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Abstract

The public often attributes human characteristics to large language models (LLMs)1

and claims that they “know” certain things. LLMs have an internal probabilis-2

tic knowledge that represents information retained during training. This study3

analyzes two common methods for probing the veracity of LLMs and identifies4

several flawed underlying assumptions. To address these flawed assumptions, we5

introduce sAwMIL (short for Sparse Aware Multiple-Instance Learning). sAwMIL6

uses multiple-instance learning and conformal prediction, while leveraging internal7

activations of LLMs to classify statements as true, false, or neither. We evaluate8

sAwMIL across 16 open-source LLMs, including both default and chat-based vari-9

ants, as well as on three new curated datasets. We show that (1) the veracity signal10

is often concentrated in the third quarter of an LLM’s depth; (2) truth and falsehood11

signals are not always symmetric; and (3) LLMs encode a third type of signal12

that is distinct from both true and false. These findings provide a reliable method13

for verifying what LLMs “know” and how certain they are of their probabilistic14

internal knowledge.15

1 Introduction16

Can we trust the content that large language models (LLMs) generate? Recent literature suggests that17

LLMs indeed have internal probabilistic knowledge [1, 2, 3, 4, 5]. However, our understanding of how18

LLMs use their internal knowledge (if at all) remains fragmented. We know that LLMs are indifferent19

to the veracity of their outputs [6], and often hallucinate [7]. More than that, it is often difficult for20

human users to recognize a hallucination because LLMs produce fluent and persuasive texts. For21

example, Church [8] shows that students trust factually incorrect answers from GPT due to their22

authoritative and confident tones; and Williams et al. [9] demonstrate that users rate disinformation23

generated by LLMs as equally or even more credible than human-generated content. Thus, we need a24

method that can assess the veracity of the internal probabilistic knowledge to improve interactions25

with LLMs. Thus, We need a way to assess the truthfulness of internal probabilistic knowledge to26

make LLM interactions more reliable.27

Prompt-based evaluations (see Fig. 1A) rely on the idea that we can simply ask LLM about its28

knowledge. Abbasi Yadkori et al. [10] introduces an information-theoretic prompt-based evaluation,29

while Xu et al. [11] propose a training framework to produce prompts with self-reflective rationales,30

and Farquhar et al. [12] introduce uncertainty estimators to detect inconsistent text-generations.31

However, prompt-based evaluations are sensitive to the input’s phrasing [13] and content [14].32

A more direct approach is to examine how LLMs represent text internally (see Fig. 1B). Consider33

a large language model, M, with vocabulary V . The LLM maps input text x to a probability34

distribution over subsequent tokens, denoted PM:35

M (x) = PM(τ | x), where τ ∈ V (1)
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Zero-shot Prompt

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:
 1. The statement is correct.
 2. The statement is incorrect.
 3. I do not have sufficient knowledge.
 4. The statement is too ambiguous.
 5. All of the above.
 6. None of the above.

Please respond with the corresponding number. 
The final answer is
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Figure 1: Overview of methods for probing veracity in LLMs. (A) In zero-shot prompting, a target
statement is inserted into a structured prompt instructing the LLM to select an answer from a specific
set of tokens. The LLM’s prediction is based on the probabilities of these tokens. This method
treats the model as a black box and examines its ⟨input, output⟩ pairs. (B) In representation-based
probing, the analysis is done on the internal representations generated by intermediate decoders. (B1)
The mean-difference probe [15] is a common method for determining the veracity of a statement
based on the representation of the last token. This approach outputs probabilities for true or false
statements, but cannot account for statements that lack a definitive truth value. (B2) Our probe,
multiclass sparse aware MIL (sAwMIL), looks at the representation of every token in a statement and
provides probabilities for three classes: true, false, and neither. Multiclass sAwMIL can account for
cases when the LLM does not have any knowledge about the statement.

For any token τ ∈ V , the distribution PM (τ | x) denotes the probability that τ is the continuation of36

the sequence x. To compute the conditional distribution PM, an LLM transforms x into intermediate37

neural activations denoted hi (x) ∈ RL×d. Here hi (x) denotes the neural activations ofM after38

the ith decoder, d stands for the hidden dimensionality of the decoder, and L stands for the length of39

the sequence x. We can probe these intermediate activations to identify veracity signals – isolating40

activation patterns that identify truthful statements.1 For example, Azaria and Mitchell [16] train41

a neural network to classify statements as true or false based on these internal representations.42

Similarly, Marks and Tegmark [15] use a mean-difference classifier to linearly separate the true or43

false statements (see Fig. 1B1). Further examples include the unsupervised method introduced by44

Bürger et al. [17] and a semi-supervised method based on the contrastive pairs of statements [18].45

Collectively, these works rely on the idea that given a data set ⟨x, y⟩ ∈ D with some statements x and46

veracity labels y ∈ Z, we can train a probe gi that maps neural activations hi (x) into the distribution47

GM overM’s veracity labels:48

gi (hi (x)) = GM(z | x), where z ∈ {true, false} (2)

1We use the terms ‘pattern’ and ‘signal’ interchangeably. Similarly, ‘neurons’ and ‘features’ are used to refer
to individual components of a signal. In this context, a signal or pattern denotes a set of features that operate
collectively.

2



However, we observe that existing probing methods often rely on flawed assumptions, which limit the49

reliability of their findings (for overview refer to Supplementary Tab. 4). We argue for a three-valued50

logic approach (as in Fig. 1B2) as the more appropriate method for modeling veracity in LLMs. Our51

method sAwMIL (short for Sparse Aware Multiple-Instance Learning) combines Multiple Instance52

Learning (MIL) [19] and Conformal Predictions (CP) [20] to allow for a flexible probe that can53

handle ‘neither’ statements and quantify uncertainty.54

In summary, our contributions include the following.55

1. We identify and discuss five flawed assumptions in the current veracity-probing literature.56

2. We propose a novel multiclass linear probing method sAwMIL based on Multiple Instance57

Learning (MIL) [19] and Conformal Prediction [20, 21].58

3. We present three new data sets containing statements labeled true, false, and neither2 to59

enable more rigorous evaluations of veracity probes.60

2 Background and Flawed Assumptions When Probing Veracity in LLMs61

An LLM,M, has internal probabilistic knowledge KM, which it acquires during training.3 To62

determine the veracity of a statement ϕ, the modelM should be able to distinguish between three63

scenarios:64

1. ϕ is True if there is sufficient support for ϕ given KM:65

P(ϕ | KM) ≥ ζ, where ζ ∈ (0, 1] is a threshold.

2. ϕ is False if there is sufficient support for ¬ϕ given KM:66

P(¬ϕ | KM) ≥ ζ, where ζ ∈ (0, 1] is a threshold.

3. ϕ is Neither if there is not sufficient support for ϕ and ¬ϕ given KM:67 [
P(ϕ | KM) < ζ

]
and

[
P(¬ϕ | KM) < ζ

]
, where ζ ∈ (0, 1] is a threshold.

IfM has a mechanism to determine the veracity of a statement ϕ, thenM should encode the signal68

associated with the veracity in its intermediate activations:69

1. Truthfulness:M generates an activation pattern that encodes support for ϕ in KM, reflect-70

ing the model’s internal support for the statement ϕ.71

2. Falsehood:M produces an activation pattern that reflects a lack of sufficient support for ϕ,72

instead indicating that the internal knowledge KM provides stronger support for ¬ϕ (e.g.,73

signaling a contradiction or misalignment with known facts).74

3. Neither:M should encode the lack of support for ϕ and ¬ϕ, indicating that the veracity of75

ϕ is currently undefined. That is, ϕ is neither true nor false.76

2.1 Flawed Assumptions When Probing Veracity in LLMs77

To train and evaluate a veracity probe gi , a labeled data set D is assembled. This data set consists of78

pairs of neural activations and ground-truth labels, denoted as ⟨hi(x), y⟩, where hi is the activations79

after the ith decoder and labels y specify the veracity label Z. In most cases, Z ∈ {true, false}. The80

probe gi is trained on the train split Dtrain ⊆ D and evaluated on the test split Dtest ⊆ D. The81

intersection between Dtrain and Dtest is empty.82

We focus exclusively on linear probes, where the parameters of gi define a linear direction ν⃗i for the83

veracity signal after the ith decoder ofM:84

gi(x) = xθT + b , where θ ∈ R1×d, b ∈ R are parameters learned on Dtrain and x ∈ R1×d. (3)

2Throughout the paper, we use the terms neither, neither-valued, neither-type, and neither-true-nor-false
interchangeably to refer to statements that are neither true nor false. When used as a class label, we italicize
neither to distinguish it from the regular use of the word. We similarly italicize words such as true and false
when referring to class labels.

