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Abstract

This study presents new methods for integrating event
data and IMU readings to achieve ultra-fast camera pose
estimates. The conventional predict-with-IMU-correct-
with-vision approach is no longer optimal because events
can be generated much more rapidly than IMU data. There-
fore, two novel fusion schemes are proposed, which com-
bine constant velocity and constant acceleration prediction
models with ultra-fast (10 kHz) event-based updates and
slower 1 kHz IMU updates. The first scheme uses IMU
data as instantaneous measurements of acceleration and
angular rate, while the second scheme considers these mea-
surements as the average within the IMU sampling time.
To provide a basis for comparison, the traditional method
that predicts motion using IMU data and updates the esti-
mates with event-feature matching over a Ims time window
is also implemented. All models are designed as Kalman
filter variants, which act as the tracker module of a PTAM
system in a human-made indoor scenario and are subjected
to stress experiments to evaluate their capabilities. The
models are also compared against an event-only estimator
and a frame-based visual-inertial approach. The findings
demonstrate superior performance at a throughput that is
100 times faster than the state-of-the-art.

1. Introduction

Event cameras have emerged as novel sensors that can
handle high dynamic motion and challenging lighting con-
ditions in computer vision since they were commercially
available in 2008 [1, 15]. With the technological advance-
ments in event cameras, there is a need to explore new
techniques to fuse event data with other sources of infor-
mation [8]. For instance, the combination of events and
frames produced accurate rotational motion estimations be-
tween frames [3, 9], and event cameras and pulsed line sen-
sors can be used to capture high-frequency light rays and
reconstruct three-dimensional objects [2, [4].

Several works focus on solving the problem of visual-

inertial odometry estimation using event cameras [13,16,18,

,21] and face differently the challenge of asynchronous
event data arriving faster than the IMU and image frames.
For instance, [21] proposes a method that uses IMU predic-
tions and feature tracking over event windows with a multi-
state constraint Kalman filter [12]. Despite achieving high-
throughput rates of up to 100 Hz, this method suffers from a
high computational cost. The work in [16] preintegrates in-
ertial measurements and corrects with visual keyframes of
motion-compensated event images minimizing reprojection
error. The event window size used is sufficiently large to
preintegrate several IMU readings. The extension in [16]
also includes images in the process. Both approaches reach
a top throughput of 100 Hz.

Our approach is more related to IDOL [11], which is
a line-based visual-inertial system that tracks clusters of
lines across multiple event windows to refine IMU prein-
tegrated predictions through non-linear optimization. How-
ever, IDOL is known to have a high computational cost that
limits its real-time performance. A more recent method,
PL-EVIO [10], follows a similar approach to [16] but uses
the Line Segment Detector (LSD) [19] and FAST corners
[6] to detect features on motion-compensated images. Like
IDOL, PL-EVIO employs the IMU preintegration scheme
but achieves faster estimation rates of 30-100 Hz.

In this work, we propose novel strategies that do not fol-
low the feature tracking and IMU preintegration schemes
from most state-of-the-art approaches. Our approach does
not create event images and relies only on small tempo-
ral windows of events. Our proposed camera tracking sys-
tem uses the Lie Kalman filter architecture presented in [4],
which uses only events and line features, and has a high
throughput rate of up to 10kHz, at least one hundred times
faster than the state-of-the-art. We integrate the proposed
camera tracking approaches as part of a full Parallel Track-
ing and Mapping (PTAM) system to assess their perfor-
mance in human-made environments and compare them
against state-of-the-art methods. We use the mapping mod-
ule presented in [5] to retrieve 3D lines from the scene using
only event data, which works at a lower rate.



2. Events & IMU fusion

Our tracking system utilizes the Lie Kalman filter for-
mulation proposed in [4]. This filter is designed to work
with small event windows and can achieve a pose estima-
tion rate that is up to 10 times faster than the DAVIS346
IMU sampling frequency. We describe here our strategy to
deal with the fact that event-based poses are produced at a
much higher rate than IMU readings. It uses both events and
IMU data during the correction stage, each at its own sam-
pling interval, producing estimates at the high rate of the
event-based tracker. We consider two variants correspond-
ing to two different assumptions on the nature of the IMU
measurements, either instantaneous at the sampling time or
averaged over a sampling period. For comparison, we also
describe the classical strategy, which incorporates the IMU
readings in the prediction stage and the events in the cor-
rection stage, thus requiring a reduction of the throughput
to the lower rate of the IMU. In the following sections, we
will provide a detailed explanation of these two strategies
and their variants.

