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Abstract

The public often attributes human-like qualities to large language models (LLMs)
and assumes they “know” certain things. In reality, LLMs encode information
retained during training as internal probabilistic knowledge. This study examines
existing methods for probing the veracity of that knowledge and identifies several
flawed underlying assumptions. To address these flaws, we introduce sAwMIL
(Sparse-Aware Multiple-Instance Learning), a multiclass probing framework that
combines multiple-instance learning with conformal prediction. SAWMIL leverages
internal activations of LLMs to classify statements as true, false, or neither. We
evaluate sSAWMIL across 16 open-source LLMs, including default and chat-based
variants, on three new curated datasets. Our results show that (1) common probing
methods fail to provide a reliable and transferable veracity direction and, in some
settings, perform worse than zero-shot prompting; (2) truth and falsehood are not
encoded symmetrically; and (3) LLMs encode a third type of signal that is distinct
from both true and false.

1 Introduction

Can we trust the content generated by large language models (LLLMs)? Recent literature suggests
that LLMs possess internal probabilistic knowledge [} 2} 13,4, |5]. However, our understanding of
how LLMs use this internal knowledge (if at all) remains fragmented. It is known that LLMs are
indifferent to the veracity of their outputs [6] and often hallucinate [7]. Furthermore, it is often
difficult for users to recognize hallucinations because LLMs produce fluent and persuasive text. For
example, Church [8] shows that students trust factually incorrect answers from GPT due to their
authoritative and confident tone, and Williams et al. 9] demonstrate that users rate disinformation
generated by LLMs as equally or even more credible than human-generated content. Thus, we need a
method to assess the truthfulness of internal probabilistic knowledge to make user interactions with
LLMs more reliable.

Prompt-based evaluations (see Fig.[TJA) rely on the idea that we can simply ask an LLM about its
knowledge. Abbasi Yadkori et al. [10]] introduce an information-theoretic prompt-based evaluation,
while Xu et al. [L1] propose a training framework to produce prompts with self-reflective rationales,
and Farquhar et al. [12] introduce uncertainty estimators to detect inconsistent text generations.
However, prompt-based evaluations are sensitive to the input’s phrasing [13]] and content [14]].

A more direct approach is to examine how LLMs represent text internally (see Fig.[IB). Consider
a large language model, M, with a vocabulary V. The LLM maps the input text & to a probability
distribution over subsequent tokens, denoted P4:

M (x) = Pm(7 | ), where 7 € V. (D

For any token 7 € V, the distribution Ppy (7 | @) denotes the probability that 7 is the continuation of
the sequence x. To compute the conditional distribution Py, an LLM transforms z into intermediate

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Mechanistic Inter-
pretability.



A Zero-shot Prompt B Representation-based Probe
Question: Is the following statement correct? . .. .
The city of Agadir is located in Morocco. [ The city of Agadir 1is located in Morocco. ]
Select one of the foHowjng options: l Input to the model
1. The statement is correct.
2. The statement 1is dincorrect.
3. I do not have sufficient knowledge. e ™
4. The statement is too ambiguous. LARGE LANGUAGE MODEL
5. All of the above.
6. None of the above. l DECODERI l
Please respond with the corresponding number. l DECODER I l
The final answer 1is . .
C 1
Input to the model l DECODERN l
v
B1 Mean-difference B2 Multiclass sAwMIL
LARGE LANGUAGE MODEL probe probe (ours)
Output of the model
(next token prediction) Representation
v of the last token Representations of all tokens (bag)
Probability
of a token .
Veracity Truthfulness || Falsehood
Probe Probe Probe
1.2 3 4
Lyd !
+
P(True) P(Neither) P(True) P(False) P(True) P(False) P(Neither)
P(False)

Figure 1: Overview of methods for probing veracity in LLMs. (A) In zero-shot prompting, a target
statement is inserted into a structured prompt instructing the LLM to select an answer from a specific
set of tokens. The LLLM’s prediction is based on the probabilities of these tokens. This method
treats the model as a black box and examines its (input, output) pairs. (B) In representation-based
probing, the analysis is done on the internal representations generated by intermediate decoders. (B1)
The mean-difference probe [[15] is a common method for determining the veracity of a statement
based on the representation of the last token. This approach outputs probabilities for true or false
statements, but cannot account for statements that lack a definitive truth value. (B2) Our probe,
multiclass sparse aware MIL (sAwMIL), looks at the representation of every token in a statement and
provides probabilities for three classes: true, false, and neither. Multiclass sAwMIL can account for
cases when the LLM does not have any knowledge about the statement.

neural activations denoted h; () € RE*4, Here h; (x) denotes the neural activations of M after
the ¢th decoder, d stands for the dimensionality of the decoder, and L stands for the length of the
sequence . We can probe these intermediate activations to identify veracity signals, i.e., to isolate
activation patterns that correspond to truthful statementsﬂ For example, Azaria and Mitchell [16]
train a neural network to classify statements as true or false based on these internal representations.
Similarly, Marks and Tegmark [15] use a mean-difference classifier to linearly separate true or false
statements (see Fig.[[|B1). Further examples include the improved linear classifier introduced by
Biirger et al. [17]] and a semi-supervised method based on the contrastive pairs of statements [[18].
Collectively, these works rely on the idea that given a data set (x, y) € D with some statements  and
veracity labels y € Z, we can train a probe g; that maps neural activations h; (x) to the distribution
G pm over M’s veracity labels:

gi (hi (x)) = Gm(z | ), where z € {true, false} 2)

However, we observe that existing probing methods often rely on flawed assumptions, which limit
the reliability of their findings (for an overview, refer to Supplementary Tab. f). We argue for a
three-valued logic approach (as in Fig.[T}B2) as the more appropriate method to model veracity in
LLMs. Our method sAwMIL (short for Sparse Aware Multiple-Instance Learning) combines Multiple
Instance Learning (MIL) [[19] and Conformal Predictions (CP) [20] to allow for a flexible probe that
can handle ‘neither’ statements and quantify uncertainty.

'We use the terms ‘pattern’ and ‘signal’ interchangeably. Similarly, ‘neurons’ and “features’ are used to refer
to individual components of a signal. In this context, a signal or pattern denotes a set of features that operate
collectively.



In summary, our contributions include the following.

1. We identify and discuss five flawed assumptions in the current veracity-probing literature.
2. We show that common linear classifiers do not capture reliable veracity directions.

3. We propose a novel multiclass linear probing method sAwMIL based on Multiple Instance
Learning (MIL) [19] and Conformal Prediction [20} 21]].

4. We present three new data sets containing statements labeled true, false, and neitherﬂ to
enable more rigorous evaluations of veracity probes.

2 Background and Flawed Assumptions When Probing Veracity in LLMs

An LLM, M, has internal probabilistic knowledge K », which it acquires during trainingE] To
determine the veracity of a statement ¢, the model M should be able to distinguish between three
scenarios:

1. ¢ is True if there is sufficient support for ¢ given K rq:
P(¢ | Km) > ¢, where ¢ € (0, 1] is a threshold.
2. ¢ is False if there is sufficient support for —¢ given K \:
P(=¢ | Kam) > ¢, where ¢ € (0, 1] is a threshold.
3. ¢ is Neither if there is not sufficient support for ¢ and —¢ given K y4:
[P((b | Kum) < g} and {P(ﬁgb | Kum) < g} . where ¢ € (0, 1] is a threshold.

If M has a mechanism to determine the veracity of a statement ¢, then M should encode the signal
associated with the veracity in its intermediate activations:

1. Truthfulness: M generates an activation pattern that encodes support for ¢ in K »q, reflect-
ing the model’s internal support for the statement ¢.

2. Falsehood: M produces an activation pattern that reflects a lack of sufficient support for ¢,
instead indicating that the internal knowledge K »( provides stronger support for —¢ (e.g.,
signaling a contradiction or misalignment with known facts).

3. Neither: M should encode the lack of support for ¢ and —¢, indicating that the veracity of
¢ is currently undefined. That is, ¢ is neither true nor false.

2.1 Flawed Assumptions When Probing Veracity in LLMs

To train and evaluate a veracity probe g; , a labeled data set D is assembled. This data set consists of
pairs of neural activations and ground-truth labels, denoted as (h; (), y), where h; is the activations
after the ith decoder and labels y specify the veracity label Z. In most cases, Z € {true, false}. The
probe g; is trained on the train split D;,q;, € D and evaluated on the test split Dy.5; C D. The
intersection between Dy, and Dy is empty.

We focus exclusively on linear probes, where the parameters of g; define a linear direction ; for the
veracity signal after the ith decoder of M:

gi(x) =x o7 +b,where 0 ¢ RIXd, b € R are parameters learned on Diyqir, and & € RY*4, 3)
Next, we provide a detailed overview of the flawed assumptions made in the existing literature. Refer
to the Supplementary Tab. 4] for a condensed overview of flawed assumptions.

Flawed Assumption I: Truth and falsehood are bidirectional. To determine the veracity of a
statement ¢, a large language model M must develop a mechanism to detect ¢’s truth or falsehoodE]

>Throughout the paper, we use the terms neither, neither-valued, neither-type, and neither-true-nor-false
interchangeably to refer to statements that are neither true nor false. When used as a class label, we italicize
neither to distinguish it from the regular use of the word. We similarly italicize words such as true and false
when referring to class labels.

3Supplementary Tablesand respectively, list the notations and abbreviations used in this paper.

*In this example, we assume that the veracity label is Z € {true, false}.



This mechanism must rely on M’s neural activations to find support for ¢ by using M’s internal
probabilistic knowledge K 4. Existing veracity probes [[15}[17, 18} 22] implicitly assume that truth
and falsehood are encoded bidirectionally. That is,

P(¢|Km) =1-P(=¢ | Kpm) 4)

This formulation implies (1) any statement ¢ not confirmed as true is considered false, and (2) each
decoder symmetrically encodes a signal corresponding to falsehood and truthfulness. However, there
is little support to justify either scenario. Similarly, Biirger et al. [[17] and Marks and Tegmark [[15]]
suggest that veracity exists along more than two directions.

Valid Assumption I (Truthfulness and falsehood have distinct directions). The representation of truth
and falsehood requires more than one direction. This is, P (¢ | Ky) 1 — P (¢ | Kaq) -

Flawed Assumption II: LLMs capture and retain everything we know. To train a probe g;, we use
Dirain that consists of pairs of factual statements and ground-truth labels (x;, y;), where (usually)
Yy € {true, false}. The labels y that we assign to the statements in D are based on our knowledge
(i.e., what we know to be true). Thus, the veracity labels in D are distributed according to Gp.

Our goal, however, is to train a veracity probe g; that classifies what the LLM deems to be true, false, or
‘neither’. So, the probe g; should map the statements to the space of the LLM’s internal probabilistic
knowledge K o. Although most recent studies use open-source models, the precise composition of
their training data remains largely unknown [23}|24]], and we do not have straightforward methods to
verify what has been incorporated into internal probabilistic knowledge K r. Thus, M may have
a different distribution G o4 for the veracity labels. That is, G o may not be equivalent to Gp. For
example, we know that “The city of Bissau is in Congo” has a ground-truth label y = false, because
we can check maps or official sources. On the other hand, we do not know how M labels it.

Recent probing methods [15} [17, 18} 22| 25] cannot account for the mismatch between the label
distributions. Instead, these probes introduce a systemic bias, where g; captures a signal that reflects
our labeling choices rather than the model’s true internal representations.

Valid Assumption II (LLMs do not capture and retain everything we know). The distribution of
ground-truth labels Gp may not be equivalent to the model’s label distribution G p4.

Flawed Assumption III: All veracity probes provide calibrated probabilities. Veracity probes
are generally designed to predict discrete labels (e.g., methods introduced by Azaria and Mitchell
[L6] or Marks and Tegmark [[15]]). That is, they are classification tasks where the probe assigns one of
two labels to a given statement: g; : h;(x) — {true, false}. However, as Herrmann and Levinstein
[26] point out, veracity probes should provide not only discrete labels, but also values that can be
interpreted as degrees of belief (or some other alternative that quantifies confidence).

Valid Assumption III (The probabilities generated by veracity probes are not inherently calibrated).
The output of veracity probes g; may not be calibrated and require additional post-processing to be
interpreted as meaningful estimates of confidence.

Flawed Assumption I'V: Every statement is either true or false. There are cases where the LLM
lacks definitive evidence to determine if a statement is true or false. Suppose we have a veracity
probe g;, which returns a probability of 0.5 for a given statement ¢ to be true. The question is
how to interpret the probability of 0.5. That is, probes that return scores (e.g., distance from the
separating hyperplane) rather than probabilities cannot provide uncertainty estimates. For instance,
in Supplementary Sec.[H| we show an example where the probe assigns high scores to cases when
statements do not have any definitive truth-value[J]

To address the issue, we have to train probes that can account for neither cases, so that g; can reflect
the insufficient evidence in K. For instance, studies with human participants have shown that
including options such as “other” or “I do not know” can help with data quality [27]].

Valid Assumption IV (Some statements are neither true nor false). A probe g; should distinguish
between the cases where the model M lacks sufficient support to assess the truthfulness of the
statement ¢, and the cases where ¢ lacks a veracity value.

SMean-difference probe consistently mislabeled examples where the statement did not have a fully realized
truthfulness, or statements that were neither true, nor false (neither-valued statements).



Flawed Assumption V: We know where the signal for veracity is stored. The majority of veracity
probes are trained on the representation of the last token [[1525]]. For example, if the statement is
“Boston is in the US.”, they assume the period alone carries the entire veracity signal. Such methods
assume that any factual signal appearing n tokens before the end of the statement will be faithfully
preserved until the last token. A more reasonable approach is to probe at the exact position where the
statement is actualized—e.g., immediately after “in the” in the above example—rather than relying
on the LLM to move that signal all the way to the end of the statement.

Valid Assumption V (Position of the veracity token is not known a priori). Probes should include a
flexible mechanism for identifying the optimal token positions from which to extract veracity signals,
instead of relying on fixed positions such as the final token in the statement.

A probe that directly addresses these flawed assumptions would better reflect the internal knowledge
of the LLM and provide a clearer understanding of (1) the factual information encoded in M, (2)
how M classifies statements as true, false, or neither, and (3) calibrated measures of M’s confidence
in its own probabilistic knowledge.

3 Method: sAwMIL

To address the flawed assumptions, we propose a multiclass probe, called sAwMIL (short for sparse
aware multiple-instance learning). It classifies statements into three classes: true, false, and neither.
sAwMIL uses multiple-instance learning (MIL) [28] and conformal prediction (CP) [ZO]E]

3.1 Sparse Aware Multiple-Instance Learning

Algorithms such as logistic regression, support vector machines, and mean-difference classifiers
belong to the single-instance learning (SIL) family, where each instance in the data set has an
individual label. In contrast, multiple-instance learning (MIL) is a type of weakly supervised learning
that operates on a set of labeled bags [28]]. A bag, B, is a set of related instances (e.g., patches
extracted from the same image or embeddings of individual words in a sentence). Each bag has an
associated binary labelﬂ but the labels for individual instances within the bag remain unknown. A
positive label (y = 1) indicates that at least one instance in the bag B belongs to the positive class.
Thus, an MIL algorithm must identify the most influential instances contributing to the bag’s label.

These algorithms must consider the overall structure of the bag and simultaneously suppress irrelevant
instances. Bunescu and Mooney [19] introduced sparse balanced MIL (sbMIL), an adaptation of
linear support vector machines (SVM). It is designed for cases where bags are sparse and only a
few instances within a bag are important. sbMIL has two training stages. In the first stage, it uses
the MIL-modified SVM [[19]] (see Fig. 4 in [[19]]). During this stage, the objective is to identify the
most important instances within positive bags, pushing all other instances and negative bags toward
the opposite side of the separating hyperplane. Once the initial model is trained, it computes the
scores assigned to each instance in all positive bags. Then, it computes the n-quantile, where 7 is the
balancing hyperparameter. Instances scoring above the 7 threshold are marked as positive. In the
second stage, we use a single-instance SVM. It works with individual samples, disregarding their
original grouping into bags, and assigns them the labels determined during the first stage. We provide
the pseudocode for sAwMIL in the Supplementary Alg. [I]

3.1.1 Workflow

One-vs-all sAWMIL. We modify sbMIL since we have an additional piece of information. Given a
statement “The city of Riga is in Latvia,” we know which tokens come from the actualized part of the
statement (e.g., “Latvia”) and which ones come from the pre-actualized part of the statement (e.g.,
“The city of Riga is in”"). Hence, after we apply the n-quantile threshold, we add another round of
filtering (see Supplementary Alg. |1} Step 6).

To perform the additional filtering, along with the set of instances in the bag a; and a binary bag label
y, we consider the intra-bag labels m;, where m,; € {0, 1}Li. (L; is the number of items/tokens

SThe code is available on GitHub at carlomarxdk/trilemma-of-truth, and the data is available on HuggingFace
atcarlomarxx/trilemma-of-truth.
'For simplicity, we assume a binary label.
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in the bag.) These intra-bag labels specify the instances where we expect to find a signal. Given a
statement, < [x?, %], all the tokens in the pre-actualized part «? have an intra-label of 0 (since
the factual statement has not yet been actualized), and all the tokens in the actualized part ® have a
label of 1. To label a sample, this sample should have a score above 7n-quantile, and it should be part
of an actualized part x“.

We train three one-vs-all sAwMIL probes that isolate distinct veracity signals:

* is-true probe: separates tokens that carry a true signal from all others.
* is-false probe: separates tokens that carry a false signal from all others.

* is-neither probe: separates tokens that carry neither (not true or false) signal from all
others.

Multiclass sAwMIL Ideally, we want a multiclass probe that assigns probabilities to a statement being
true, false, or neither. Thus, we assemble the one-vs-all sAwMIL probes into a multiclass probe
via softmax regression, which takes the outputs of the one-vs-all probes and transforms them into
multiclass probabilities. Formally

exp(zk)

Pk =="__7.
. exp(z))

where z, = glk(:n) -ay + B and k € {is-true, is-false, is-neither}. Recall that g; is the
trained probe (Eq. . It is given neural activations h; ().

&)

3.2 Conformal Predictions

Raw outputs from many models, such as Support Vector Machines (SVMs) — specifically, the distance-
to-hyperplane score — are not meaningful as confidence measures. Wrapping SVM scores in a sigmoid
function to force them into [0, 1] does not create calibrated probabilities. They can underestimate
their true confidence unless they are explicitly calibrated. Thus, we introduce conformal learning into
our probe.

Conformal learning is a framework [20, 21] that enables us to transform raw scores into prediction
sets with guaranteed coverage. Hence, it provides a method to account for uncertainty. Confor-
mal prediction methods identify intervals within which the probes’ predictions are correct with a
probability of 1 — . For a detailed description of the nonconformity scores [29], see Sec.[G|in the
Supplementary Material.

4 Experiments

This section outlines our experimental setup, including data sets, our evaluation procedure, and the
set of large language models.

4.1 Data

We introduce three new data sets consisting of factually true, factually false, and neither-valued
statements. The neither statements are the ones whose truthfulness value cannot be determined at the
present moment (due to the lack of information). While several benchmark data sets for veracity and
factuality evaluation exist, prior work has shown that some of these may be partially included in the
pretraining or fine-tuning stages of LLMs [30]. In contrast, our goal is to minimize the risk of data
contamination while also maintaining higher control over data provenance and quality. Hence, we
assemble new data sets that involve statements related to specific themes (see Tab.|l|for examples):

* City Locations data set contains statements about cities and their corresponding countries
extracted from the GeoNames geographical database.

* Medical Indications data set consists of statements about the medications and their corre-
sponding indications from the DrugBank 5.1 pharmaceutical knowledge base [31]]. Medi-
cations include the drug and substance names, while indications specify the symptoms or a
disease/disorder.

* Word Definitions data set is based on the WordsAPI dictionary. Hence, the statement
involves words and their synonyms or relations.



Table 1: Composition of data sets used in this work. Number of true, false, and neither-valued
statements per data set. A stands for the number of affirmative statements, and N stands for the
number of negated statements. The last column displays example statements with ground truth labels.

Data Set  True False Neither Examples

(True) The city of Macon is located in France.
(False) The city of Dharan is located in Ecuador.
(Neither) The city of Staakess is located in Marbate.

City A: 1392 A: 1358 A:876
Locations N: 1376 N:1374 N: 876

(True) Corsage is a synonym of a nosegay.
(False) Towner is not a type of a resident.
(Neither) Kharter is not a synonym of a greging

Word A: 1234
Definitions N: 1235

11277 A: 1747
11254 N: 1753

z >

(True) PR-104 is indicated for the treatment of tumors.
(False) Zolpidem is indicated for the treatment of angina.
(Neither) Alostat is indicated for the treatment of candigemia.

Medical A: 1423
Indications N: 1347

11329 A:478
11424 N:522

Z >

Every data set consists of negated statements like “The city of Riga is not located in Estonia.’ and
affirmative ones like “Menadione is indicated for the treatment of coughs.’ﬂ We provide a detailed
description of these data sets in the Supplementary Sec.[C]

Neither statements. If a statement ¢ is absent from the LLM’s internal probabilistic knowledge K o4,
then ¢ is neither true nor false. It is difficult to determine which statements are absent from K x4
because we generally do not have access to the training data sets used to train the LLMs. However,
we can create neither statements with synthetic entities—i.e., entities that do not exist in the real
world or fictional works. Since these objects are specifically generated for our experiments, it is
highly unlikely that an LLM has learned anything about them during training. Thus, we can use them
as substitutes for content that LLMs could not have learned—i.e., from the point of view of an LLM,
these should be considered neither true nor false. For a detailed description of the generation [32]] of
neither-valued statements, see Sec. |[C.I]in the Supplementary Material.

4.2 Evaluation

Language Models. We evaluate 16 open-source LLMs (ranging from 3 to 14 billion parameters)
across four families: Gemma/Gemma-2, L1ama-3 (v3.1 and v3.2), Mistral-v0. 3, and Qwen-2.5.
These models run on consumer-grade hardware and are publicly available through HuggingFace [33].
We provide an overview of these models in Sec. [D]of the Supplementary Material.

Metric. We evaluate probes based on their ability to correctly classify statements into three classes:
true, false, and neither. We use Matthew’s Correlation Coefficient (MCC) to summarize the perfor-
mance of each probe (on the test sets); refer to Eq. [I4]in the Supplementary Sec.[[|for the definition of
the multiclass MCC. An MCC = 1 indicates perfect classification, MCC = 0 corresponds to random
prediction, and MCC = —1 indicates inverted predictions with respect to ground-truth labels.

Probing Methods. We compare performance across six probing methods, grouped into three
categories.

In zero-shot prompting, we insert each statement into a prompt formulated as a multiple-choice
question (see Fig.[I]A and Supplementary Sec. [F). We compute the probabilities over the candidate
answers to determine how the statement is classified. We estimate the conformal prediction intervals
to improve the performance of the zero-shot prompting.

We evaluate three binary representation-based probes trained on the representations of the last token:
the mean-difference probe (see Supplementary Sec. introduced by Marks and Tegmark [[15]],
the TTPD probe (short for Training of Truth and Polarity Direction) introduced by Biirger et al. [17]],
and a supervised PCA classifier. We refer the reader to Algorithms 2} [3] and [d]in the supplementary
material for details.

8This statement is a factually true and negated statement.
This statement is a factually false and affirmative statement.
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Since MD, TTPD, and sPCA probes are trained to separate true and false statements, we augment each
with conformal prediction intervals. Samples falling outside these intervals are labeled as neither.
We refer to these methods as MD+CP, TTPD+CP, and sPCA+CP, accordingly.

Finally, we include two multiclass representation-based probes: a multiclass SVM trained on the
representation of the last token, and (6) the multiclass sAwMIL probe, which operates on the whole
sentence (i.e., all token representations within a statement), and has in-built CP intervals.

Criteria. We compare all probes under two complementary criteria: (1) Correlation and (2) General-
ization (see Supplementary Sec. [E| for more details on the validity criteria).

The correlation criterion [25| 34]] assesses how well a probe g;, trained on the training split of
Dirain, performs on the corresponding test split Dy, assuming that both are drawn from the same
distribution. For example, a probe trained on statements about city locations should accurately classify
other statements from the same domain. The generalization criterion [[17,[34] evaluates whether a
probe g;, trained on Dy,qp,, successfully generalizes to datasets D;,,, containing statements from
different domain.

Together, these two criteria measure how well the probe identifies the veracity signal. The higher the
performance along both, the more probable it is that the probe captured a robust veracity signal and
not mere proxies.

5 Results

We first consider the performance of probes under the correlation and generalization criteria. Mean
performances aggregated across all 16 LLMs and three datasets are shown in Fig. 2] (see Supplemen-
tary Tab. [20]for more details). For representation-based probes, we report results for two settings: (1)
using only the last token’s representation, and (2) using all token representations (the full bag)m

Binary representation-based probes. The MD+CP, TTPD+CP, and sPCA+CP probes achieve moderate
MCC when evaluated on last-token representation (see Fig. [2JA). However, their performance
drops substantially when evaluated on the full bags, suggesting sensitivity to non-actualized (non-
informative) tokens and noise. Under the generalization criterion (see Fig. 2]B), these probes
exhibit limited transferability and degraded performance on the full bags. Another common failure,
illustrated in Fig. 2]D and detailed in Supplementary Tables [23}-[30] is that these probes frequently
confidently misclassify neither-valued statements as true or false. While effective under controlled
conditions, these binary probes appear to identify proxy directions that partially reflect veracity but
are confounded by spurious correlations

Zero-shot prompting. Unlike representation-based probes, the prompting does not require infor-
mation about where a factual statement begins or ends. This makes it more robust when working
with unstructured text. However, zero-shot prompting exhibits class imbalance: models tend to
overpredict one label. For example, in Fig. 2]C, the prompting of Qwen-2.5-14b-instruct overpredicts
false label. We see similar skews in the confusion matrices of other models with zero-shot prompting
(see Supplementary Tab. [24).

Multiclass representation-based probes. Both multiclass probes, SVM and sAwMIL, achieve sub-
stantially higher performance Fig.[2JA). However, the SVM probe, like its binary counterparts, shows
a drop in performance under the bag setting, indicating reliance on non-generalizable cues. In
contrast, the sAwMIL probe maintains consistent performance across both settings, and yields superior
generalization performance (see Fig.[2] B).

Together, these findings suggest that sAwMIL captures more robust and transferable veracity directions,
leveraging distributed information across tokens rather than relying on isolated representations.

In Supplementary Sec. || we detail results showing sAwMIL’s ability to generalize across datasets, as
well as the results of targeted interventions on the identified veracity directions #;. The interventions
show that, across the majority of LLMs, one can use sAwMIL directions to elicit truthful or false
replies. For brevity, we do not cover these in the manuscript.

10For single-instance probes, when the full bag is provided, the predicted label corresponds to the class with
the highest score among all tokens in the statement.
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Figure 2: Mean performance of probing methods aggregated across 16 models and three datasets,
along with the examples of confusion matrices. Each probe is evaluated under two settings: using only
the representation of the last token and using predictions aggregated across the entire bag/sentence.
For each probe, we aggregate the statistics using the best-performing layers. (A) Correlation criterion.
Mean probe performance on the test split of the dataset on which each probe was trained. (B)
Generalization criterion. Mean probe performance on datasets that were not used for training. Binary
probes trained on the last token representation (MD+CP, TTPD+CP, and sPCA+CP) exhibit both lower
performance and poorer generalization. The multiclass SVM+CP (also trained on the last token repre-
sentation) achieves much better performance in A; however, performance degrades when evaluated
on the full bag. Importantly, SVM+CP achieves lower generalization performance as compared to
the sAwMIL. (C) Confusion matrix for the zero-shot prompting, where the LLM overpredicts the
false class. (D) Confusion matrix for MD+CP evaluated on the last token representation, where probe
incorrectly predicts neither-valued statements. (E) Confusion matrix for the multiclass sAwMIL
evaluated on the full bag. This probe achieves better accuracy on the neither-valued statements.

5.1 Veracity Directions

To show that the truthfulness and falsehood directions are not simple opposites, we examine the
is-true and is-false directions identified by both the multiclass SVM probe and the sAwMIL probe.