3Supplementary Tables 2 and 3, respectively, list the notations and abbreviations used in this paper.
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Next, we provide a detailed overview of the flawed assumptions made in the existing literature. Refer85

to the Supplementary Tab. 4 for a condensed overview of flawed assumptions.86

Flawed Assumption I: Truth and falsehood are bidirectional. To determine the veracity of a87

statement ϕ, an LLMMmust develop a mechanism to detect ϕ’s truth or falsehood.4 This mechanism88

must rely on M’s neural activations to find support for ϕ by using M’s internal probabilistic89

knowledge KM. Existing veracity probes [15, 17, 18, 22] implicitly assume that truth and falsehood90

are encoded bidirectionally. That is,91

P (ϕ | KM) = 1− P (¬ϕ | KM) (4)

This formulation implies (1) a closed-world assumption, where any statement ϕ not confirmed as true92

is considered false, and (2) each decoder symmetrically encodes a signal corresponding to falsehood93

and truthfulness. However, there is little support to justify either scenario. Similarly, Bürger et al.94

[17] and Marks and Tegmark [15] suggest that veracity exists along more than two directions.95

Valid Assumption I (Truthfulness and falsehood have distinct directions). The representation of truth96

and falsehood requires more than one direction. This is, P (ϕ | KM) ̸= 1− P (¬ϕ | KM) .97

Flawed Assumption II: LLMs capture and retain everything we know. To train a probe gi, we use98

Dtrain that consists of pairs of factual statements and ground-truth labels ⟨xi, yi⟩, where (usually)99

y ∈
{

true, false
}

. The labels y that we assign to the statements in D are based on our knowledge100

(i.e., what we know to be true). Thus, the veracity labels in D are distributed according to GD.101

Our goal, however, is to train a veracity probe gi that classifies what the LLM deems to be true,102

false, or ‘neither’. So, the probe gi should map the statements to the space of the LLM’s internal103

probabilistic knowledge KM. However,M may follow a different distribution GM for the veracity104

labels. That is, GM may not be equivalent to GD. For example, we know that “The city of Bissau is105

in Congo” has a ground-truth label y = false, because we can check maps or official sources. On the106

other hand, we do not know howM labels it.107

Even though the majority of recent studies use open-source models the precise composition of108

their training data remains mostly unknown [23, 24]. Even with access to the data, we do not have109

straightforward methods to verify what has made it into the internal probabilistic knowledge KM.110

Thus, the ground-truth label distribution GD is not necessarily equivalent to the in-model label111

distribution GM. Recent probing methods [15, 18, 22, 25] cannot account for the mismatch between112

the label distributions. Instead, these probes introduce a systemic bias, where gi captures a signal that113

reflects our labeling choices rather than the model’s true internal representations.114

Valid Assumption II (LLMs do not capture and retain everything we know). The distribution of115

ground-truth labels GD may not be equivalent to the model’s label distribution GM.116

Flawed Assumption III: All veracity probes provide calibrated probabilities. Veracity probes are117

generally designed to predict discrete labels. That is, they are classification tasks where the probe118

assigns one of two labels to a given statement: gi : hi(x)→
{

true, false
}
. However, as Herrmann119

and Levinstein [26] point out, veracity probes should provide not only discrete labels, but also values120

that can be interpreted as degrees of belief (or some other alternative that quantifies confidence).121

Valid Assumption III (The probabilities generated by veracity probes are not inherently calibrated).122

The output of veracity probes gi may not be calibrated and require additional post-processing to be123

interpreted as meaningful estimates of confidence.124

Flawed Assumption IV: Every statement is either true or false. There are cases where the LLM125

lacks definitive evidence to determine if a statement is true or false. Suppose we have a veracity126

probe gi, which returns a probability of 0.5 for a given statement ϕ to be true. The question is how127

we should interpret this probability of 0.5. Probes like the mean-difference [15] cannot account for128

these scenarios. For instance, in Supplementary Sec. H, we show an example where the probe assigns129

high scores to pre-actualized and neither statements. To address the issue, we train probes that can130

account for neither cases, so that gi can reflect the insufficient evidence in KM. For instance, studies131

with human participants have shown that including options such as “other” or “I do not know” can132

help with data quality [27].133

4In this example, we assume that the veracity label is Z ∈ {true, false}.
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Valid Assumption IV (Some statements are neither true nor false). A probe gi should distinguish134

between the cases where the model M lacks sufficient support to assess the truthfulness of the135

statement ϕ, and the cases where ϕ lacks a veracity value.136

Flawed Assumption V: We know where the signal for veracity is stored. The majority of veracity137

probes are trained on the representation of the last token [15, 25]. For example, if the statement is138

“Boston is in the US.”, they assume the period alone carries all of the veracity signal. Such methods139

assume that any factual signal appearing n tokens before the end of the statement will be faithfully140

preserved until the last token. A more reasonable approach is to probe at the exact position where the141

statement is actualized—e.g., immediately after “in the” in the above example—rather than relying142

on the LLM to move that signal all the way to the end of the statement.143

Valid Assumption V (Position of the veracity token is not known a priori). Probes should include a144

flexible mechanism for identifying the optimal token positions from which to extract veracity signals,145

instead of relying on fixed positions such as the final token in the statement.146

A probe that directly addresses these flawed assumptions would better reflect the internal knowledge147

of the LLM and provide a clearer understanding of (1) the factual information encoded inM, (2)148

howM classifies statements as true, false, or neither, and (3) calibrated measures ofM’s confidence149

in its own probabilistic knowledge.150

3 Method151

To address the flawed assumptions, we propose a multiclass probe, called sAwMIL (short for sparse152

aware multiple-instance learning). It classifies statements into three classes: true, false, and neither.153

sAwMIL uses multiple-instance learning (MIL) [28] and conformal prediction (CP) [20].154

3.1 Sparse Aware Multiple-Instance Learning155

Algorithms such as logistic regression, support vector machines, and mean-difference classifiers156

belong to the single-instance learning (SIL) family, where each instance in the data set is individually157

labeled. In contrast, multiple-instance learning (MIL) is a type of weakly supervised learning that158

operates on a set of labeled bags [28]. A bag, B, is a set of related instances (e.g., patches extracted159

from the same image or embeddings of individual words in a sentence). Each bag has an associated160

binary label,5 but the labels for individual instances within the bag remain unknown. A positive161

label (y = 1) indicates that at least one instance in the bag B belongs to the positive class. Thus, an162

MIL algorithm must identify the most influential instances contributing to the bag’s label. These163

algorithms must consider the overall structure of the bag and simultaneously suppress irrelevant164

instances. Bunescu and Mooney [19] introduced sparse balanced MIL (sbMIL), an adaptation of165

linear support vector machines (SVM). It is designed for cases where bags are sparse and only a166

few instances within a bag are important. sbMIL has two training stages. In the first stage, it uses167

the MIL-modified SVM [19], referred to as sparse MIL (sMIL, see Fig. 4 in [19]). During this168

stage, the objective is to identify the most important instances within positive bags, pushing all other169

instances and negative bags toward the opposite side of the separating hyperplane. Once the initial170

model is trained, it computes the distribution of scores assigned to each instance in all positive bags.171

Then, it computes the η-quantile. η is the balancing hyperparameter. Instances scoring above the172

η threshold are marked as positive. In the second stage, it switches to the single-instance SVM. It173

works with individual samples, disregarding their original grouping into bags, and assigns them the174

labels determined during the first stage. We provide the pseudocode for sAwMIL in the Supplementary175

Alg. 1.176

3.1.1 Workflow177

One-vs-all sAwMIL. We modify sbMIL since we have an additional piece of information. We know178

which tokens come from the actualized part of the statement (e.g., “Latvia”) and which ones come179

from the pre-actualized part of the statement (e.g., “The city of Riga is in”).180

After we apply the η-quantile threshold, we add another round of filtering (see Supplementary Alg. 1,181

Step 6). Each bag has a set of instances xi, a binary bag label y, and intra-bag labels mi, where182

5For simplicity, we assume a binary label.
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Table 1: Composition of data sets used in this work. Number of true, false, and neither-valued
statements per data set. A stands for the number of affirmative statements, and N stands for the
number of negated statements. The last column displays example statements with ground truth labels.

Data Set True False Neither Examples

City
Locations

A: 1392
N: 1376

A: 1358
N: 1374

A: 876
N: 876

(True) The city of Mâcon is located in France.
(False) The city of Dharān is located in Ecuador.
(Neither) The city of Staakess is located in Marbate.

Word
Definitions

A: 1234
N: 1235

A: 1277
N: 1254

A: 1747
N: 1753

(True) Corsage is a synonym of a nosegay.
(False) Towner is not a type of a resident.
(Neither) Kharter is not a synonym of a greging

Medical
Indications

A: 1423
N: 1347

A: 1329
N: 1424

A: 478
N: 522

(True) PR-104 is indicated for the treatment of tumors.
(False) Zolpidem is indicated for the treatment of angina.
(Neither) Alostat is indicated for the treatment of candigemia.

mi ∈ {0, 1}Li . (Li is the number of items/tokens in the bag.) These intra-bag labels specify the183

instances where we expect to find a signal. Given a statement, x ← [xp,xa], all the tokens in the184

pre-actualized part xp have an intra-label of 0 (since the factual statement has not yet been actualized),185

and all the tokens in the actualized part xa have a label of 1. To label a sample, this sample should186

have a score above η-quantile, and it should be part of an actualized part xa.187

We use sAwMIL to train three one-vs-all sAwMIL probes that isolate distinct veracity signals:188

• is-true probe: separates tokens that carry a true signal from all others.189

• is-false probe: separates tokens that carry a false signal from all others.190

• is-neither probe: separates tokens that carry neither (not true or false) signal from all191

others.192

Multiclass sAwMIL Ideally, we want a multiclass probe that assigns probabilities to a statement being193

true, false, or neither. Thus, we assemble the one-vs-all sAwMIL probes into a multiclass probe194

via softmax regression, which takes the outputs of the one-vs-all probes and transforms them into195

multiclass probabilities. Formally196

pk =
exp(zk)∑
j exp(zj)

, (5)

where zk = gki (x) · αk + βk and k ∈ {is-true, is-false, is-neither}.197

3.2 Conformal Predictions198

Raw outputs from many models, such as Support Vector Machines (SVMs)—specifically, the distance199

to hyperplane score—are not meaningful as confidence measures. Wrapping SVM scores in a200

sigmoid function to force them into [0, 1] does not create calibrated probabilities as well. They201

can underestimate their true confidence unless they are explicitly calibrated. Thus, we introduce202

conformal learning into our probe.203

Conformal learning is a framework [20, 21] that enables us to transform raw scores into prediction204

sets with guaranteed coverage. Hence, it provides a method to account for uncertainty. Confor-205

mal prediction methods identify intervals within which the probes’ predictions are correct with a206

probability of 1− α. For a detailed description of the nonconformity scores [29], see Sec. G in the207