2.1. Events & IMU in correction stage

This strategy draws from the events-only correction
mechanism proposed in [4], which utilizes an ultra-fast
event-line data association algorithm over a small window
of events. Here, we combine it with IMU corrections, which
take place at central window time. When there are no IMU
readings available, the correction is carried out solely with
event data. The event window has a typical size of 100 us,
hence we incorporate one IMU reading every ten windows
to account for the IMU rate of 1 kHz. Figure | summarizes
the strategy.

2.1.1 Measurement models for IMU data

We consider two different assumptions on the nature of the
IMU readings: instantaneous and averaged. Each of these
models requires a particular parametrization of the state
space, which are described in Sec. 2.2.1.

The use of IMU readings as instantaneous values at the
sampling time yields what we call the Instantaneous Accel-
eration measurement model (IA):

ampi :RkT(ak _g)+bak+aa (1)
Wk+bwk+o-u7 (2)

where &y, and @y, are the estimated IMU linear accel-
eration and angular velocity at the IMU reference frame B,
which are computed from the current estimates of the cam-
era linear acceleration ay, its angular velocity wy, and ori-
entation Ry, € SO(3).

The Mean Acceleration measurement model (MA) deals
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Figure 1. Strategy 1: Events and IMU in the correction stage.

with IMU readings as mean values over a AT interval:

. Vi — Vi_
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Omp = % + by + 0w, 4)

where we compute the mean acceleration from the velocity
estimates at two consecutive IMU sampling times v and
vj—;. In addition, the mean angular velocity is computed
as an SO(3) right minus operation between the current ori-
entation and the orientation at the previous IMU sampling
time Ry_;. Note that the right minus operator © is defined
with the SO(3) logarithmic map as Log(Ry_; 'Ry), and
AT is an IMU time step fixed at 1 ms for the DAVIS346
IMU sensor used in this work. Both measurement models
include the gravity vector g = [0,0,—9.81] ' m/s2, the ac-
celeration and angular velocity biases (bay, , by, € R?),
and the sensor noise (o, , 0, € R3).

The innovation related to IMU readings is computed as,

7 = |:am_aAm:| €R6X1, (5)

Wm — Wm

which is the difference between the sensor readings of ac-
celeration a,,, and angular velocity wy,, and the estimation
from any of the measurement models.

The Jacobians of the innovation with respect to the state
terms are derived using the SO(3) Lie properties summa-
rized in [17]. The Jacobians follow the notation J§ £
Oa/0db, and their computations are aided with the chain rule
resulting in the following expressions for each measurement



model:
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where J, ! and J; ! stands for the SO(3) inverse right and
left Jacobians, which expressions are stated in the equations
(144) and (146) in [17]. The Jacobians with respect to the
biases are trivial and equal to the identity, and the operator
[]x denotes a skew-symmetric matrix.

The Jacobians summarized in (6) and (7) are part of an
innovation Jacobian matrix H € R%*™ with m = 21 for
the IA model, and m = 24 for the MA model. The innova-
tion covariance is computed as Z = HPH' + N ¢ R6%6,
where P stands for the state covariance of the transition
models of each filter variant detailed in Sec.2.2.1. In ad-
dition, N = diag(c,2I,0,2I) € R6%6 is the noise matrix
that contains the IMU sensor noise of linear acceleration
0 [m/s?], and angular velocity o, [rad/s].

2.2. Measurement model for segment observations

The three-dimensional segments’ endpoints p; V j €
{1, 2} are projected to the image plane as follows,

.
u, =K°Re (RT(p;—1)-1¢) €P’, (8

where r and R are the system pose computed at IMU
reference frame, K is the intrinsic camera matrix, and
{rB,BRc} are the IMU-to-camera extrinsic parameters.

In the absence of IMU data, the partial event innovations
belong to the signed event-line distance, which is computed

considering the projected line 1 = u, x u, = |a,b,¢] ' and
the event e associated to a line as follows,
T
1
c=dlel) = ——= eR. )

The innovation covariance is Z = HPH' + o4’ €
R, which results in scalar term. The measurement noise is
denoted with o4 [piz], and the innovation Jacobians H of
this measurement model are fully detailed in [4].

Recall that the data association algorithm is the same
used in [4] and [5] and is fully detailed in these works.
This algorithm allows for discarding or validating events as
fast as possible. The fast operation is the result of the ap-
plication of three simple but effective steps: the visible line
projection onto the image plane in an event window, Fig. 2a;
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Figure 2. Data association algorithm [4]

the image tessellation for a fast event searching, Fig. 2b;
and the event thresholding considering a minimum event-
line distance « [piz] and the distance with respect closer
lines 3 [pix], Fig. 2c.