In Fig.B]A, we see how different these directions are by computing their cosine similarity. If the two
were perfectly opposite, we would expect a cosine similarity of approximately —1. However, this is
not the case. The better-performing and more generalizable sAwMIL probe yields directions that are
less opposed, suggesting that LLMs encode true and false as related rather than strictly polar concepts.
In Fig. 3| B, we compare the predicted scores obtained by projecting statements onto the is-true and
is-false directionsﬂ If the two directions were perfectly bidirectional, we would expect a strong
negative Spearman’s correlation (7 =~ —1), indicating that high scores along is-true correspond
to low scores along the is-false. Again, this is not observed, particularly for the sAwMIL probe,
where predictions are less inversely correlated.

Finally, when forming a matrix V' = [is-true, is-false|, we find that its rank is 2 for both SVM
and sAwMIL. The effective rank is 1.73 with standard error of 0.012 for SVM and 1.93 + 0.004 for
sAwMIL. If the two directions were linear combinations of one another (i.e., lying on a single axis),
the rank would be 1 and the effective rank would be closer to 1. Together with the results in Fig. 3]
these findings indicate that the is-true and is-false directions are not strict opposites but instead

l1Here, we do not consider neither-valued statements.
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Figure 3: Similarity between is-true and is-false directions across datasets and probes (values
extracted from the best-performing layer and averaged across 16 LLMs). (A) Cosine similarity
between the two directions. If the two directions were perfectly opposite, the cosine similarity
would be closer to —1, indicating a single bidirectional axis of truth and falsehood. Instead, all
probes exhibit lesser opposition, with the better-performing and more generalizable probe (sAwMIL)
showing a smaller angle between is-true and is-false. (B) Spearman correlation between
scores predicted along the two directions (evaluated only on true and false statements). Perfectly
bidirectional representations would yield a strong negative correlation: a high score on is-true
implies a low score in is-false. However, the correlation does not approach —1, indicating partial
rather than inverse coupling. Together, the two panels show that is-true and is-false directions
share some structure but are not strict opposites, spanning a multidimensional subspace rather than a
single axis.

span a low-dimensional subspace capturing shared yet distinct representational components. This
partial overlap may arise because both directions encode aspects of the same underlying concept (e.g.,
factuality) and the relational structure between objects expressed in factual statements (e.g., “The city
of Riga is in Latvia”).

6 Conclusion

In this work, we critically examine popular methods for probing the veracity of large language
models (LLMs) and show that these probing methods fail to learn reliable and transferable veracity
patterns. To address the flaws, we introduce sAwMIL, a multiclass linear probe that combines Multiple
Instance Learning with Conformal Prediction Intervals. Unlike prior methods, sAwMIL models
veracity using three classes: frue, false, and neither. Across sixteen models and three datasets,
sAwWMIL outperforms existing probes and shows that truthfulness and falsehood are not represented as
simple opposites within LLMs, but as directions spanning a subspace. These findings suggest that
veracity in language models emerges from distributed and entangled representations rather than a
single axis of truthfulness.

Limitations and Future Work. This study focuses on a specific subset of factual statements,
namely those that involve the relation between two entities (i.e., city to country, medicine to diseases,
noun to noun pairs). As such, it remains unclear how the sAwMIL probe behaves in cases involving
multiple relational facts, or in statements describing relations among more than two entities. Extending
the evaluation to these higher-order structures represents an important direction for future work.

Furthermore, the neither-valued statements used in this study are synthetically generated to simulate
cases where LLMs lack knowledge. While these proxies allow for controlled evaluation, they should
be further validated to ensure that they accurately capture how models represent unknown and
ambiguous information. Future work could explore more natural examples from temporal hold-out
datasets or corpora that reflect human uncertainty.
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A Notations and Abbreviations

Table 2: Notations used throughout the paper. Symbols are grouped by category: model definitions,
inputs and datasets, internal representations, veracity distributions, and intervention-related symbols.

Symbol Description Shape / Notes

M Large language model

Km Internal probabilistic knowledge of the model M

V Vocabulary of the model M, consists of tokens [T1,...,7v]] €V

Py (7| ) Output of M: a conditional probability distribution on tokens

Inputs and Datasets

D Dataset of statements Dirain U Diest =D
T Input token sequence, e.g., “The city of Riga is in Latvia.” L = ||

x? Pre-actualized part of a statement, e.g., “The city of Riga is in”

x® Actualized part of a statement, e.g., “Latvia.”

r Random sequence with length || |r| = |z°|

Y Veracity label assigned to @ yez

10} A statement evaluated for veracity

Ts Transition matrix for n-gram generation See Eq. |§|

Internal Representations

d Size of the hidden representation (of a decoder)
hi(x) Activations after the ith decoder RExd
hi(x) 1 Activation of the token at index j after ith decoder R*>*?andj € {1...L}
hi(2)n:m)  Activations from nth to mth tokens after ith decoder ROm—m)xd
Veracity, Probes and Distributions
Z Set of veracity labels, e.g., {true, false, neither}
Gp (z | ) Distribution of veracity labels z € Z in a dataset D
G (z | ) Distribution of veracity labels z € Z in the model M
gi Veracity probe trained on activations of the ith decoder gi  hi(x) = Gm
73 Linear direction extracted from the probe g; R4
n Balancing hyperparameter for sAwMIL n € (0,1)
m sAwMIL’s intra-bag labels (i.e., labels per-token in each x) m € {0,1}5, L = |x]
Interventions and Effects (Sec. lml)
I f Modified representation of h;(x®) after adding +7;
. Modified representation of h;(x®) after subtracting —7;
AT Change in P, for 2 after I;" intervention
AI7 Change in Py, for x® after I intervention
sj(x) Per-statement success of the intervention; indicator function See Eq.
Acorrect Total change in Pp for ® after both I f and I, interventions
Arandom Total change in Pa4 for r random tokens after both interventions
E[Acorrect] Average probability difference across all statements
d; Indicator of the dominant direction for the i-th decoder d; € {-1,1}
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Table 3: Abbreviations and naming conventions used throughout this paper.

Abbreviation Full Form Description

LLM Large Language Model

SIL Single-Instance Learning Probes trained on one embedding per example
MIL Multiple-Instance Learning Probes trained on multiple embeddings per example
SVM Support Vector Machine Type of a classifier

DPO Direct Preference Optimization LLM finetuning method

RLHF Reinforcement Learning from Human Feedback LLM finetuning method

CP Conformal Prediction Intervals Uncertainty calibration method

MD+CP Mean-Difference with Conformal Prediction Intervals MD probe with abstention via conformal intervals
sAwMIL Sparse Aware MIL probe Multiclass probe handling unknowns

MCC Matthews Correlation Coefficient Multiclass performance measure (see Eq.
W-MCC Weighted-MCC Using Acceptance Rate as a weight
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B Assumptions

Tab. [d] provides an overview of the flawed assumptions in the recent probing methods.

Table 4: Overview of flawed assumptions in recent methods that probe veracity, their impact on
reliability, and our corrective strategies. Probes that do not account for these issues may lead to
biased or unreliable findings.

Flawed
Assumptions

Why It Matters

Our Solution/Approach

Truth and falsehood
are bidirectional.

There is no conclusive evidence that LLMs treat
truth and falsehood as one continuous bidirec-
tional concept. It is more likely that there ex-
ist three separate concepts: is-true, is-false,
and is-neither; and they have their own distinct
mechanisms.

sAwMIL is a multiclass probe that
treats “true,” “false,” and “neither”
as separate categories.

LLMs capture and re-
tain everything we
know.

We do not know what LLMs have been exposed to
during training. Consequently, linear probes that
assume every fact in a data set is stored within
the LLM are prone to systematic errors in their
predictions. We must distinguish between what the
LLM actually retains and what we know to be true
or false. If a statement @ is unknown to the LLM,
it is neither true nor false. In such cases, passing
(hi(), true) or (h;(x), false) to the probe during
training introduces error.

sAwMIL is a linear probe that iden-
tifies samples with high support
before fitting the linear separator.

All veracity probes
provide  calibrated
probabilities.

Probes such as SVM or mean-group difference
classifiers often make a prediction based on the
sign (w.r.t. the separation hyperplane). We cannot
use these scores to evaluate certainty around the
predictions. In other words, these probes are rarely
calibrated.

sAwMIL integrates conformal pre-
diction to quantify uncertainty
and produce statistically valid pre-
diction regions.

Every token (or state-
ment) is either true or
false.

Not every token or sentence expresses a complete
factual claim. We should be able to create probes
that refrain from making predictions when there is
insufficient support.

Instead of training probes to dis-
tinguish between true and false
statements, sAwMIL is a multi-
class classifier that separates state-
ments into “true,” “false,” and
“neither.”

We know a priori
where to look for
veracity-related
signals.

Most existing probes assume that the last token
of a statement has all the information about the
veracity.

By using multiple-instance learn-
ing, sAwMIL is able to select parts
of the input that have the most in-
formation about veracity.
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C Data Sets

We introduce three new data sets: City Locations, Medical Indications, and Word Definitions. Each
dataset consists of statements that are factually frue, factually false, or neither. These datasets contain
both affirmative and negated statements. An example of a false negated statement is “Guaifenesin
is not indicated for the treatment of coughs”, and an example of the true affirmative statement is
“Shouter is a type of a communicator.”

Data Splits. We split each data set into train, calibration, and test sets using approximately 55/20/25
ratios (see Supplementary Tab.[5). We ensure that the objects mentioned in statements are exclusive to
the split. For example, if Singapore is mentioned in a statement of the training set, all the statements
with Singapore are moved to the training split.

Table 5: Dataset splits. The number of statements per split. In the brackets, we specify the fraction of
the total number of statements.

Dataset Train Calibration Test Total
City Locations 3999 (.55) 1398 (.19) 1855 (.26) 7252 (1.00)

Medical Indications 3849 (.56) 1327 (.19) 1727 (.25) 6903 (1.00)
Definitions 4717 (.55) 1628 (.19) 2155 (.25) 6500 (1.00)

C.1 ‘Neither’ Statements

Since we do not have access to the training data sets of LLMs, we cannot validate whether LLMs
retained information about specific facts or entities. That is, we do not know the composition of the
internal knowledge K o of an LLM. Hence, we cannot be certain about what each LLLM can (and
cannot) verify. To overcome this issue, we create neither statements with synthetic entities—i.e.,
entities that do not exist in the real world or fictional works. The neither statements are the ones
whose value cannot be determined at present (e.g., due to lack of information).

Generation of ‘Neither’ Statements

We use synthetic names to generate neither-type statements. For example, “The city of Staakess is
located in Soldovadago” mentions a town and a country that do not exist. From the point of view
of an LLM, these statements should be considered neither-true-nor-false, as LLMs could not have
learned anything about these.

To generate the neither statements, we use the Markov-Chain technique [32]]. Given a set of
existing words [wy, wa ..., w,] € S, we break each word w; into n-grams, For instance, we break
“ability” into the following 2-grams: [start]a ab bi il 1i it ty y[end]. We then compute a
transition matrix 7g, which provides the probability of transitioning from the n-gram i to n-gram j is
given by:

count (i — j7)

Ts(Gli) = >, count (i — x) ©)

In addition, we use Tg to sample new synthetic words that follow the n-gram distribution of words
in S. In our experiments, we use 3-grams for most entities, except for country names, which we
generate with 2-grams. We use the namemakerpz] package that implements a Markov-Chain word
generator.

C.2 Data Selection and Processing

Next, we provide details on the source and processing steps for each dataset.

12github.com/Rickmsd/namemaker
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City Locations

The City Locations dataset is based on the GeoNamesE] database. GeoNamesCacher] is a Python
package that interacts with the GeoNames API. We use the following criteria to select a (city, country)
pair:

1. The population of the city is at least 30,000.

2. The city has an associated country. If a city name is associated with multiple countries, we
include the (city, country) pair for each country. We exclude all cities that have “Antarctica”
as a location or a country.

Since the resulting set of {city, correct country) pairs is relatively large. We reduce the number of
pairs by downsampling. In total, we select 1,400 unique city names: 700 cities with the highest
populations, and 700 cities randomly sampled from the rest of the names.

Statement Structure. For each (city, correct country) pair, we create statements of the form:
The city of [city] is (not) located in [country].

If a city name already contained a word “city” (e.g., “Guatemala City”), we do not start a sentence
with “The city of.” We also sample (city, incorrect country) pairs, and generate statements according
to the template above.

Synthetic Entities. We use the technique described in Supplementary Sec. to generate synthetic
city and country names. To generate synthetic city names, we collect all the city names in our data set
(including those that we did not include) and input them to namemaker (with n-gram length of 3).
We generate 500 synthetic city names. We validate these synthetic names in two stages:

1. We check whether a synthetic name exists in the GeoNames database by looking for matches
in the name and alternative name fields. We keep 310 cities after this first stage.

2. We use Google Search to validate that each synthetic city name does not exist via the
following prompt: “city [city name]”. If the search result returns a city with 1-2 character
difference, we remove the synthetic name from the list. We keep 219 cities after this second
stage.

For the synthetic country names, we collect all the country names and input them to namemaker
(with n-gram length of 2). We generate 250 synthetic names and validate them using the workflow
described in the previous paragraph. We keep 238 country names after the first stage, and 138 after
the second stage. The Google Search prompt is: “country [country name]”). With 25% probability,
we add a prefix or suffix to the synthetic country name. The list of prefixes and suffixes include
“Island,” “Republic of,” “Kingdom,” “West,” “East,” “North,” “South,” and “Land.” Finally, we
randomly match each synthetic name to the name of a synthetic country.

Medical Indications

The Medical Indications dataset is based on the DrugBank (version 5.1.12) [31]. We obtain access
to the DrugBank on October 4th, 2024, via the academic license (for research purposes only). Our
GitHub and Zenodo repositories do not contain the raw data from the DrugBank, but the reader can
apply for the academic licenseE] We extract 2 fields from this knowledge base:

1. Name, which specifies the official name of the drug or the chemical (e.g., Lepirudin).

2. Indication, which is a text field that describes the indication of the drug. If this field consists
of multiple sentences, we keep only the first sentence (e.g., “Lepirudin is indicated for
anticoagulation in adult patients with acute coronary syndromes (ACS) such as unstable
angina and acute myocardial infarction without ST elevation.”)

To extract diseases and conditions from the Indications field, we use two named entity recognition
(NER) models:

3geonames.org
4pypi.org/project/geonamescache/
'>Here is the link to the DrugBank’s academic license: https://go.drugbank.com/releases/5-1-12
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1. SciSpacy’s en_ner_bcbcdr_md modeE] for the biomedical term annotations
2. BioBERT-based NERfor disease annotations

We input the “Indication” text to both models. The disease/condition terms are extracted only
if both models mark it as a disease or condition. For example, for “Lepirudin is indicated for
anticoagulation in adult patients with acute coronary syndromes (ACS),” the SciSpacy model marks
coronary syndromes as a disease, but BioBERT does not. Thus, we do not add it to Lepirudin’s
disease/condition list. Similarly, we remove the abbreviation if the disease list contains the full name
and its abbreviation, such as [acute coronary syndromes, ACS].

We further validate the drug names via SciSpacy model, and keep the name only if it is marked as
CHEMICAL. Otherwise, we remove the drug from our dataset. Finally, if the disease list (for a given
drug) is empty after the preprocessing, we remove the drug from our data set.

Additionally, we use wordf reci];g] package to check whether the name of the drug or the name of the
indication appears in widely used corpora (e.g., WikiPedia or Books dataset). In other words, we
remove the pair if either the drug name or the indication has a Zipf’s frequency of 0 — i.e., the word
does not appear in any of the wordfreq corporas.

Statement Structure. For each (drug, correct disease) pair, we create statements of the form:
[drug] is (not) indicated for the treatment of [disease/condition].

We also sample the (drug, incorrect disease) pairs. We ensure that the “incorrect disease” did not
share any words with the diseases in the correct list.

Synthetic Entities. To generate synthetic drug names and disease names, we use the approach
described in Supplementary Sec. [C.T] (with n-gram length of 3). We generate 500 synthetic drug
names. We validate these synthetic names in two stages:

1. We pass each generated name through SciScapy model and remove the ones marked as
CHEMICAL. We keep 315 name after this first stage.

2. We use Google Search to validate that each drug name does not exist via the prompt
“medicine [drug name].” If the search result returned a drug with 1-2 character difference,
we remove it from the dataset. We keep 243 names after this second stage.

We generate 200 disease names and check whether they exist in our list of diseases. We keep 181
names after this first stage. Next, we use Google Search with the prompt “disease [disease/condition
name].” We keep 131 disease names after this second stage. Finally, we randomly match synthetic
drug names to synthetic disease names to generate neither-type statements.

Word Definitions

The Word Definitions dataset is based on the sample data from WordsAP]E] database. Sample data is
publicly available and contains 10% of randomly sampled words from the databasem

For each word in the sample, we keep the ones that satisfy the following criteria:

1. The word is a noun.
2. The word has at least one definition in the definition field.
3. The word has at least one of the following fields: synonym, typeOYf, or instanceOf.

Statement Structure. Depending on the specified field (i.e.,synonym, typeOf, instanceOf), we
generate three types of statements:

1. “[word] is (not) [instance0f].”

'%allenai.github.io/scispacy/

alvaroalon2/biobert_diseases_ner

18 pypi.org/project/wordfreq

YWordsAPI.com

2We do not provide a copy of the sample in our GitHub or Zenodo repositories.
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2. “[word] is (not) a type of [typeOf].”
3. “[word] is (not) a synonym of [synonym].”

Before inserting a word from synonym, typeOYf, instanceOf fields into a corresponding spot, we check
which article goes before ‘a’ or ‘an’. When possible, we change words into singular forms. To do so,
we use the inflect packageE]

Synthetic Entities. To generate synthetic entities, we use the approach described in Supplementary
Sec.[C.1] (with n-gram length of 3). We generate four categories of synthetic entities:

1. Words that go at the beginning of each statement: We use all the words we have in the
dataset.

2. Types: We use all the words from the rypeOf field for the Markov-Chain generation.
3. Synonyms: We use all the words from the synonym field.
4. Instances: We use words from the instanceOf field.

We generate 1,000 synthetic words for each of the four categories. We validate the non-existence of
words. We use the english_words packag to check whether a word exists in “GNU Collaborative
International Dictionary of English 0.53,” or web2 word list. Furthermore, we check whether there is
a word in the words list of the n1tk package@ After this stage, we end up with 3,305 words. Finally,
we randomly sample pairs of (word, property), where the property is a type, instance, or synonym.

2Ipypi.org/project/inflect/
22pypi.org/project/english-words/
Zpypi.org/project/nltk/

20


https://pypi.org/project/inflect/
https://pypi.org/project/english-words/
https://pypi.org/project/nltk/

D Selection of Large Language Models

In this section, we provide an overview of the large language models used in our experiments.
Supplementary Tab. [6] provides a list of all the 16 models.

We use default models—i.e., the ones that were pre-trained on general tasks. We also use chat models
that have been fine-tuned on instruction- and chat-like interactions. Every default model in our
selection has a corresponding chat-based model. We also add two extra chat-tuned L1ama models that
are specifically fine-tuned on biomedical data. Further, we do not use full official model names but
use short names along with a version, such as “chat” or “default”. For example, L1ama-3.2 (chat)
refers to the L1ama-3.2-3b-Instruct model.

Table 6: List of LLMs used in our experiments. We provide the official names of the models in the
HuggingFace repository. Further, we provide the fype of the model: default stands for the pre-trained
models, and ‘chat’ stands for the chat- or instruction-tuned version of the models. Finally, we provide
the number of decoders, the number of parameters, the release date, and the source of the model.
These models are publicly available through HuggingFace [33].

Official Model Name Type  #Decoders # Parameters Release Date Source

Gemma-7b Default 28 8.54 B Feb 21,2024 Google
Gemma-2-9b Default 26 9.24B Jun 27,2024 Google
Llama-3-8b Default 32 8.03B Jul 23,2024 Meta
Llama-3.2-3b Default 28 321 B Sep 25,2024 Meta
Mistral-7B-v0.3 Default 32 7.25B May 22,2024 Mistral Al
Qwen2.5-7B Default 28 7.62B Sep 19,2024 Alibaba Cloud
Qwen2.5-14B Default 38 1480 B Sep 19. 2024 Alibaba Cloud
Gemma-7b-it Chat 28 8.54 B Feb 21,2024 Google
Gemma-2-9b-it Chat 26 9.24B  Jul 27,2024 Google
Llama-3.2-3b-Instruct Chat 28 321 B Sep?25,2024 Meta
Llama-3.1-8b-Instruct Chat 32 8.03B Jul 23,2024 Meta
Llama3-Med42-8B Chat 32 8.03B Aug 12,2024 M42 Health
Bio-Medical-Llama-3-8B Chat 32 8.03B Aug 11,2024 Contact Doctor
Mistral-7B-Instruct-v0.3  Chat 32 7.25 B May 22,2024 Mistral Al
Qwen 2.5-7B-Instruct Chat 28 7.62B Aug 18,2024 Alibaba Cloud
Qwen 2.5-14B-Instruct Chat 38 14.80 B Aug 18,2024 Alibaba Cloud
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E Ciriteria for Validating Veracity Probe

Table 7: Validity criteria for representation-based probes. If satisfied, these criteria serve as
validation that g; indeed captures signals associated with veracity Z. Here, we provide a formal
definition of each criterion, along with the implications of satisfying the criterion. Finally, we provide

the list of similar criteria and concepts used in the literature.

Criteria Definition If Satisfied Similar Con-

cepts

Correlation A probe g; trained on (h;(x),y) € M encodes information cor- Information
Dirain should perform well (i.e., have related with veracity. [25], Accuracy
high predictive accuracy) on Dy, as- [26]
suming the same input and label distri-
butions.

Generalization A probe g; trained on (h;(x),y) € M has a universal ac- Generalization
Duain should have high predictive ac- tivation pattern correlated as defined by
curacy on data from different domains. with veracity (see Fig.[2]B Biirger et al.

and [_1;3'[) [T, Unifor-
mity [26]]

Selectivity A probe g; trained on (h;(x),y) € M has a distinct mecha- Misrepresentation
Duain should not assign frue or false nism that correlates exclu- as defined by
labels to samples where truthfulness is sively with veracity. Harding  [25],
absent or undefined. Control ~ Task

[33]

Manipulation ~ Modifying h;(x) along 7; should sys- M has a linear mechanism Use [25], Addi-
tematically alter Pxq(7 | ) for tokens to track veracity and uses tion [36], Inter-
7 related to the veracity property Z. it to compute the output vention [3]

Pu (7 | @) (see Fig.[14).
Locality Modifying h;(x) along #; should not M maintains a separate Misrepresentation [25]],

mechanism that tracks ve-
racity, without being con-
fused with other concepts.

significantly alter Pr(r | @) for ran- Leakage [37]

dom tokens r that are unrelated to Z.

Researchers have proposed criteria to measure the validity of veracity probes [25] 26, [38]. We
aggregate these into five major categories and provide an overview in Supplementary Tab.|/| We
propose to evaluate a probe g; along the following criteria:

(i) Correlation. The probe, trained to predict a veracity property {true, false} € Z, should
achieve high predictive accuracy on unseen samples that possess this property, i.e., on
samples from D;.s:. When the criterion is satisfied, the ¢-th decoder embeds the information
about Z to some degree. We cannot rule out the fact that it captures proxies associated with
Z.

Generalization extends Correlation by requiring that the probe generalizes beyond the data
set it was trained on. The probe should have high predictive accuracy on samples that have
veracity Z, but have different phrasing or come from different domains. For example, if a
probe is trained to identify neural activation patterns associated with veracity on statements
related to ecology, this probe should have similar predictive accuracy on statements related
to biology.

(ii)

(iii) Selectivity The probe g; should avoid classifying statements that are not (or cannot be) true
or false. Hence, the probe g; should abstain from making predictions on the neither-valued
statements—i.e., statements that the LLM could not have learned from its training data or
that inherently lack any truthfulness or falsehood. Poor selectivity indicates that the probe
might capture spurious correlations with unrelated properties.

(iv) Manipulation. We should be able to use the identified direction 7; to update h;(x) and
have a predictable change in the distribution of the output tokens Py (7 | ). Since we
focus on linear probes, we expect that moving +c units along ; should have an opposite

effect on Py compared to moving —c units.
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(v) Locality When asking a question such as “Is X true? Answer yes or no,” the manipulation
should primarily influence the generation process related to the “yes” or “no” responses. It
should minimally affect unrelated tokens. For example, if a manipulation does not increase
the likelihood of the LLM generating “no”, but increases the likelihood of generating tokens
such as “elephant”, then the manipulation degrades the LLM’s abilities.

Evaluating a probe according to these criteria allows us to determine how well g; captures the signals
associated with veracity Z and how manipulations (a.k.a. interventions) affect LLM’s output Pp.
Part of our future work includes adding a new criterion on whether the probe can assess if an LLM
can “reason” logically. For example, if M classifies a statement ¢ as true and another statement ¢o
as true, then will M also classify ¢1 A ¢ as true?

Finally, we demonstrate the evaluation results for the Correlation and Selectivity in the Results
section (see Sec. @ of the manuscript; we further provide evaluation results for the Generalization,
Manipulation and Locality in the Supplementary Sec.
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F Zero-Shot Prompting: Instructions, Veracity Labeling, and Abstention

Instructions in Zero-shot Prompting. In zero-shot prompting, each LLM receives an instruction
along with a statement x as input. These instructions outline the task and describe the format of
the output. We use zero-shot prompts to evaluate how well LLMs can assess the veracity of a given
statement and provide a correct reply. Our zero-prompts are designed as a multiple-choice question,
where an LLM is asked to pick a corresponding number.

In our (zero-shot prompting) experiments, we use three different templates. All default models
share the same template as displayed in Supplementary Fig. fJA—B. We do not use this template for
chat-models, since they support “turn-based” conversations. Thus, for most chat models, we use
templates that model user-assistant interaction. We use the template in Supplementary Fig. 4D-E
for the chat models that support context prompts. We use the template in Supplementary Fig. %for
Gemma models since they do not support context prompts.

Additionally, we use three different phrasings of the instructions:

1. Original instructions are displayed in Supplementary Fig. A and D. In the main paper, we
report results based on these instructions.

2. True-False instructions, where we change the phrasing of the original instructions by
replacing the words “correct” and “incorrect” to “true” and‘‘false”. These are displayed in
Supplementary Fig. @B and E.

3. Shuffled instructions, where we change the original instructions by shuffling choice identi-
fiers. These are displayed in Supplementary Fig. dIC and F.

Supplementary Figures [5H7) depict the Weighted Matthew’s Correlation Coefficient (W-MCC) perfor-
mance of zero-shot prompting across 3 datasets and 16 LLMs for each template type and instruction
type. In some cases, minor changes to the instructions can have a significant impact on performance.
Overall, the Qwen and Gemma-2 models provide the best performance compared to other LLMs.
However, Qwen models seem to be more sensitive to the phrasing of the prompt.

A Original Instructions (Default Model) B

True-False Instructions (Default Model) C Shuffled Instructions (Default Model)

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:

. The statement is correct.

The statement 1is incorrect.

I do not have sufficient knowledge.
. The statement is too ambiguous.

. ALl of the above.

. None of the above.

U A WN

Please respond with the corresponding number.
The final answer fis

D Original Instructions with context
(Chat Model)

System (Context Prompt)

You are an expert in fact-checking. Your task
is to assist the user by answering questions
based on your comprehensive knowledge.

Please respond with the corresponding number.

User

Question: Is the following statement correct?
The city of Agadir is located 1in Morocco.

Select one of the following options:

. The statement is correct.

The statement is dincorrect.

I do not have sufficient knowledge.
. The statement is too ambiguous.

. AWl of the above.

. None of the above.

oA WM

Assistant

The final answer s

Question: Is the following statement true?
The city of Agadir 1is located +in Morocco.

Select one of the following options:

. The statement 1is true.

The statement is false.

I do not have sufficient knowledge.
. The statement is too ambiguous.

. AWl of the above.

. None of the above.