Supplementary Material.208

4 Experiments209

This section outlines our experimental setup, including the evaluation procedure, the data sets used,210

and the selection of large language models.211
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4.1 Data212

We introduce three new data sets consisting of factually true, factually false, and neither statements.213

The neither statements are the ones whose truthfulness value cannot be determined at the present214

moment (due to the lack of information). While several benchmark data sets for veracity and215

factuality evaluation exist, prior work has shown that some of these may be partially included in the216

pretraining or fine-tuning stages of LLMs [30]. In contrast, our goal was to minimize the risk of data217

contamination while also maintaining higher control over data provenance and quality. Hence, our218

data sets involve statements related to specific themes (see Tab. 1 for examples):219

• City Locations data set contains statements about cities and their corresponding countries220

extracted from the GeoNames geographical database.221

• Medical Indications data set consists of statements about the medications and their corre-222

sponding indications from the DrugBank 5.1 pharmaceutical knowledge base [31]. Medi-223

cations include the drug and substance names, while indications specify the symptoms or a224

disease/disorder.225

• Word Definitions data set is based on the WordsAPI dictionary. Hence, the statement226

involves words and their synonyms or relations.227

Every data set consists of negated statements like “The city of Riga is not located in Estonia.”6 and228

affirmative ones like “Menadione is indicated for the treatment of coughs.”7 We provide a detailed229

description of these data sets in the Supplementary Sec. C.230

Neither statements. If a statement ϕ is absent from the LLM’s internal probabilistic knowledge231

KM, then ϕ is neither true nor false. It is difficult to determine what statements are absent from KM232

because we generally do not have access to the training data sets used to train the LLMs. However,233

we can create neither statements with synthetic entities—i.e., entities that do not exist in the real234

world or fictional works. Since these objects are specifically generated for our experiments, it is235

highly unlikely that an LLM has learned anything about them during training. Thus, we can use them236

as substitutes for content that LLMs could not have learned—i.e., from the point of view of an LLM,237

these should be considered neither true nor false. For a detailed description of the generation [32] of238

neither-valued statements, see Sec. C.1 in the Supplementary Material.239

4.2 Language Models240

In our experiments, we use 16 open-source LLMs (ranging from 3 to 14 billion parameters) across241

4 families: Gemma/Gemma-2, Llama-3 (v3.1 and v3.2), Mistral-v0.3, and Qwen-2.5. These242

models run on consumer-grade hardware and are publicly available through HuggingFace [33]. We243

provide an overview of these models in Sec. D of the Supplementary Material.244

4.3 Evaluation245

In this work, we focus on the classification performance to evaluate how well probes can separate 3246

classes of statements: true, false, and neither. To do so, we use Matthew’s Correlation Coefficient247

(MCC) to summarize the statistical accuracy of probes (on the test sets); refer to Eq. 15 in the248

Supplementary Sec. I for the definition of the multiclass MCC. Note, MCC = 1 indicates that a249

classifier predicted every instance correctly. MCC = 0 implies that the predictions are random.250

MCC = −1 indicates that the predictions are inversely correlated with the ground-truth labels.251

Zero-shot prompting, one-vs-all sAwMIL, and multiclass sAwMIL can abstain from making predictions.252

If a probe abstains too often, it suggests poor performance. For these cases, we use Weighted-MCC253

(W-MCC), where the acceptance rate serves as the weight (see Eq. 6).254

W-MCC = MCC×
(
1− # abstained

# total predictions

)
(6)

In Supplementary Sec. I, we provide additional results demonstrating sAwMIL’s ability to generalize255

across datasets, and how the identified veracity directions ν⃗i can be used for targeted interventions on256

the output token distribution. For brevity, we do not cover these in the manuscript.257

6This statement is a factually true and negated statement.
7This statement is a factually false and affirmative statement.
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5 Results258

We compare three probing methods: (1) zero-shot prompting, (2) mean-difference probe with259

conformal prediction intervals (MD+CP), and (3) our multiclass sAwMIL probe. Overviews of zero-shot260

prompting and MD+CP are provided in Sections F and H.1 of the Supplementary Material. Fig. 2261

reports the performance metric for zero-shot prompting, MD+CP, and multiclass sAwMIL probe.262
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Figure 2: Performances of three probing methods. Panels A & B: Each marker shows a probe’s
performance for a ⟨model, dataset⟩ pair. Default models are shown with circles, while chat models
are shown with crosses. The different colors indicate the different data sets. Panel A shows the
comparison between the multiclass sAwMIL probe on the x-axis and the zero-shot prompting on the
y-axis. Panel B shows the comparison between the multiclass sAwMIL probe on the x-axis and the
mean-difference probe with conformal prediction intervals (MD+CP) on the y-axis. For the zero-shot
prompting and the multiclass sAwMIL probe, we report Weighted Matthew’s Correlation Coefficient,
and for the MD+CP we report the default MCC value. Panels C–E: They show confusion matrices
for the Qwen-2.5-14 (chat) model on the Word Definitions data set. Overall, multiclass sAwMIL
probe outperforms zero-shot prompting and MD+CP, especially when it comes to the separation of the
neither-valued statements (see panels C–E).

Zero-shot prompting. Fig. 2A shows that multiclass sAwMIL, with its representation-based probes,263

outperforms zero-shot prompting. We also observe that zero-shot prompting is less accurate for264

default models. It achieves the best performance on the relatively simple City Locations data set, but265

performs worse on the other two data sets. It also disproportionately predicts false: around a third266

of true and a third of neither statements are classified as false (see example in Fig. 2C). We see a267

similar skew in the confusion matrices of other models with zero-shot prompting (see Supplementary268

Tab. 16).269

Mean-difference probe with conformal prediction intervals (MD+CP). Fig. 2B shows that multiclass270

sAwMIL outperforms MD+CP. Unlike zero-shot prompting, the probes for the default and chat models271

exhibit a smaller difference in performance for representation-based probes. We further see that272

MD+CP does not perform well on neither statements (see Fig. 2D and Supplementary Tab. 17 for more273

details). It captures either a proxy or a mixture of signals corresponding to some other properties274

rather than veracity.275

Multiclass sAwMIL probe. As Figures 2A and 2B show the multiclass sAwMIL probe has the best276

overall performance. First, there are no significant performance differences between the chat and277

8



default models (as is the case with the MD+CP probe). Second, except for the Gemma-7B (a chat278

model) on Medical Indications, the multiclass sAwMIL probes achieve W-MCC values higher than279

70%, indicating strong performance. The confusion matrix in Fig. 2E demonstrates that sAwMIL has280

good separation between the true and false statements, and the probe correctly separates almost all of281

the neither statements. This ability to provide better separation of true, false, and neither statements282

is observed across all the models (for details, see Supplementary Tab. 18). Also, Sec. H.2 in the283

Supplementary Material contains results for the single-instance SVM.284

5.1 At which layer is the linear representation of veracity concentrated?285
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Figure 3: Decoders with median classification performance for the one-vs-all sAwMIL probes. The
number in the parentheses next to each model name indicates the total number of decoders for that
model. For example, the Qwen-2.5-14B default model has 47 decoders (i.e., 47 layers). We mark
decoders based on their associated W-MCC values. Each triangle marks the decoder at which the
cumulative metric reaches 50% of its total across all decoders. Thus, in Panel A, the is-true probe
for the Qwen-2.5-14B default model has a median decoder of 30, meaning that the sum of W-MCC
values over decoders 1–30 equals that over decoders 31–47. Panels A–C: Results for the three data
sets across 16 LLMs. First, the veracity signal usually resides between 0.5 and 0.75 in the relative
decoder depth. Second, classification performance indicates a slight mismatch between the signal
strengths for true and false statements.

Fig. 3 depicts the location of decoders based on median classification performance. If all decoders286

encoded the veracity information equally well, we would expect the median-performing decoder to287

occur around the midpoint of the model’s depth (i.e., at relative decoder depth of 0.5). However, as288

Panels A–C of Fig. 3 show the median performing decoders are located between 0.5 and 0.75 in the289

relative decoder depth of models. In particular, the veracity probes consistently perform better on290

deeper decoders for Qwen and Gemma (chat) models compared to Llama and Mistral models. Note291

that this pattern is consistent across all the data sets in Panels A–C of Fig. 3.292

When the median-performing decoders of the is-true and is-false probes coincide, this suggests293

a unified linear direction for truth and falsehood. That is, both truth and falsehood signals are equally294

present at every given decoder. This alignment is frequently observed across chat models. However, a295

mismatch often appears in the default models, where truth and falsehood are encoded asymmetrically296

across decoders or emerge at different depths within the model. Our analysis of the interventions297

shows a further discrepancy between the signal alignment (see Sec. I.2 in the Supplementary material).298

6 Conclusion299

In this work, we take a critical look at popular methods for probing the veracity of large language300

models (LLMs) and identify flawed assumptions underlying them. To address these flaws, we301

introduce sAwMIL, a multiclass linear probe that combines Multiple Instance Learning with Conformal302

Prediction Intervals. Unlike prior methods, sAwMIL models veracity using three classes: true, false,303

and neither. Across sixteen models and three datasets, sAwMIL outperforms existing probes and304

provides new insights into how veracity signals are localized within LLMs, revealing that they tend305

to concentrate in the third part of the network.306
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A Notations and Abbreviations415

Table 2: Notations used throughout the paper. Symbols are grouped by category: model definitions,
inputs and datasets, internal representations, veracity distributions, and intervention-related symbols.