2.2.1 State representations and prediction models

Depending on the measurement model chosen, a specific
prediction model is to be used in the filter. Two variants
are proposed: the constant acceleration (CA) model com-
bined with the instantaneous measurement model (CA +
IA), and the constant velocity (CV) model corrected with
the mean measurement model (CV + MA). Note that both
variants use event-only corrections in between IMU read-
ings, as shown in Fig.1.

The state transitions for both variants are shown in Ta-
ble 1, where in CV+MA, vi_; and Ry_; denote the
delayed-state IMU pose at the time when the previous IMU
data arrived. These terms are updated with current values at
time k after the correction stage, and At is the event win-
dow time step, which is set to 100 us in our experiments.

The perturbation in all models is modeled as a Gaussian
noise with mean zero and a covariance, which is computed
as a random impulse integrated over a timestep At. The
following expressions detail the covariance name associate
the each noise term and the integration result as follows:



Table 1. State transitions for CA+IA and CV+MA variants

xk+1:f(‘ CA +1TIA ‘CV-&-MA)‘GM
Thit = | Tp + iDL+ Jap A [ rp+viAt [ €RS
Vit1 = | Vi + apAt Vi + Vn cR3
ary1 = | ag +ap — cR3
Vi—j = — Vi—j cR3
Rk,j = — Rk,_,‘ (S SO(S)
Rk+1 = Rk D {kat} S 50(3)
Wet1 = Wy, + wp cR3
bak+1 = bak + ban S RS
buri1 = bui + bun cR?

Table 2. State transition for IMU + e variant

Xk+1:f(‘ IMU +e ‘EM
1 = | rp + VAT cR3
Virr = | Vi + (R(am — bay) + g+ 0.)AT | € R3
bari1 = | bag + ban eR?
bwk+1 = bwk + bwn S R3
v ~ N(0,V;) with V; = oyn?Atl
Wp ~ (0, Q,) with Q; = JwHQAtI
an ~ /\/( ,Ai) with A = gan’Atl , (10)

0
ba, ~ (0,Ba;) with Ba; = Oban2AtI
(0, Bwi) with Bwj; = O'bWHQAtI

where  oyn[m/s\/s], ownlrad/s\/s], Tanlm/s*\/s],
Oban|m/s%\/s], are noise constants, and open[rad/s/s|
are bias drifts. These constants were tuned empirically
based on characteristics of the experiments and the IMU
sensor specifications.

The state covariance is propagated as Pyi; =
FP,F' + Q, where F is Jacobian matrix with respect to
the state derived following SO(3) lie group properties and
the state transitions of Table 1. Q is the perturbation co-
variance conformed with the random impulses in (10), and
built according to the noise terms of each variant detailed in
Table 1. The covariance matrices have a size of m x m with
m = 21 for the CA+IA variant and m = 24 for CV+MA.

2.3. Prediction with IMU and correction with events

For sake of completeness, we also implement a second
strategy that incorporates the IMU readings in the predic-
tion stage; as a result, each event window is now centered at
IMU time and has a fixed size of 1 ms, as detailed in Fig. 3.

The resulting variant of the Lie Kalman filter is denoted
IMU + e because it incorporates both IMU and event data.
The state transition follows the classic visual-inertial formu-
lation detailed in Table 2, where the sensor bias and noise is
included in the linear velocity and orientation estimations.
But in contrast to frame-based visual-inertial methods in the
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Figure 3. Strategy 2: Prediction with IMU and correction with
events.

state of the art, our method is 10 to 30 times faster, thanks
to the use of event windows of 1ms and centered at IMU
sampling times. The state Jacobians are computed using
the SO(3) Lie properties, where the nontrivial expressions
are listed as follows,

Ji = —R[am—ba]x

v = —RAt

ba 11
IR = R{(wm-bu)} (b
IR = _J, (wm—bu)AT

The correction for the IMU+e variant follows the same
approach described in Sec. 2.2, which uses the signed event-
to-line function stated in (9).

2.4. Events & IMU in a PTAM system

Our proposed sensor fusion variants enable camera pose
estimation in conjunction with a mapping module within
a PTAM system. We leverage the mapping formulation
from [5], which allows us to recover 3D lines from the
scene. The mapping module builds a spatial grid at a
keyframe position, which is intersected by back-projected
rays from events in several event windows. The tracking
module determines the pose of each event window. The grid
is divided into voxels, which are populated with votes from
each ray that passes through them. Voxels with a greater
number of votes are more likely to contain a 3D point. We
can retrieve a 3D line from a set of 3D points aligned in
straight patterns located in straight edges.

