · |µ⊤WζM+1|+ |M−1/2ζ⊤WζM+1|

])
.

(40)

The inequality (i) uses (39). We want to deal with the quantity µ⊤Wµ− E[µ⊤Wµ]
1−2|N |/M = E[yŷ]

(1−2|N |/M)

on the event E . We have,

µ⊤Wµ− R̃2(1− 2p) tr(W )

d(1− 2|N |/M)
= µ⊤Wµ− R̃2 tr(W )

d
· 1− 2p

1− 2|N |/m

= µ⊤Wµ− R̃2 tr(W )

d
+

R̃2 tr(W )

d
·
(
1− 1− 2p

1− 2|N |/m

)
= µ⊤Wµ− R̃2 tr(W )

d
− R̃2 tr(W )

d
· −2p+ 2|N |/M

1− 2|N |/M
.
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Continuing from (40) this means
R(WMM) ≤ p+ 2 exp(−c2pM)

+ P

(
E , µ⊤Wµ− R̃2 tr(W )

d
− R̃2 tr(W )

d
· −2p+ 2|N |/M

1− 2|N |/M

<
−R̃2(1− 2p) tr(W )

d(1− 2|N |/M)
+ 2c−1

p

[
M−1/2|ζ⊤Wµ|+ |1− 2|N |/M| · |µ⊤WζM+1|+ |M−1/2ζ⊤WζM+1|

])
= p+ 2 exp(−c2pM)

+ P

(
E , µ⊤Wµ− E[µ⊤Wµ]

<
−R̃2 tr(W )

d
+ 2c−1

p

[
M−1/2|ζ⊤Wµ|+ |1− 2|N |/M| · |µ⊤WζM+1|+ |M−1/2ζ⊤WζM+1|

])
(i)

≤ p+ 2 exp(−c2pM)

+ P

(
E , µ⊤Wµ− E[µ⊤Wµ]

< −ρ · R̃
2

R2
+ 2c−1

p

[
M−1/2|ζ⊤Wµ|+ |1− 2|N |/M| · |µ⊤WζM+1|+ |M−1/2ζ⊤WζM+1|

])

≤ p+ 2 exp(−c2pM) + P(µ⊤Wµ− E[µ⊤Wµ] < −1

2
ρ · R̃

2

R2
) + P

(
2c−1
p M−1/2|ζ⊤Wµ| > ρR̃2

8R2

)

+ P

(
|1− 2|N |/M | · |µ⊤WζM+1| ≥

ρR̃2

8R2

)
+ P

(
|M−1/2ζ⊤WζM+1| ≥

ρR̃2

8R2

)
. (41)

Inequality (i) uses (34). From here the proof is exactly the same as in the clean case. For the first
term, we use similar arguments used derive (36). To apply Lemma C.2, we need to examine the
quantity td

R̃2∥W∥F
when t = ρR̃2/2R2: we have,

td

R̃2∥W∥F
=

ρd

2R2∥W∥F
≥ ρd

2R2 · 2
√
dR−2

=
ρ
√
d

4
. (42)

Again if ρ
√
d/4 > 1 then we have by Lemma C.2,

P

(
µ⊤Wµ− E[µ⊤Wµ] < −ρR̃2

2R2

)
≤ 2 exp

(
−cmin

(
d2

R̃4∥W∥2F
· ρ

2R̃4

4R4
,

d

R̃2∥W∥F
· ρR̃

2

2R2

))

≤ 2 exp

(
− cdρ

2∥W∥FR2

)
(i)

≤ 2 exp

(
−cρ

√
d

4

)
. (43)

Inequality (i) uses (42). Note that if ρ
√
d/4 ≤ 1 then the above bound still holds since P(·) ≤ 1 is

a trivial inequality.

As for the µ⊤WζM+1 and ζ⊤Wµ terms, similarly as to the analysis used to derive (37) via
Lemma C.4, we have,

P

(
2c−1
p |µ⊤WζM+1| ≥

ρR̃2

8R2

)
= P

(
|µ⊤WΛ1/2g| > cpρR̃

2

16R2

)
(g ∼ N(0, I))

≤ 2 exp

(
− ccpρR̃

32∥Λ1/2∥

)
(44)
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Note that |1− 2|N |/M | ≤ 1 always so this takes care of the term involving µ⊤WζM+1. Since the
analysis used to derive (37) only relies upon upper bounds for ∥W∥F = ∥W⊤∥F , and since M ≥ 1
and cp ∈ (0, 1/2], the same analysis holds for the term |ζ⊤Wµ|.