DU A WN

Please respond with the corresponding number.
The final answer ‘s

E True-False Instructions with context
(Chat Model)

System (Context Prompt)

You are an expert in fact-checking. Your task
is to assist the user by answering questions
based on your comprehensive knowledge.

Please respond with the corresponding number.

User

Question: Is the following statement true?
The city of Agadir +is located +in Morocco.

Select one of the following options:

. The statement 1is true.

The statement is false.

I do not have sufficient knowledge.
. The statement is too ambiguous.

. ALl of the above.

. None of the above.

oA WN R

Assistant

The final answer is

Question: Is the following statement correct?
The city of Agadir 1is located in Morocco.

Select one of the following options:

. The statement is correct.

The statement 1is incorrect.

I do not have sufficient knowledge.
. The statement is too ambiguous.

. ALl of the above.

. None of the above.

wRuAON

Please respond with the corresponding number.
The final answer is

F Shuffled Instructions without context
(Chat Model)

User

You are an expert in fact-checking. Your task
is to assist the user by answering questions
based on your comprehensive knowledge.

Please respond with the corresponding number.

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:

. The statement is correct.

. The statement is qincorrect.

I do not have sufficient knowledge.
The statement is too ambiguous.

. AWl of the above.

. None of the above.

WHONON

Assistant

The final answer is

Figure 4: Zero-shot prompt templates. We use these templates in our experiments. Panel A-B: The
prompts for the default models. Panel D-F: Examples of prompts used for the chat models. Note that
chat models like Gemma do not have a context (or system) prompt; hence, we provide instructions in
the first message (see Panel F). In the main manuscript, we report the performance over the original
instructions — i.e., instructions in Panels A and D. For the chat LLMs without the context prompt,
we apply the two-message template in Panel F, but use the original instructions. (Side note: The
statement used in these examples is factually correct.)
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From Token Probabilities to Veracity Labels in Zero-shot Prompting. Given the original in-
structions and the statement , an LLM outputs token-level probabilities over its vocabulary V
as
Py (7 | instruction A &) with Z Pyq(7 | instruction A x) = 1.
TEV

We are interested in the probabilities of the tokens that correspond to the multiple choices — i.e.,
numbers 1-6 in any of the panels in Supplementary Fig. 4] We denote tokens associated with these
numbers as: [1], [2], [3], etc. We map these token-level probabilities P4 into the veracity-label
probabilities G x4 as follows:

Gm(true | ®) = Paq([1] | instruction A ) (7
Gm(false | ) = Payg([2] | instruction A ) ®
G m(neither | ) = Pay([3] | instruction A ) + Paq([4] | instruction A ) )

Abstention in Zero-shot Prompting. We include options [5] and [6] to check the “sanity” of
the model M. For example, option #5 in Supplementary Fig. fJA suggests that a statement x
is true, false, and ambiguous — all at the same time. If the model assigns most of the proba-
bility mass to these tokens, we assume that the model does not follow the instructions. Sim-
ilarly, if a model assigns most of its probability mass Py to other tokens in the vocabulary
{reVv:r¢{l[1]1, [2], [3], [4], [5], [6]}}, we also assume that the model did not follow the
instructions. Hence, if instructions are not followed, we assume that the model abstains from making
a prediction, see Eq.[I0]

Gz (abstain | ) = Z Pp(7 | instruction A ), where {7 € V : 7 ¢ {[1], [2], [3], [4]}}

(10)

Note that the zero-shot prompting relies only on the token-level probabilities, i.e., M’s output. It
does not look at the intermediate hidden representation of .
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Zero-shot Probe: Perfomance on City Locations
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Figure 5: Performance of zero-shot prompting on the City Locations data set across different
models and instruction phrasings. We use the Weighted Matthew’s Correlation Coefficient (W-
MCC) to quantify the performance. The marker shows the mean value and the error bars show the
95% confidence intervals (based on the bootstrapping with n = 1,000 bootstrap samples). Minimal
changes to the prompt instructions can skew the performance of zero-shot prompting. Chat models
exhibit the highest performance across all instruction phrasings. However, the default Qwen models
match the performance of other chat-based models. Shuffled instructions appear to lead to worse
performance in chat models. We expected that the phrasings would have only a minor effect on their
performance. The default Gemma and Mistral models seem to fail (their performance is around 0).
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Zero-shot Probe: Perfomance on Medical Indications
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Figure 6: Performance of zero-shot prompting on the Medical Indications data set across
different models and instruction phrasings. We use the Weighted Matthew’s Correlation Coefficient
(W-MCQ) to quantify performance. The marker shows the mean value and the error bars show the
95% confidence intervals (based on the bootstrapping with n = 1,000 bootstrap samples). Minimal
changes to the prompt instructions can skew the performance of zero-shot prompting. We observe a
slight performance misalignment depending on the instruction phrasing. The best-performing LLMs
are the largest chat models: Gemma-2-9b and Qwen-2.5-14b. We expected the biomedical L1ama
models to outperform on the medical indications dataset.
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Zero-shot Probe: Perfomance on Word Definitions
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Figure 7: Performance of the zero-shot prompting on the Word Definitions data set across
different LLMs and instruction phrasings. We use the Weighted Matthew’s Correlation Coefficient
(W-MCC) to quantify the performance: the marker shows the mean value and the error bars show
the 95% confidence intervals (based on bootstrapping with n = 1,000 bootstrap samples). Minimal
changes to the prompt instructions can skew the performance of zero-shot prompting. The overall
performance on the Word Definitions data set is much lower compared to the performances on the
other data sets. Generally, the misalignment in the performance between different instructions is
much lower (except for the default Qwen models, where the difference is significant). The largest
Qwen-2.5-14b are the top-performing models on this task.

28



G Conformal Prediction Intervals

In our work, we focus on “split conformal learning” [21]], which requires a hold-out (or calibration)
data set to compute conformal prediction intervals.

Given a probe g;, we use a calibration data set D45 Of activation-label pairs (h;(x),y) to find
prediction regions that ensure, for example, that a sample falling within the region is correctly
classified 90% of the time. If a prediction falls into the overlapping conformal prediction intervals of
two (or more) classes, or if it does not fall within any interval, the probe abstains from making any
prediction. We provide pseudocode for the nonconformity functions in Supplementary Alg. [5]and [6]

G.1 Nonconformity score

To identify the conformal intervals, we compute a nonconformity score for each sample in D 4.
For the binary cases (such as mean-difference probe and one-vs-all sAwMIL), we use the binary
nonconformity scoring; see Supplementary Alg.[5] It is based on the distance between the prediction
and the classifier’s separating hyperplane. In Eq.[I1] s is the signed distance of the sample to the
separation hyperplane, and y is a ground-truth (or candidate) labelFE]

binaryNC (s,y) = exp(—y - s), y € {—1,1} and s € R. (11)

If the sample ends up on the wrong side of the separation hyperplane (e.g., s > 0 and y = —1), then
the nonconformity score in Eq. [[1]is high and the candidate label is weakly supported by the model.

For the multiclass sAwMIL, we use the multiclass nonconformity score [29]]; see Supplementary
Alg.[6] For a given candidate label y, the label is defined in terms of the difference between the
predicted probability of the true class and the highest probability among the other classes (with K
denoting the total number of classes). Formally, for a candidate label y with predicted probability p,,
we calculate the multiclass nonconformity score with the following function:

1 — (py — max;zy p;)
2

multiclassNC (p) = (12)

where p € AK—1 .= {p eRK | pi>0, VK pi= 1} and AKX~ is a simplex.

In both cases, lower scores in Eq. [IT] and Eq. [12] indicate that the candidate label y is strongly
supported by the model. In our work, we set « = 0.1. Thus, if the nonconformity score of a new
sample exceeds the 90th quantile, the probe abstains from prediction (see Supplementary Alg. [6).
The addition of conformal intervals enables us to distinguish between cases where the statements
originate from different distributions, as compared to those in the calibration data set.

?*In this case, labels should be either —1 or 1. Thus, all samples with label 0 are assigned label —1.
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H More on Representation-based Probing Methods

H.1 Mean-difference Probe with Conformal Prediction Intervals

The mean-difference probe (MD+CP) consists of two components: binary mean-difference classifier
(MD) and the conformal prediction intervals (CP).

First, we fit the binary classifier with a linear decision boundary [15]]. We use it to separate true and
false statements based on the internal activations h;. For each pair (x;,y;), we extract the activation
of the last token h;(x;)|1) and assemble a set of factually true X = {h;(x;)[z] : y; = true} and a

set of false X'~ = {h;(x;)[z) : y; = false} activations. Here, L is the index of the last token in x.
We then compute the means of each set, denoted u+ and 11—, and compute a direction vector:
0= —p )37 (W —p7)" (13)

In Eq.[13] X is a pooled covariance matrix. See Alg.[2]in Supplementary Materials for the detailed
pseudo-code.

Second, we augment MD with conformal prediction intervals [39]]. Conformal intervals help detect
statements that fall outside MD’s high-confidence regions for true or false classes. We use @ = 0.1
in our experiments; thus, predictions in the high-confidence regions are guaranteed to be correct at
least 90% of the time. Note that we use the frue and false statements from the calibration set to find
the conformal prediction intervals. Finally, we test the MD+CP probe using true, false, and neither
statements from the test set. How can the binary MD+CP classifier identify neither statements in
addition to true and false statements? If the MD+CP probe accurately captures the veracity signal, the
neither statements (from the test set) should fall outside of the conformal prediction intervals. Below,
we observe that this is not the case. MD+CP assigns high-confidence scores to the neither-valued
statements in the true or false regions.

Supplementary Fig.|8[shows the score distributionﬂ of MD+CP on the best performing decoder (i.e.,
13™) of the default L1ama-3-8B model on the City Locations data set. There are three distributions:
one for true, one for false, and one for neither. The distributions are based on samples from the test
set. If MD+CP correctly captures the veracity signal, we expect the distribution of neither statements
(green bars) to be outside of the conformal prediction interval (i.e., in the gray area). However, this is
not the case. Most of the neither statements fall within the conformal prediction intervals (i.e., not in
the area colored gray) and get labeled as true or false.

Supplementary Fig. [JA illustrates per-token MD+CP predictions across entire statements. If MD+CP
correctly identifies the veracity signal, then (1) it should not assign any labels to the tokens in the pre-
actualized parts of statements x”, and (2) the label should be consistent across the actualized path x“.
Given a statement “The city of Tokyo is in Japan.”, the pre-actualized part is “The city of Tokyo is in”
and the actualized part is “Japan.” We observe that MD+CP assigns scores to the pre-actualized tokens
(“The city of X”) that fall within the conformal prediction intervals in cases #1-5 (see Supplementary
Fig.[9). In case #5, MD+CP assigns a correct prediction at the period sign (p = 0.39 corresponds to
a false label), but the prediction flips at the end of the text, where the question mark gets p = 0.95
corresponding to the true label. Similarly, in the #7 case of Supplementary Fig. [0JA, the sentence does
not have any veracity value (i.e., it is not a factual claim). However, the MD+CP probe assigns high
confidence scores to some of its tokens. These findings suggest that MD+CP probe captures proxies or
spurious correlations. One cannot use it in real scenarios, where we do not know a priori where the
factual claim ends. In contrast, Supplementary Fig.[9|B-D show the per-token predictions for the
one-vs-all sAWMIL. These probes correctly identify positions where the veracity is actualized. For
example, they do not assign predictions to the non-actualized parts of the statements and only label
tokens in the actualized part. Moreover, these probes do not label tokens in cases where veracity is
absent (e.g., see case #7 in Supplementary Fig.[9D).

H.2 Multiclass Single-Instance Support Vector Machine

The multiclass sAwMIL probe is a multiple-instance learning (MIL) version of Support Vector Machine
(SVM), designed to operate on bags of token representations. To assess whether the MIL formulation

»We use the embedding of the last token to compute the scores in Supplementary Fig. [8 g; (hi (x)) =
OThi(m)[ ] + B. Here, L is the total length of the statement, which is the same as the index of the last token.
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Figure 8: Score distributions of mean-difference probe with conformal prediction intervals
(MD+CP) on the 13™ decoder activations of the default L1ama-3-8B model for the City Locations
dataset. The probe provides a good separation between frue and false statements. Note, if the MD+CP
probe truly captures only the veracity signal, we expect the scores for the neither statements to fall
outside the conformal intervals (i.e., be in the area highlighted with gray color). However, MD+CP
assigns high-confidence scores for the neither-valued statements, labeling them true or false. This
finding suggests that MD+CP relies on spurious proxies rather than genuine veracity signals.

offers any benefits, we construct a single-instance baseline by training a multiclass SVM on the
last token representation only h;(x)[z). As with multiclass sAWMIL, we first train three one-vs-all
probes: is-true, is-false, and is-neither. Then, these one-vs-all classifiers are assembled
into a multiclass SVM using the same procedure described in Sec. [3.1.1]and Supplementary Alg.[I]
Finally, we augment the multiclass SVM with conformal prediction intervals to provide calibrated
estimates, mirroring the multiclass sAwMIL setup.

As before, to evaluate performance, we provide all token representations h;(x) (not only the last
one), where the final prediction is computed based on

gi(z) = , Jax g (hi()(j), where L = || (number of tokens in ).

Supplementary Fig. depicts the performance of multiclass sAwMIL vs. multiclass SVM. The
performance of multiclass SVM is closer to the performance of multiclass sAwMIL (as compared
to MD+CP probe in Fig.[I0]A). However, multiclass sAwMIL still outperforms the multiclass single-
instance SVM in 46 out of 48 cases (= 16 LLMs x 3 data sets), and is competitive in the remaining
two cases. For more results, we refer the reader to Tables [I9]and [I0]of the Supplementary materials.

In Supplementary Fig. we also observe that the multiclass sAwMIL performs better on the chat
models (see bottom right portion of the plot) than the multiclass SVM. This supports our claim
that veracity signals often emerge at positions other than the final token, and that multiple-instance
learning can better isolate the veracity signal. Recall that the multiclass sAwMIL probe considers all
the tokens in the statement and has additional training stages

Supplementary Fig. [TT] visualizes the per-token predictions. The one-vs-all SVM-based probes
have better selectivity than the mean-difference probe with conformal prediction intervals (MD+CP)
However, in some cases, one-vs-all SVM assigns labels to the tokens in the pre-actualized part of
the statement (e.g., see Supplementary Fig. [[TB, #b5 statement). This suggests that one-vs-all SVM
probes are capturing spurious correlations with potential proxies.
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A Predictions with Mean Difference + Conformal Prediction (MD+CP) probe B Predictions with one-vs-all sSAWMIL probe (is-true)
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c Predictions with one-vs-all sSAWMIL probe (is-false) D Predictions with one-vs-all sSAwWMIL probe (is-neither)
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Figure 9: Per-token predictions of mean-difference with conformal prediction intervals (MD+CP)
and one-vs-all sAwMIL on the 13" decoder activations of the default L1ama-3-8B model. State-
ments are from the City Locations data set. We show per-token probabilities (printed beneath each
word), assigned based on the token’s representation. Words are shaded based on the predicted
probability. When MD+CP outputs 0O, the statement is labeled false; when it outputs 1, the statement
is labeled true. If the per-token score falls outside the conformal intervals, MD+CP assigns a score of
0.5 to that token (which corresponds to the highest uncertainty). The one-vs-all sAwMIL probe for
is-true outputs 1 when the probe is 100% confident that the statement is true; and it outputs 0 when
the per-token score is outside the conformal intervals (i.e., there is an absence of truthfulness signal).
Similarly, the one-vs-all sAWMIL probe for is-false outputs 1 when the probe is 100% confident
that the statement is false; and it outputs O when the per-token score is outside the conformal intervals
(i.e., there is an absence of falsehood signal). The same logic applies for the one-vs-all sAwMIL
probe for is-neither. Panel A shows the MD+CP predictions. It often assigns high confidence
scores to pre-actualization tokens and makes mistakes on the wrapped prompts in cases #5 and 6
(e.g., statement #6: “Hey,____Is this correct?”). Also, MD+CP probe assigns labels to the statement
without any veracity value (e.g., case #7). Panels B-D display one-vs-all sAwMIL probes (is-true,
is-false, and is-neither). Unlike MD+CP, one-vs-all sAwMIL localizes the veracity signal to the
actualized token and abstains elsewhere, demonstrating superior selectivity.
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A Performance of the Mean-Difference + CP probe vs Multiclass sSAWMIL B Performance of the Multiclass SVM vs Multiclass sSAWMIL
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Figure 10: Comparison of performances for MD+CP, a multiclass SVM and multiclass sAwMIL
probes. Panels A & B: Each marker shows a probe’s performance for a (model, dataset) pair.
Default models are shown with circles, while chat models are shown with crosses. The different
colors indicate the different data sets. Panel A shows the comparison between the multiclass sAwMIL
probe on the x-axis and the mean-difference probe with conformal prediction intervals (MD+CP) on
the y-axis. Panel B: Performance of multiclass sAwMIL vs. multiclass single-instance SVM probes.
The performance of the multiclass sAwMIL probe is specified on the x-axis, while the performance
of the multiclass SVM is specified on the y-axis. We observe that multiclass sAwMIL outperforms
multiclass SVM. The only exceptions are the Gemma-7B chat model and the Mistral-7B-v0.3 chat
model on Word Definitions, where the performances of the single-instance and multiple-instance are
competitive. This experiment shows that multi-instance learning (i.e., training on all the tokens in
the statement) is beneficial when tracking the veracity of an LLM. Overall, multiclass sAwMIL probe
outperforms MD+CP and the multiclass SVM.
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A Predictions with one-vs-all SVM probe (is-true) B Predictions with one-vs-all SVM probe (is-false)
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Figure 11: Per-token predictions of one-vs-all single-instance SVM on the 13" decoder acti-
vations of the default L1ama-3-8B . Statements are from the City Locations data set. We show
per-token probabilities (printed beneath each word), assigned based on the token’s representation.
Words are shaded based on their predicted probability. Panels A-C: display the one-vs-all SVM probes
(is-true, is-false, and is-neither). The one-vs-all SVM probe isolates the signal better than
the MD+CP probe. (See Supplementary Fig.[9JA for the MD+CP results.) However, in some instances,
the one-vs-all SVM probe assigns high-certainty scores to tokens that do not have any veracity signal.
For example, in Panel A (case #6, the probe picks up on tokens including ‘this,” ‘is,” and ‘?°, which
do not have inherent veracity value. Overall, the multiclass sAwMIL in Supplementary Fig.[9B-C has
better selectivity.
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I Additional Evaluation Details

In the Supplementary Sec. [E] we provide the full list of the validity criteria for the. In the manuscript,
we only cover the results related to Correlation and Locality criteria (see Sec. [5). Here, we provide
additional details behind the evaluation of the Correlation and Locality (see below in Supplementary
Sec. Further, we describe the experimental setup related to the Generalization (also see below in
Supplementary Sec.[[.1.1), and setups for the Manipulation and Locality criteria (see Supplementary
Sec.[[.1.2).

Finally, we provide the evaluation results for the Generalization, Manipulation and Locality in
Supplementary Sec.[[.2]

L1 Evaluation Setup
I.1.1 Performance and Validity

Here, we describe a pipeline to evaluate our sAwMIL probe over the validity criteria specified in Sec. 3]
and Supplementary Sec. [E]

Correlation and Selectivity. We use the test split of each data set to evaluate the performance of the
probe. We use Matthew’s Correlation Coefficient (MCC) to summarize the statistical accuracy of
probes. The multiclass MCC value is calculated using Eq.[T4]

cxs—Zkakxtk

(=580 < (2 -5

where c is the number of correct predictions, s is the total number of samples, K is the total number
of classes, t, is the number of k-class samples in the data set, and py, is the number of times k-class
was predicted. MCC = 1 indicates that a classifier predicted every instance correctly. MCC = 0
implies that the predictions are random. MCC = —1 indicates that the predictions are inversely
correlated with the ground-truth labels.

MCC =

(14)

Since neither statements are included in the test data set, MCC provide a sense of how well the probe
classifies factually true or false statements and indicate whether the probes can handle neither-type
cases.

Generalizability. To test how well a particular probe g; trained on data set D; generalizes, we
evaluate its performance using the test split of other data set D;—e.g., g; trained on the city locations
data set is evaluated using the test split of the word definitions data set.

I.1.2 Interventions and Validity

In this experiment, we assess whether perturbing the hidden representation h;(x) along the veracity
direction 7; affects the model’s outputs, and whether these interventions satisfy the manipulation and
locality criteria defined in Supplementary Sec. |E} In other words, we use /; to change the distribution
of the output tokens Py, and force true or false responses.

We look at each factually true statement € D;.s;—=e.g., “The city of Santo Domingo is in the
Dominican Republic.” We split these statements into two segments: a pre-actualized part, ”, such
as “The city of Santo Domingo is in”’; and second, an actualized part, £ such as “the Dominican
Republic”. Given &, we can compute the probability of the actualized part according to Eq. [I5}

L
Pu(afigy | 2?) =[] Pm (“”[l] | Z.a- 1)) fﬂp) : (15)
=1
In Eq. L is the number of tokens in the actualized part w“@ The subscript [{] specifies the index
of a token in 2%, and [1 : [] specifies the range of tokens in %, while w‘ﬁ)] refers to an empty set.
Further, we do not specify a subscript [1 : L] for brevity unless it is necessary for clarity.

%The length of the actualized part depends on the tokenization technique the language model uses. For
example, Llama-3 and Mistral models split Albania into [A1] [ban] [ial, while Gemma models have one
reserved token [Albania].
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A Pre-actualized part B Per-statement check
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Figure 12: Workflow for evaluating the success of directional interventions. (Panel A) We provide
a pre-actualized part P to the LLM, and intervene at the final token embedding after the n-th decoder
by adding or subtracting the learned veracity direction ;. The modified representation is then passed
to decoder n + 1. Further, we compute the conditional probability of the correct actualized part .
For each statement, we obtain three values: the original conditional probability, the probability after a
positive shift +1/;, and the probability after a negative shift —7;. (Panel B) We assess the success
of each intervention at the statement level, comparing the change in conditional probabilities. If the
change is caused by the positive shift (A;") and the negative shift (A7;") are of opposite sign, we
consider the intervention to have a consistent directional effect and mark it as successful for that
statement (see Eq.[T9). (Panel C) To evaluate the success of the intervention, we also identify the
dominant effect direction—i.e., the sign of AT Z"’ that appears most frequently across all statements.
The procedures in panels B and C determine the per-statement success (see Eq.[19). If more than half
of the statements show consistent and directionally aligned changes (see Eq.[20)), we consider the
overall intervention along ; to be successful.

Direction vector ¢;. We train one-vs-all sAwMIL probes via dual optimization. We use the obtained
solution to extract the linear direction that points towards the class of interest. For example, in our
is-true probe, the class of interest is the true statements.

U; = Z ;Y hl(.’BJ) with § = {j | o > 0}, aj € R, Y; € {—1, 1} (16)
jES
In Eq.[16] S is a set of support vectors, «; is the Lagrangian multiplier [40], h;(x ;) is the activation
after the i™ decoder for statement @, and y; is the class label for ;.

Interventions. Given a pre-actualized part of the statement x”, model M, and a hidden representation
h;(xP), we apply directional interventions by translating the representation of the last token a:f 3

along + 7; (here, i stands for the index of the decoder):
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* Positive directional shift:
I;r (hz (:Bp)) = [hi(iL‘p)[l], cey hi(:ltp)[L,l], hi(ac”)[L] + ﬁi]
* Negative directional shift:

I7 (hi (7)) = [ha(@P))s - - -5 ha(P)—), h(®P) (1) — 7]

These interventions return modified representations, which we denote as I;” () and I; (zP), respec-
tively. Furthermore, we compute the per-sample effect of the directional interventions. It is defined
as a difference between the original probability and the probability we get after the intervention:

ALY (2%, aP) « Pp (x| I () — P (2 | 2P) (17)
AI7 (2%, @P) < Ppg (2 | I () — Prp (2 | 2P) (18)

To compare interventions across decoders and models, we look at the success rate of the interventions.
The per-statement intervention is successful if AT Z+ and A, have opposing effects on the conditional
probability Prq (x® | P). In other words, if AT} is positive, then AT;” must be negative, and vice-
versa.

At the same time, we must ensure that the effect of the intervention is consistent in most statements
& € Dyese. If half of the statements have positive AT j and another have negative AT :r , then our
intervention produces a random change in Py4. To ensure that the effect is consistent, we look at the
dominant effect direction of the intervention, d; € {—1,+1}. Here, d; = +1, if more than half AT;"
are positive, and d; = —1 if more than half is negative.

along +7/;, and aligns AT :r with the dominant direction. Supplementary Fig.|12|provides an overview
of the workflow to determine the per-statement success of the intervention.
per-statement success s as

In summary, a successful directional intervention is one that produces opposieffects when shifting

ormally, we define a

s(x) = ]I[ [sign (AI;' (z, mp)) # sign (AI{ (ma,mp))] A [sign (AI?' (ma,mp)) = sign (Eq)} ] (19)

where
1] = 1, if the condition holds,
~ 10, otherwise.

Why do we only look at the sign? During our initial experiments, we observed that even when 7;
was trained to separate true and false statements, the effect of the intervention on Py (x® | «P) could
vary across decoders. Specifically, in certain decoders, shifting along +2; consistently increased
the probability of ¢, while in others it decreased it. These effects were consistent in the sense that
shifting in the opposite direction produced the opposing effect. This phenomenon can be attributed
to the complex interactions within each decoder of the model. As highlighted by Heimersheim
and Nanda [41]], activation patching experiments have revealed that interventions can have varying
directions of effect depending on the decoder. Therefore, observing a sign flip in the effect of an
intervention does not invalidate the direction 7;, as long as it is consistent.

Given a set of true statements from D;.s;, we compute the overall success rate at a decoder i as

follows:
1

w; = st(wﬂ)’ (20)

where N stands for the number of the true statements in D;.s; and s (:c]) is success for the jth
statement as defined in Eq.[T9]

If the overall success rate at decoder 7 is greater than 50%, we claim that the intervention at decoder
1 is successful. Hence, the manipulation criterion is fulfilled. We use a one-sided binomial test to
confirm whether the overall success rate is significant:

Hy:w; <0.5 2D
Hyp:w; >05 (22)
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For example, the overall success rate of 61% with the dominant direction d; = +1 tells us that if we
have 100 statements, on average, we increase the probability of the correct answer in 61 statements.
Similarly, a success rate of 98% with the dominant direction d; = —1 indicates that shifting along
+1; decreases the probability of the correct answer in approximately 98 out of 100 statements.

Locality. To further determine the quality of the directional intervention, we assess whether changes
in probability are concentrated on the actualized part, rather than being diffused across random tokens
in the vocabulary V. In other words, our intervention should change Pa(x® | P) and should not
change the probability of random tokens P (r | 2P).

Specifically, we expect the intervention to primarily affect the likelihood of the correct continuation,
Pp(@fy.p | @), while leaving the probability of a randomly sampled continuation, Pa(7 (1.1 | 27),
mostly unchanged. Here, 7(;.7) denotes a random sequence sampled from the vocabulary of the
model M. We quantify these changes as:

Acorrect = |PM (wa ‘ Iz—i—(mp)) — Pum (wa | Ii_ (wp))‘ (23)
ARandom = |PM (’I" | Iz—i_(mp)) — Pum (T ‘ Ii_(wp))| 24)

Further, we say that the intervention satisfies the locality criterion if
E [ACOrrect] > E [ARandom] . (25)

That is, the expected change in probability for the correct output, £, exceeds the expected change
for a randomly sampled output 7.

1.2 Results
LI.3 Generalization Across Data Sets

To further support the claim that the multiclass sAwMIL captures veracity signals (and not merely a
proxy), we demonstrate generalization performance across data sets. Supplementary Fig. [I3]provides
results for each data set and LLM. The columns correspond to three test data sets, and the cells specify
the multiclass sAwMIL’s performance for a specific LLM. Multiclass sAwMIL provides reasonable
generalization performance (see Supplementary Tab. [§). However, it is potentially overfitting to
the highly specialized City Locations data set. Using more diverse data sets that contain a broader
range of entities and cover a larger set of topics isolates the veracity signal better and produces
better generalization performance. We refer the reader to Tables 21| through 23]in Supplementary for
detailed statistics.