Symbol Description Shape / Notes

M Large language model
KM Internal probabilistic knowledge of the model M
V Vocabulary of the model M, consists of tokens [τ1, . . . , τ|V|] ∈ V
PM (τ | x) Output of M: a conditional probability distribution on tokens

Inputs and Datasets

D Dataset of statements Dtrain ∪ Dtest = D
x Input token sequence, e.g., “The city of Riga is in Latvia.” L = |x|
xp Pre-actualized part of a statement, e.g., “The city of Riga is in”
xa Actualized part of a statement, e.g., “Latvia.”
r Random sequence with length |xa| |r| = |xa|
y Veracity label assigned to x y ∈ Z
ϕ A statement evaluated for veracity
TS Transition matrix for n-gram generation See Eq. 7

Internal Representations

d Size of the hidden representation (of a decoder)
hi(x) Activations after the ith decoder RL×d

hi(x)[j] Activation of the token at index j after ith decoder R1×d and j ∈ {1 . . . L}
hi(x)[n:m] Activations from nth to mth tokens after ith decoder R(m−n)×d

Veracity, Probes and Distributions

Z Set of veracity labels, e.g., {true, false, neither}
GD (z | x) Distribution of veracity labels z ∈ Z in a dataset D
GM (z | x) Distribution of veracity labels z ∈ Z in the model M
gi Veracity probe trained on activations of the ith decoder gi : hi(x) 7→ GM
ν⃗i Linear direction extracted from the probe gi R1×d

η Balancing hyperparameter for sAwMIL η ∈ (0, 1)
m sAwMIL’s intra-bag labels (i.e., labels per-token in each x) m ∈ {0, 1}L, L = |x|

Interventions and Effects (Sec. I.1.2)

I+i Modified representation of hi(x
a) after adding +ν⃗i

I−i Modified representation of hi(x
a) after subtracting −ν⃗i

∆I+i Change in PM for xa after I+i intervention
∆I−i Change in PM for xa after I+i intervention
sj(x) Per-statement success of the intervention; indicator function See Eq. 22
∆correct Total change in PM for xa after both I+i and I−i interventions
∆random Total change in PM for r random tokens after both interventions
E[∆correct] Average probability difference across all statements
di Indicator of the dominant direction for the i-th decoder di ∈ {−1, 1}
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Table 3: Abbreviations and naming conventions used throughout this paper.
Abbreviation Full Form Description

LLM Large Language Model
SIL Single-Instance Learning Probes on one embedding per example
MIL Multiple-Instance Learning
SVM Support Vector Machine
DPO Direct Preference Optimization LLM finetuning method
RLHF Reinforcement Learning from Human Feedback LLM finetuning method
CP Conformal Prediction Intervals Uncertainty calibration method
MD+CP Mean-Difference with Conformal Prediction Intervals MD probe with abstention via conformal intervals
sAwMIL Sparse Aware MIL probe Multiclass probe handling unknowns
MCC Matthews Correlation Coefficient Multiclass performance measure (see Eq. 15)
W-MCC Weighted-MCC Using Acceptance Rate as a weight (see Eq. 6)
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B Assumptions416

Tab. 4 provides an overview of the flawed assumptions in the recent probing methods.417

Table 4: Overview of flawed assumptions in recent methods that probe veracity, their impact on
reliability, and our corrective strategies. Probes that do not account for these issues may lead to
biased or unreliable findings.
Flawed Why It Matters Our Solution/Approach
Assumptions
Truth and falsehood
are bidirectional.

There is no conclusive evidence that LLMs treat
truth and falsehood as one continuous bidirec-
tional concept. It is more likely that there ex-
ist three separate concepts: is-true, is-false,
and is-neither; and they have their own distinct
mechanisms.

sAwMIL is a multiclass probe that
treats “true,” “false,” and “neither”
as separate categories.

LLMs capture and re-
tain everything we
know.

We do not know what LLMs have been exposed to
during training. Consequently, linear probes that
assume every fact in a data set is stored within
the LLM are prone to systematic errors in their
predictions. We must distinguish between what the
LLM actually retains and what we know to be true
or false. If a statement x is unknown to the LLM,
it is neither true nor false. In such cases, passing
⟨hi(x), true⟩ or ⟨hi(x), false⟩ to the probe during
training introduces error.

sAwMIL is a linear probe that iden-
tifies samples with high support
before fitting the linear separator.

All veracity probes
provide calibrated
probabilities.

Probes such as SVM or mean-group difference
classifiers often make a prediction based on the
sign (w.r.t. the separation hyperplane). We cannot
use these scores to evaluate certainty around the
predictions. In other words, these probes are rarely
calibrated.

sAwMIL integrates conformal pre-
diction to quantify uncertainty
and produce statistically valid pre-
diction regions.

Every token (or state-
ment) is either true or
false.

Not every token or sentence expresses a complete
factual claim. We should be able to create probes
that refrain from making predictions when there is
insufficient support.

Instead of training probes to dis-
tinguish between true and false
statements, sAwMIL is a multi-
class classifier that separates state-
ments into “true,” “false,” and
“neither.”

We know a priori
where to look for
veracity-related
signals.

Most existing probes assume that the last token
of a statement has all the information about the
veracity.

By using multiple-instance learn-
ing, sAwMIL is able to select parts
of the input that have the most in-
formation about veracity.
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C Data Sets418

We introduce three new data sets: City Locations, Medical Indications, and Word Definitions. Each419

dataset consists of statements that are factually true, factually false, or neither. These datasets contain420

both affirmative and negated statements. An example of a false negated statement is “Guaifenesin421

is not indicated for the treatment of coughs”, and an example of the true affirmative statement is422

“Shouter is a type of a communicator.”423

Data Splits. We split each data set into train, calibration, and test sets using approximately 55/20/25424

ratios (see Supplementary Tab. 5). We ensure that the objects mentioned in statements are exclusive to425

the split. For example, if Singapore is mentioned in a statement of the training set, all the statements426

with Singapore are moved to the training split.427

Table 5: Dataset splits. The number of statements per split. In the brackets, we specify the fraction of
the total number of statements.

Dataset Train Calibration Test Total
City Locations 3999 (.55) 1398 (.19) 1855 (.26) 7252 (1.00)

Medical Indications 3849 (.56) 1327 (.19) 1727 (.25) 6903 (1.00)
Definitions 4717 (.55) 1628 (.19) 2155 (.25) 6500 (1.00)

C.1 ‘Neither’ Statements428

Since we do not have access to the training data sets of LLMs, we cannot validate whether LLMs429

retained information about specific facts or entities. That is, we do not know the composition of the430

internal knowledge KM of an LLM. Hence, we cannot be certain about what each LLM can (and431

cannot) verify. To overcome this issue, we create neither statements with synthetic entities—i.e.,432

entities that do not exist in the real world or fictional works. The neither statements are the ones433

whose value cannot be determined at present (e.g., due to lack of information).434

Generation of ‘Neither’ Statements435

We use synthetic names to generate neither-type statements. For example, “The city of Staakess is436

located in Soldovadago” mentions a town and a country that do not exist. From the point of view437

of an LLM, these statements should be considered neither-true-nor-false, as LLMs could not have438

learned anything about these.439

To generate the neither statements, we use the Markov-Chain technique [32]. Given a set of440

existing words [w1, w2 . . . , wn] ∈ S, we break each word wi into n-grams, For instance, we break441

“ability” into the following 2-grams: [start]a ab bi il li it ty y[end]. We then compute a442

transition matrix TS , which provides the probability of transitioning from the n-gram i to n-gram j is443

given by:444

TS (j | i) = count (i→ j)∑
x count (i→ x)

(7)

In addition, we use TS to sample new synthetic words that follow the n-gram distribution of words445

in S. In our experiments, we use 3-grams for most entities, except for country names, which we446

generate with 2-grams. We use the namemaker8 package that implements a Markov-Chain word447

generator.448

C.2 Data Selection and Processing449

Next, we provide details on the source and processing steps for each dataset.450

8github.com/Rickmsd/namemaker
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City Locations451

The City Locations dataset is based on the GeoNames9 database. GeoNamesCache10 is a Python452

package that interacts with the GeoNames API. We use the following criteria to select a ⟨city, country⟩453

pair:454

1. The population of the city is at least 30,000.455

2. The city has an associated country. If a city name is associated with multiple countries, we456

include the ⟨city, country⟩ pair for each country. We exclude all cities that have “Antarctica”457

as a location or a country.458

Since the resulting set of ⟨city, correct country⟩ pairs is relatively large. We reduce the number of459

pairs by downsampling. In total, we select 1,400 unique city names: 700 cities with the highest460

populations, and 700 cities randomly sampled from the rest of the names.461

Statement Structure. For each ⟨city, correct country⟩ pair, we create statements of the form:462

The city of [city] is (not) located in [country].463

If a city name already contained a word “city” (e.g., “Guatemala City”), we do not start a sentence464

with “The city of.” We also sample ⟨city, incorrect country⟩ pairs, and generate statements according465

to the template above.466

Synthetic Entities. We use the technique described in Supplementary Sec. C.1 to generate synthetic467

city and country names. To generate synthetic city names, we collect all the city names in our data set468

(including those that we did not include) and input them to namemaker (with n-gram length of 3).469

We generate 500 synthetic city names. We validate these synthetic names in two stages:470

1. We check whether a synthetic name exists in the GeoNames database by looking for matches471

in the name and alternative name fields. We keep 310 cities after this first stage.472

2. We use Google Search to validate that each synthetic city name does not exist via the473

following prompt: “city [city name]”. If the search result returns a city with 1-2 character474

difference, we remove the synthetic name from the list. We keep 219 cities after this second475

stage.476

For the synthetic country names, we collect all the country names and input them to namemaker477

(with n-gram length of 2). We generate 250 synthetic names and validate them using the workflow478

described in the previous paragraph. We keep 238 country names after the first stage, and 138 after479

the second stage. The Google Search prompt is: “country [country name]”). With 25% probability,480

we add a prefix or suffix to the synthetic country name. The list of prefixes and suffixes include481