For the ζ⊤WζM+1 term, the same analysis used for (38) applies here as well, since

P

(
|M−1/2ζ⊤WζM+1| ≥

ρR̃2

8R2

)
= P

(
|ζ⊤WζM+1| ≥

ρM1/2R̃2

8R2

)

≤ 2 exp

(
−cρM1/2R̃2

16∥Λ∥2
√
d

)
(45)

Plugging (43), (44), and (45) into (41) we get

R(WMM) ≤ p+ 2 exp(−c2pM) + 2 exp

(
−cρ

√
d

4

)
+ 4 exp

(
− ccpρR̃

32∥Λ1/2∥

)
+ 2 exp

(
−cρM1/2R̃2

16∥Λ∥2
√
d

)
.

By adjusting the constant c to depend on cp, this completes the proof of Theorem 4.1.

D PROOF OF THEOREM 4.2

Recall that we assume that Λ = I in this section, and for simplicity denote W = WMM. Our goal is
to show that for each k,

µ̂⊤Wykxk > 0.

We have:

µ̂⊤Wykxk =

(
1

M

M∑
i=1

yixi

)⊤

Wykxk

=
1

M

x⊤
kWxk +

∑
i̸=k

yiykx
⊤
i Wxk

 .

Our goal here will be to show that the first quantity x⊤
kWxk is large and positive and dominates the

second term involving x⊤
i Wxk. By definition we have

x⊤
kWxk = (µ+ ykzk)

⊤W (µ+ ykzk)

= µ⊤Wµ+ ykz
⊤
k Wµ+ µ⊤Wykzk + z⊤k Wzk. (46)

In particular we have the identities

{µ̂⊤Wykxk < 0}
= {x⊤

kWxk < −
∑
i̸=k yiykx

⊤
i Wxk}

= {z⊤k Wzk − tr(W ) < − tr(W )− ykz
⊤
k Wµ− µ⊤Wykzk − µ⊤Wµ−

∑
i ̸=k yiykx

⊤
i Wxk}

⊂ {z⊤k Wzk − tr(W ) < −1

2
tr(W )} ∪ {|z⊤k Wµ| > 1

8
tr(W )}

∪ {|µ⊤Wzk| >
1

8
tr(W )} ∪ {µ⊤Wµ < −1

8
tr(W )} ∪

{∣∣∣∑i ̸=k yiykx
⊤
i Wxk

∣∣∣ > 1

8
tr(W )

}
.

(47)

We will therefore proceed by bounding the probability each of these events. We will use the same
notation from the proof of Theorem 4.1 presented in Appendix C, whereby i ∈ C refers to clean
examples (xi, yi) with ỹi = yi, while i ∈ N means yi = −ỹi.
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D.1
∑
i ̸=k x

⊤
i Wxk TERM.

We have, ∑
i ̸=k

yixi =
∑

i∈C, i ̸=k

yixi +
∑

i∈N , i ̸=k

yixi

=
∑

i∈C, i ̸=k

(µ+ ỹkzk) +
∑

i∈N , i ̸=k

(−µ− ỹkzk)

= (|C \ {k}| − |N \ {k}|)µ+
∑

i∈C, i ̸=k

ỹkzk −
∑

i∈N , i ̸=k

ỹkzk.

Now since the label-flipping noise is independent of zk, the random variables ỹkzk are i.i.d. standard
normals. Therefore there is gk ∼ N(0, Id) such that∑

i∈C, i ̸=k

ỹkzk −
∑

i∈N , i ̸=k

ỹkzk =
√
M − 1gk.

If we denote Nk := |C \ {k}| − |N \ {k}| then clearly |Nk| ≤ M and thus we have∑
i̸=k

yixi = Nkµ+
√
M − 1gk,

where |Nk| ≤ M and gk is a standard normal and gk is independent of zk and yk. Therefore∣∣∣∣∣∣
∑
i ̸=k

yix
⊤
i Wykxk

∣∣∣∣∣∣ =
∣∣∣(Nkµ+

√
M − 1gk)

⊤W (ỹkykµ+ ykzk)
∣∣∣

≤ M |µ⊤Wµ|+
√
M |g⊤k Wµ|+M |µ⊤Wzk|+

√
M |g⊤k Wzk|. (48)

In particular we have

P

∣∣∣∣∣∣
∑
i ̸=k

yix
⊤
i Wykxk

∣∣∣∣∣∣ > tr(W )

8

 ≤ P(M |µ⊤Wµ| > tr(W )

32
)

+ P(
√
M |g⊤k Wµ| > tr(W )

32
) + P(M |µ⊤Wzk| >

tr(W )

32
) + P(

√
M |g⊤k Wzk| >

tr(W )

32
). (49)

We’ll proceed by bounding each of these terms in sequence.