Since the mapping and tracking modules operate inde-
pendently, we use a local bundle adjustment module to op-
timize 3D lines and camera poses using a cost function that
minimizes the distance between the event and line in the im-
age plane. For more details on the mapping process, see [5].
In section 3.1, we present the results of a PTAM application
that uses our proposed sensor fusion variants.



Table 3. RMSE for event-only and event-IMU PTAM configurations and for visual-inertial SVO.

Dataset | CV [ CA ][ CA+IA | CV+MA [ IMU+E || SVO

Office Pos. [cm] 3.87 | 3.91 3.79 3.68 3.75 4.77

L_shape Rot. [rad] 0.23 | 0.24 0.23 0.22 0.23 0.25

Office Pos. [cm] 6.62 | 6.58 6.60 6.53 6.38 6.88

large Rot. [rad] 023 | 0.23 0.22 0.22 0.21 0.22

Trihedron Pos. [cm] 331 | 3.46 3.27 3.12 3.15 8.20

Rot. [rad] 0.20 | 0.18 0.17 0.17 0.16 0.18

Office Pos. [cm] 3.84 | 3.77 3.72 3.71 3.69 3.61

far Rot. [rad] 0.27 | 0.26 0.27 0.26 0.26 0.25

Pose throughput | [kHz] 10 10 10 10 1 0.033*

Stream [ms] 11.6 | 145 15.20 13.90 10.9 2222
Processing time

*Throughput limited by the DAVIS346 camera

|= cV+MA —SVO

IMU+e — CA+IA —Ground truth|

Reconstruction with 3D lines

-0.05
-0.10
-0.15
-0.20

0.40
0.35
0.30

-0.20

-0.25 Mapping

Tracking

0.63
0.50
0.37

0.50 -:».,, ’#‘:‘

0.30
0.10
0.75
0.50

0.25

31 32 ® On events @ Off events Tracked lines

Figure 4. Trajectory and 3D reconstruction with PTAM system using CV + MA variant in Office L shape scenario. The tracked lines are
highlighted in green in the tracking snapshots, and the line map was captured from Rviz at the end of the sequence.

3. Experiments and results

To evaluate the performance of all filter variants, we pro-
pose two experiments. Firstly, we integrate the tracking sys-
tem into a PTAM (Parallel Tracking and Mapping) system
to assess the pose estimation accuracy while creating 3D
line-based maps. Secondly, we conduct a stress experiment
to assess the estimation limits in high dynamics. We use the
DAVIS346 event camera in all experiments, which includes
an MPU-6500 IMU.

The sensor noise and bias drifts are tuned to IMU
specifications. ~ The used values for all variants are
0.93 [m/s%], 0w = 0.017 [rad/s|, oban =

Ogq =

2.94 [m/s?\/5], Obwn = 0.17 [rad/s/s]. The remind-
ing noise constants were set experimentally in order to get
a response with the lowest possible error, these parameters
are oy = 3 [m/s\/s], own = 7 [rad/s+/s], and, oan =
150 [m/s?/s]. The PTAM system runs in a standard mul-
ticore CPU with Ubuntu 18.04.6 and ROS Melodic.

3.1. PTAM evaluation

The mapping node of [5] was used to recover 3D lines
for all tracking variants, and it runs at a lower asynchronous
rate of about 10 Hz. The PTAM’s tracking module was set
up for the event-only variants of CV and CA, as extensively
described in [4], and for the three proposed sensor fusion
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Figure 5. Position estimation in stress test from 240 rpm to 990 rpm with CV+MA, CV+IA, and IMU+-e variants: (a) position estimation,
(b) error evolution, (c¢) four-bar mechanism with tracking snapshots until the system failure.

variants: CV+MA, CA+IA, and IMU+e. Additionally, for
comparison purposes, the frame-based visual-inertial ap-
proach SVO [7] was also tested on our sequences. Table 3
summarizes the scenarios and the mean pose estimation er-
rors, compared to Optitrack ground truth.

The tracking variants and the mapping node run in par-
allel threads. Our efficient implementation of CV+MA and
CA+IA allows reaching a no-lag real-time throughput of up
to 10kHz, with event windows of 100us. Event windows
smaller than 100us diminished the mapping accuracy due to
the reduced amount of events per window. SVO works at a
frame rate of 30 Hz for the DAVIS346 camera. Note that ac-
cording to [7] SVO is capable of running at 300 fps showing
real-time performance. In our experiments the throughput
of SVO is limited by the DAVIS camera.