“Island,” “Republic of,” “Kingdom,” “West,” “East,” “North,” “South,” and “Land.” Finally, we482

randomly match each synthetic name to the name of a synthetic country.483

Medical Indications484

The Medical Indications dataset is based on the DrugBank (version 5.1.12) [31]. We obtain access485

to the DrugBank on October 4th, 2024, via the academic license (for research purposes only). Our486

GitHub and Zenodo repositories do not contain the raw data from the DrugBank, but the reader can487

apply for the academic license.11 We extract 2 fields from this knowledge base:488

1. Name, which specifies the official name of the drug or the chemical (e.g., Lepirudin).489

2. Indication, which is a text field that describes the indication of the drug. If this field consists490

of multiple sentences, we keep only the first sentence (e.g., “Lepirudin is indicated for491

anticoagulation in adult patients with acute coronary syndromes (ACS) such as unstable492

angina and acute myocardial infarction without ST elevation.”)493

To extract diseases and conditions from the Indications field, we use two named entity recognition494

(NER) models:495

9geonames.org
10pypi.org/project/geonamescache/
11Here is the link to the DrugBank’s academic license: https://go.drugbank.com/releases/5-1-12
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1. SciSpacy’s en_ner_bc5cdr_md model12 for the biomedical term annotations496

2. BioBERT-based NER13 for disease annotations497

We input the “Indication” text to both models. The disease/condition terms are extracted only498

if both models mark it as a disease or condition. For example, for “Lepirudin is indicated for499

anticoagulation in adult patients with acute coronary syndromes (ACS),” the SciSpacy model marks500

coronary syndromes as a disease, but BioBERT does not. Thus, we do not add it to Lepirudin’s501

disease/condition list. Similarly, we remove the abbreviation if the disease list contains the full name502

and its abbreviation, such as [acute coronary syndromes, ACS].503

We further validate the drug names via SciSpacy model, and keep the name only if it is marked as504

CHEMICAL. Otherwise, we remove the drug from our dataset. Finally, if the disease list (for a given505

drug) is empty after the preprocessing, we remove the drug from our data set.506

Additionally, we use wordfreq14 package to check whether the name of the drug or the name of the507

indication appears in widely used corpora (e.g., WikiPedia or Books dataset). In other words, we508

remove the pair if either the drug name or the indication has a Zipf’s frequency of 0 – i.e., the word509

does not appear in any of the wordfreq corporas.510

Statement Structure. For each ⟨drug, correct disease⟩ pair, we create statements of the form:511

[drug] is (not) indicated for the treatment of [disease/condition].512

We also sample the ⟨drug, incorrect disease⟩ pairs. We ensure that the “incorrect disease” did not513

share any words with the diseases in the correct list.514

Synthetic Entities. To generate synthetic drug names and disease names, we use the approach515

described in Supplementary Sec. C.1 (with n-gram length of 3). We generate 500 synthetic drug516

names. We validate these synthetic names in two stages:517

1. We pass each generated name through SciScapy model and remove the ones marked as518

CHEMICAL. We keep 315 name after this first stage.519

2. We use Google Search to validate that each drug name does not exist via the prompt520

“medicine [drug name].” If the search result returned a drug with 1-2 character difference,521

we remove it from the dataset. We keep 243 names after this second stage.522

We generate 200 disease names and check whether they exist in our list of diseases. We keep 181523

names after this first stage. Next, we use Google Search with the prompt “disease [disease/condition524

name].” We keep 131 disease names after this second stage. Finally, we randomly match synthetic525

drug names to synthetic disease names to generate neither-type statements.526

Word Definitions527

The Word Definitions dataset is based on the sample data from WordsAPI15 database. Sample data is528

publicly available and contains 10% of randomly sampled words from the database.16529

For each word in the sample, we keep the ones that satisfy the following criteria:530

1. The word is a noun.531

2. The word has at least one definition in the definition field.532

3. The word has at least one of the following fields: synonym, typeOf, or instanceOf.533

Statement Structure. Depending on the specified field (i.e.,synonym, typeOf, instanceOf ), we534

generate three types of statements:535

1. “[word] is (not) [instanceOf].”536

12allenai.github.io/scispacy/
13alvaroalon2/biobert_diseases_ner
14pypi.org/project/wordfreq
15WordsAPI.com
16We do not provide a copy of the sample in our GitHub or Zenodo repositories.
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2. “[word] is (not) a type of [typeOf].”537

3. “[word] is (not) a synonym of [synonym].”538

Before inserting a word from synonym, typeOf, instanceOf fields into a corresponding spot, we check539

which article goes before ‘a’ or ‘an’. When possible, we change words into singular forms. To do so,540

we use the inflect package,17541

Synthetic Entities. To generate synthetic entities, we use the approach described in Supplementary542

Sec. C.1 (with n-gram length of 3). We generate four categories of synthetic entities:543

1. Words that go at the beginning of each statement: We use all the words we have in the544

dataset.545

2. Types: We use all the words from the typeOf field for the Markov-Chain generation.546

3. Synonyms: We use all the words from the synonym field.547

4. Instances: We use words from the instanceOf field.548

We generate 1,000 synthetic words for each of the four categories. We validate the non-existence of549

words. We use the english_words package18 to check whether a word exists in “GNU Collaborative550

International Dictionary of English 0.53,” or web2 word list. Furthermore, we check whether there is551

a word in the words list of the nltk package.19 After this stage, we end up with 3,305 words. Finally,552

we randomly sample pairs of ⟨word, property⟩, where the property is a type, instance, or synonym.553

17pypi.org/project/inflect/
18pypi.org/project/english-words/
19pypi.org/project/nltk/
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D Selection of Large Language Models554

In this section, we provide an overview of the large language models used in our experiments.555

Supplementary Tab. 6 provides a list of all the 16 models.556

We use default models—i.e., the ones that were pre-trained on general tasks. We also use chat models557

that have been fine-tuned on instruction- and chat-like interactions. Every default model in our558

selection has a corresponding chat-based model. We also add two extra chat-tuned Llama models that559

are specifically fine-tuned on biomedical data. Further, we do not use full official model names but560

use short names along with a version, such as “chat” or “default”. For example, Llama-3.2 (chat)561

refers to the Llama-3.2-3b-Instruct model.562

Table 6: List of LLMs used in our experiments. We provide the official names of the models in the
HuggingFace repository. Further, we provide the type of the model: default stands for the pre-trained
models, and ‘chat’ stands for the chat- or instruction-tuned version of the models. Finally, we provide
the number of decoders, the number of parameters, the release date, and the source of the model.
These models are publicly available through HuggingFace [33].

Official Model Name Type # Decoders # Parameters Release Date Source

Gemma-7b Default 28 8.54 B Feb 21, 2024 Google
Gemma-2-9b Default 26 9.24 B Jun 27, 2024 Google
Llama-3-8b Default 32 8.03 B Jul 23, 2024 Meta
Llama-3.2-3b Default 28 3.21 B Sep 25, 2024 Meta
Mistral-7B-v0.3 Default 32 7.25 B May 22, 2024 Mistral AI
Qwen2.5-7B Default 28 7.62 B Sep 19, 2024 Alibaba Cloud
Qwen2.5-14B Default 38 14.80 B Sep 19. 2024 Alibaba Cloud

Gemma-7b-it Chat 28 8.54 B Feb 21, 2024 Google
Gemma-2-9b-it Chat 26 9.24 B Jul 27, 2024 Google
Llama-3.2-3b-Instruct Chat 28 3.21 B Sep 25, 2024 Meta
Llama-3.1-8b-Instruct Chat 32 8.03 B Jul 23, 2024 Meta
Llama3-Med42-8B Chat 32 8.03 B Aug 12, 2024 M42 Health
Bio-Medical-Llama-3-8B Chat 32 8.03 B Aug 11, 2024 Contact Doctor
Mistral-7B-Instruct-v0.3 Chat 32 7.25 B May 22, 2024 Mistral AI
Qwen 2.5-7B-Instruct Chat 28 7.62 B Aug 18, 2024 Alibaba Cloud
Qwen 2.5-14B-Instruct Chat 38 14.80 B Aug 18, 2024 Alibaba Cloud
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E Criteria for Validating Veracity Probe563

Table 7: Validity criteria for representation-based probes. If satisfied, these criteria serve as
validation that gi indeed captures signals associated with veracity Z. Here, we provide a formal
definition of each criterion, along with the implications of satisfying the criterion. Finally, we provide
the list of similar criteria and concepts used in the literature.
Criteria Definition If Satisfied Similar Con-

cepts

Correlation A probe gi trained on ⟨hi(x), y⟩ ∈
Dtrain should perform well (i.e., have
high predictive accuracy) on Dtest, as-
suming the same input and label distri-
butions.

M encodes information cor-
related with veracity (see
Fig. 2).

Information
[25], Accuracy
[26]

Generalization A probe gi trained on ⟨hi(x), y⟩ ∈
Dtrain should have high predictive ac-
curacy on data from different domains.

M has a universal activa-
tion pattern correlated with
veracity (see Fig. 13).

Generalization
as defined by
Bürger et al.
[17], Unifor-
mity [26]

Selectivity A probe gi trained on ⟨hi(x), y⟩ ∈
Dtrain should not assign true or false
labels to samples where truthfulness is
absent or undefined.

M has a distinct mecha-
nism that correlates exclu-
sively with veracity (see
Fig. 2).

Misrepresentation
as defined by
Harding [25],
Control Task
[34]

Manipulation Modifying hi(x) along ν⃗i should sys-
tematically alter PM(τ | x) for tokens
τ related to the veracity property Z.

M has a linear mechanism
to track veracity and uses
it to compute the output
PM(τ | x) (see Fig. 14).