µ⊤Wµ term. Let L be an integer (we will take L = M in this proof but in a later proof we will
take L = 1). Since tr(W ) > 0 by Lemma B.1, we have

{|Lµ⊤Wµ| > tr(W )

32
} = {|µ⊤Wµ− R̃2 tr(W )

d
|+ R̃2 tr(W )

d
>

tr(W )

32L
}

This means

P
(
|Lµ⊤Wµ| > tr(W )

32

)
≤ P

(∣∣∣∣∣µ⊤Wµ− R̃2 tr(W )

d

∣∣∣∣∣ > tr(W )

32L

(
1− 32R̃2L

d

))
.

Assume for now d > 128ρ−1R̃2L so that 32R̃2L/d < 1/2. We then have by Lemma C.2,

P
(
|Lµ⊤Wµ| > tr(W )

32

)
≤ P

(∣∣∣∣∣µ⊤Wµ− R̃2 tr(W )

d

∣∣∣∣∣ > tr(W )

64L

)

≤ 2 exp

(
−cmin

(
d2

R̃4∥W∥2F

(
tr(W )

64L

)2

,
d

R̃2∥W∥F

(
tr(W )

64L

)))
.

As for the quantity appearing in the minimum we have by Lemma B.1

d tr(W )

64L
· 1

R̃2
≥ d

64L
· ρd
R2

· R2

2R̃2
√
d
=

ρd3/2

128LR̃2
≥ ρd

128LR̃2
.
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We therefore have

P
(
|Lµ⊤Wµ| > tr(W )

32

)
≤ 2 exp

(
− cρd

128LR̃2

)
. (50)

We see that the case d ≤ 128ρ−1R̃2L results in the same inequality to hold (albeit vacuously). This
completes the proof for the µ⊤Wµ term in (49) by taking L = M .

g⊤k Wµ and µ⊤Wzk terms. The terms µ⊤Wgk and z⊤k Wµ can be controlled using Lemma C.4.
For an integer L ∈ N we have

P
(
L|µ⊤Wgk| ≥

tr(W )

32

)
≤ 2 exp

(
− c

√
d

R̃∥W∥F
· tr(W )

8L

)
.

We have
√
d

R̃∥W∥F
· tr(W )

32L
≥ R2

√
d

R̃ · 2
√
d
· ρd

32R2L
=

ρd

64R̃L
.

Note that the above argument applies to W⊤ as well as W , so that we have

P
(
L|g⊤k Wµ| ≥ tr(W )

32

)
∨ P

(
L|µ⊤Wgk| ≥

tr(W )

32

)
≤ 2 exp

(
− cρd

64R̃L

)
. (51)

In particular, we have

P
(√

M |g⊤k Wµ| ≥ tr(W )

32

)
≤ 2 exp

(
− cρd

64R̃
√
M

)
,

P
(
M |µ⊤Wzk| ≥

tr(W )

32

)
≤ 2 exp

(
− cρd

64R̃M

)
. (52)

g⊤k Wzk term. The last term g⊤k Wzk is a Gaussian chaos random variable. By Vershynin (2018,
Lemma 6.2.2) this random variable is sub-exponential with sub-exponential norm at most c∥W∥F .
Therefore we have

P(
√
M |g⊤k Wzk| >

tr(W )

32
) = P(|g⊤k Wzk| >

tr(W )

32
√
M

) ≤ 2 exp

(
−c

tr(W )

32
√
M∥W∥F

)
.

Since tr(W )/∥W∥F ≥ ρ
√
d/2 by Lemma B.1 this implies

P(
√
M |g⊤k Wzk| >

tr(W )

32
) ≤ 2 exp

(
− cρ

√
d

64
√
M

)
. (53)

Putting it all together. Continuing from (49) we can use (50), (52) and (53) to get

P

∣∣∣∣∣∣
∑
i ̸=k

yix
⊤
i Wykxk

∣∣∣∣∣∣ > tr(W )

8

 ≤ 2 exp

(
− cρd

128MR̃2

)

+ 2 exp

(
− cρd

64R̃
√
M

)
+ 2 exp

(
− cρd

64MR̃

)
+ 2 exp

(
− cρ

√
d

64
√
M

)
. (54)

D.2 x⊤
kWxk TERM.