A PTAM performance example in the office scenario is
shown in Fig. 4. Notice that whereas SVO has large drifts in
some short intervals, all the proposed methods better match
the ground truth trajectory. The mean errors in Table 3 show
an overall accuracy improvement of about 5% in all sen-
sor fusion variants with respect to event-only ones. The
best-achieving variants were CV+MA and IMU+e, which
present better results than the frame-based approach, prob-
ably because the scenarios are richer in straight edges than
texture. IMU+e was the most accurate approach but limited
to a throughput of 1kHz. Its accuracy is about 5% higher
than CV+MA or CA+IA. While our approach works well in

human-made environments where straight lines are preva-
lent and provide stable estimations of camera pose, it may
face challenges in natural scenarios where straight lines are
absent. Retrieving small, noisy lines in such environments
can compromise the accuracy of our estimations. Therefore,
further research is needed to improve the robustness of the
approach in natural scenarios. Nevertheless, our approach
remains a promising solution for fast and accurate camera
pose estimations in human-made environments.

The time required to process all event windows within a
33ms event stream is named stream processing time, and it
is displayed in the last row in Table 3. The sensor fusion
variants show an increase in computational time of about
6% with respect to the event-only CV and CA methods.
IMU-+e was the cheapest option given its smaller state size.
The computational time of the mapping thread is the same
reported in [5] due to there were no modifications proposed
in our approach.

3.2. Stress evaluation

In this experiment, the sensor fusion variants were tested
to determine their tracking limits under high dynamics.
The experiment involved an event camera placed on top
of a four-bar mechanism that observes a statically known
marker, as shown in Fig.5c. The marker is used as a line
map to estimate the camera pose in high dynamics con-
ditions The device’s kinematics and dimensions are well



known, providing ground truth for the experiment.

The DC motor powering the device was discretely in-
creased from 132 rpm (2.2Hz) until tracking failed. Fig. 5a
shows that the IMU+e (dark yellow) failed first at 750 rpm
(12.5 Hz), followed by CA+IA (cyan) at 858 rpm (14.3 Hz)
and CV+MA (gray) at 870 rpm (14.5 Hz), while the event-
only variant CV (dark blue) reached the maximum speed of
990 rpm (16 Hz).

Although the sensor fusion variants failed before the
event-only variant, they provided better estimations than
CV, as illustrated in the error evolution plot in Figure
5b. Specifically, Table 3 shows that IMU+e produced the
most accurate pose estimations, followed by CV+MA and
CA+IA, whose error ranges were similar.

However, the main cause of failure for the sensor fusion
variants was the acceleration exceeding the MPU-6500 ac-
celeration limit of 16g at 750 rpm, leading to saturation.
This saturation issue was verified by comparing the esti-
mated and measured linear acceleration signals, as shown
in Figure 6. The estimated acceleration (light blue in Figure
6) exceeded 16g, but the IMU sensor (dark blue in Figure
6) can not produce measurements beyond that value, which
introduced errors in the estimations. Towards the end of
the experiment, CV experienced strong vibrations over 25g,
which caused the tracking estimation to degrade. Due to
the strong vibrations in the mechanism, experiments with
accelerations over 25g were not conducted to avoid damag-
ing the event camera.

4. Conclusions

This work presents a comprehensive evaluation of dif-
ferent event-camera tracking variants, including event-only
and sensor fusion approaches, for ultra-fast response in
tracking and pose estimation.

The proposed variants, CV+MA and CA+IA, as well
as IMU+e, showed an accuracy improvement of approxi-
mately 6% over event-only approaches. IMU+e was found
to be the most accurate, albeit with limited throughput.
The proposed tracking architecture achieved a throughput
of about 10 kHz with CA+IA and CV+MA, and 1 kHz with
IMU-+e, which is significantly faster than frame-based ap-
proaches like SVO (limited to 30Hz due to DAVIS model
design). Although the computational burden of sensor fu-
sion variants is slightly higher than that of event-only meth-
ods, real-time performance is maintained.

The stress experiment showed that the sensor fusion
variants failed before event-only ones due to the accelera-
tion exceeding the sensor acceleration limit of 16g. Over-
all, the results demonstrate the potential of sensor fusion
approaches to achieve event-based pose estimation with a
throughput of 1kHZ to 10kHz and accuracy superior to
event-only or image-based methods in human-made envi-
ronments.

Freq.[Hz]: 2.23.3 48 59 70 7.7 8.1 96
Step: 1 4 8 M 14 16 17 20
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99 11.0 125 14.7 16.5
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Figure 6. Linear acceleration measured and estimated during
the stress experiment. Note: IMU acceleration is saturated after
750 rpm (12.5 Hz) where the camera experiences an acceleration
higher than 16g
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