Use [25], Addi-
tion [35], Inter-
vention [3]

Locality Modifying hi(x) along ν⃗i should not
significantly alter PM(r | x) for ran-
dom tokens r that are unrelated to Z.

M maintains a separate
mechanism that tracks ve-
racity, without being con-
fused with other concepts.

Misrepresentation [25],
Leakage [36]

Researchers have proposed criteria to measure the validity of veracity probes [25, 26, 37]. We564

aggregate these into five major categories and provide an overview in Supplementary Tab. 7. We565

propose to evaluate a probe gi along the following criteria:566

(i) Correlation. The probe, trained to predict a veracity property {true, false} ∈ Z, should567

achieve high predictive accuracy on unseen samples that possess this property, i.e., on568

samples from Dtest. When the criterion is satisfied, the i-th decoder embeds the information569

about Z to some degree. We cannot rule out the fact that it captures proxies associated with570

Z.571

(ii) Generalization extends Correlation by requiring that the probe generalizes beyond the data572

set it was trained on. The probe should have high predictive accuracy on samples that have573

veracity Z, but have different phrasing or come from different domains. For example, if a574

probe is trained to identify neural activation patterns associated with veracity on statements575

related to ecology, this probe should have similar predictive accuracy on statements related576

to biology.577

(iii) Selectivity The probe gi should avoid classifying statements that are not (or cannot be) true578

or false. Hence, the probe gi should abstain from making predictions on the neither-valued579

statements—i.e., statements that the LLM could not have learned from its training data or580

that inherently lack any truthfulness or falsehood. Poor selectivity indicates that the probe581

might capture spurious correlations with unrelated properties.582

(iv) Manipulation. We should be able to use the identified direction ν⃗i to update hi(x) and583

have a predictable change in the distribution of the output tokens PM(τ | x). Since we584

focus on linear probes, we expect that moving +c units along ν⃗i should have an opposite585

effect on PM compared to moving −c units.586
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(v) Locality When asking a question such as “Is X true? Answer yes or no,” the manipulation587

should primarily influence the generation process related to the “yes” or “no” responses. It588

should minimally affect unrelated tokens. For example, if a manipulation does not increase589

the likelihood of the LLM generating “no”, but increases the likelihood of generating tokens590

such as “elephant”, then the manipulation degrades the LLM’s abilities.591

Evaluating a probe according to these criteria allows us to determine how well gi captures the signals592

associated with veracity Z and how manipulations (a.k.a. interventions) affect LLM’s output PM.593

Part of our future work includes adding a new criterion on whether the probe can assess if an LLM594

can “reason” logically. For example, ifM classifies a statement ϕ1 as true and another statement ϕ2595

as true, then willM also classify ϕ1 ∧ ϕ2 as true?596

Finally, we demonstrate the evaluation results for the Correlation and Selectivity in the Results597

section (see Sec. 5) of the manuscript; we further provide evaluation results for the Generalization,598

Manipulation and Locality in the Supplementary Sec. I.599
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F Zero-Shot Prompting: Instructions, Veracity Labeling, and Abstention600

Instructions in Zero-shot Prompting. In zero-shot prompting, each LLM receives an instruction601

along with a statement x as input. These instructions outline the task and describe the format of602

the output. We use zero-shot prompts to evaluate how well LLMs can assess the veracity of a given603

statement and provide a correct reply. Our zero-prompts are designed as a multiple-choice question,604

where an LLM is asked to pick a corresponding number.605

In our (zero-shot prompting) experiments, we use three different templates. All default models606

share the same template as displayed in Supplementary Fig. 4A–B. We do not use this template for607

chat-models, since they support “turn-based” conversations. Thus, for most chat models, we use608

templates that model user-assistant interaction. We use the template in Supplementary Fig. 4D–E609

for the chat models that support context prompts. We use the template in Supplementary Fig. 4F for610

Gemma models since they do not support context prompts.611

Additionally, we use three different phrasings of the instructions:612

1. Original instructions are displayed in Supplementary Fig. 4A and D. In the main paper, we613

report results based on these instructions.614

2. True-False instructions, where we change the phrasing of the original instructions by615

replacing the words “correct” and “incorrect” to “true” and“false”. These are displayed in616

Supplementary Fig. 4B and E.617

3. Shuffled instructions, where we change the original instructions by shuffling choice identi-618

fiers. These are displayed in Supplementary Fig. 4C and F.619

Supplementary Figures 5–7 depict the Weighted Matthew’s Correlation Coefficient (W-MCC) perfor-620

mance of zero-shot prompting across 3 datasets and 16 LLMs for each template type and instruction621

type. In some cases, minor changes to the instructions can have a significant impact on performance.622

Overall, the Qwen and Gemma-2 models provide the best performance compared to other LLMs.623

However, Qwen models seem to be more sensitive to the phrasing of the prompt.624

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:
 1. The statement is correct.
 2. The statement is incorrect.
 3. I do not have sufficient knowledge.
 4. The statement is too ambiguous.
 5. All of the above.
 6. None of the above.

Please respond with the corresponding number. 
The final answer is

Question: Is the following statement true?
The city of Agadir is located in Morocco.

Select one of the following options:
 1. The statement is true.
 2. The statement is false.
 3. I do not have sufficient knowledge.
 4. The statement is too ambiguous.
 5. All of the above.
 6. None of the above.

Please respond with the corresponding number. 
The final answer is

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:
 2. The statement is correct.
 6. The statement is incorrect.
 4. I do not have sufficient knowledge.
 5. The statement is too ambiguous.
 1. All of the above.
 3. None of the above.

Please respond with the corresponding number. 
The final answer is

Original Instructions (Default Model) True-False Instructions (Default Model) Shuffled Instructions (Default Model)A B C

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:
 1. The statement is correct.
 2. The statement is incorrect.
 3. I do not have sufficient knowledge.
 4. The statement is too ambiguous.
 5. All of the above.
 6. None of the above.

Original Instructions with context 
(Chat Model)

You are an expert in fact-checking. Your task 
is to assist the user by answering questions 
based on your comprehensive knowledge. 
Please respond with the corresponding number.

System (Context Prompt)

User

The final answer is
Assistant

True-False Instructions with context 
(Chat Model)

Shuffled Instructions without context 
(Chat Model)

You are an expert in fact-checking. Your task 
is to assist the user by answering questions 
based on your comprehensive knowledge. 
Please respond with the corresponding number.

Question: Is the following statement correct?
The city of Agadir is located in Morocco.

Select one of the following options:
 2. The statement is correct.
 6. The statement is incorrect.
 4. I do not have sufficient knowledge.
 5. The statement is too ambiguous.
 1. All of the above.
 3. None of the above.

User

D E F

You are an expert in fact-checking. Your task 
is to assist the user by answering questions 
based on your comprehensive knowledge. 
Please respond with the corresponding number.

System (Context Prompt)

Question: Is the following statement true?
The city of Agadir is located in Morocco.

Select one of the following options:
 1. The statement is true.
 2. The statement is false.
 3. I do not have sufficient knowledge.
 4. The statement is too ambiguous.
 5. All of the above.
 6. None of the above.

User

The final answer is
Assistant

The final answer is
Assistant

Figure 4: Zero-shot prompt templates. We use these templates in our experiments. Panel A–B: The
prompts for the default models. Panel D-F: Examples of prompts used for the chat models. Note that
chat models like Gemma do not have a context (or system) prompt; hence, we provide instructions in
the first message (see Panel F). In the main manuscript, we report the performance over the original
instructions – i.e., instructions in Panels A and D. For the chat LLMs without the context prompt,
we apply the two-message template in Panel F, but use the original instructions. (Side note: The
statement used in these examples is factually correct.)
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From Token Probabilities to Veracity Labels in Zero-shot Prompting. Given the original in-625

structions and the statement x, an LLM outputs token-level probabilities over its vocabulary V626

as627

PM(τ | instruction ∧ x) with
∑
τ∈V

PM(τ | instruction ∧ x) = 1.

We are interested in the probabilities of the tokens that correspond to the multiple choices – i.e.,628

numbers 1–6 in any of the panels in Supplementary Fig. 4. We denote tokens associated with these629

numbers as: [1], [2], [3], etc. We map these token-level probabilities PM into the veracity-label630

probabilities GM as follows:631

GM(true | x) = PM([1] | instruction ∧ x) (8)
GM(false | x) = PM([2] | instruction ∧ x) (9)

GM(neither | x) = PM([3] | instruction ∧ x) + PM([4] | instruction ∧ x) (10)

Abstention in Zero-shot Prompting. We include options [5] and [6] to check the “sanity” of632

the model M. For example, option #5 in Supplementary Fig. 4A suggests that a statement x633

is true, false, and ambiguous – all at the same time. If the model assigns most of the proba-634

bility mass to these tokens, we assume that the model does not follow the instructions. Sim-635

ilarly, if a model assigns most of its probability mass PM to other tokens in the vocabulary636

{τ ∈ V : τ /∈ {[1], [2], [3], [4], [5], [6]}}, we also assume that the model did not follow the637

instructions. Hence, if instructions are not followed, we assume that the model abstains from making638

a prediction, see Eq. 11.639

GM(abstain | x) =
∑
τ

PM(τ | instruction ∧ x), where {τ ∈ V : τ /∈ {[1], [2], [3], [4]}}

(11)

Note that the zero-shot prompting relies only on the token-level probabilities, i.e.,M’s output. It640

does not look at the intermediate hidden representation of x.641
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Figure 5: Performance of zero-shot prompting on the City Locations data set across different
models and instruction phrasings. We use the Weighted Matthew’s Correlation Coefficient (W-
MCC) to quantify the performance. The marker shows the mean value and the error bars show the
95% confidence intervals (based on the bootstrapping with n = 1,000 bootstrap samples). Minimal
changes to the prompt instructions can skew the performance of zero-shot prompting. Chat models
exhibit the highest performance across all instruction phrasings. However, the default Qwen models
match the performance of other chat-based models. Shuffled instructions appear to lead to worse
performance in chat models. We expected that the phrasings would have only a minor effect on their
performance. The default Gemma and Mistral models seem to fail (their performance is around 0).
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Zero-shot Probe: Perfomance on Medical Indications