Table 8: Aggregated generalization performance of the multiclass sAwMIL for each dataset. Each
cell shows a MCC value, which quantifies the performance of the multiclass sAwWMIL trained and
tested on different combinations of the datasets. The value in the bracket is the standard error. Word
Definitions provides better generalization performance because it contains statements covering a
diverse set of topics, while the City Locations provide lower generalization performance.

Testing Dataset
Training Dataset  City Locations Medical Indications Word Definitions
City Locations 0.963 (0.003) 0.624 (0.030) 0.633 (0.025)
Medical Indications 0.818 (0.033) 0.790 (0.009) 0.698 (0.018)
Word Definitions 0.896 (0.015) 0.723 (0.016) 0.868 (0.008)

We also observe that generalization performance is higher for chat models, where the average MCC
score (on the non-training data set) is 77.2% (standard error: 0.2%), compared to 68.2% (standard
error: 0.2%) achieved for the default models. This is more noticeable in Supplementary Fig.[13A,
where default models have much lower MCC values than their chat model counterparts. For example,
the chat model L1ama-3.2-3B has 1.6 times higher MCC value than the default L1ama-3.2-3B.
Over the three panels, Gemma-7B seems to be an outlier, since the generalization performance drops
significantly for the chat version of the model.

Multiclass sAwMIL satisfies the generalization criterion defined in Supplementary Sec. [E|by transfer-
ring veracity probes trained on one data set to another while maintaining strong performance. This
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Figure 13: Generalization performance of the multiclass sAwMIL probe across data sets. Each
panel corresponds to a different training data set: City Locations, Medical Indications, and Word
Definitions. Each column corresponds to a different test data set. Each cell displays MCC values,
which quantify how well the probe generalizes to the test data set (a higher value is better). For each
model and data set, we report the maximum MCC achieved across all decoders. Generally, probes
trained on the chat models have better generalization performance than the default models. Panel A:
Generalization performance of multiclass sAwMIL when trained on City Locations. While the MCC
values are significantly higher than random baseline (with MCC = 0), the generalization ability is
lower than those in Panels B or C. Panel B: Generalization performance of multiclass sAwMIL when
trained on Medical Indications. In Panel A, we observe that training on City Locations and testing
on Medical Indications provides good but not excellent MCC values (average MCC of 0.624 with
standard error of 0.030). This is not the case in this panel, where Medical Indications is the training
data set and City Locations is the test data set (average MCC of 0.818 with standard error of 0.033).
Panel C: Generalization performance of multiclass sAwMIL when trained on Word Definitions. This
probe has high generalization performance across data sets. When City Locations is the test data set,
the average MCC is 0.896 with standard error of 0.015; and when Medical Indications is the test
data set, the average MCC is 0.723 with standard deviation of 0.016. For aggregated statistics, see
Supplementary Tab. [}

provides further evidence that multiclass sAwWMIL captures a veracity signal that is not specific to a
data set.

I.4 Interventions: Manipulation and Locality

Previous experiments have shown that the multiclass sAwMIL identifies a strong and transferable
veracity signal. We further look at how this signal is connected to the output of an LLM, Pj,.
Here, we look at the interventions of one-vs-all sAwMIL probes, which are the building blocks of
the multiclass sAwMIL. Specifically, we assess the effectiveness of interventions applied along the
is-true and is-false directions. For simplicity, we exclude the one-vs-all probe for is-neither
from the intervention analysis.

The overall success rate measures how often directional interventions (adding or subtracting +7;)
produce a consistent change in the model’s output Py. We describe the setup in Supplementary
Sec. A higher success rate indicates that shifting along +7; has higher chances to skew the
conditional probability of the correct answers Py(x® | P). Supplementary Fig.|14]shows the
overall success rate for each model and data set. Success rates below .5 suggest that interventions
have close to a random effect on Py,.

Notably, some models have a success rate of 0. This occurs when:

* Interventions along +#; failed to induce opposing changes in Py, e.g., both +; and —7;
increased or decreased probabilities; or
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Figure 14: Overall intervention success rate for the one-vs-all sAwWMIL probes. We report the
maximum achievable success rate along the is-true and is-false directions. Panels A-C show
results for probes g; trained on specific data sets, while columns correspond to the is-true or
is-false probe. Default and chat Gemma-2-9b, as well as, some experiments with the default and
chat Qwen-2.5-14B and Gemma-7B models did not pass the consistency check — suggesting that
the interaction between directions 7; and the conditional probability P, are not linear (or that the
one-vs-all sAWMIL probes failed to identify signals that linearly affect the model output Py.

* The average change in Ppy((z® | @P) (i.e., Acorrect) matched the change in random se-
quence continuation probabilities (Aundom), Violating the locality criterion in Equations@

through 23]

The average success rate is 80.1% (standard error: 0.2%) for the is-true direction and 76.2%
(standard error: 0.2%) for the is-false direction. We exclude the models whose intervention
success rate was 0 in Supplementary Fig.[T4]

This experiment shows that in the majority of cases, we can use the is-true and is-false directions
to manipulate the output of LLMs. The interventions are more successful for the chat models. The
average success rate for chat models is 80.1% (standard error: 0.3%), and for default models is 70.9%
(standard error: 0.2%).

Anomalies. We observe some anomalous behavior when intervening in the LLMs:

* In the Gemma-2-9B models, interventions along the direction +7#; consistently increased
or decreased the probability P (x® | ?), regardless of the sign of the intervention. This
indicates that the direction 7; identified by sAwMIL does not have a clear relationship with
the model’s output probabilities. Thus, we cannot use 7; to increase and decrease the
probability of correct answers. A similar phenomenon is observed in the Qwen-2.5-14B
(chat) model.

* For the Gemma-7B (default) model, interventions along the is-false direction provide a
higher success rate compared to the is-true direction.

The exact reasons for these anomalies are unclear. However, we know that these models have
additional fine-tuning processes. These additional training procedures may have influenced the
internal representations of the models. Except for the Gemma-2-9B models and the Qwen-2.5-14B
(chat) model, the one-vs-all sAwMIL probes pass both manipulation and locality criteria. We expect
that the non-linear version of sAwMIL will overcome the issues with the models that have additional
fine-tuning processes. This is part of our future work.

L5 Recap: Overall Validity
In this section and Sec. |§|0f the manuscript, we established that the multiclass sAwMIL probe satisfies

the validity criteria. Specifically, we confirmed that it satisfies the correlation and selectivity criteria,
outperforming zero-shot prompting and mean-difference probe with conformal prediction intervals.
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We further demonstrated that multiclass sAwMIL satisfies the generalization criterion, indicating that
we can successfully apply probes trained on multiclass sAwMIL to statements from other domains. In
addition, we showed that the one-vs-all sAwWMIL probes satisfy the manipulation and locality criteria.
In a majority of cases, we can perform interventions that change the probabilities of correct replies.
Together, these findings provide strong evidence for the overall validity of sAwMIL probes. Not
all LLMs have a veracity mechanism that has a linear relationship with the output. Exploring this
non-linear relationship is part of our future work.
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J Algorithms

In this section, we provide pseudo-codes for several procedures described in the main text. In
Supplementary Alg. [} we provide pseudo-code for the Sparse Aware Multiple-Instance Learning
(sAwMIL) probe,. In Supplementary Alg. 2] [3|and[d we show pseudo-codes for the mean-difference
(MD), the training with truth and polarity directions (TTPD), and the supervised PCA (sPCA) probes,
accordingly. In Supplementary Alg.[5|and[6] we describe the procedure for the binary and multiclass
conformal learning (described in Sec. [3.2).

Algorithm 1 Training a one-vs-all sAwMIL classifier

Input: A training data set {(x;, y;, m;)}"_, with binary bag labels y; € {0, 1}, bags x; € RFix4,
and intra-bag confidences m,; € {0, 1}Li, where L; is the number of items in a bag x;; also, a
balancing parameter 7 € (0, 1].

Output: Parameters @ € R'*? and b € R. These parameters are subsequently given to a function f
along with z to compute f(z) = o(z 0" + 3), where o is a sigmoid function.

1: Partition data into positive and negative sets:
Xt ={{xiym) sy =1}, X7 = {(m,my) : y; = 0}
2: Compute the initial coefficient vector and the intercept > See Bunescu and Mooney [19]
(0,b) < solve_sMIL(XT, X~), where @ € R'*%and b € R.

3: Let Xt denote the set of all instances from the positive bags and X'~ all instances from the
negative bag.
4: Compute scores for every instance in a positive set

R N _ .
St Xt0 +b, where X+ e RIX x4,
5: Compute the threshold
q + quantile(ST,1— 7).
6: for all positive instances (Z;,m;,y;) € X T, where Z; € R'*?, m; € {0,1} and §; = 0 do

if (z; 0 + b) > g, and m; =1 thensety; = 1;
else set yj; = 0.
7: end for
8: Compute the final coefficient vector and the intercept > via simple support vector machine

(0,8) < solve_SIL(XT X7).

return Coefficient vector @ € R'*? and the intercept 3 € R.
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Algorithm 2 Training a mean-difference (MD) probe [15]], sometimes referred to as mean-mass/mean-
cluster difference classifier or linear discriminant analysis.

Input: A training dataset {(z;,y;)}"_, with binary labels y; € {0,1} and z; € R'*<. In our
experiments, z is the embedding of the last token (unless otherwise noted).

Output: Parameters € R'*%, € R, and X~ € R%*¢, These parameters are subsequently given
to a function f along with z to compute f(z) = o(z (=71o7) + ), where o is a sigmoid
function.

1: Partition data into positive and negative sets:
X' ={zityi=1}, X" ={zi:y: =0}

2: Compute class means pt and g2, and covariance matrices ¥ and X~ for X+ and X .
3: Compute pooled covariance matrix (where nt = |[X*|and n™ = |X|):

(nt-1DEt+(n —-1)="

>
nt+n-—2

4: Compute the coefficient vector: @ = pu+ — p~, where § € R'*<,
5: Compute scores for positive and negative sets:

st XT(27107) and s~ « X~ (27'07), where sT € R and s~ € R" .
6: Compute the intercept:

b= % (mean (s*) 4 mean (s7))

return Coefficient vector 8, intercept 5, and the inverse covariance matrix >

Algorithm 3 Training with Truth and Polarity Directions, aka TTPD probe [17]]

Input: A training dataset {(z;,y;,p;)}"_; with binary truthfulness labels y; € {—1,1}, binary
polarity labels y; € {—1, 1} that specify affirmative/negated statements and z; € R**<, In our
experiments, z is the embedding of the last token (unless otherwise noted).

Output: Parameters © € R>*? 0 ¢ R'*2 and 8 € R. These parameters are subsequently given to
a function f along with z to compute f(z) = o((z©07) 0" + 3), where o is a sigmoid function.

1: Given data matrix X = [zo, ..., 2,] € R"*¢ compute the centered data matrix
X = X —mean(X)

2: Find the truth direction 8, € R'*? via the Ordinary Least Squares:

0, = (X7 X)"' X"y, where y = [yo, . .., yn]
3: Find the polarity direction 8,, € R1*¢ via the Logistic Regression:

0, < LogisticRegression(X, p), where p = [po, . .., Dx]

4: Project X onto 6, and 0,,:

X« stack([X 0;,X0§]), where X € R"*?2
5: Use the projected data matrix X to get coefficient vector 6 and the intercept 3:

0,5« LogisticRegression()?, Y)

return Projection matrix © = stack([8,, 8,]), coefficient vector € and intercept 3.
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Algorithm 4 Training a Supervised Principal Component Analysis (sPCA) probe

Input: A training dataset {(z;,y;)}", with binary labels y; € {0,1} and z; € R'*%, and k € R
to specify the number of components. In our experiments, z is the embedding of the last token
(unless otherwise noted).

Output: Parameters A € R¥*?, 8 ¢ R'*2 and 3 € R. These parameters are subsequently given to
a function f along with 2 to compute f(z) = o ((z AT) 07 + B), where o is a sigmoid function.

1: Partition data into positive and negative sets:
Xt ={zi:yi=1}, X ={zi:y:=0}
2: Compute means and centered matrices:

pt =mean(XT), p~ =mean(X”), p=mean(X), X =XT-pt X =X -—pn".

el

Compute class covariance matrices 3 and £~ for XF and X,
4: Compute within-class covariance matrix (where nt = |Xf| and n™ = |X|):
(nt-1DEt+(n-—-1)="

Z:’w =
nt4+n-—2

5. Compute between-class covariance matrix:

ntdyd) +n dpd,)

n

+

dp = (p" —p)y, dn=(u" —p),  Tp=
6: Build symmetric scatter matrix with ridge penalty:
M=3,+ 3, + Mg, M+ Y(M+MT.

7: Compute top-k eigenpairs of M (largest algebraic), assemble the eigenmatrix A € R**? and
corresponding eigenvalue vector v € R*¥:

(v1,v1), ..., (Vk,vp) = TopKEigs(M, k) — A =[v1,...,vk], v=[vi,...,v] .
8: Project data matrix X = [21,..., z,] € R"*9 via the eigenmatrix A, followed by whitening:
X = X AT diag(v)~?, where X € R"**
9: Use the projected data matrix X to get coefficient vector € and the intercept 3:
0,5« LogisticRegression(X7 Y)

return Projection matrix A, coefficient vector 8 and intercept [3.
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Algorithm 5 Inductive Conformal Predictions with binary nonconformity score.

Input: A calibration dataset {(z;,v;)}"_; € Deal, Where n = |Degy

,¥i € {—1,1} and 2z; € RE*4
(L = 11in a single instance setup); a confidence level «, a pretrained binary classifier g, and a
new sample 2,eq-

Output: Prediction set Vyeq

—_—

_ = = e
A

—_
[*))

A B AR A o

Initialize an empty score list S < 0

for all samples (z;, y;) € Do do
zi = g(2;) > z; € Ris ascore
s; = exp(—y; - ;) > Nonconformity score, see Eq.
end for
Compute a score for the new samples: z,e = g (Znew)
Initialize empty prediction set Ve, < 0
forally € {—1,1} do
Snew = exp(—y . Znew)

Py = W > I(-) is an indicator function

if ¢, > 1 — « then
ynew — ynew U {y}
end if

: end for

: return Prediction set V,,cq
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Algorithm 6 Inductive Conformal Predictions with multiclass nonconformity score.

Input: A calibration dataset {(z;,y;)}"_; € Deas, where n = |Dewi], yi € {1,..., K} (K is the
number of classes) and z; € RY*4 (L = 1 in a single instance setup); a confidence level o, a
pretrained multiclass classifier g, and a new sample z,cq,.

Qutput: Prediction set Vy,eq

1: Initialize an empty score list S < ()

2: for all samples (z;,y;) € Dy do

3 p=g(z) > p € AK~1is a vector of probabilities

4: P> = MaX, £y, Dj > Maximum non-target probability, where j € {1,..., K}

5 dp = py, — D > Probability margin
1—d, .

6: 8= —5 > Non-conformity score, see Eq.

7 S+ SuU{s;}

8: end for

9: Compute probabilities for the new samples: p,,.., = 9 (Znew)

10: Initialize empty prediction set Ve < @
11: forally € {1,..., K} do

12: P: = max, sy, p; > where j € {1,..., K} and p; € p,.,p
13: dp =Dy — Pz

14: Snew = %

15: P, = W > I(+) is an indicator function
16: if ¢, > 1 — o then

17: Vnew < Vnew U {y}

18: end if

19: end for

20: return Prediction set V,,c.
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K More Tables on Classification Performance, Generalization Performance,
and Confusion Matrices

In this section, we report detailed tables of the following results.

* Classification performance for all (model, dataset) pairs for the setting when only the last
token’s representation is available, and the setting when the prediction is made over the full
bag (see Supplementary Tables [9}-[19),

* Generalization performance of multiclass sAwMIL across all datasets (see Supplementary
Tables 21}-[23),
+ Confusion matrices for all (model, dataset) pairs (see Supplementary Tables[24}-31).
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Table 9: Classification performance of the multiclass sAwMIL probe across datasets and models
(evaluated on the last token’s representation). This probe is trained on the bag representation of
the statements and evaluated using the representations of the last tokens. We report Matthew’s
Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence intervals are based
on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence
intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’ column specifies the
layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the relative depth of that
layer within the model.

Model Name Type  Setting  Probe Dataset Cl.o2s MCC Clg7s Layer Depth
Llama-3-8B default instance sAwMIL City Locations 099 099 1.00 16 0.52
Llama-3.2-3B default instance sAwMIL City Locations 098 099 1.00 10 0.37
Mistral-7B-v0.3 default instance sAwMIL City Locations 099 099 1.00 17 0.55
Qwen-2.5-7B default instance sAwMIL City Locations 098 099 099 19 0.70
Qwen-2.5-14B default instance sAwMIL City Locations 098 099 099 28 0.60
Gemma-7B default instance sAwMIL City Locations 0.99 1.00 1.00 20 0.74
Gemma-2-9B default instance sAwMIL City Locations 099 1.00 1.00 21 0.51
Llama-3.1-8B chat instance sAwMIL City Locations 099 1.00 1.00 13 0.42
Llama-3.2-3B chat instance sAwMIL City Locations 098 099 099 12 0.44
Mistral-7B-v0.3 chat instance sAwMIL City Locations 098 099 099 10 0.32
Qwen-2.5-7B chat instance sAwMIL City Locations 097 098 099 20 0.74
Qwen-2.5-14B chat instance sAwMIL City Locations 098 099 099 29 0.62
Gemma-7B chat instance sAwMIL City Locations 097 098 099 18 0.67
Gemma-2-9B chat instance sAwMIL City Locations 098 099 1.00 23 0.56
Bio-Medical-Llama chat instance sAwMIL City Locations 099 099 1.00 28 0.90
Llama3-Med42-8B  chat instance sAwMIL City Locations 099 099 100 14 0.45
Llama-3-8B default instance sAwMIL Medical Indications 0.84 0.86 0.88 13 0.42
Llama-3.2-3B default instance sAwMIL Medical Indications 0.83 0.85 0.88 10 0.37
Mistral-7B-v0.3 default instance sAwMIL Medical Indications 0.86 0.88 0.90 13 0.42
Qwen-2.5-7B default instance sAwMIL Medical Indications 0.83 0.86 0.88 16 0.59
Qwen-2.5-14B default instance sAwMIL Medical Indications 0.84 0.87 0.89 22 0.47
Gemma-7B default instance sAwMIL Medical Indications 0.84 0.86 0.89 17 0.63
Gemma-2-9B default instance sAwMIL Medical Indications 0.86 0.88 090 18 0.44
Llama-3.1-8B chat instance sAwMIL Medical Indications 0.85 0.87 089 18 0.58
Llama-3.2-3B chat instance sAwMIL Medical Indications 0.82 0.85 0.87 15 0.56
Mistral-7B-v0.3 chat instance sAwMIL Medical Indications 0.86 0.88 090 16 0.52
Qwen-2.5-7B chat instance sAwMIL Medical Indications 0.83 0.85 0.87 17 0.63
Qwen-2.5-14B chat instance sAwMIL Medical Indications 0.86 0.88 091 23 0.49
Gemma-7B chat instance sAwMIL Medical Indications 0.80 0.83 0.85 15 0.56
Gemma-2-9B chat instance sAwMIL Medical Indications 0.86 0.88 0.90 21 0.51
Bio-Medical-Llama chat instance sAwMIL Medical Indications 0.85 0.87 0.89 11 0.35
Llama3-Med42-8B chat instance sAwMIL Medical Indications 0.85 0.88 090 8 0.26
Llama-3-8B default instance sAwMIL Word Definitions 086 0.87 0.89 13 0.42
Llama-3.2-3B default instance sAwMIL Word Definitions 083 085 087 10 0.37
Mistral-7B-v0.3 default instance sAwMIL Word Definitions 085 0.87 0.89 13 0.42
Qwen-2.5-7B default instance sAwMIL Word Definitions 086 088 0.89 16 0.59
Qwen-2.5-14B default instance sAwMIL Word Definitions 086 0.87 0.89 21 0.45
Gemma-7B default instance sAwMIL Word Definitions 083 085 087 14 0.52
Gemma-2-9B default instance sAwMIL Word Definitions 088 090 091 17 0.41
Llama-3.1-8B chat instance sAwMIL Word Definitions 092 093 094 14 0.45
Llama-3.2-3B chat instance sAwMIL Word Definitions 085 086 088 12 0.44
Mistral-7B-v0.3 chat instance sAwMIL Word Definitions 088 090 091 11 0.35
Qwen-2.5-7B chat instance sAwMIL Word Definitions 087 089 090 18 0.67
Qwen-2.5-14B chat instance sAwMIL Word Definitions 091 093 094 24 0.51
Gemma-7B chat instance sAwMIL Word Definitions 081 083 085 22 0.81
Gemma-2-9B chat instance sAwMIL Word Definitions 091 092 094 19 0.46

Bio-Medical-Llama chat instance sAwMIL Word Definitions 088 090 091 13 0.42
Llama3-Med42-8B chat instance sAwMIL Word Definitions 090 092 093 14 0.45
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Table 10: Classification performance of the multiclass sAwMIL probe across datasets and models
(evaluated on the full bag). This probe is trained and evaluated on the bag representation of the
statements. We report Matthew’s Correlation Coefficient (MCC) with the 95% confidence intervals.
Confidence intervals are based on bootstrapping with n = 1,000 samples. The bold values mark
MCC with significant confidence intervals. The ‘Setting’ column specifies the evaluation setting. The
‘Layer’ column specifies the layer at which the probe achieved the highest MCC, and ‘Depth’ denotes
the relative depth of that layer within the model.

Model Name Type  Setting Probe Dataset Clo2s MCC Clgrs Layer Depth
Llama-3-8B default bag sAwMIL City Locations 099 099 1.00 16 0.52
Llama-3.2-3B default bag sAwMIL City Locations 098 099 1.00 10 0.37
Mistral-7B-v0.3 default bag sAwMIL City Locations 099 099 1.00 17 0.55
Qwen-2.5-7B default bag sAwMIL City Locations 098 099 099 19 0.70
Qwen-2.5-14B default bag sAwMIL City Locations 098 099 099 28 0.60
Gemma-7B default bag sAwMIL City Locations 099 1.00 1.00 20 0.74
Gemma-2-9B default bag sAwMIL City Locations 099 1.00 1.00 21 0.51
Llama-3.1-8B chat bag sAwMIL City Locations 099 1.00 1.00 13 0.42
Llama-3.2-3B chat bag sAwMIL City Locations 098 099 099 12 0.44
Mistral-7B-v0.3 chat bag sAwMIL City Locations 098 099 099 10 0.32
Qwen-2.5-7B chat bag sAwMIL City Locations 097 098 099 20 0.74
Qwen-2.5-14B chat bag sAwMIL City Locations 098 099 099 29 0.62
Gemma-7B chat bag sAwMIL City Locations 097 098 099 18 0.67
Gemma-2-9B chat bag sAwMIL City Locations 098 099 1.00 23 0.56
Bio-Medical-Llama chat bag sAwMIL City Locations 099 099 1.00 28 0.90
Llama3-Med42-8B  chat bag sAwMIL City Locations 099 099 100 14 0.45
Llama-3-8B default bag sAwMIL Medical Indications 0.83 0.86 0.88 13 0.42
Llama-3.2-3B default bag sAwMIL Medical Indications 0.83 0.85 0.88 10 0.37
Mistral-7B-v0.3 default bag sAwMIL Medical Indications 0.86 0.88 0.90 13 0.42
Qwen-2.5-7B default bag sAwMIL Medical Indications 0.83 0.86 0.88 16 0.59
Qwen-2.5-14B default bag sAwMIL Medical Indications 0.84 0.87 0.89 22 0.47
Gemma-7B default bag sAwMIL Medical Indications 0.84 0.86 0.89 17 0.63
Gemma-2-9B default bag sAwMIL Medical Indications 0.86 0.88 0.90 18 0.44
Llama-3.1-8B chat bag sAwMIL Medical Indications 0.85 0.87 0.89 18 0.58
Llama-3.2-3B chat bag sAwMIL Medical Indications 0.83 0.85 0.87 15 0.56
Mistral-7B-v0.3 chat bag sAwMIL Medical Indications 0.86 0.88 0.90 16 0.52
Qwen-2.5-7B chat bag sAwMIL Medical Indications 0.82 0.85 0.87 17 0.63
Qwen-2.5-14B chat bag sAwMIL Medical Indications 0.86 0.88 0.90 23 0.49
Gemma-7B chat bag sAwMIL Medical Indications 0.80 0.83 0.85 15 0.56
Gemma-2-9B chat bag sAwMIL Medical Indications 0.86 0.88 0.90 21 0.51
Bio-Medical-Llama chat bag sAwMIL Medical Indications 0.85 0.87 0.89 11 0.35
Llama3-Med42-8B  chat bag sAwMIL Medical Indications 0.85 0.88 0.90 8 0.26
Llama-3-8B default bag sAwWMIL Word Definitions 085 087 089 13 0.42
Llama-3.2-3B default bag sAwMIL Word Definitions 0.83 085 0.87 10 0.37
Mistral-7B-v0.3 default bag sAwMIL Word Definitions 0.85 087 0.89 13 0.42
Qwen-2.5-7B default bag sAwMIL Word Definitions 0.86 0.88 0.89 16 0.59
Qwen-2.5-14B default bag sAwMIL Word Definitions 0.85 0.87 0.89 21 0.45
Gemma-7B default bag sAwMIL Word Definitions 0.83 085 086 14 0.52
Gemma-2-9B default bag sAwMIL Word Definitions 0.88 090 091 17 0.41
Llama-3.1-8B chat bag sAwMIL Word Definitions 092 093 095 14 0.45
Llama-3.2-3B chat bag sAwMIL Word Definitions 0.85 086 0.88 12 0.44
Mistral-7B-v0.3 chat bag sAwMIL Word Definitions 0.88 090 091 11 0.35
Qwen-2.5-7B chat bag sAwMIL Word Definitions 0.87 089 090 18 0.67
Qwen-2.5-14B chat bag sAwMIL Word Definitions 091 093 094 24 0.51
Gemma-7B chat bag sAwMIL Word Definitions 0.81 083 085 22 0.81
Gemma-2-9B chat bag sAwMIL Word Definitions 091 092 094 19 0.46
Bio-Medical-Llama chat bag sAwMIL Word Definitions 0.88 090 092 13 0.42
Llama3-Med42-8B  chat bag sAwMIL Word Definitions 090 092 093 14 0.45
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Table 11: Classification performance of the zero-shot prompting across datasets and models.
We report Matthew’s Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence
intervals are based on bootstrapping with n = 1,000 samples. The bold values mark MCC with
significant confidence intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’
column specifies the layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the
relative depth of that layer within the model.