It remains to bound the probability of the first three events in (47).
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z⊤k Wzk term. First note that since zk is a standard Gaussian, by a standard Hanson-Wright in-
equality (Vershynin, 2018, Lemma 6.2.1) we have for some constant 0 < c < 1, for any t ≥ 0,

P(|z⊤k Wzk − tr(W )| ≥ t) ≤ 2 exp

(
−cmin

(
t2

∥W∥2F
,

t

∥W∥F

))
.

So for t = 1
2 tr(W ) we have

t

∥W∥F
=

tr(W )

2∥W∥F
≥ ρd

R2
· R2

4
√
d
=

ρ
√
d

4
.

This means that if ρ
√
d/4 ≥ 1 we have by Lemma B.1

P
(
|z⊤k Wzk − tr(W )| ≥ 1

2
tr(W )

)
≤ 2 exp

(
−cρ

√
d/4
)
. (55)

Since the same inequality trivially holds if ρ
√
d/4 < 1 (by potentially taking c to be a smaller

constant), this completes this term.

µ⊤Wµ term. This is covered by (50) with L = 1:

P
(
|µ⊤Wµ| > tr(W )

32

)
≤ 2 exp

(
− cρd

128R̃2

)
. (56)

z⊤k Wµ terms. Since gk and zk are i.i.d., this is covered by (51) with L = 1:

P
(
|z⊤k Wµ| ≥ tr(W )

32

)
∨ P

(
|µ⊤Wzk| ≥

tr(W )

32

)
≤ 2 exp

(
− cρd

64R̃

)
. (57)

Putting it all together. Continuing from (47) we have

P
(
µ̂⊤Wykxk < 0

)
≤ P

(
z⊤k Wzk − tr(W ) < −1

2
tr(W )

)
+ P

(
|z⊤k Wµ| > 1

8
tr(W )

)
+ P

(
|µ⊤Wzk| >

1

8
tr(W )

)
+ P

(
µ⊤Wµ < −1

8
tr(W )

)
+ P

(∣∣∣∑i ̸=k yiykx
⊤
i Wxk

∣∣∣ > 1

8
tr(W )

)
≤ 2 exp

(
−cρ

√
d

4

)
+ 4 exp

(
− cρd

64R̃

)
+ 2 exp

(
− cρd

128MR̃2

)

+ 2 exp

(
− cρd

64R̃
√
M

)
+ 2 exp

(
− cρd

64MR̃

)
+ 2 exp

(
− cρ

√
d

64
√
M

)

≤ 4 exp

(
− cρ

√
d

64
√
M

)
+ 8 exp

(
− cρd

128M(R̃2 ∨ R̃)

)
.

Using a union bound this allows for us to conclude

P
(
∃k ∈ [M ] s.t. µ̂⊤Wykxk < 0

)
≤ 4M exp

(
− cρ

√
d

64
√
M

)
+ 8M exp

(
− cρd

128M(R̃2 ∨ R̃)

)
,

as claimed in the theorem.

E EXPERIMENT DETAILS

We describe here the experimental setup for Figures 2 and 3; upon publication, we will provide code
on Github.
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We pre-train models using standard full-batch gradient descent on the logistic loss with R = 5
√
d,

N = 40, learning rate η = 0.01, for 300 steps from a zero initialization, using PyTorch. The in-
context training accuracy is measured using the definition of training accuracy from Theorem 4.2:
namely, we look at what proportion of the in-context examples (training data) that is accurately
predicted with the model ŷ(E1:M

τ ;W ), where W is the trained transformer, for a single task τ ,
i.e. averaging 1(yk = sign(y(E1:M

τ (xk);W ))) over k = 1, ...,M . The in-context test accuracy is
computed by measuring whether sign(ŷ(E1:M

τ (xM+1);W )) = yM+1. We then average over 2500
tasks, and we plot this average with error bars corresponding to one standard error over these 2500
numbers. All computations can be run within an hour on high-quality CPU, although we used an
NVIDIA RTX 3500 Ada which helped speed up the computations for the B = d ≥ 1000 setting.
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