Instruction Phrasing
Original
True/False
Shuffled

Figure 6: Performance of zero-shot prompting on the Medical Indications data set across
different models and instruction phrasings. We use the Weighted Matthew’s Correlation Coefficient
(W-MCC) to quantify performance. The marker shows the mean value and the error bars show the
95% confidence intervals (based on the bootstrapping with n = 1,000 bootstrap samples). Minimal
changes to the prompt instructions can skew the performance of zero-shot prompting. We observe a
slight performance misalignment depending on the instruction phrasing. The best-performing LLMs
are the largest chat models: Gemma-2-9b and Qwen-2.5-14b. We expected the biomedical Llama
models to outperform on the medical indications dataset.
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Figure 7: Performance of the zero-shot prompting on the Word Definitions data set across
different LLMs and instruction phrasings. We use the Weighted Matthew’s Correlation Coefficient
(W-MCC) to quantify the performance: the marker shows the mean value and the error bars show
the 95% confidence intervals (based on bootstrapping with n = 1,000 bootstrap samples). Minimal
changes to the prompt instructions can skew the performance of zero-shot prompting. The overall
performance on the Word Definitions data set is much lower compared to the performances on the
other data sets. Generally, the misalignment in the performance between different instructions is
much lower (except for the default Qwen models, where the difference is significant). The largest
Qwen-2.5-14b are the top-performing models on this task.
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G Conformal Prediction Intervals642

In our work, we focus on “split conformal learning” [21], which requires a hold-out (or calibration)643

data set to compute conformal prediction intervals.644

Given a probe gi, we use a calibration data set Dcalib of activation-label pairs ⟨hi(x), y⟩ to find645

prediction regions that ensure, for example, that a sample falling within the region is correctly646

classified 90% of the time. If a prediction falls into the overlapping conformal prediction intervals of647

two (or more) classes, or if it does not fall within any interval, the probe abstains from making any648

prediction. We provide pseudocode for the nonconformity functions in Supplementary Alg. 3 and 4.649

G.1 Nonconformity score650

To identify the conformal intervals, we compute a nonconformity score for each sample in Dcalib.651

For the binary cases (such as mean-difference probe and one-vs-all sAwMIL), we use the binary652

nonconformity scoring; see Supplementary Alg. 3. It is based on the distance between the prediction653

and the classifier’s separating hyperplane. In Eq. 12, s is the signed distance of the sample to the654

separation hyperplane, and y is a ground-truth (or candidate) label:20655

binaryNC (s, y) = exp
(
−y · s

)
, y ∈ {−1, 1} and s ∈ R. (12)

If the sample ends up on the wrong side of the separation hyperplane (e.g., s > 0 and y = −1), then656

the nonconformity score in Eq. 12 is high and the candidate label is weakly supported by the model.657

For the multiclass sAwMIL, we use the multiclass nonconformity score [29]; see Supplementary658

Alg. 4. For a given candidate label y, the label is defined in terms of the difference between the659

predicted probability of the true class and the highest probability among the other classes (with K660

denoting the total number of classes). Formally, for a candidate label y with predicted probability py ,661

we calculate the multiclass nonconformity score with the following function:662

multiclassNC (p) =
1− (py −maxi̸=y pi)

2
(13)

where p ∈ ∆K−1 :=
{
p ∈ RK | pi ≥ 0,

∑K
i=1 pi = 1

}
and ∆K−1 is a simplex.663

In both cases, lower scores in Eq. 12 and Eq. 13 indicate that the candidate label y is strongly664

supported by the model. In our work, we set α = 0.1. Thus, if the nonconformity score of a new665

sample exceeds the 90th quantile, the probe abstains from prediction (see Supplementary Alg. 4).666

The addition of conformal intervals enables us to distinguish between cases where the statements667

originate from different distributions, as compared to those in the calibration data set.668

20In this case, labels should be either −1 or 1. Thus, all samples with label 0 are assigned label −1.
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H More on Representation-based Probing Methods669

H.1 Mean-difference Probe with Conformal Prediction Intervals670

The mean-difference probe (MD+CP) consists of two components: binary mean-difference classifier671

(MD) and the conformal prediction intervals (CP).672

First, we fit the binary classifier with a linear decision boundary [15]. We use it to separate true and673

false statements based on the internal activations hi. For each pair ⟨xj , yj⟩, we extract the activation674

of the last token hi(xj)[L] and assemble a set of factually true X+ = {hi(xj)[L] : yj = true} and a675

set of false X− = {hi(xj)[L] : yj = false} activations. Here, L is the index of the last token in x.676

We then compute the means of each set, denoted µ+ and µ−, and compute a direction vector:677

θ = (µ+ − µ−) Σ−1 (µ+ − µ−)T (14)

In Eq. 14, Σ is a pooled covariance matrix. See Alg. 2 in Supplementary Materials for the detailed678

pseudo-code.679

Second, we augment MD with conformal prediction intervals [38]. Conformal intervals help detect680

statements that fall outside MD’s high-confidence regions for true or false classes. We use α = 0.1681

in our experiments; thus, predictions in the high-confidence regions are guaranteed to be correct at682

least 90% of the time. Note that we use the true and false statements from the calibration set to find683

the conformal prediction intervals. Finally, we test the MD+CP probe using true, false, and neither684

statements from the test set. How can the binary MD+CP classifier identify neither statements in685

addition to true and false statements? If the MD+CP probe accurately captures the veracity signal, the686

neither statements (from the test set) should fall outside of the conformal prediction intervals. Below,687

we observe that this is not the case. MD+CP assigns high-confidence scores to the neither-valued688

statements in the true or false regions.689

Supplementary Fig. 8 shows the score distributions21 of MD+CP on the best performing decoder (i.e.,690

13th) of the default Llama-3-8B model on the City Locations data set. There are three distributions:691

one for true, one for false, and one for neither. The distributions are based on samples from the test692

set. If MD+CP correctly captures the veracity signal, we expect the distribution of neither statements693

(green bars) to be outside of the conformal prediction interval (i.e., in the gray area). However, this is694

not the case. Most of the neither statements fall within the conformal prediction intervals (i.e., not in695

the area colored gray) and get labeled as true or false.696

Supplementary Fig. 9A illustrates per-token MD+CP predictions across entire statements. If MD+CP697

correctly identifies the veracity signal, then (1) it should not assign any labels to the tokens in the pre-698

actualized parts of statements xp, and (2) the label should be consistent across the actualized path xa.699

Given a statement “The city of Tokyo is in Japan.”, the pre-actualized part is “The city of Tokyo is in”700

and the actualized part is “Japan.” We observe that MD+CP assigns scores to the pre-actualized tokens701

(“The city of X”) that fall within the conformal prediction intervals in cases #1–5 (see Supplementary702

Fig. 9). In case #5, MD+CP assigns a correct prediction at the period sign (p = 0.39 corresponds to703

a false label), but the prediction flips at the end of the text, where the question mark gets p = 0.95704

corresponding to the true label. Similarly, in the #7 case of Supplementary Fig. 9A, the sentence does705

not have any veracity value (i.e., it is not a factual claim). However, the MD+CP probe assigns high706

confidence scores to some of its tokens. These findings suggest that MD+CP probe captures proxies or707

spurious correlations. One cannot use it in real scenarios, where we do not know a priori where the708

factual claim ends. In contrast, Supplementary Fig. 9 B–D show the per-token predictions for the709

one-vs-all sAwMIL. These probes correctly identify positions where the veracity is actualized. For710

example, they do not assign predictions to the non-actualized parts of the statements and only label711

tokens in the actualized part. Moreover, these probes do not label tokens in cases where veracity is712

absent (e.g., see case #7 in Supplementary Fig. 9D).713

H.2 Multiclass Single-Instance Support Vector Machine714

The multiclass sAwMIL probe is a multiple-instance learning (MIL) version of Support Vector Machine715

(SVM), designed to operate on bags of token representations. To assess whether the MIL formulation716

21We use the embedding of the last token to compute the scores in Supplementary Fig. 8: gi (hi (x)) =
θThi(x)[L] + β. Here, L is the total length of the statement, which is the same as the index of the last token.
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Figure 8: Score distributions of mean-difference probe with conformal prediction intervals
(MD+CP) on the 13th decoder activations of the default Llama-3-8B model for the City Locations
dataset. The probe provides a good separation between true and false statements. Note, if the MD+CP
probe truly captures only the veracity signal, we expect the scores for the neither statements to fall
outside the conformal intervals (i.e., be in the area highlighted with gray color). However, MD+CP
assigns high-confidence scores for the neither-valued statements, labeling them true or false. This
finding suggests that MD+CP relies on spurious proxies rather than genuine veracity signals.

offers any benefits, we construct a single-instance baseline by training a multiclass SVM on the717

last token representation only hi(x)[L]. As with multiclass sAwMIL, we first train three one-vs-all718

probes: is-true, is-false, and is-neither. Then, these one-vs-all classifiers are assembled719

into a multiclass SVM using the same procedure described in Sec. 3.1.1 and Supplementary Alg. 1.720

Finally, we augment the multiclass SVM with conformal prediction intervals to provide calibrated721

estimates, mirroring the multiclass sAwMIL setup.722

As before, to evaluate performance, we provide all token representations hi(x) (not only the last723

one), where the final prediction is computed based on724

ĝi(x) = max
1≤ j ≤L

gi
(
hi(x)[j]

)
, where L = |x| (number of tokens in x).