Model Name Type  Setting Probe Dataset Clo2s MCC Clgrs Layer Depth
Llama-3-8B default - Zero-Shot City Locations 0.05 0.09 0.12 - -
Llama-3.2-3B default - Zero-Shot City Locations 0.09 012 0.15 - -
Mistral-7B-v0.3 default - Zero-Shot City Locations 0.00 0.00 0.00 - -
Qwen-2.5-7B default - Zero-Shot City Locations 053 056 058 - -
Qwen-2.5-14B default - Zero-Shot City Locations 0.61 063 0.65 - -
Gemma-7B default - Zero-Shot City Locations 0.12 015 0.18 - -
Gemma-2-9B default - Zero-Shot City Locations 0.50 053 056 - -
Llama-3.1-8B chat - Zero-Shot City Locations 0.54 056 058 - -
Llama-3.2-3B chat - Zero-Shot City Locations 045 047 050 - -
Mistral-7B-v0.3 chat - Zero-Shot City Locations 041 044 047 - -
Qwen-2.5-7B chat - Zero-Shot City Locations 0.53 055 057 - -
Qwen-2.5-14B chat - Zero-Shot City Locations 0.80 0.82 084 - -
Gemma-7B chat - Zero-Shot City Locations 044 046 049 - -
Gemma-2-9B chat - Zero-Shot City Locations 0.57 059 061 - -
Bio-Medical-Llama chat - Zero-Shot City Locations 048 051 053 - -
Llama3-Med42-8B  chat - Zero-Shot City Locations 053 055 057 - -
Llama-3-8B default - Zero-Shot Medical Indications 0.18 022  0.25 - -
Llama-3.2-3B default - Zero-Shot Medical Indications 0.04 0.08 0.12 - -
Mistral-7B-v0.3 default - Zero-Shot Medical Indications 0.00 0.02 0.04 - -
Qwen-2.5-7B default - Zero-Shot Medical Indications 0.31 034 0.37 - -
Qwen-2.5-14B default - Zero-Shot Medical Indications 0.38 0.41 044 - -
Gemma-7B default - Zero-Shot Medical Indications 0.13 0.16 0.19 - -
Gemma-2-9B default - Zero-Shot Medical Indications 0.28 032 0.35 - -
Llama-3.1-8B chat - Zero-Shot Medical Indications 0.34 037 040 - -
Llama-3.2-3B chat - Zero-Shot Medical Indications 0.22  0.25 0.28 - -
Mistral-7B-v0.3 chat - Zero-Shot Medical Indications 0.15 0.19 022 - -
Qwen-2.5-7B chat - Zero-Shot Medical Indications 0.30 033 0.36 - -
Qwen-2.5-14B chat - Zero-Shot Medical Indications 0.49 0.52 0.55 - -
Gemma-7B chat - Zero-Shot Medical Indications 0.27 030 0.34 - -
Gemma-2-9B chat - Zero-Shot Medical Indications 0.41 0.44 047 - -
Bio-Medical-Llama chat - Zero-Shot Medical Indications 0.30 033 0.37 - -
Llama3-Med42-8B chat - Zero-Shot Medical Indications 0.38 0.41 045 - -
Llama-3-8B default - Zero-Shot Word Definitions 0.03 0.06 0.09 - -
Llama-3.2-3B default - Zero-Shot Word Definitions -0.01 0.02 0.04 - -
Mistral-7B-v0.3 default - Zero-Shot Word Definitions 0.00 0.01 0.01 - -
Qwen-2.5-7B default - Zero-Shot Word Definitions 0.12 014 0.17 - -
Qwen-2.5-14B default - Zero-Shot Word Definitions 027 030 033 - -
Gemma-7B default - Zero-Shot Word Definitions -0.03 0.00 0.03 - -
Gemma-2-9B default - Zero-Shot Word Definitions 0.05 0.07 0.10 - -
Llama-3.1-8B chat - Zero-Shot Word Definitions 0.17 020 023 - -
Llama-3.2-3B chat - Zero-Shot Word Definitions 0.05 0.08 O0.11 - -
Mistral-7B-v0.3 chat - Zero-Shot Word Definitions -0.09 -0.06 -0.03 - -
Qwen-2.5-7B chat - Zero-Shot Word Definitions 0.13 0.16 0.18 - -
Qwen-2.5-14B chat - Zero-Shot Word Definitions 032 035 037 - -
Gemma-7B chat - Zero-Shot Word Definitions 0.11 014 0.17 - -
Gemma-2-9B chat - Zero-Shot Word Definitions 024 027 030 - -
Bio-Medical-Llama chat - Zero-Shot Word Definitions 0.10 014 0.17 - -
Llama3-Med42-8B chat - Zero-Shot Word Definitions 0.15 017 020 - -
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Table 12: Classification performance of the mean-difference probe with conformal prediction
intervals (MD+CP) probe across datasets and models (evaluated on the last foken’s representation).
This probe is trained and evaluated using the representations of the last tokens. We report Matthew’s
Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence intervals are based
on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence
intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’ column specifies the
layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the relative depth of that
layer within the model.

Model Name Type  Setting Probe Dataset Clo2s MCC Clgrs Layer Depth
Llama-3-8B default instance MD+CP City Locations 0.64 0.66 0.69 19 0.61
Llama-3.2-3B default instance MD+CP City Locations 0.60 0.62 0.64 27 1.00
Mistral-7B-v0.3 default instance MD+CP City Locations 0.65 0.68 0.70 24 0.77
Qwen-2.5-7B default instance MD+CP City Locations 0.57 0.60 062 22 0.81
Qwen-2.5-14B default instance MD+CP City Locations 0.62 0.65 0.67 32 0.68
Gemma-7B default instance MD+CP City Locations 0.66 0.68 0.70 21 0.78
Gemma-2-9B default instance MD+CP City Locations 070 073 075 24 0.59
Llama-3.1-8B chat instance MD+CP City Locations 0.69 071 074 27 0.87
Llama-3.2-3B chat instance MD+CP City Locations 0.62 0.64 0.66 15 0.56
Mistral-7B-v0.3 chat instance MD+CP City Locations 0.70 072 074 25 0.81
Qwen-2.5-7B chat instance MD+CP City Locations 0.60 0.63 0.65 19 0.70
Qwen-2.5-14B chat instance MD+CP City Locations 0.71 073 0.76 34 0.72
Gemma-7B chat instance MD+CP City Locations 061 0.64 0.66 19 0.70
Gemma-2-9B chat instance MD+CP City Locations 0.77 080 082 24 0.59
Bio-Medical-Llama chat instance MD+CP City Locations 069 072 074 18 0.58
Llama3-Med42-8B  chat instance MD+CP City Locations 0.67 0.69 072 29 0.94
Llama-3-8B default instance MD+CP Medical Indications 0.50 0.54 0.57 25 0.81
Llama-3.2-3B default instance MD+CP Medical Indications 0.48 0.51 0.55 13 0.48
Mistral-7B-v0.3 default instance MD+CP Medical Indications 0.51 0.54 0.57 15 0.48
Qwen-2.5-7B default instance MD+CP Medical Indications 0.54 0.57 0.60 23 0.85
Qwen-2.5-14B default instance MD+CP Medical Indications 0.56 0.60 0.63 42 0.89
Gemma-7B default instance MD+CP Medical Indications 0.53 0.56 0.60 21 0.78
Gemma-2-9B default instance MD+CP Medical Indications 0.52 0.56 0.59 16 0.39
Llama-3.1-8B chat instance MD+CP Medical Indications 0.52 0.55 0.58 20 0.65
Llama-3.2-3B chat instance MD+CP Medical Indications 0.48 0.52 0.56 14 0.52
Mistral-7B-v0.3 chat instance MD+CP Medical Indications 0.50 0.54 0.57 24 0.77
Qwen-2.5-7B chat instance MD+CP Medical Indications 0.52 0.55 059 22 0.81
Qwen-2.5-14B chat instance MD+CP Medical Indications 0.51 0.54 0.57 35 0.74
Gemma-7B chat instance MD+CP Medical Indications 0.44 048 052 17 0.63
Gemma-2-9B chat instance MD+CP Medical Indications 0.54 0.57 0.60 26 0.63
Bio-Medical-Llama chat instance MD+CP Medical Indications 0.51 0.55 058 26 0.84
Llama3-Med42-8B chat instance MD+CP Medical Indications 0.52 0.56 0.59 17 0.55
Llama-3-8B default instance MD+CP Word Definitions 0.38 041 043 17 0.55
Llama-3.2-3B default instance MD+CP Word Definitions 036 038 041 8 0.30
Mistral-7B-v0.3 default instance MD+CP Word Definitions 038 040 042 14 0.45
Qwen-2.5-7B default instance MD+CP Word Definitions 040 042 045 14 0.52
Qwen-2.5-14B default instance MD+CP Word Definitions 0.37 040 042 29 0.62
Gemma-7B default instance MD+CP Word Definitions 039 041 044 15 0.56
Gemma-2-9B default instance MD+CP Word Definitions 039 041 044 14 0.34
Llama-3.1-8B chat instance MD+CP Word Definitions 040 042 045 26 0.84
Llama-3.2-3B chat instance MD+CP Word Definitions 033 036 038 10 0.37
Mistral-7B-v0.3 chat instance MD+CP Word Definitions 037 040 043 13 0.42
Qwen-2.5-7B chat instance MD+CP Word Definitions 040 042 044 18 0.67
Qwen-2.5-14B chat instance MD+CP Word Definitions 039 041 043 30 0.64
Gemma-7B chat instance MD+CP Word Definitions 038 041 044 13 0.48
Gemma-2-9B chat instance MD+CP Word Definitions 037 040 043 17 0.41
Bio-Medical-Llama chat instance MD+CP Word Definitions 038 040 042 20 0.65
Llama3-Med42-8B chat instance MD+CP Word Definitions 039 041 043 27 0.87
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Table 13: Classification performance of the mean-difference probe with conformal prediction
intervals (MD+CP) probe across datasets and models (evaluated on the full bag). This probe is
trained on the representation of the last tokens and evaluated on the bag representation of the
statements. We report Matthew’s Correlation Coefficient (MCC) with the 95% confidence intervals.
Confidence intervals are based on bootstrapping with n = 1,000 samples. The bold values mark
MCC with significant confidence intervals. The ‘Setting’ column specifies the evaluation setting. The
‘Layer’ column specifies the layer at which the probe achieved the highest MCC, and ‘Depth’ denotes
the relative depth of that layer within the model.

Model Name Type  Setting Probe Dataset Clo2s MCC Clgrs Layer Depth
Llama-3-8B default bag MD+CP City Locations 0.00 0.00 0.00 2 0.06
Llama-3.2-3B default bag MD+CP City Locations 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 default bag MD+CP City Locations 0.08 011 0.14 9 0.29
Qwen-2.5-7B default bag MD+CP  City Locations 0.06 0.08 0.11 12 0.44
Qwen-2.5-14B default bag MD+CP City Locations 0.07 010 0.11 37 0.79
Gemma-7B default bag MD+CP City Locations 029 031 034 7 0.26
Gemma-2-9B default bag MD+CP City Locations 0.01 0.04 0.06 33 0.80
Llama-3.1-8B chat bag MD+CP City Locations 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag MD+CP City Locations 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag MD+CP City Locations 0.06 0.08 0.10 16 0.52
Qwen-2.5-7B chat bag MD+CP City Locations 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag MD+CP City Locations 0.00 0.00 0.00 4 0.09
Gemma-7B chat bag MD+CP City Locations 0.18 021 024 8 0.30
Gemma-2-9B chat bag MD+CP City Locations 026 030 034 39 0.95
Bio-Medical-Llama chat bag MD+CP City Locations 0.00 0.00 0.00 2 0.06
Llama3-Med42-8B  chat bag MD+CP City Locations 0.00 0.00 0.00 2 0.06
Llama-3-8B default bag MD+CP Medical Indications 0.05 0.09 0.12 20 0.65
Llama-3.2-3B default bag MD+CP Medical Indications 0.21  0.25 0.28 11 0.41
Mistral-7B-v0.3 default bag MD+CP Medical Indications 0.00 0.02 0.04 4 0.13
Qwen-2.5-7B default bag MD+CP Medical Indications 0.10 0.14 0.17 24 0.89
Qwen-2.5-14B default bag MD+CP Medical Indications 0.03  0.07 0.10 18 0.38
Gemma-7B default bag MD+CP Medical Indications 0.00  0.00 0.00 2 0.07
Gemma-2-9B default bag MD+CP Medical Indications 0.04 0.08 0.11 12 0.29
Llama-3.1-8B chat bag MD+CP Medical Indications 0.00  0.00 0.00 2 0.06
Llama-3.2-3B chat bag MD+CP Medical Indications 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag MD+CP Medical Indications 0.04 0.07 0.11 31 1.00
Qwen-2.5-7B chat bag MD+CP Medical Indications 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag MD+CP Medical Indications 0.14 0.18 0.22 47 1.00
Gemma-7B chat bag MD+CP Medical Indications 0.00 0.00 0.00 2 0.07
Gemma-2-9B chat bag MD+CP Medical Indications 0.00 0.04 0.06 23 0.56
Bio-Medical-Llama chat bag MD+CP Medical Indications 0.05 0.08 0.10 18 0.58
Llama3-Med42-8B  chat bag MD+CP Medical Indications 0.00 0.00 0.00 2 0.06
Llama-3-8B default bag MD+CP Word Definitions 0.01 0.03 0.06 22 0.71
Llama-3.2-3B default bag MD+CP Word Definitions 009 012 0.14 13 0.48
Mistral-7B-v0.3 default bag MD+CP Word Definitions 0.02 0.04 0.07 20 0.65
Qwen-2.5-7B default bag MD+CP Word Definitions -0.01 001 0.04 6 0.22
Qwen-2.5-14B default bag MD+CP Word Definitions 0.04 0.06 0.09 27 0.57
Gemma-7B default bag MD+CP Word Definitions -0.01 0.02 005 24 0.89
Gemma-2-9B default bag MD+CP Word Definitions 0.05 0.07 0.10 19 0.46
Llama-3.1-8B chat bag MD+CP Word Definitions 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag MD+CP Word Definitions 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag MD+CP Word Definitions -0.00 0.03 0.06 14 0.45
Qwen-2.5-7B chat bag MD+CP Word Definitions 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag MD+CP Word Definitions 0.00 0.00 0.00 4 0.09
Gemma-7B chat bag MD+CP Word Definitions -0.01 0.03 0.06 23 0.85
Gemma-2-9B chat bag MD+CP Word Definitions 0.18 022 027 38 0.93
Bio-Medical-Llama chat bag MD+CP Word Definitions 0.00 0.00 0.00 2 0.06
Llama3-Med42-8B  chat bag MD+CP Word Definitions 0.00 0.00 0.00 2 0.06
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Table 14:

Classification performance of the TTPD with conformal prediction intervals

(TTPD+CP) probe across datasets and models (evaluated on the last token’s representation). This
probe is trained and evaluated using the representations of the last tokens. We report Matthew’s
Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence intervals are based
on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence
intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’ column specifies the
layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the relative depth of that
layer within the model.

Model Name Type  Setting Probe  Dataset Clo2s MCC Clg7s Layer Depth
Llama-3-8B default instance TTPD+CP City Locations 0.53 055 057 13 0.42
Llama-3.2-3B default instance TTPD+CP City Locations 0.51 054 056 12 0.44
Mistral-7B-v0.3 default instance TTPD+CP City Locations 0.65 0.67 0.69 11 0.35
Qwen-2.5-7B default instance TTPD+CP City Locations 0.54 057 059 18 0.67
Qwen-2.5-14B default instance TTPD+CP City Locations 0.55 058 061 28 0.60
Gemma-7B default instance TTPD+CP City Locations 0.56 058 059 12 0.44
Gemma-2-9B default instance TTPD+CP City Locations 0.59 0.61 063 17 0.41
Llama-3.1-8B chat instance TTPD+CP City Locations 0.83 085 088 17 0.55
Llama-3.2-3B chat instance TTPD+CP City Locations 045 047 050 10 0.37
Mistral-7B-v0.3 chat instance TTPD+CP City Locations 077 080 083 14 0.45
Qwen-2.5-7B chat instance TTPD+CP City Locations 069 071 074 15 0.56
Qwen-2.5-14B chat instance TTPD+CP City Locations 0.75 0.78 0.80 36 0.77
Gemma-7B chat instance TTPD+CP City Locations 0.62 0.65 0.67 17 0.63
Gemma-2-9B chat instance TTPD+CP City Locations 0.58 0.64 0.69 13 0.32
Bio-Medical-Llama chat instance TTPD+CP City Locations 0.67 0.69 072 13 0.42
Llama3-Med42-8B  chat instance TTPD+CP City Locations 093 095 096 16 0.52
Llama-3-8B default instance TTPD+CP Medical Indications 0.55 0.59 0.63 11 0.35
Llama-3.2-3B default instance TTPD+CP Medical Indications 0.51 0.54 0.57 11 0.41
Mistral-7B-v0.3 default instance TTPD+CP Medical Indications 0.62 0.65 0.69 13 0.42
Qwen-2.5-7B default instance TTPD+CP Medical Indications 0.57 0.60 0.64 14 0.52
Qwen-2.5-14B default instance TTPD+CP Medical Indications 0.63 0.66 0.70 23 0.49
Gemma-7B default instance TTPD+CP Medical Indications 0.57 0.60 0.64 13 0.48
Gemma-2-9B default instance TTPD+CP Medical Indications 0.60 0.64 0.67 17 0.41
Llama-3.1-8B chat instance TTPD+CP Medical Indications 0.69 0.73 0.77 16 0.52
Llama-3.2-3B chat instance TTPD+CP Medical Indications 0.54 0.58 0.62 11 041
Mistral-7B-v0.3 chat instance TTPD+CP Medical Indications 0.62 0.65 0.68 15 0.48
Qwen-2.5-7B chat instance TTPD+CP Medical Indications 0.50 0.54 0.59 14 0.52
Qwen-2.5-14B chat instance TTPD+CP Medical Indications 0.63 0.67 0.70 28 0.60
Gemma-7B chat instance TTPD+CP Medical Indications 0.48 0.52 0.56 17 0.63
Gemma-2-9B chat instance TTPD+CP Medical Indications 0.58 0.62 0.66 24 0.59
Bio-Medical-Llama chat instance TTPD+CP Medical Indications 0.54 0.58 0.62 16 0.52
Llama3-Med42-8B chat instance TTPD+CP Medical Indications 0.68 0.71 0.75 16 0.52
Llama-3-8B default instance TTPD+CP Word Definitions 036 039 042 9 0.29
Llama-3.2-3B default instance TTPD+CP Word Definitions 038 041 043 11 0.41
Mistral-7B-v0.3 default instance TTPD+CP Word Definitions 040 043 046 15 0.48
Qwen-2.5-7B default instance TTPD+CP Word Definitions 034 037 041 19 0.70
Qwen-2.5-14B default instance TTPD+CP Word Definitions 038 042 046 41 0.87
Gemma-7B default instance TTPD+CP Word Definitions 041 043 046 15 0.56
Gemma-2-9B default instance TTPD+CP Word Definitions 044 046 048 17 0.41
Llama-3.1-8B chat instance TTPD+CP Word Definitions 044 047 050 19 0.61
Llama-3.2-3B chat instance TTPD+CP Word Definitions 032 035 038 12 0.44
Mistral-7B-v0.3 chat instance TTPD+CP Word Definitions 039 042 045 13 0.42
Qwen-2.5-7B chat instance TTPD+CP Word Definitions 038 041 044 15 0.56
Qwen-2.5-14B chat instance TTPD+CP Word Definitions 042 045 047 46 0.98
Gemma-7B chat instance TTPD+CP Word Definitions 036 039 042 16 0.59
Gemma-2-9B chat instance TTPD+CP Word Definitions 036 040 043 22 0.54
Bio-Medical-Llama chat instance TTPD+CP Word Definitions 0.31 035 038 13 0.42
Llama3-Med42-8B chat instance TTPD+CP Word Definitions 041 044 047 16 0.52

53



Table 15: Classification performance of the TTPD with conformal prediction intervals
(TTPD+CP) probe across datasets and models (evaluated on the full bag). This probe is trained on
the representation of the last tokens and evaluated on the bag representation of the statements. We
report Matthew’s Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence
intervals are based on bootstrapping with n = 1,000 samples. The bold values mark MCC with
significant confidence intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’
column specifies the layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the
relative depth of that layer within the model.

Model Name Type  Setting Probe  Dataset Cl.o2s MCC Clg7s Layer Depth
Llama-3-8B default bag TTPD+CP City Locations 052 054 056 13 0.42
Llama-3.2-3B default bag TTPD+CP City Locations 047 054 062 24 0.89
Mistral-7B-v0.3 default bag TTPD+CP City Locations 049 051 052 15 0.48
Qwen-2.5-7B default bag TTPD+CP City Locations 049 053 056 17 0.63
Qwen-2.5-14B default bag TTPD+CP City Locations 053 055 058 20 0.43
Gemma-7B default bag TTPD+CP City Locations 0.56 058 0.60 16 0.59
Gemma-2-9B default bag TTPD+CP City Locations 050 053 055 21 0.51
Llama-3.1-8B chat bag TTPD+CP City Locations 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag TTPD+CP City Locations 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag TTPD+CP City Locations 0.00 0.00 0.00 2 0.06
Qwen-2.5-7B chat bag TTPD+CP City Locations 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag TTPD+CP City Locations 055 059 063 35 0.74
Gemma-7B chat bag TTPD+CP City Locations 0.04 009 0.15 6 0.22
Gemma-2-9B chat bag TTPD+CP City Locations 0.00 0.00 0.00 3 0.07
Bio-Medical-Llama chat bag TTPD+CP City Locations -0.01 0.04 0.09 4 0.13
Llama3-Med42-8B  chat bag TTPD+CP  City Locations 011 013 0.15 4 0.13
Llama-3-8B default bag TTPD+CP Medical Indications 0.55 0.61 0.67 24 0.77
Llama-3.2-3B default bag TTPD+CP Medical Indications 040 044 048 13 0.48
Mistral-7B-v0.3 default bag TTPD+CP Medical Indications 0.07 0.22 0.33 17 0.55
Qwen-2.5-7B default bag TTPD+CP Medical Indications 0.09 0.17 026 7 0.26
Qwen-2.5-14B default bag TTPD+CP Medical Indications -0.03 0.08 0.18 7 0.15
Gemma-7B default bag TTPD+CP Medical Indications 0.05 0.13 020 5 0.19
Gemma-2-9B default bag TTPD+CP Medical Indications -0.04 0.09 0.22 4 0.10
Llama-3.1-8B chat bag TTPD+CP Medical Indications 0.10 0.16 022 5 0.16
Llama-3.2-3B chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag TTPD+CP Medical Indications 0.09 0.13 0.18 8 0.26
Qwen-2.5-7B chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 4 0.09
Gemma-7B chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 2 0.07
Gemma-2-9B chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 3 0.07
Bio-Medical-Llama chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 2 0.06
Llama3-Med42-8B  chat bag TTPD+CP Medical Indications 0.00 0.00 0.00 2 0.06
Llama-3-8B default bag TTPD+CP Word Definitions 0.00 0.00 0.00 2 0.06
Llama-3.2-3B default bag TTPD+CP Word Definitions 030 036 041 19 0.70
Mistral-7B-v0.3 default bag TTPD+CP Word Definitions 0.14 019 025 17 0.55
Qwen-2.5-7B default bag TTPD+CP Word Definitions 0.17 021 026 11 0.41
Qwen-2.5-14B default bag TTPD+CP Word Definitions 0.05 0.07 0.10 20 0.43
Gemma-7B default bag TTPD+CP Word Definitions 030 034 038 20 0.74
Gemma-2-9B default bag TTPD+CP Word Definitions 031 035 039 26 0.63
Llama-3.1-8B chat bag TTPD+CP Word Definitions 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag TTPD+CP Word Definitions 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag TTPD+CP Word Definitions 0.00 0.00 0.00 2 0.06
Qwen-2.5-7B chat bag TTPD+CP Word Definitions 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag TTPD+CP  Word Definitions 0.00 0.00 0.00 4 0.09
Gemma-7B chat bag TTPD+CP  Word Definitions 0.00 0.00 0.00 2 0.07
Gemma-2-9B chat bag TTPD+CP  Word Definitions 033 037 040 40 0.98
Bio-Medical-Llama chat bag TTPD+CP  Word Definitions 0.00 0.00 0.00 2 0.06
Llama3-Med42-8B  chat bag TTPD+CP Word Definitions 0.00 0.00 0.00 2 0.06
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Table 16: Classification performance of the supervised PCA with conformal prediction intervals
(sPCA+CP) probe across datasets and models (evaluated on the last token’s representation). This
probe is trained and evaluated using the representations of the last tokens. We report Matthew’s
Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence intervals are based
on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence
intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’ column specifies the
layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the relative depth of that
layer within the model.

Model Name Type  Setting Probe  Dataset Clo2s MCC Clg7s Layer Depth
Llama-3-8B default instance sPCA+CP City Locations 072 074 0.77 26 0.84
Llama-3.2-3B default instance sPCA+CP City Locations 0.65 0.67 0.70 25 0.93
Mistral-7B-v0.3 default instance sPCA+CP City Locations 070 073 075 19 0.61
Qwen-2.5-7B default instance sPCA+CP City Locations 0.67 0.69 072 21 0.78
Qwen-2.5-14B default instance sPCA+CP City Locations 071  0.73 0.76 25 0.53
Gemma-7B default instance sPCA+CP City Locations 070 073 075 18 0.67
Gemma-2-9B default instance sPCA+CP City Locations 0.68 071 0.73 21 0.51
Llama-3.1-8B chat instance sPCA+CP City Locations 077 080 0.82 22 0.71
Llama-3.2-3B chat instance sPCA+CP City Locations 0.60 0.62 0.64 12 0.44
Mistral-7B-v0.3 chat instance sPCA+CP City Locations 071 073 0.76 20 0.65
Qwen-2.5-7B chat instance sPCA+CP City Locations 0.64 0.66 0.68 17 0.63
Qwen-2.5-14B chat instance sPCA+CP City Locations 0.69 071 0.73 39 0.83
Gemma-7B chat instance sPCA+CP City Locations 0.63 0.65 0.67 19 0.70
Gemma-2-9B chat instance sPCA+CP City Locations 074 077 079 21 0.51
Bio-Medical-Llama chat instance sPCA+CP City Locations 0.66 0.69 071 13 0.42
Llama3-Med42-8B  chat instance sPCA+CP City Locations 0.81 0.84 086 31 1.00
Llama-3-8B default instance sPCA+CP Medical Indications 0.55 0.58 0.61 8 0.26
Llama-3.2-3B default instance sPCA+CP Medical Indications 0.54 0.58 0.61 15 0.56
Mistral-7B-v0.3 default instance sPCA+CP Medical Indications 0.57 0.60 0.63 17 0.55
Qwen-2.5-7B default instance sPCA+CP Medical Indications 0.56 0.59 0.62 21 0.78
Qwen-2.5-14B default instance sPCA+CP Medical Indications 0.59 0.63 0.67 42 0.89
Gemma-7B default instance sPCA+CP Medical Indications 0.58 0.61 0.64 15 0.56
Gemma-2-9B default instance sPCA+CP Medical Indications 0.56 0.58 0.61 18 0.44
Llama-3.1-8B chat instance sPCA+CP Medical Indications 0.55 0.58 0.61 16 0.52
Llama-3.2-3B chat instance sPCA+CP Medical Indications 0.54 0.58 0.61 14 0.52
Mistral-7B-v0.3 chat instance sPCA+CP Medical Indications 0.57 0.60 0.64 31 1.00
Qwen-2.5-7B chat instance sPCA+CP Medical Indications 0.52 0.55 0.58 26 0.96
Qwen-2.5-14B chat instance sPCA+CP Medical Indications 0.56 0.59 0.61 28 0.60
Gemma-7B chat instance sPCA+CP Medical Indications 0.47 0.51 055 23 0.85
Gemma-2-9B chat instance sPCA+CP Medical Indications 0.60 0.63 0.67 27 0.66
Bio-Medical-Llama chat instance sPCA+CP Medical Indications 0.54 0.57 0.60 31 1.00
Llama3-Med42-8B chat instance sPCA+CP Medical Indications 0.57 0.60 0.63 28 0.90
Llama-3-8B default instance sPCA+CP Word Definitions 039 041 043 12 0.39
Llama-3.2-3B default instance sPCA+CP Word Definitions 040 042 045 10 0.37
Mistral-7B-v0.3 default instance sPCA+CP Word Definitions 039 041 043 13 0.42
Qwen-2.5-7B default instance sPCA+CP Word Definitions 041 043 046 22 0.81
Qwen-2.5-14B default instance sPCA+CP Word Definitions 039 042 044 39 0.83
Gemma-7B default instance sPCA+CP Word Definitions 038 041 043 11 0.41
Gemma-2-9B default instance sPCA+CP Word Definitions 041 043 046 18 0.44
Llama-3.1-8B chat instance sPCA+CP Word Definitions 040 042 044 13 0.42
Llama-3.2-3B chat instance sPCA+CP Word Definitions 036 038 041 9 0.33
Mistral-7B-v0.3 chat instance sPCA+CP Word Definitions 038 040 042 17 0.55
Qwen-2.5-7B chat instance sPCA+CP Word Definitions 039 041 044 11 0.41
Qwen-2.5-14B chat instance sPCA+CP Word Definitions 039 041 043 39 0.83
Gemma-7B chat instance sPCA+CP Word Definitions 042 044 046 16 0.59
Gemma-2-9B chat instance sPCA+CP Word Definitions 040 042 045 19 0.46
Bio-Medical-Llama chat instance sPCA+CP Word Definitions 037 040 042 19 0.61
Llama3-Med42-8B chat instance sPCA+CP Word Definitions 039 041 042 17 0.55
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Table 17: Classification performance of the TTPD with conformal prediction intervals
(TTPD+CP) probe across datasets and models (evaluated on the full bag). This probe is trained on
the representation of the last tokens and evaluated on the bag representation of the statements. We
report Matthew’s Correlation Coefficient (MCC) with the 95% confidence intervals. Confidence
intervals are based on bootstrapping with n = 1,000 samples. The bold values mark MCC with
significant confidence intervals. The ‘Setting’ column specifies the evaluation setting. The ‘Layer’
column specifies the layer at which the probe achieved the highest MCC, and ‘Depth’ denotes the
relative depth of that layer within the model.

Model Name Type  Setting Probe  Dataset Cl.o2s MCC Clg7s Layer Depth
Llama-3-8B default bag sPCA+CP City Locations 038 040 043 8 0.26
Llama-3.2-3B default bag sPCA+CP City Locations 0.55 057 060 27 1.00
Mistral-7B-v0.3 default bag sPCA+CP City Locations 0.00 0.02 004 6 0.19
Qwen-2.5-7B default bag sPCA+CP City Locations 044 047 049 15 0.56
Qwen-2.5-14B default bag sPCA+CP City Locations 047 051 055 37 0.79
Gemma-7B default bag sPCA+CP City Locations 0.01 0.04 007 6 0.22
Gemma-2-9B default bag sPCA+CP City Locations 0.11 014 0.17 32 0.78
Llama-3.1-8B chat bag sPCA+CP City Locations 0.74 078 082 16 0.52
Llama-3.2-3B chat bag sPCA+CP City Locations 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag sPCA+CP City Locations 071 073 0.76 20 0.65
Qwen-2.5-7B chat bag sPCA+CP City Locations 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag sPCA+CP City Locations 0.00 0.00 0.00 4 0.09
Gemma-7B chat bag sPCA+CP City Locations 0.62 064 0.66 17 0.63
Gemma-2-9B chat bag sPCA+CP City Locations 0.00 0.00 0.00 3 0.07
Bio-Medical-Llama chat bag sPCA+CP City Locations 0.00 0.00 0.00 2 0.06
Llama3-Med42-8B  chat bag sPCA+CP City Locations 0.00 0.00 0.00 2 0.06
Llama-3-8B default bag sPCA+CP Medical Indications 0.54 0.57 0.60 11 0.35
Llama-3.2-3B default bag sPCA+CP Medical Indications 0.47 0.51 055 13 0.48
Mistral-7B-v0.3 default bag sPCA+CP Medical Indications 0.54 0.58 0.61 15 0.48
Qwen-2.5-7B default bag sPCA+CP Medical Indications 0.13  0.16 020 19 0.70
Qwen-2.5-14B default bag sPCA+CP Medical Indications 0.37 040 044 34 0.72
Gemma-7B default bag sPCA+CP Medical Indications 0.05 0.11 0.18 6 0.22
Gemma-2-9B default bag sPCA+CP Medical Indications 0.26 030 033 15 0.37
Llama-3.1-8B chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 2 0.06
Qwen-2.5-7B chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag sPCA+CP Medical Indications 0.55 0.58 0.61 45 0.96
Gemma-7B chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 2 0.07
Gemma-2-9B chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 3 0.07
Bio-Medical-Llama chat bag sPCA+CP Medical Indications 0.00 0.00 0.00 2 0.06
Llama3-Med42-8B  chat bag sPCA+CP Medical Indications 020 023 026 22 0.71
Llama-3-8B default bag sPCA+CP Word Definitions 0.01 0.03 004 9 0.29
Llama-3.2-3B default bag sPCA+CP Word Definitions 0.03 0.06 0.08 16 0.59
Mistral-7B-v0.3 default bag sPCA+CP Word Definitions 0.14 017 0.19 19 0.61
Qwen-2.5-7B default bag sPCA+CP  Word Definitions 0.01 0.04 006 6 0.22
Qwen-2.5-14B default bag sPCA+CP Word Definitions 0.02 005 0.07 14 0.30
Gemma-7B default bag sPCA+CP Word Definitions 0.06 0.08 0.11 20 0.74
Gemma-2-9B default bag sPCA+CP Word Definitions 0.05 0.08 0.10 28 0.68
Llama-3.1-8B chat bag sPCA+CP Word Definitions 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag sPCA+CP  Word Definitions 0.00 0.00 0.00 2 0.07
Mistral-7B-v0.3 chat bag sPCA+CP Word Definitions 0.00 0.03 006 7 0.23
Qwen-2.5-7B chat bag sPCA+CP Word Definitions 034 037 039 25 0.93
Qwen-2.5-14B chat bag sPCA+CP  Word Definitions 0.00 0.00 0.00 4 0.09
Gemma-7B chat bag sPCA+CP  Word Definitions 0.17 019 022 20 0.74
Gemma-2-9B chat bag sPCA+CP  Word Definitions 0.09 012 0.14 24 0.59
Bio-Medical-Llama chat bag sPCA+CP Word Definitions 0.03 0.06 0.09 7 0.23
Llama3-Med42-8B  chat bag sPCA+CP Word Definitions 0.00 0.00 0.00 2 0.06
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Table 18: Classification performance of the multiclass SVM probe across datasets and models
(evaluated on the last token’s representation). This probe is trained and evaluated using the repre-
sentations of the last tokens. We report Matthew’s Correlation Coefficient (MCC) with the 95%
confidence intervals. Confidence intervals are based on bootstrapping with n = 1,000 samples. The
bold values mark MCC with significant confidence intervals. The ‘Setting’ column specifies the
evaluation setting. The ‘Layer’ column specifies the layer at which the probe achieved the highest
MCC, and ‘Depth’ denotes the relative depth of that layer within the model.

Model Name Type  Setting Probe Dataset Clo2s MCC Clg7s Layer Depth
Llama-3.2-3B default instance SVM City Locations 095 096 097 9 0.33
Mistral-7B-v0.3 default instance SVM City Locations 096 097 098 12 0.39
Qwen-2.5-7B default instance SVM City Locations 096 097 098 18 0.67
Qwen-2.5-14B default instance SVM  City Locations 097 097 098 24 0.51
Gemma-7B default instance SVM City Locations 097 098 099 15 0.56
Gemma-2-9B default instance SVM  City Locations 097 098 099 21 0.51
Llama-3.1-8B chat instance SVM  City Locations 097 098 099 12 0.39
Llama-3.2-3B chat instance SVM  City Locations 094 095 097 13 0.48
Mistral-7B-v0.3 chat instance SVM  City Locations 097 098 098 21 0.68
Qwen-2.5-7B chat instance SVM  City Locations 095 096 097 20 0.74
Qwen-2.5-14B chat instance SVM  City Locations 097 098 098 46 0.98
Gemma-7B chat instance SVM  City Locations 095 096 097 15 0.56
Gemma-2-9B chat instance SVM  City Locations 098 099 099 21 0.51
Bio-Medical-Llama chat instance SVM  City Locations 096 097 098 14 0.45
Llama3-Med42-8B  chat instance SVM  City Locations 097 098 099 27 0.87
Llama-3-8B default instance SVM Medical Indications 0.82 0.84 0.86 14 0.45
Llama-3.2-3B default instance SVM Medical Indications 0.75 0.78 0.81 12 0.44
Mistral-7B-v0.3 default instance SVM Medical Indications 0.81 0.84 086 11 0.35
Qwen-2.5-7B default instance SVM Medical Indications 0.80 0.82 0.84 17 0.63
Qwen-2.5-14B default instance SVM Medical Indications 0.83 0.85 0.87 24 0.51
Gemma-7B default instance SVM Medical Indications 0.80 0.82 0.85 16 0.59
Gemma-2-9B default instance SVM Medical Indications 0.82 0.84 0.86 21 0.51
Llama-3.1-8B chat instance SVM  Medical Indications 0.81 0.83 0.86 16 0.52
Llama-3.2-3B chat instance SVM  Medical Indications 0.74 0.76  0.79 12 0.44
Mistral-7B-v0.3 chat instance SVM  Medical Indications 0.79 0.82 0.84 14 0.45
Qwen-2.5-7B chat instance SVM Medical Indications 0.78 0.81 0.83 19 0.70
Qwen-2.5-14B chat instance SVM Medical Indications 0.83 0.85 0.88 30 0.64
Gemma-7B chat instance SVM Medical Indications 0.71  0.74 0.77 16 0.59
Gemma-2-9B chat instance SVM Medical Indications 0.80 0.82 0.84 20 0.49
Bio-Medical-Llama chat instance SVM  Medical Indications 0.78 0.81 0.83 14 0.45
Llama3-Med42-8B chat instance SVM Medical Indications 0.81 0.83 0.85 25 0.81
Llama-3-8B default instance SVM  Word Definitions 089 090 092 12 0.39
Llama-3.2-3B default instance SVM  Word Definitions 086 0.88 090 12 0.44
Mistral-7B-v0.3 default instance SVM  Word Definitions 089 090 092 13 0.42
Qwen-2.5-7B default instance SVM  Word Definitions 089 090 092 16 0.59
Qwen-2.5-14B default instance SVM  Word Definitions 090 092 093 23 0.49
Gemma-7B default instance SVM  Word Definitions 087 0.89 090 15 0.56
Gemma-2-9B default instance SVM  Word Definitions 089 091 092 18 0.44
Llama-3.1-8B chat instance SVM  Word Definitions 090 091 093 13 0.42
Llama-3.2-3B chat instance SVM  Word Definitions 082 084 085 11 0.41
Mistral-7B-v0.3 chat instance SVM  Word Definitions 088 0.89 091 12 0.39
Qwen-2.5-7B chat instance SVM  Word Definitions 0.89 090 092 18 0.67
Qwen-2.5-14B chat instance SVM  Word Definitions 090 091 093 23 0.49
Gemma-7B chat instance SVM  Word Definitions 0.87 088 090 17 0.63
Gemma-2-9B chat instance SVM  Word Definitions 087 0.89 090 24 0.59
Bio-Medical-Llama chat instance SVM  Word Definitions 0.86 0.88 090 13 0.42
Llama3-Med42-8B chat instance SVM  Word Definitions 090 091 093 19 0.61
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Table 19: Classification performance of the multiclass SVM probe across datasets and models
(evaluated on the full bag). This probe is trained on the representation of the last tokens and evaluated

on the bag representation of the statements. We report Matthew’s Correlation Coefficient (MCC)
with the 95% confidence intervals. Confidence intervals are based on bootstrapping with n = 1,000
samples. The bold values mark MCC with significant confidence intervals. The ‘Setting’ column
specifies the evaluation setting. The ‘Layer’ column specifies the layer at which the probe achieved
the highest MCC, and ‘Depth’ denotes the relative depth of that layer within the model.

Model Name Type  Setting Probe Dataset Clo2s MCC Clg7s Layer Depth
Llama-3-8B default bag SVM  City Locations 0.52 054 057 8 0.26
Llama-3.2-3B default bag SVM  City Locations 071 073 0.75 27 1.00
Mistral-7B-v0.3 default bag SVM  City Locations 0.86 0.88 0.89 10 0.32
Qwen-2.5-7B default bag SVM  City Locations 0.50 0.52 054 26 0.96
Qwen-2.5-14B default bag SVM  City Locations 0.38 041 043 40 0.85
Gemma-7B default bag SVM  City Locations 038 040 042 11 0.41
Gemma-2-9B default bag SVM  City Locations 084 086 088 17 0.41
Llama-3.1-8B chat bag SVM  City Locations 0.00 0.00 0.00 2 0.06
Llama-3.2-3B chat bag SVM  City Locations 049 052 054 25 0.93
Mistral-7B-v0.3 chat bag SVM  City Locations 076 079 0.81 21 0.68
Qwen-2.5-7B chat bag SVM City Locations 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag SVM  City Locations 036 038 040 22 0.47
Gemma-7B chat bag SVM  City Locations 042 044 046 16 0.59
Gemma-2-9B chat bag SVM  City Locations 091 092 094 26 0.63
Bio-Medical-Llama chat bag SVM  City Locations 0.06 0.09 0.12 6 0.19
Llama3-Med42-8B  chat bag SVM  City Locations 034 036 038 31 1.00
Llama-3-8B default bag SVM Medical Indications 0.44 048 051 20 0.65
Llama-3.2-3B default bag SVM  Medical Indications 0.32 034 036 4 0.15
Mistral-7B-v0.3 default bag SVM Medical Indications 0.65 0.68 0.71 11 0.35
Qwen-2.5-7B default bag SVM  Medical Indications 0.18  0.21 025 27 1.00
Qwen-2.5-14B default bag SVM Medical Indications 023 026 028 12 0.26
Gemma-7B default bag SVM  Medical Indications 0.38 040 042 23 0.85
Gemma-2-9B default bag SVM Medical Indications 0.56 0.58 0.61 18 0.44
Llama-3.1-8B chat bag SVM  Medical Indications 0.29 032 035 18 0.58
Llama-3.2-3B chat bag SVM Medical Indications 035 038 041 6 0.22
Mistral-7B-v0.3 chat bag SVM  Medical Indications 0.59 0.62 0.66 21 0.68
Qwen-2.5-7B chat bag SVM  Medical Indications 0.00 0.00 0.00 2 0.07
Qwen-2.5-14B chat bag SVM  Medical Indications 040 043 045 46 0.98
Gemma-7B chat bag SVM  Medical Indications 037 040 043 9 0.33
Gemma-2-9B chat bag SVM  Medical Indications 0.60 0.63 0.66 19 0.46
Bio-Medical-Llama chat bag SVM Medical Indications 027 030 032 4 0.13
Llama3-Med42-8B  chat bag SVM  Medical Indications 0.52 0.54 0.56 31 1.00
Llama-3-8B default bag SVM  Word Definitions 0.63 0.65 066 6 0.19
Llama-3.2-3B default bag SVM  Word Definitions 050 052 054 9 0.33
Mistral-7B-v0.3 default bag SVM  Word Definitions 0.62 0.63 0.65 17 0.55
Qwen-2.5-7B default bag SVM  Word Definitions 054 056 058 5 0.19
Qwen-2.5-14B default bag SVM  Word Definitions 0.63 0.65 0.66 22 0.47
Gemma-7B default bag SVM  Word Definitions 0.60 0.62 0.64 8 0.30
Gemma-2-9B default bag SVM  Word Definitions 077 079 0.82 27 0.66
Llama-3.1-8B chat bag SVM  Word Definitions 0.65 0.67 0.69 12 0.39
Llama-3.2-3B chat bag SVM  Word Definitions 037 039 042 12 0.44
Mistral-7B-v0.3 chat bag SVM  Word Definitions 0.74 0.76 0.78 23 0.74
Qwen-2.5-7B chat bag SVM  Word Definitions -0.00 0.03 0.07 26 0.96
Qwen-2.5-14B chat bag SVM  Word Definitions 026 029 031 35 0.74
Gemma-7B chat bag SVM  Word Definitions 0.56 0.58 0.60 25 0.93
Gemma-2-9B chat bag SVM  Word Definitions 0.81 0.83 0.85 26 0.63
Bio-Medical-Llama chat bag SVM  Word Definitions 034 036 038 10 0.32
Llama3-Med42-8B  chat bag SVM  Word Definitions 028 030 032 22 0.71
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Table 20: Aggregated generalization performance. Each probe is trained on one dataset and
evaluated on the remaining two (e.g., a probe trained on City Locations is evaluated on Medical
Indications and Word Definitions). The performances are averaged over all large language models
(we pick only the performance from the best performing layers). The performance is measured
by the Matthew’s Correlation Coefficient (MCC) with the standard error. The ‘Evaluation Setting’
column indicates whether the probe was evaluated using only the representation of the last token in
the statement (/nstance-Level) or the full bag of tokens (Bag-Level). Multiclass probes (i.e., SVM
and sAwMIL) provide higher generalization performance in both settings, and the multiclass sAwMIL
achieves the highest generalization performance.

Evaluation Setting Probe

Training Dataset MCC Stand. Err.

Bag-Level MD+CP
Bag-Level MD+CP
Bag-Level MD+CP
Bag-Level SVM
Bag-Level SVM
Bag-Level SVM
Bag-Level TTPD+CP
Bag-Level TTPD+CP
Bag-Level TTPD+CP
Bag-Level sAwWMIL
Bag-Level sAwMIL
Bag-Level sAwMIL
Bag-Level sPCA+CP
Bag-Level sPCA+CP
Bag-Level sPCA+CP
Instance-Level MD+CP
Instance-Level MD+CP
Instance-Level MD+CP
Instance-Level SVM
Instance-Level SVM

Instance-Level SVM

Instance-Level TTPD+CP
Instance-Level TTPD+CP
Instance-Level TTPD+CP

Instance-Level sAwMIL
Instance-Level sAwMIL
Instance-Level sAwWMIL

Instance-Level sPCA+CP
Instance-Level sPCA+CP
Instance-Level sPCA+CP

City Locations  0.02 0.00
Medical Indications 0.03 0.01
Word Definitions 0.04 0.02

City Locations  0.24 0.03
Medical Indications 0.37 0.04
Word Definitions 0.40 0.04

City Locations 0.11 0.03
Medical Indications 0.09 0.03
Word Definitions 0.13 0.04

City Locations  0.82 0.02
Medical Indications 0.88 0.01
Word Definitions 0.86 0.01
City Locations  0.11 0.02
Medical Indications 0.13 0.03
Word Definitions 0.11 0.03

City Locations  0.22 0.02
Medical Indications 0.21 0.02
Word Definitions 0.43 0.02
City Locations 0.61 0.02
Medical Indications 0.74 0.02
Word Definitions 0.77 0.02
City Locations 0.36 0.03
Medical Indications 0.50 0.04
Word Definitions 0.62 0.03
City Locations  0.82 0.02
Medical Indications 0.88 0.01
Word Definitions 0.86 0.01
City Locations  0.38 0.03
Medical Indications 0.42 0.03
Word Definitions 0.54 0.01
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Table 21: Generalization performance of the multiclass sAwMIL trained on the City Locations dataset. The
performance is measured by the Matthew’s Correlation Coefficient (MCC) with 95% confidence intervals, based
on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence intervals.
The ‘Rel. Depth’ column specifies the relative depth of the layer where the multiclass sAwMIL probe achieves
the best MCC score.

Model Name Training Dataset Test Dataset Clo2s MCC Clgrs Rel. Depth
Gemma-7B-it City Locations  City Locations 093 094 095 0.59
Gemma-7B-it City Locations ~ Medical Indications 0.43  0.46 0.49 0.63
Gemma-7B-it City Locations ~ Word Definitions 044 047 050 0.63
Gemma-2-9B-it City Locations  City Locations 096 097 0098 0.56
Gemma-2-9B-it City Locations  Medical Indications 0.67 0.70  0.73 0.44
Gemma-2-9B-it City Locations ~ Word Definitions 069 071 0.74 0.49
Llama-3.2-3B-Instruct City Locations  City Locations 095 096 0.97 0.52
Llama-3.2-3B-Instruct City Locations Medical Indications 0.59  0.62  0.65 0.56
Llama-3.2-3B-Instruct City Locations ~ Word Definitions 062 0.65 0.67 0.48
Llama3-Med42-8B City Locations ~ City Locations 096 097 0098 0.42
Llama3-Med42-8B City Locations  Medical Indications 0.75  0.78  0.81 0.90
Llama3-Med42-8B City Locations ~ Word Definitions 0.75 0.78 0.80 0.45
Llama-3.1-8B-Instruct City Locations  City Locations 096 097 0098 0.48
Llama-3.1-8B-Instruct City Locations  Medical Indications 0.73  0.75  0.78 0.52
Llama-3.1-8B-Instruct City Locations ~ Word Definitions 079 081 0.83 0.42
Bio-Medical-Llama-3-8B  City Locations  City Locations 096 097 098 0.97
Bio-Medical-Llama-3-8B  City Locations Medical Indications 0.59  0.62  0.65 0.42
Bio-Medical-Llama-3-8B  City Locations ~ Word Definitions 053 056 0.59 0.26
Mistral-7B-Instruct-v0.3  City Locations  City Locations 095 096 097 0.48
Mistral-7B-Instruct-v0.3  City Locations Medical Indications 0.72  0.75  0.78 0.55
Mistral-7B-Instruct-v0.3  City Locations ~ Word Definitions 0.69 071 0.74 0.35
Qwen-2.5-7B-Instruct City Locations  City Locations 094 095 0.96 0.67
Qwen-2.5-7B-Instruct City Locations Medical Indications 0.71  0.74  0.76 0.70
Qwen-2.5-7B-Instruct City Locations ~ Word Definitions 062 0.64 0.67 0.70
Qwen-2.5-14B-Instruct City Locations  City Locations 096 097 0098 0.62
Qwen-2.5-14B-Instruct City Locations  Medical Indications 0.74  0.77  0.80 0.64
Qwen-2.5-14B-Instruct City Locations  Word Definitions 0.73 075 0.77 0.60
Gemma-7B City Locations  City Locations 096 097 0098 0.74
Gemma-7B City Locations  Medical Indications 0.55 0.58  0.60 0.41
Gemma-7B City Locations ~ Word Definitions 0.61 0.63 0.66 0.52
Gemma-2-9B City Locations  City Locations 097 098 0.99 0.63
Gemma-2-9B City Locations  Medical Indications 0.52  0.55  0.58 0.44
Gemma-2-9B City Locations ~ Word Definitions 054 056 0.58 0.27
Llama-3.2-3B City Locations  City Locations 095 096 097 0.37
Llama-3.2-3B City Locations Medical Indications 0.35 0.38  0.41 0.33
Llama-3.2-3B City Locations ~ Word Definitions 048 050 0.52 0.30
Llama-3-8B City Locations  City Locations 096 097 098 0.32
Llama-3-8B City Locations  Medical Indications 0.59  0.62  0.65 0.35
Llama-3-8B City Locations ~ Word Definitions 0.56 0.58 0.61 0.26
Mistral-7B-v0.3 City Locations  City Locations 096 097 0098 0.42
Mistral-7B-v0.3 City Locations  Medical Indications 0.50  0.53  0.55 0.39
Mistral-7B-v0.3 City Locations ~ Word Definitions 0.58 0.61 0.63 0.39
Qwen-2.5-7B City Locations  City Locations 094 095 0.96 0.70
Qwen-2.5-7B City Locations Medical Indications 0.48  0.52  0.55 0.59
Qwen-2.5-7B City Locations ~ Word Definitions 051 054 057 0.59
Qwen-2.5-14B City Locations  City Locations 095 096 097 0.79
Qwen-2.5-14B City Locations  Medical Indications 0.59  0.62  0.65 0.45
Qwen-2.5-14B City Locations  Word Definitions 0.62 0.64 0.67 0.43
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Table 22: Generalization performance of the multiclass sAwMIL trained on the Medical Indications dataset.
The performance is measured by the Matthew’s Correlation Coefficient (MCC) with 95% confidence intervals,
based on bootstrapping with n = 1,000 samples. The bold values mark MCC significant confidence intervals.

The ‘Rel. Depth’ column specifies the relative depth of the layer where a multiclass sAwMIL probe achieves the

best MCC score.

Model Name Training Dataset ~ Test Dataset Clo2s MCC Clgrs Rel. Depth
Gemma-7B-it Medical Indications City Locations 090 091 0093 0.70
Gemma-7B-it Medical Indications Medical Indications 0.65 0.68 0.72 0.59
Gemma-7B-it Medical Indications Word Definitions 0.64 0.67 0.69 0.59
Gemma-2-9B-it Medical Indications City Locations 091 092 094 0.63
Gemma-2-9B-it Medical Indications Medical Indications 0.81  0.83  0.85 0.49
Gemma-2-9B-it Medical Indications Word Definitions 0.78 0.80 0.82 0.61
Llama-3.2-3B-Instruct Medical Indications City Locations 0.80 0.82 0.85 0.41
Llama-3.2-3B-Instruct Medical Indications Medical Indications 0.73  0.76  0.79 0.48
Llama-3.2-3B-Instruct Medical Indications Word Definitions 0.65 0.67 0.70 0.48
Llama3-Med42-8B Medical Indications City Locations 095 096 097 0.52
Llama3-Med42-8B Medical Indications Medical Indications 0.80 0.83  0.85 0.45
Llama3-Med42-8B Medical Indications Word Definitions 076  0.78 0.80 0.45
Llama-3.1-8B-Instruct Medical Indications City Locations 092 093 094 0.55
Llama-3.1-8B-Instruct Medical Indications Medical Indications 0.81 0.83  0.85 0.55
Llama-3.1-8B-Instruct Medical Indications Word Definitions 0.77 079 0.81 0.42
Bio-Medical-Llama-3-8B  Medical Indications City Locations 0.85 0.86 0.88 0.39
Bio-Medical-Llama-3-8B Medical Indications Medical Indications 0.78  0.81  0.83 0.81
Bio-Medical-Llama-3-8B Medical Indications Word Definitions 070 0.73 0.75 0.32
Mistral-7B-Instruct-v0.3 ~ Medical Indications City Locations 093 094 095 0.39
Mistral-7B-Instruct-v0.3  Medical Indications Medical Indications 0.78 0.80 0.83 0.45
Mistral-7B-Instruct-v0.3 ~ Medical Indications Word Definitions 074 077 0.79 0.45
Qwen-2.5-7B-Instruct Medical Indications City Locations 0.78 0.80 0.83 0.52
Qwen-2.5-7B-Instruct Medical Indications Medical Indications 0.74  0.77 0.79 0.67
Qwen-2.5-7B-Instruct Medical Indications Word Definitions 0.64 0.67 0.69 0.63
Qwen-2.5-14B-Instruct Medical Indications City Locations 090 092 093 0.49
Qwen-2.5-14B-Instruct Medical Indications Medical Indications 0.79  0.82  0.84 0.57
Qwen-2.5-14B-Instruct Medical Indications Word Definitions 0.76  0.79 0.81 0.57
Gemma-7B Medical Indications City Locations 0.60 0.63 0.66 0.56
Gemma-7B Medical Indications Medical Indications 0.75  0.78  0.80 0.63
Gemma-7B Medical Indications Word Definitions 0.55 057 059 0.70
Gemma-2-9B Medical Indications City Locations 0.83 0.85 0.87 0.56
Gemma-2-9B Medical Indications Medical Indications 0.77  0.80  0.82 0.44
Gemma-2-9B Medical Indications Word Definitions 0.64 0.67 0.69 0.39
Llama-3.2-3B Medical Indications City Locations 049 051 053 0.41
Llama-3.2-3B Medical Indications Medical Indications 0.74  0.76  0.79 0.44
Llama-3.2-3B Medical Indications Word Definitions 0.59 0.62 0.64 0.52
Llama-3-8B Medical Indications City Locations 0.75 0.77 0.80 0.45
Llama-3-8B Medical Indications Medical Indications 0.77  0.80  0.83 0.39
Llama-3-8B Medical Indications Word Definitions 0.63 0.65 0.68 0.26
Mistral-7B-v0.3 Medical Indications City Locations 0.58 0.60 0.63 0.42
Mistral-7B-v0.3 Medical Indications Medical Indications 0.77  0.80  0.82 0.42
Mistral-7B-v0.3 Medical Indications Word Definitions 0.63 0.65 0.68 0.42
Qwen-2.5-7B Medical Indications ~City Locations 0.80 0.82 0.84 0.67
Qwen-2.5-7B Medical Indications Medical Indications 0.76  0.78  0.81 0.63
Qwen-2.5-7B Medical Indications Word Definitions 0.59 0.62 0.65 0.74
Qwen-2.5-14B Medical Indications City Locations 0.80 0.82 0.84 0.70
Qwen-2.5-14B Medical Indications Medical Indications 0.76  0.79  0.82 0.60
Qwen-2.5-14B Medical Indications Word Definitions 070 0.72 0.75 0.60
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Table 23: Generalization performance of the multiclass sAwMIL trained on the Word Definitions dataset.
The performance is measured by the Matthew’s Correlation Coefficient (MCC) with 95% confidence intervals,
based on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence
intervals. The ‘Rel. Depth’ column specifies the relative depth of the layer where a multiclass sAwMIL probe
achieves the best MCC score.

Model Name Training Dataset Test Dataset Clo2s MCC Clgrs Rel. Depth
Gemma-7B-it Word Definitions City Locations 090 092 0093 0.70
Gemma-7B-it Word Definitions Medical Indications 0.53  0.56  0.60 0.67
Gemma-7B-it Word Definitions Word Definitions 0.78 0.80 0.82 0.67
Gemma-2-9B-it Word Definitions City Locations 094 096 097 0.56
Gemma-2-9B-it Word Definitions Medical Indications 0.65 0.69  0.71 0.41
Gemma-2-9B-it Word Definitions Word Definitions 0.88 090 0091 0.54
Llama-3.2-3B-Instruct Word Definitions City Locations 0.84 0.86 0.88 0.48
Llama-3.2-3B-Instruct Word Definitions Medical Indications 0.60  0.63  0.66 0.44
Llama-3.2-3B-Instruct Word Definitions Word Definitions 0.85 0.86 0.88 0.44
Llama3-Med42-8B Word Definitions City Locations 094 095 097 0.35
Llama3-Med42-8B Word Definitions Medical Indications 0.76  0.79  0.81 0.45
Llama3-Med42-8B Word Definitions Word Definitions 0.87 0.89 0091 0.45
Llama-3.1-8B-Instruct Word Definitions City Locations 095 096 0097 0.45
Llama-3.1-8B-Instruct Word Definitions Medical Indications 0.72  0.75  0.77 0.32
Llama-3.1-8B-Instruct Word Definitions Word Definitions 090 091 0093 0.45
Bio-Medical-Llama-3-8B  Word Definitions City Locations 0.78 0.81 0.83 0.35
Bio-Medical-Llama-3-8B Word Definitions Medical Indications 0.70  0.73  0.76 0.32
Bio-Medical-Llama-3-8B  Word Definitions Word Definitions 0.87 0.89 0.90 0.39
Mistral-7B-Instruct-v0.3 ~ Word Definitions City Locations 093 094 0096 0.48
Mistral-7B-Instruct-v0.3 ~ Word Definitions Medical Indications 0.74  0.77  0.80 0.52
Mistral-7B-Instruct-v0.3 ~ Word Definitions Word Definitions 0.87 0.88 0.90 0.35
Qwen-2.5-7B-Instruct Word Definitions City Locations 0.85 0.87 0.88 0.63
Qwen-2.5-7B-Instruct Word Definitions Medical Indications 0.74  0.76  0.79 0.67
Qwen-2.5-7B-Instruct Word Definitions Word Definitions 0.85 0.87 0.88 0.63
Qwen-2.5-14B-Instruct Word Definitions City Locations 095 096 097 0.66
Qwen-2.5-14B-Instruct ~ Word Definitions Medical Indications 0.77  0.79  0.82 0.66
Qwen-2.5-14B-Instruct Word Definitions Word Definitions 0.88 090 0.92 0.51
Gemma-7B Word Definitions City Locations 0.88 090 0091 0.56
Gemma-7B Word Definitions Medical Indications 0.59  0.63  0.66 0.48
Gemma-7B Word Definitions Word Definitions 0.81 0.83 0.85 0.56
Gemma-2-9B Word Definitions City Locations 092 093 094 0.56
Gemma-2-9B Word Definitions Medical Indications 0.70  0.73  0.75 0.46
Gemma-2-9B Word Definitions Word Definitions 0.86 0.88 0.90 0.41
Llama-3.2-3B Word Definitions City Locations 0.76  0.78 0.81 0.41
Llama-3.2-3B Word Definitions Medical Indications 0.70  0.73  0.76 0.41
Llama-3.2-3B Word Definitions Word Definitions 0.79 0.81 0.83 0.41
Llama-3-8B Word Definitions City Locations 0.84 086 0.88 0.39
Llama-3-8B Word Definitions Medical Indications 0.74  0.76  0.79 0.39
Llama-3-8B Word Definitions Word Definitions 0.85 0.87 0.89 0.39
Mistral-7B-v0.3 Word Definitions City Locations 0.77 0.79 0.81 0.52
Mistral-7B-v0.3 Word Definitions Medical Indications 0.73  0.76  0.78 0.39
Mistral-7B-v0.3 Word Definitions Word Definitions 0.85 0.87 0.89 0.45
Qwen-2.5-7B Word Definitions City Locations 090 092 093 0.67
Qwen-2.5-7B Word Definitions Medical Indications 0.72  0.74  0.77 0.59
Qwen-2.5-7B Word Definitions Word Definitions 0.85 0.87 0.88 0.59
Qwen-2.5-14B Word Definitions City Locations 092 094 095 0.45
Qwen-2.5-14B Word Definitions Medical Indications 0.72  0.75 0.78 0.66
Qwen-2.5-14B Word Definitions Word Definitions 0.85 0.87 0.88 0.47
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Table 24: Row-wise confusion matrices for zero-shot prompting across all (model, dataset) pairs
(evaluated on the full bag). Each row corresponds to a specific model and a dataset. Columns are
grouped by the ground-truth labels (True, False, Neither) with groups of subcolumns that specify the
distribution of predictions (frue, false, neither, abstain). For each statement in a dataset, the predicted
class is the class with the highest probability (as estimated by zero-shot prompting). The values in
each group of four subcolumns sum to 1 because they are normalized counts. For example, in the
first row under the True ground-truth label, we see that true predictions have the value of 0.89 — that
means that 89% of all the true statements are classified as true.

Ground-truth label — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 0.89 0.11 0.00 0.00 0.06 0.94 0.00 0.00 0.18 0.82 0.00 0.00
Bio-Medical-Llama-3-8B  Medical Indications 0.79 021 0.00 0.00 032 0.68 0.00 0.00 027 0.73 0.00 0.00
Word Definitions 0.61 0.39 0.00 0.00 037 0.63 0.00 0.00 0.05 095 0.00 0.00
City Locations 0.50 0.10 0.39 0.01 0.03 053 0.43 0.01 0.05 0.00 0.93 0.02
Gemma-2-9B Medical Indications 0.70 0.12 0.18 0.00 034 051 0.14 0.00 0.57 0.19 0.24 0.00
Word Definitions 0.36 020 0.40 0.05 0.17 026 0.53 0.04 0.14 0.12 0.72 0.01
City Locations 098 0.02 0.00 0.00 0.03 097 0.00 0.00 0.06 045 0.49 0.00
Gemma-2-9B-it Medical Indications 0.87 0.12 0.01 0.00 025 0.75 0.00 0.00 023 059 0.18 0.00
Word Definitions 0.76  0.16 0.09 0.00 025 0.70 0.06 0.00 0.10  0.65 0.25 0.00
City Locations 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Gemma-7B Medical Indications 0.16 0.00 0.00 0.84 0.09 0.00 0.00 091 0.03 0.00 0.00 0.96
Word Definitions 0.03 0.00 0.00 0.97 0.03 0.01 0.00 0.96 0.00 0.00 0.00 1.00
City Locations 0.76 023 0.01 0.00 0.05 095 0.00 0.00 0.04 0.64 0.32 0.00
Gemma-7B-it Medical Indications 0.69 030 0.01 0.00 027 073 0.00 0.00 037 0.61 0.02 0.00
‘Word Definitions 0.27 0.63 0.09 0.01 0.09 0.89 0.02 0.00 0.04 0.77 0.15 0.04
City Locations 035 0.65 0.00 0.00 022 078 0.00 0.00 047 052 0.00 0.01
Llama-3-8B Medical Indications 0.33  0.67 0.00 0.00 0.08 0.92 0.00 0.00 0.19 0.81 0.00 0.00
Word Definitions 045 055 0.00 0.00 033 0.67 0.00 0.00 037 0.63 0.00 0.00
City Locations 095 0.05 0.00 0.00 0.03 097 0.00 0.00 0.08 0.65 0.27 0.00
Llama-3.1-8B-Instruct Medical Indications 0.54 046 0.00 0.00 0.07 093 0.00 0.00 0.13 0.86 0.01 0.00
Word Definitions 0.54 046 0.00 0.00 021 0.79 0.00 0.00 0.06 0.94 0.00 0.00
City Locations 029 0.71 0.00 0.00 0.11 0.89 0.00 0.00 043 057 0.00 0.00
Llama-3.2-3B Medical Indications 046 0.54 0.00 0.00 0.34  0.66 0.00 0.00 0.50  0.50 0.00 0.00
‘Word Definitions 048 052 0.00 0.00 044 056 0.00 0.00 046 054 0.00 0.00
City Locations 093 0.07 0.00 0.00 0.15 0385 0.00 0.00 0.04 084 0.13 0.00
Llama-3.2-3B-Instruct Medical Indications 0.35 0.65 0.00 0.00 0.07 093 0.00 0.00 0.15 0385 0.00 0.00
Word Definitions 0.60 0.40 0.00 0.00 046 0.54 0.00 0.00 0.06 0.93 0.01 0.00
City Locations 0.96 0.04 0.00 0.00 0.04 0.96 0.00 0.00 022 0.64 0.14 0.00
Llama3-Med42-8B Medical Indications 0.69 031 0.00 0.00 0.13  0.87 0.00 0.00 0.17 0.82 0.00 0.00
Word Definitions 047 052 0.01 0.00 0.18 0.81 0.01 0.00 0.08 0.89 0.03 0.00
City Locations 0.88 0.00 0.09 0.03 0.04 0.09 0.50 0.37 0.08 0.00 0.90 0.02
Mistral-7B-Instruct-v0.3 ~ Medical Indications 047 0.04 0.49 0.00 0.07  0.09 0.85 0.00 0.03  0.00 0.97 0.00
‘Word Definitions 0.63  0.02 0.33 0.02 0.40 0.01 0.55 0.04 0.25 0.00 0.73 0.02
City Locations 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Mistral-7B-v0.3 Medical Indications 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Word Definitions 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
City Locations 095 0.05 0.00 0.00 0.02 098 0.00 0.00 0.04 047 0.49 0.00
Qwen-2.5-14B Medical Indications 0.53 046 0.01 0.00 0.04 095 0.00 0.00 0.00 0.77 0.23 0.00
‘Word Definitions 0.50 041 0.09 0.00 0.05 0.90 0.05 0.00 0.00 053 0.47 0.00
City Locations 093 0.07 0.00 0.00 0.02 098 0.00 0.00 0.00 028 0.71 0.00
Qwen-2.5-14B-Instruct Medical Indications 0.63 023 0.14 0.00 0.04 0.87 0.09 0.00 0.00 0.46 0.54 0.00
Word Definitions 0.55 0.32 0.13 0.00 0.06 0.89 0.06 0.00 0.01  0.37 0.62 0.00
City Locations 092 0.07 0.01 0.00 0.03 0.96 0.01 0.00 0.09 0.68 0.23 0.00
Qwen-2.5-7B Medical Indications 0.56 0.44 0.00 0.00 0.11 0.89 0.00 0.00 025 0.75 0.00 0.00
Word Definitions 0.60 0.39 0.01 0.00 031 0.67 0.02 0.00 035 0.64 0.01 0.00
City Locations 0.89 0.11 0.00 0.00 0.02 098 0.00 0.00 0.02 057 0.37 0.03
Qwen-2.5-7B-Instruct Medical Indications 041 0.56 0.02 0.00 0.04 0.94 0.02 0.00 0.01 092 0.06 0.01
‘Word Definitions 0.56 039 0.04 0.01 0.27 0.70 0.03 0.01 025 0.61 0.12 0.03
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Table 25: Row-wise confusion matrices for mean-difference probe with conformal prediction
intervals (MD+CP) across all (model-dataset pairs) (evaluated on the last token representation).
Each row corresponds to a specific model and a dataset. Columns are grouped by the ground-truth
labels (True, False, Neither) with groups of subcolumns that specify the distribution of predictions
(true, false, neither, abstain). For each statement in a dataset, the predicted class is the class with the
highest probability (as estimated by MD+CP). The values in each group of four subcolumns sum to 1
because they are normalized counts. For example, in the first row under the True ground-truth label,
we see that true predictions have the value of 0.89 — that means that 89% of all the true statements
are classified as true.

True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 0.89 0.01 0.10 0.00 0.01 092 0.07 0.00 034 023 0.42 0.00
Bio-Medical-Llama-3-8B  Medical Indications | 0.68  0.13 0.19 0.00 0.09 0.75 0.16 0.00 021 058 0.20 0.00
Word Definitions 0.73  0.09 0.18 0.00 0.09 0.72 0.18 0.00 042 036 0.22 0.00
City Locations 090 0.02 0.09 0.00 0.02 091 0.07 0.00 0.07 0.66 0.27 0.00
Gemma-2-9B Medical Indications | 0.78  0.12 0.10 0.00 0.13  0.77 0.10 0.00 0.15 0.77 0.09 0.00
Word Definitions 0.80 0.11 0.10 0.00 0.10 0.81 0.09 0.00 047 039 0.14 0.00
City Locations 0.89 0.09 0.02 0.00 0.05 093 0.02 0.00 079 0.19 0.02 0.00
Gemma-2-9B-it Medical Indications | 0.70  0.11 0.19 0.00 0.11 0.73 0.17 0.00 042 038 0.20 0.00
Word Definitions 0.75 0.11 0.14 0.00 0.11 0.75 0.14 0.00 036 042 0.23 0.00
City Locations 0.90 0.0l 0.08 0.00 0.02 092 0.06 0.00 0.04 0.79 0.16 0.00
Gemma-7B Medical Indications | 0.71  0.10 0.18 0.00 0.09 072 0.19 0.00 0.19 053 0.28 0.00
Word Definitions 0.70  0.10 0.20 0.00 0.08 0.75 0.18 0.00 037 0.36 0.28 0.00
City Locations 094 0.03 0.03 0.00 0.06 0.90 0.04 0.00 032 054 0.14 0.00
Gemma-7B-it Medical Indications | 0.53  0.11 0.36 0.00 0.12 061 0.27 0.00 0.19 047 0.34 0.00
Word Definitions 0.75 0.11 0.13 0.00 0.11  0.78 0.11 0.00 0.31 048 0.22 0.00
City Locations 090 0.01 0.08 0.00 0.00 092 0.08 0.00 0.66 0.17 0.17 0.00
Llama-3-8B Medical Indications | 0.71  0.12 0.17 0.00 0.11 0.75 0.14 0.00 0.40 0.39 0.21 0.00
Word Definitions 0.73  0.09 0.17 0.00 0.07 0.74 0.19 0.00 0.48 031 0.22 0.00
City Locations 0.89 0.03 0.08 0.00 0.04 0.89 0.06 0.00 0.68 027 0.05 0.00
Llama-3.1-8B-Instruct Medical Indications | 0.74  0.14 0.13 0.00 0.10 0.79 0.12 0.00 022  0.67 0.11 0.00
Word Definitions 0.80 0.10 0.10 0.00 0.07 0.83 0.09 0.00 045 0.46 0.09 0.00
City Locations 0.89 0.03 0.08 0.00 0.03 0.90 0.07 0.00 025 039 0.35 0.00
Llama-3.2-3B Medical Indications | 0.72  0.12 0.16 0.00 0.12 071 0.18 0.00 0.19 0.64 0.17 0.00
Word Definitions 0.72  0.09 0.18 0.00 0.11 0.71 0.18 0.00 031 044 0.26 0.00
City Locations 0.87 0.05 0.08 0.00 0.04 0.90 0.06 0.00 0.85 0.06 0.09 0.00
Llama-3.2-3B-Instruct Medical Indications | 0.59 0.11 0.30 0.00 0.11 0.62 0.27 0.00 033 038 0.30 0.00
Word Definitions 0.59 0.10 0.31 0.00 0.09 0.62 0.29 0.00 0.37 0.40 0.24 0.00
City Locations 091 0.01 0.08 0.00 0.01 091 0.09 0.00 0.04 073 0.23 0.00
Llama3-Med42-8B Medical Indications | 0.77  0.14 0.09 0.00 0.10 0.79 0.11 0.00 021  0.70 0.09 0.00
Word Definitions 0.83  0.09 0.08 0.00 0.08 0.88 0.05 0.00 059 032 0.09 0.00
City Locations 0.88 0.01 0.11T 0.00 0.0 0.90 0.09 0.00 0.45 0.40 0.16 0.00
Mistral-7B-Instruct-v0.3 ~ Medical Indications | 0.68 0.11 0.21 0.00 0.13 071 0.16 0.00 029 0.50 0.20 0.00
Word Definitions 0.77 0.13 0.10 0.00 0.11 0.81 0.08 0.00 024  0.60 0.15 0.00
City Locations 0.88 0.02 0.10 0.00 0.02 091 0.07 0.00 031 045 0.24 0.00
Mistral-7B-v0.3 Medical Indications | 0.69  0.12 0.19 0.00 0.10 0.73 0.17 0.00 023 054 0.22 0.00
Word Definitions 0.72  0.08 0.20 0.00 0.08 0.77 0.15 0.00 042 035 0.24 0.00
City Locations 0.89 0.04 0.07 0.00 0.02 093 0.06 0.00 021 048 0.30 0.00
Qwen-2.5-14B Medical Indications | 0.72  0.15 0.13 0.00 0.11 0.76 0.14 0.00 0.54 025 0.21 0.00
Word Definitions 0.80 0.09 0.11 0.00 0.11 0.79 0.10 0.00 039 0.46 0.15 0.00
City Locations 0.88 0.09 0.03 0.00 0.06 092 0.02 0.00 038 0.59 0.03 0.00
Qwen-2.5-14B-Instruct Medical Indications | 0.77  0.12 0.11 0.00 0.11 0.79 0.10 0.00 0.46 0.44 0.10 0.00
Word Definitions 0.82 0.08 0.10 0.00 0.08 0.85 0.07 0.00 030 0.62 0.08 0.00
City Locations 091 0.03 0.06 0.00 0.03 091 0.06 0.00 034 055 0.12 0.00
Qwen-2.5-7B Medical Indications | 0.71  0.11 0.17 0.00 0.10 0.77 0.14 0.00 0.34 043 0.23 0.00
Word Definitions 0.74  0.09 0.16 0.00 0.10 0.74 0.16 0.00 032 043 0.25 0.00
City Locations 090 0.03 0.07 0.00 0.02 092 0.06 0.00 0.62 024 0.14 0.00
Qwen-2.5-7B-Instruct Medical Indications | 0.75  0.09 0.15 0.00 0.10 0.78 0.12 0.00 0.67 0.20 0.13 0.00
Word Definitions 0.78 0.10 0.12 0.00 0.09 0.383 0.08 0.00 043 044 0.13 0.00
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Table 26: Row-wise confusion matrices for mean-difference probe with conformal prediction
intervals (MD+CP) across all (model-dataset pairs) (evaluated on the bag). Each row corresponds
to a specific model and a dataset. Columns are grouped by the ground-truth labels (True, False,
Neither) with groups of subcolumns that specify the distribution of predictions (true, false, neither,
abstain). For each statement in a dataset, the predicted class is the class with the highest probability
(as estimated by MD+CP). The values in each group of four subcolumns sum to 1 because they are
normalized counts. For example, in the first row under the True ground-truth label, we see that true
predictions have the value of 1.00 — that means that 100% of all the true statements are classified as

true.
True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
Bio-Medical-Llama-3-8B  City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Medical Indications | 0.99  0.00 0.01 0.00 095 0.03 0.02 0.00 098 0.01 0.01 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Gemma-2-9B City Locations 1.00  0.00 0.00 0.00 097 0.01 0.02 0.00 0.99 0.00 0.01 0.00
Medical Indications | 0.95 0.01 0.04 0.00 0.88 0.04 0.09 0.00 098 0.01 0.01 0.00
Word Definitions 0.80 0.02 0.18 0.00 0.65 0.05 0.29 0.00 0.63 0.06 0.31 0.00
Gemma-2-9B-it City Locations 0.87 0.01 0.12 0.00 030 0.15 0.55 0.00 042 0.07 0.5T 0.00
Medical Indications | 1.00  0.00 0.00 0.00 0.98 0.00 0.01 0.00 0.99 0.00 0.01 0.00
Word Definitions 0.57 0.02 0.41 0.00 032 0.13 0.55 0.00 020 0.12 0.68 0.00
Gemma-7B City Locations 095 0.03 0.02 0.00 048 0.46 0.06 0.00 0.76  0.21 0.02 0.00
Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00
Word Definitions 0.93 0.00 0.06 0.00 090 0.01 0.09 0.00 0.94 0.00 0.05 0.00
Gemma-7B-it City Locations 0.83 0.06 0.11T 0.00 0.59 031 0.11 0.00 081 0.12 0.07 0.00
Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 0.93  0.00 0.07 0.00 0.88 0.01 0.11 0.00 0.96 0.00 0.04 0.00
Llama-3-8B City Locations 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Medical Indications | 0.68  0.02 0.30 0.00 0.59 0.05 0.36 0.00 0.69 0.04 0.27 0.00
Word Definitions 0.96 0.00 0.03 0.00 094 0.01 0.05 0.00 091 0.01 0.08 0.00
Llama-3.1-8B-Instruct City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Llama-3.2-3B City Locations 1.00 0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Medical Indications | 0.83  0.03 0.14 0.00 0.56 022 0.23 0.00 095 0.02 0.03 0.00
Word Definitions 0.92 0.01 0.07 0.00 0.75 0.09 0.16 0.00 092 0.02 0.07 0.00
Llama-3.2-3B-Instruct City Locations 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Llama3-Med42-8B City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Medical Indications | 0.93  0.00 0.07 0.00 093 0.00 0.06 0.00 0.94 0.00 0.06 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Mistral-7B-Instruct-v0.3  City Locations 0.97 0.00 0.03 0.00 0.88 0.02 0.10 0.00 0.97 0.00 0.03 0.00
Medical Indications | 0.96 0.01 0.03 0.00 091 0.04 0.05 0.00 090 0.04 0.06 0.00
Word Definitions 1.00  0.00 0.00 0.00 0.97 0.01 0.02 0.00 1.00  0.00 0.00 0.00
Mistral-7B-v0.3 City Locations 097 0.01 0.02 0.00 0.86 0.08 0.06 0.00 090 0.05 0.06 0.00
Medical Indications | 0.97  0.00 0.03 0.00 0.96 0.00 0.04 0.00 0.97 0.00 0.03 0.00
Word Definitions 0.94  0.00 0.06 0.00 0.86 0.02 0.12 0.00 092 0.02 0.06 0.00
Qwen-2.5-14B City Locations 1.00  0.00 0.00 0.00 089 0.03 0.07 0.00 0.99 0.00 0.01 0.00
Medical Indications | 0.91  0.01 0.07 0.00 0.88 0.04 0.08 0.00 096 0.01 0.03 0.00
Word Definitions 0.98 0.00 0.01 0.00 093 0.03 0.04 0.00 0.97 0.01 0.02 0.00
Qwen-2.5-14B-Instruct City Locations 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Medical Indications | 0.90 0.01 0.09 0.00 0.66 0.10 0.24 0.00 0.60 0.04 0.36 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Qwen-2.5-7B City Locations 0.99 0.00 0.01 0.00 095 0.03 0.02 0.00 1.00  0.00 0.00 0.00
Medical Indications | 0.93  0.01 0.06 0.00 0.76  0.08 0.16 0.00 0.87 0.05 0.09 0.00
Word Definitions 092 0.01 0.07 0.00 090 0.01 0.09 0.00 090 0.01 0.08 0.00
Qwen-2.5-7B-Instruct City Locations 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00  0.00 0.00 0.00
Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
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Table 27: Row-wise confusion matrices for TTPD probe with conformal prediction intervals
(TTPD+CP) across all (model-dataset pairs) (evaluated on the last token representation). Each row
corresponds to a specific model and a dataset. Columns are grouped by the ground-truth labels (True,
False, Neither) with groups of subcolumns that specify the distribution of predictions (true, false,
neither, abstain). For each statement in a dataset, the predicted class is the class with the highest
probability (as estimated by MD+CP). The values in each group of four subcolumns sum to 1 because
they are normalized counts. For example, in the first row under the True ground-truth label, we
see that true predictions have the value of 0.87 — that means that 87% of all the true statements are
classified as true.

True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 0.87 0.08 0.05 0.00 0.04 0.90 0.05 0.00 0.09 0.78 0.14 0.00
Bio-Medical-Llama-3-8B  Medical Indications | 0.59  0.08 0.33 0.00 0.09 0.64 0.27 0.00 0.03 0.61 0.36 0.00
Word Definitions 044 0.11 0.46 0.00 0.08 0.50 0.41 0.00 0.00 0.69 0.31 0.00
City Locations 091 0.09 0.00 0.00 0.14 0385 0.00 0.00 0.00 1.00 0.00 0.00
Gemma-2-9B Medical Indications | 0.71  0.09 0.20 0.00 0.11  0.70 0.19 0.00 0.11 073 0.16 0.00
Word Definitions 0.68 0.08 0.23 0.00 0.08 0.74 0.18 0.00 0.08 0.55 0.36 0.00
City Locations 0.86 0.12 0.02 0.00 0.04 094 0.01 0.00 098 0.02 0.0T 0.00
Gemma-2-9B-it Medical Indications | 0.70  0.07 0.23 0.00 0.11 0.70 0.19 0.00 0.14 034 0.51 0.00
Word Definitions 0.53 0.11 0.36 0.00 0.07 0.59 0.34 0.00 0.03 058 0.39 0.00
City Locations 0.90 0.05 0.06 0.00 0.08 0.88 0.03 0.00 0.03 095 0.02 0.00
Gemma-7B Medical Indications | 0.68  0.08 0.25 0.00 0.09 0.68 0.23 0.00 0.10 052 0.38 0.00
Word Definitions 0.75 0.09 0.16 0.00 0.09 0.79 0.12 0.00 0.13  0.66 0.21 0.00
City Locations 0.88 0.04 0.08 0.00 0.05 091 0.03 0.00 090 0.01 0.09 0.00
Gemma-7B-it Medical Indications | 0.54  0.07 0.39 0.00 0.13 052 0.35 0.00 045 0.13 0.41 0.00
Word Definitions 0.60 0.12 0.28 0.00 0.09 0.64 0.26 0.00 0.17 037 0.45 0.00
City Locations 0.88 0.10 0.02 0.00 0.07 0.89 0.04 0.00 0.02 098 0.01 0.00
Llama-3-8B Medical Indications | 0.65 0.10 0.25 0.00 0.11 0.70 0.19 0.00 0.02 0.62 0.36 0.00
Word Definitions 0.72  0.11 0.17 0.00 0.09 0.79 0.13 0.00 041 042 0.17 0.00
City Locations 0.84 0.03 0.13 0.00 0.03 092 0.05 0.00 0.00 0.84 0.16 0.00
Llama-3.1-8B-Instruct Medical Indications | 0.68  0.06 0.26 0.00 0.10  0.65 0.25 0.00 0.00 0.74 0.26 0.00
Word Definitions 0.80 0.08 0.11 0.00 0.09 0.81 0.11 0.00 0.15 055 0.30 0.00
City Locations 0.88 0.10 0.02 0.00 0.07 0.90 0.02 0.00 0.02 098 0.01 0.00
Llama-3.2-3B Medical Indications | 0.71  0.08 0.21 0.00 0.10 0.69 0.21 0.00 0.01 0.86 0.12 0.00
Word Definitions 0.64 0.09 0.27 0.00 0.08 0.66 0.25 0.00 0.10 0.55 0.34 0.00
City Locations 085 0.11 0.04 0.00 0.10 0.87 0.02 0.00 0.73  0.23 0.04 0.00
Llama-3.2-3B-Instruct Medical Indications | 0.51 0.13 0.36 0.00 0.08 0.60 0.32 0.00 0.06 041 0.53 0.00
Word Definitions 044 0.12 0.43 0.00 0.07 0.49 0.44 0.00 0.13 048 0.40 0.00
City Locations 0.839 0.04 0.07 0.00 0.05 092 0.02 0.00 022  0.66 0.12 0.00
Llama3-Med42-8B Medical Indications | 0.69  0.09 0.22 0.00 0.10 0.74 0.16 0.00 0.06 0.07 0.87 0.00
Word Definitions 0.71 0.10 0.19 0.00 0.07 0.78 0.15 0.00 0.02 0.82 0.17 0.00
City Locations 0.88 0.11 0.00 0.00 0.07 093 0.00 0.00 030 0.70 0.00 0.00
Mistral-7B-Instruct-v0.3 ~ Medical Indications | 0.73  0.08 0.19 0.00 0.10 0.72 0.19 0.00 0.06 0.54 0.40 0.00
Word Definitions 0.71 0.10 0.19 0.00 0.09 0.72 0.19 0.00 0.16 0.57 0.27 0.00
City Locations 0.88  0.08 0.04 0.00 0.06 092 0.03 0.00 031 059 0.10 0.00
Mistral-7B-v0.3 Medical Indications | 0.72  0.07 0.21 0.00 0.10 0.73 0.17 0.00 0.15 036 0.49 0.00
Word Definitions 0.72 0.10 0.17 0.00 0.11 0.75 0.15 0.00 0.20 0.50 0.31 0.00
City Locations 091 0.07 0.01 0.00 0.08 0091 0.01 0.00 0.10 0.88 0.02 0.00
Qwen-2.5-14B Medical Indications | 0.69  0.06 0.25 0.00 0.15 0.65 0.20 0.00 036 0.14 0.50 0.00
Word Definitions 0.60 0.12 0.28 0.00 0.09 0.61 0.30 0.00 0.13 049 0.37 0.00
City Locations 0.88 0.10 0.03 0.00 0.07 091 0.02 0.00 039 054 0.07 0.00
Qwen-2.5-14B-Instruct Medical Indications | 0.80 0.08 0.13 0.00 0.13 0.75 0.11 0.00 0.03 055 0.42 0.00
Word Definitions 0.72 0.10 0.19 0.00 0.11 0.75 0.15 0.00 0.04 0.71 0.25 0.00
City Locations 092 0.03 0.05 0.00 0.06 0.89 0.05 0.00 0.01 0.90 0.09 0.00
Qwen-2.5-7B Medical Indications | 0.67  0.07 0.25 0.00 0.10 0.70 0.20 0.00 033 0.19 0.48 0.00
Word Definitions 0.52 0.11 0.37 0.00 0.07 0.56 0.37 0.00 0.11 052 0.37 0.00
City Locations 090 0.03 0.07 0.00 0.07 0.87 0.06 0.00 033 0.10 0.57 0.00
Qwen-2.5-7B-Instruct Medical Indications | 0.73  0.09 0.17 0.00 0.15 0.72 0.13 0.00 0.02 0.88 0.10 0.00
Word Definitions 0.71 0.11 0.18 0.00 0.10 0.71 0.19 0.00 0.11 0.60 0.30 0.00
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Table 28: Row-wise confusion matrices for TTPD probe with conformal prediction intervals
(TTPD+CP) across all (model-dataset pairs) (evaluated on the bag). Each row corresponds to a
specific model and a dataset. Columns are grouped by the ground-truth labels (True, False, Neither)
with groups of subcolumns that specify the distribution of predictions (true, false, neither, abstain).
For each statement in a dataset, the predicted class is the class with the highest probability (as
estimated by MD+CP). The values in each group of four subcolumns sum to 1 because they are
normalized counts. For example, in the first row under the True ground-truth label, we see that true
predictions have the value of 0.19 — that means that 19% of all the true statements are classified as

true.
True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 0.19  0.00 0.81 0.00 0.16 0.01 0.83 0.00 0.03 024 0.72 0.00
Bio-Medical-Llama-3-8B  Medical Indications | 0.08  0.08 0.84 0.00 0.09 0.05 0.86 0.00 0.08 0.02 0.91 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 092 0.08 0.00 0.00 0.14 0385 0.00 0.00 0.00 1.00 0.00 0.00
Gemma-2-9B Medical Indications | 0.12  0.03 0.85 0.00 0.08 0.03 0.89 0.00 0.00 0.02 0.98 0.00
Word Definitions 0.30 0.08 0.62 0.00 0.11 0.16 0.72 0.00 0.00 0.79 0.21 0.00
City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Gemma-2-9B-it Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 048 0.01 0.51 0.00 0.11 020 0.69 0.00 0.01 0.40 0.59 0.00
City Locations 0.93  0.04 0.04 0.00 0.05 0.88 0.07 0.00 0.01 098 0.01 0.00
Gemma-7B Medical Indications | 0.10  0.08 0.82 0.00 0.07 0.13 0.80 0.00 0.00 0.26 0.74 0.00
Word Definitions 0.38 0.10 0.53 0.00 0.09 027 0.64 0.00 0.01 059 0.40 0.00
City Locations 023 0.05 0.72 0.00 0.19 0.13 0.67 0.00 0.01 051 0.48 0.00
Gemma-7B-it Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 0.88 0.11 0.00 0.00 0.11 0.88 0.01 0.00 0.02 098 0.00 0.00
Llama-3-8B Medical Indications | 0.54  0.08 0.37 0.00 0.10 054 0.36 0.00 0.01 0.66 0.32 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Llama-3.1-8B-Instruct Medical Indications | 0.18  0.10 0.73 0.00 0.08 0.14 0.78 0.00 0.20 0.32 0.48 0.00
Word Definitions 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
City Locations 091 0.07 0.02 0.00 0.07 0.90 0.03 0.00 0.02 098 0.01 0.00
Llama-3.2-3B Medical Indications | 0.64  0.05 0.31 0.00 0.10 0.18 0.72 0.00 0.01 0.56 0.43 0.00
Word Definitions 0.38 0.03 0.59 0.00 0.09 0.08 0.82 0.00 0.01 0.16 0.83 0.00
City Locations 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Llama-3.2-3B-Instruct Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 0.82 0.0l 0.17 0.00 041 0.07 0.52 0.00 051 047 0.02 0.00
Llama3-Med42-8B Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Mistral-7B-Instruct-v0.3 ~ Medical Indications | 0.35  0.05 0.60 0.00 024 0.11 0.65 0.00 023 032 0.45 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 0.88 0.06 0.06 0.00 024 056 0.20 0.00 034 050 0.16 0.00
Mistral-7B-v0.3 Medical Indications | 0.11 0.14 0.75 0.00 0.06 0.13 0.81 0.00 0.00 0.39 0.61 0.00
Word Definitions 0.76  0.00 0.24 0.00 031 0.01 0.68 0.00 0.34 0.08 0.58 0.00
City Locations 090 0.04 0.06 0.00 0.05 0.87 0.08 0.00 0.05 0.88 0.08 0.00
Qwen-2.5-14B Medical Indications | 0.11  0.02 0.87 0.00 0.09 0.02 0.89 0.00 0.01 0.07 0.93 0.00
Word Definitions 0.52  0.00 0.47 0.00 029 0.01 0.70 0.00 029 0.12 0.59 0.00
City Locations 0.87 0.00 0.13 0.00 0.02 0.17 0.81 0.00 0.26 0.01 0.73 0.00
Qwen-2.5-14B-Instruct Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 091 0.06 0.03 0.00 0.11 0385 0.05 0.00 0.28 0.66 0.06 0.00
Qwen-2.5-7B Medical Indications | 0.10  0.09 0.81 0.00 0.07 0.08 0.85 0.00 0.00 0.13 0.87 0.00
Word Definitions 0.39 0.01 0.60 0.00 0.11 0.03 0.86 0.00 0.09 0.11 0.81 0.00
City Locations 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00  0.00 0.00 0.00
Qwen-2.5-7B-Instruct Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
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Table 29: Row-wise confusion matrices for supervised PCA probe with conformal prediction
intervals (sPCA+CP) across all (model-dataset pairs) (evaluated on the last token representation).
Each row corresponds to a specific model and a dataset. Columns are grouped by the ground-truth
labels (True, False, Neither) with groups of subcolumns that specify the distribution of predictions
(true, false, neither, abstain). For each statement in a dataset, the predicted class is the class with the
highest probability (as estimated by MD+CP). The values in each group of four subcolumns sum to 1
because they are normalized counts. For example, in the first row under the True ground-truth label,
we see that true predictions have the value of 0.90 — that means that 90% of all the true statements
are classified as true.

True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 090 0.02 0.09 0.00 0.01 092 0.07 0.00 0.04 0.75 0.21 0.00
Bio-Medical-Llama-3-8B  Medical Indications | 0.74  0.10 0.16 0.00 0.09 0.79 0.13 0.00 0.06 0.79 0.15 0.00
Word Definitions 0.80 0.11 0.09 0.00 0.10 0.83 0.07 0.00 039 054 0.07 0.00
City Locations 0.89 0.03 0.08 0.00 001 093 0.06 0.00 0.00 098 0.02 0.00
Gemma-2-9B Medical Indications | 0.83  0.11 0.06 0.00 0.09 0.84 0.07 0.00 0.03  0.86 0.11 0.00
Word Definitions 0.87 0.10 0.03 0.00 0.08 0.89 0.04 0.00 042 050 0.08 0.00
City Locations 0.86 0.10 0.03 0.00 0.05 093 0.02 0.00 0.47 0.49 0.04 0.00
Gemma-2-9B-it Medical Indications | 0.79  0.10 0.10 0.00 0.07 0.81 0.12 0.00 041 028 0.31 0.00
Word Definitions 0.79 0.13 0.08 0.00 0.09 0.86 0.05 0.00 038 0.52 0.10 0.00
City Locations 0.89 0.00 0.11 0.00 0.00 091 0.09 0.00 0.14 029 0.57 0.00
Gemma-7B Medical Indications | 0.78  0.09 0.13 0.00 0.08 0.81 0.11 0.00 023 049 0.27 0.00
Word Definitions 0.84 0.08 0.08 0.00 0.09 0.83 0.07 0.00 042 042 0.16 0.00
City Locations 086 0.04 0.10 0.00 0.02 092 0.07 0.00 0.10 0.60 0.30 0.00
Gemma-7B-it Medical Indications | 0.62  0.09 0.28 0.00 0.10 0.66 0.24 0.00 0.46  0.46 0.07 0.00
Word Definitions 0.80  0.08 0.12 0.00 0.07 0.84 0.10 0.00 033 049 0.18 0.00
City Locations 0.88 0.02 0.10 0.00 0.01 091 0.08 0.00 0.70 0.12 0.19 0.00
Llama-3-8B Medical Indications | 0.84 0.12 0.05 0.00 0.11 0385 0.04 0.00 035 0.56 0.09 0.00
Word Definitions 0.85 0.09 0.07 0.00 0.08 0.86 0.07 0.00 0.49 043 0.08 0.00
City Locations 0.88 0.12 0.01 0.00 0.07 093 0.00 0.00 052 048 0.00 0.00
Llama-3.1-8B-Instruct Medical Indications | 0.83  0.11 0.06 0.00 0.08 0.84 0.08 0.00 025 0.59 0.15 0.00
Word Definitions 0.89 0.07 0.03 0.00 0.07 091 0.02 0.00 048 048 0.04 0.00
City Locations 092 0.04 0.04 0.00 0.03 093 0.04 0.00 039 058 0.03 0.00
Llama-3.2-3B Medical Indications | 0.73  0.11 0.16 0.00 0.09 0.79 0.13 0.00 0.07 0.72 0.21 0.00
Word Definitions 0.77 0.07 0.16 0.00 0.09 0.81 0.10 0.00 0.28 0.49 0.22 0.00
City Locations 0.88 0.12 0.00 0.00 0.09 091 0.00 0.00 0.89 0.11 0.00 0.00
Llama-3.2-3B-Instruct Medical Indications | 0.67 0.10 0.23 0.00 0.09 0.70 0.20 0.00 026 049 0.25 0.00
Word Definitions 0.69 0.11 0.20 0.00 0.07 0.76 0.17 0.00 0.37 043 0.21 0.00
City Locations 091 0.01 0.08 0.00 0.00 092 0.08 0.00 026 0.16 0.57 0.00
Llama3-Med42-8B Medical Indications | 0.80  0.12 0.07 0.00 0.08 0.87 0.05 0.00 024  0.65 0.11 0.00
Word Definitions 091 0.09 0.00 0.00 0.07 092 0.00 0.00 051 0.49 0.00 0.00
City Locations 090 0.04 0.06 0.00 0.04 0.89 0.06 0.00 0.46 050 0.03 0.00
Mistral-7B-Instruct-v0.3 ~ Medical Indications | 0.79  0.11 0.10 0.00 0.09 0.81 0.10 0.00 0.48 0.46 0.07 0.00
Word Definitions 0.836 0.13 0.01 0.00 0.11 0.88 0.01 0.00 043 056 0.02 0.00
City Locations 0.86  0.00 0.14 0.00 0.00 091 0.08 0.00 0.17 045 0.38 0.00
Mistral-7B-v0.3 Medical Indications | 0.80 0.10 0.10 0.00 0.10 0.84 0.07 0.00 042 046 0.12 0.00
Word Definitions 0.86 0.09 0.05 0.00 0.09 0.87 0.03 0.00 043 048 0.09 0.00
City Locations 092 0.01 0.07 0.00 0.01 093 0.06 0.00 0.13 047 0.40 0.00
Qwen-2.5-14B Medical Indications | 0.85 0.11 0.04 0.00 0.08 0.88 0.05 0.00 037 0.56 0.07 0.00
Word Definitions 0.89 0.10 0.01 0.00 0.10 0.89 0.01 0.00 0.48 0.49 0.03 0.00
City Locations 093 0.04 0.03 0.00 0.05 092 0.03 0.00 051 049 0.01 0.00
Qwen-2.5-14B-Instruct Medical Indications | 0.87 0.11 0.02 0.00 0.09 0.89 0.02 0.00 023 0.71 0.06 0.00
Word Definitions 090 0.10 0.00 0.00 0.09 091 0.00 0.00 035 0.65 0.00 0.00
City Locations 0.89 0.06 0.06 0.00 0.03 092 0.04 0.00 0.52  0.46 0.02 0.00
Qwen-2.5-7B Medical Indications | 0.80 0.11 0.10 0.00 0.08 0.83 0.09 0.00 039 047 0.14 0.00
Word Definitions 0.87 0.10 0.03 0.00 0.08 0.89 0.03 0.00 0.40 0.53 0.07 0.00
City Locations 0.89 0.02 0.09 0.00 0.02 091 0.07 0.00 0.50 0.43 0.06 0.00
Qwen-2.5-7B-Instruct Medical Indications | 0.80 0.11 0.08 0.00 0.12 082 0.06 0.00 0.44 049 0.06 0.00
Word Definitions 0.85 0.10 0.05 0.00 0.10 0.88 0.03 0.00 045 051 0.04 0.00
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Table 30: Row-wise confusion matrices for supervised PCA probe with conformal prediction
intervals (sPCA+CP) across all (model-dataset pairs) (evaluated on the bag). Each row corresponds
to a specific model and a dataset. Columns are grouped by the ground-truth labels (True, False,
Neither) with groups of subcolumns that specify the distribution of predictions (true, false, neither,
abstain). For each statement in a dataset, the predicted class is the class with the highest probability
(as estimated by MD+CP). The values in each group of four subcolumns sum to 1 because they are
normalized counts. For example, in the first row under the True ground-truth label, we see that true
predictions have the value of 1.00 — that means that 100% of all the true statements are classified as

true.
True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Bio-Medical-Llama-3-8B  Medical Indications | 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Word Definitions 0.81 0.03 0.17 0.00 0.72  0.07 0.21 0.00 0.68 0.07 0.25 0.00
City Locations 0.98 0.00 0.02 0.00 0.54  0.04 0.41 0.00 0.06 024 0.70 0.00
Gemma-2-9B Medical Indications | 0.86  0.03 0.11 0.00 044 0.33 0.23 0.00 0.00 0.84 0.15 0.00
Word Definitions 096 0.01 0.03 0.00 0.88 0.06 0.07 0.00 0.71 0.16 0.13 0.00
City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Gemma-2-9B-it Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 0.95 0.00 0.05 0.00 0.61 0.09 0.31 0.00 0.55 0.15 0.30 0.00
City Locations 1.00  0.00 0.00 0.00 097 0.01 0.02 0.00 1.00  0.00 0.00 0.00
Gemma-7B Medical Indications | 0.27  0.01 0.72 0.00 0.18 0.03 0.79 0.00 0.40 0.05 0.55 0.00
Word Definitions 0.82 0.00 0.17 0.00 0.53 0.03 0.44 0.00 0.53 0.03 0.44 0.00
City Locations 090 0.01 0.09 0.00 0.02 0382 0.16 0.00 0.1T 0.51 0.37 0.00
Gemma-7B-it Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 0.88 0.01 0.11 0.00 037 0.15 0.48 0.00 0.52  0.14 0.35 0.00
City Locations 096 0.03 0.02 0.00 042 049 0.09 0.00 0.54 0.40 0.06 0.00
Llama-3-8B Medical Indications | 0.82  0.10 0.08 0.00 0.12 078 0.10 0.00 0.44 045 0.11 0.00
Word Definitions 095 0.01 0.04 0.00 0.86 0.02 0.12 0.00 0.78 0.06 0.16 0.00
City Locations 091 0.00 0.09 0.00 0.00 0.76 0.24 0.00 0.05 035 0.59 0.00
Llama-3.1-8B-Instruct Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
City Locations 091 0.04 0.05 0.00 0.05 0387 0.08 0.00 024  0.53 0.23 0.00
Llama-3.2-3B Medical Indications | 0.75  0.05 0.20 0.00 0.12 041 0.47 0.00 0.18 0.48 0.34 0.00
Word Definitions 0.75 0.00 0.24 0.00 043 0.02 0.55 0.00 0.41 0.03 0.56 0.00
City Locations 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Llama-3.2-3B-Instruct Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
City Locations 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Llama3-Med42-8B Medical Indications | 0.94  0.01 0.05 0.00 0.67 0.17 0.16 0.00 0.89 0.04 0.07 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
City Locations 0.88 0.01 0.11T 0.00 0.01 0.86 0.13 0.00 026 0.16 0.59 0.00
Mistral-7B-Instruct-v0.3 ~ Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 0.84 0.01 0.15 0.00 0.76  0.03 0.21 0.00 0.79  0.02 0.19 0.00
Mistral-7B-v0.3 City Locations 1.00  0.00 0.00 0.00 0.98 0.00 0.02 0.00 1.00  0.00 0.00 0.00
Medical Indications | 0.80  0.06 0.15 0.00 0.11 0.66 0.23 0.00 024 049 0.27 0.00
Word Definitions 0.87 0.02 0.10 0.00 049 0.19 0.32 0.00 0.42  0.30 0.28 0.00
Qwen-2.5-14B City Locations 098 0.00 0.02 0.00 045 032 0.24 0.00 0.53 037 0.10 0.00
Medical Indications | 0.83  0.06 0.11 0.00 026 037 0.37 0.00 0.17 049 0.34 0.00
Word Definitions 0.96  0.00 0.03 0.00 0.87 0.03 0.10 0.00 0.89 0.02 0.09 0.00
Qwen-2.5-14B-Instruct City Locations 1.00  0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Medical Indications | 0.84  0.08 0.09 0.00 0.10 0.82 0.09 0.00 0.15 0.71 0.14 0.00
Word Definitions 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Qwen-2.5-7B City Locations 093 0.0l 0.06 0.00 0.19 054 0.28 0.00 022 051 0.27 0.00
Medical Indications | 0.36  0.05 0.59 0.00 032  0.08 0.59 0.00 023 0.17 0.60 0.00
Word Definitions 0.97 0.00 0.03 0.00 092 0.01 0.06 0.00 0.97 0.01 0.03 0.00
Qwen-2.5-7B-Instruct City Locations 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00  0.00 0.00 0.00
Medical Indications | 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00 1.00  0.00 0.00 0.00
Word Definitions 0.85 0.09 0.06 0.00 0.16 0.77 0.07 0.00 036 053 0.11 0.00
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Table 31: Row-wise confusion matrices for the multiclass sAwMIL across all (model-dataset
pairs) (evaluated on the bag). Each row corresponds to a specific model and a dataset. Columns are
grouped by the ground-truth labels (True, False, Neither) with groups of subcolumns that specify the
distribution of predictions (true, false, neither, abstain). For each statement in a dataset, the predicted
class is the class with the highest probability (as estimated by multiclass sAwMIL). The values in each
group of four subcolumns sum to 1 because they are normalized counts. For example, in the first row
under the True ground-truth label, we see that true predictions have the value of 0.80 — that means
that 80% of all the true statements are classified as true. In other words, each row is a flattened (and
normalized) confusion matrix.

True Labels — True False Neither
Predicted — True False Neither Abstain | True False Neither Abstain | True False Neither Abstain
Model | Data Set |
City Locations 0.80 0.01 0.00 0.18 0.00 0.88 0.00 0.11 0.00 0.00 1.00 0.00
Bio-Medical-Llama-3-8B  Medical Indications | 0.77  0.10 0.00 0.12 0.10 0.81 0.01 0.08 0.00 0.00 1.00 0.00
Word Definitions 0.86 0.09 0.01 0.03 0.11 0.87 0.01 0.02 0.00 0.01 0.98 0.01
City Locations 0.87 0.00 0.00 0.13 0.00 0385 0.00 0.15 0.00 0.00 1.00 0.00
Gemma-2-9B Medical Indications | 0.81  0.08 0.01 0.11 0.10 0.73 0.01 0.16 0.01  0.00 0.97 0.02
Word Definitions 0.86 0.10 0.00 0.04 0.11 0385 0.01 0.03 0.01 0.01 0.98 0.00
City Locations 0.85 0.02 0.02 0.12 0.02 0387 0.00 0.11 0.00 0.00 0.98 0.02
Gemma-2-9B-it Medical Indications | 0.76  0.10 0.01 0.13 0.07 0.84 0.01 0.09 0.01  0.00 0.99 0.01
Word Definitions 0.833 0.08 0.00 0.08 0.07 0.88 0.01 0.05 0.00 0.01 0.98 0.01
City Locations 0.86 0.01 0.00 0.13 0.01 0.89 0.00 0.11 0.00 0.00 1.00 0.00
Gemma-7B Medical Indications | 0.75  0.09 0.00 0.17 0.08 0.73 0.01 0.18 0.01 0.01 0.95 0.04
Word Definitions 0.82 0.11 0.04 0.02 0.15 0.81 0.01 0.03 0.02 0.01 0.95 0.01
City Locations 0.836 0.02 0.01 0.11 0.02 0387 0.00 0.11 0.00 0.00 0.99 0.01
Gemma-7B-it Medical Indications | 0.58  0.05 0.01 0.35 0.15 0.50 0.00 0.35 0.00 0.01 0.94 0.05
Word Definitions 0.69 0.16 0.04 0.11 0.12  0.77 0.03 0.07 0.01 0.01 0.96 0.01
City Locations 0.87 0.01 0.00 0.12 0.01 0385 0.00 0.14 0.00 0.00 1.00 0.00
Llama-3-8B Medical Indications | 0.78  0.09 0.01 0.12 0.11 0.77 0.01 0.11 0.00 0.01 0.98 0.01
Word Definitions 0.87 0.12 0.00 0.00 0.13 0385 0.01 0.00 0.01 0.01 0.97 0.00
City Locations 0.87 0.02 0.00 0.11 0.02 0.86 0.00 0.13 0.00 0.00 1.00 0.00
Llama-3.1-8B-Instruct Medical Indications | 0.80  0.12 0.00 0.09 0.09 0385 0.00 0.06 0.00 0.00 1.00 0.00
Word Definitions 0.87 0.06 0.00 0.07 0.07 0.86 0.00 0.06 0.00 0.01 0.98 0.01
City Locations 0.84 0.03 0.00 0.12 0.04 0.86 0.01 0.09 0.00 0.01 0.99 0.01
Llama-3.2-3B Medical Indications | 0.71  0.10 0.00 0.19 0.09 0.70 0.01 0.20 0.00 0.00 0.98 0.02
Word Definitions 0.74 0.14 0.02 0.10 0.11 0.77 0.02 0.10 0.01 0.01 0.96 0.02
City Locations 0.86 0.02 0.00 0.11 0.02 0.82 0.00 0.16 0.00 0.00 1.00 0.00
Llama-3.2-3B-Instruct Medical Indications | 0.67 0.12 0.00 0.21 0.11 0.72 0.00 0.18 0.00 0.00 0.99 0.01
Word Definitions 0.86 0.11 0.03 0.00 0.14 0.85 0.01 0.00 0.01 0.01 0.98 0.00
City Locations 0.87 0.01 0.00 0.12 001 084 0.00 0.15 0.00 0.00 0.99 0.01
Llama3-Med42-8B Medical Indications | 0.81  0.10 0.00 0.10 0.11  0.82 0.00 0.07 0.00  0.00 1.00 0.00
Word Definitions 0.86 0.06 0.01 0.06 0.08 0.85 0.00 0.07 0.01 0.01 0.97 0.02
City Locations 0.86 0.01 0.00 0.13 0.01 0.79 0.00 0.19 0.00 0.00 1.00 0.00
Mistral-7B-Instruct-v0.3 ~ Medical Indications | 0.77  0.09 0.00 0.14 0.10 0.76 0.00 0.14 0.00 0.01 0.99 0.01
Word Definitions 0.84 0.08 0.03 0.05 0.09 0.87 0.01 0.03 0.01 0.01 0.98 0.01
City Locations 0.86 0.01 0.00 0.13 0.01 0.86 0.00 0.13 0.00 0.00 1.00 0.00
Mistral-7B-v0.3 Medical Indications | 0.75  0.08 0.00 0.17 0.09 0.76 0.00 0.15 0.00 0.00 0.99 0.01
Word Definitions 0.87 0.11 0.02 0.00 0.14 0.85 0.01 0.00 0.01 0.01 0.98 0.00
City Locations 0.87 0.01 0.00 0.12 0.01 0.86 0.00 0.13 0.00 0.00 0.99 0.01
Qwen-2.5-14B Medical Indications | 0.78  0.12 0.00 0.10 0.11 0.76 0.00 0.13 0.00 0.00 0.99 0.00
Word Definitions 0.86 0.12 0.02 0.00 0.13  0.86 0.01 0.00 0.01 0.02 0.98 0.00
City Locations 0.82 0.01 0.00 0.17 0.01 0.87 0.00 0.11 0.00 0.00 1.00 0.00
Qwen-2.5-14B-Instruct Medical Indications | 0.80 0.12 0.01 0.07 0.07 0.86 0.01 0.07 0.00 0.00 0.99 0.00
Word Definitions 0.86 0.07 0.01 0.05 0.06 0.86 0.00 0.08 0.00 0.01 0.98 0.01
City Locations 0.84 0.01 0.00 0.16 001 084 0.00 0.14 0.00 0.00 1.00 0.00
Qwen-2.5-7B Medical Indications | 0.74  0.10 0.01 0.15 0.10 0.77 0.01 0.13 0.00 0.00 0.98 0.01
Word Definitions 0.83 0.12 0.02 0.03 0.10 0.87 0.01 0.03 0.01 0.01 0.97 0.01
City Locations 0.82 0.02 0.01 0.15 0.02 0385 0.00 0.13 0.00 0.00 0.99 0.01
Qwen-2.5-7B-Instruct Medical Indications | 0.78  0.08 0.01 0.13 0.14 072 0.02 0.12 0.01 0.01 0.98 0.01
Word Definitions 083 0.13 0.02 0.02 0.09 0.87 0.02 0.02 0.01 0.01 0.97 0.01
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L Related Resources

Code

The code associated with this manuscript is publicly available on GitHub at
carlomarxdk/trilemma-of-truth (release version 0.7).

Data

The data used in this study are publicly available on Hugging Face at
carlomarxdk/trilemma-of-truth (DOI:|10.57967/hf/5900).

Extended Manuscript

The manuscript with additional results is available on ArXiv: |10.48550/arXiv.2506.23921
(Version 2 from July 8, 2025).
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