Supplementary Fig. 10 depicts the performance of multiclass sAwMIL vs. multiclass SVM. The725

performance of multiclass SVM is closer to the performance of multiclass sAwMIL (as compared to726

the performances of zero-shot prompting or MD+CP probe in Fig. 2). However, multiclass sAwMIL still727

outperforms the multiclass single-instance SVM in 46 out of 48 cases (= 16 LLMs× 3 data sets),728

and is competitive in the remaining two cases. For more results, we refer the reader to Tables 10729

and 12 of the Supplementary materials.730

In Supplementary Fig. 10, we also observe that the multiclass sAwMIL performs better on the chat731

models (see bottom right portion of the plot) than the multiclass SVM. This supports our claim732

that veracity signals often emerge at positions other than the final token, and that multiple-instance733

learning can better isolate the veracity signal. Recall that the multiclass sAwMIL probe considers all734

the tokens in the statement and has additional training stages735

Supplementary Fig. 11 visualizes the per-token predictions. The one-vs-all SVM-based probes736

have better selectivity than the mean-difference probe with conformal prediction intervals (MD+CP)737

However, in some cases, one-vs-all SVM assigns labels to the tokens in the pre-actualized part of738

the statement (e.g., see Supplementary Fig. 11B, #5 statement). This suggests that one-vs-all SVM739

probes are capturing spurious correlations with potential proxies.740
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Figure 9: Per-token predictions of mean-difference with conformal prediction intervals (MD+CP)
and one-vs-all sAwMIL on the 13th decoder activations of the default Llama-3-8B model. State-
ments are from the City Locations data set. We show per-token probabilities (printed beneath each
word), assigned based on the token’s representation. Words are shaded based on the predicted
probability. When MD+CP outputs 0, the statement is labeled false; when it outputs 1, the statement
is labeled true. If the per-token score falls outside the conformal intervals, MD+CP assigns a score of
0.5 to that token (which corresponds to the highest uncertainty). The one-vs-all sAwMIL probe for
is-true outputs 1 when the probe is 100% confident that the statement is true; and it outputs 0 when
the per-token score is outside the conformal intervals (i.e., there is an absence of truthfulness signal).
Similarly, the one-vs-all sAwMIL probe for is-false outputs 1 when the probe is 100% confident
that the statement is false; and it outputs 0 when the per-token score is outside the conformal intervals
(i.e., there is an absence of falsehood signal). The same logic applies for the one-vs-all sAwMIL
probe for is-neither. Panel A shows the MD+CP predictions. It often assigns high confidence
scores to pre-actualization tokens and makes mistakes on the wrapped prompts in cases #5 and 6
(e.g., statement #6: “Hey,___ Is this correct?”). Also, MD+CP probe assigns labels to the statement
without any veracity value (e.g., case #7). Panels B–D display one-vs-all sAwMIL probes (is-true,
is-false, and is-neither). Unlike MD+CP, one-vs-all sAwMIL localizes the veracity signal to the
actualized token and abstains elsewhere, demonstrating superior selectivity.
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Figure 10: Performance of multiclass multiple-instance SVM (i.e., multiclass sAwMIL) vs. multi-
class single-instance SVM probes. Each marker shows a probe’s performance for a ⟨model, dataset⟩
pair. Default models are shown with circles, while chat models are shown with crosses. The different
colors indicate the different data sets. The performance of the multiclass sAwMIL probe is specified
on the x-axis, while the performance of the multiclass SVM is specified on the y-axis. As before,
we report the Weighted Matthew’s Correlation Coefficient (W-MCC). Multiclass SVM is trained on
the representation of the last token only. The evaluation is the same for both probes and is based
on all tokens in the statement. That is, to prediction, each probe takes the maximum score (across
all the tokens in the statement). We observe that multiclass sAwMIL outperforms multiclass SVM.
The only exceptions are the Gemma-7B chat model and the Mistral-7B-v0.3 chat model on Word
Definitions, where the performances of the single-instance and multiple-instance are competitive.
This experiment shows that multi-instance learning (i.e., training on all the tokens in the statement) is
beneficial when tracking the veracity of an LLM.
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Figure 11: Per-token predictions of one-vs-all single-instance SVM on the 13th decoder acti-
vations of the default Llama-3-8B . Statements are from the City Locations data set. We show
per-token probabilities (printed beneath each word), assigned based on the token’s representation.
Words are shaded based on their predicted probability. Panels A–C: display the one-vs-all SVM probes
(is-true, is-false, and is-neither). The one-vs-all SVM probe isolates the signal better than
the MD+CP probe. (See Supplementary Fig. 9A for the MD+CP results.) However, in some instances,
the one-vs-all SVM probe assigns high-certainty scores to tokens that do not have any veracity signal.
For example, in Panel A (case #6, the probe picks up on tokens including ‘this,’ ‘is,’ and ‘?’, which
do not have inherent veracity value. Overall, the multiclass sAwMIL in Supplementary Fig. 9B–C has
better selectivity.
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I Additional Evaluation Details741

In the Supplementary Sec. E, we provide the full list of the validity criteria for the. In the manuscript,742

we only cover the results related to Correlation and Locality criteria (see Sec. 5). Here, we provide743

additional details behind the evaluation of the Correlation and Locality (see below in Supplementary744

Sec. I.1.1) Further, we describe the experimental setup related to the Generalization (also see below in745

Supplementary Sec. I.1.1), and setups for the Manipulation and Locality criteria (see Supplementary746

Sec. I.1.2).747

Finally, we provide the evaluation results for the Generalization, Manipulation and Locality in748

Supplementary Sec. I.2749

I.1 Evaluation Setup750

I.1.1 Performance and Validity751

Here, we describe a pipeline to evaluate our sAwMIL probe over the validity criteria specified in Sec. 3752

and Supplementary Sec. E.753

Correlation and Selectivity. We use the test split of each data set to evaluate the performance of the754

probe. We use Matthew’s Correlation Coefficient (MCC) to summarize the statistical accuracy of755

probes. The multiclass MCC value is calculated using Eq. 15.756

MCC =
c× s−

∑K
k pk × tk√(

s2 −
∑K

k p2k

)
×
(
s2 −

∑K
k t2k

) , (15)

where c is the number of correct predictions, s is the total number of samples, K is the total number757

of classes, tk is the number of k-class samples in the data set, and pk is the number of times k-class758

was predicted. MCC = 1 indicates that a classifier predicted every instance correctly. MCC = 0759

implies that the predictions are random. MCC = −1 indicates that the predictions are inversely760

correlated with the ground-truth labels.761

Zero-shot prompting, one-vs-all sAwMIL, and multiclass sAwMIL can abstain from making predictions.762

If a probe abstains too often, it suggests poor performance. For these cases, we use Weighted-MCC763

(W-MCC), where the acceptance rate serves as the weight (see Eq. 16).764

W-MCC = MCC×
(
1− # abstained

# total predictions

)
(16)

In contrast to the other probing methods, the MD+CP probe cannot abstain. When a statement x is too765

unusual, the probe labels it as neither. For this case, we use the MCC score.766

Since neither statements are included in the test data set, W-MCC and MCC provide a sense of how767

well the probe classifies factually true or false statements and indicate whether the probes can handle768

neither-type cases.769

Generalizability. To test how well a particular probe gi trained on data set Di generalizes, we770

evaluate its performance using the test split of other data set Dj—e.g., gi trained on the city locations771

data set is evaluated using the test split of the word definitions data set.772

I.1.2 Interventions and Validity773

In this experiment, we assess whether perturbing the hidden representation hi(x) along the veracity774

direction ν⃗i affects the model’s outputs, and whether these interventions satisfy the manipulation and775

locality criteria defined in Supplementary Sec. E. In other words, we use ν⃗i to change the distribution776

of the output tokens PM and force true or false responses.777

We look at each factually true statement x ∈ Dtest—e.g., “The city of Santo Domingo is in the778

Dominican Republic.” We split these statements into two segments: a pre-actualized part, xp, such779

as “The city of Santo Domingo is in”; and second, an actualized part, xa such as “the Dominican780

Republic”. Given xp, we can compute the probability of the actualized part according to Eq. 17:781

PM(xa
[1:L] | x

p) =

L∏
l=1

PM

(
x[l] | xa

[0:(l−1)], x
p
)
. (17)
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Figure 12: Workflow for evaluating the success of directional interventions. (Panel A) We provide
a pre-actualized part xp to the LLM, and intervene at the final token embedding after the n-th decoder
by adding or subtracting the learned veracity direction ν⃗i. The modified representation is then passed
to decoder n+ 1. Further, we compute the conditional probability of the correct actualized part xa.
For each statement, we obtain three values: the original conditional probability, the probability after a
positive shift +ν⃗i, and the probability after a negative shift −ν⃗i. (Panel B) We assess the success
of each intervention at the statement level, comparing the change in conditional probabilities. If the
change is caused by the positive shift (∆I+i ) and the negative shift (∆I−i ) are of opposite sign, we
consider the intervention to have a consistent directional effect and mark it as successful for that
statement (see Eq. 21). (Panel C) To evaluate the success of the intervention, we also identify the
dominant effect direction—i.e., the sign of ∆I+i that appears most frequently across all statements.
The procedures in panels B and C determine the per-statement success (see Eq. 21). If more than half
of the statements show consistent and directionally aligned changes (see Eq. 22), we consider the
overall intervention along ν⃗i to be successful.

In Eq. 17, L is the number of tokens in the actualized part xa.22 The subscript [l] specifies the index782

of a token in xa, and [1 : l] specifies the range of tokens in xa, while xa
[0] refers to an empty set.783

Further, we do not specify a subscript [1 : L] for brevity unless it is necessary for clarity.784

Direction vector v⃗i. We train one-vs-all sAwMIL probes via dual optimization. We use the obtained785

solution to extract the linear direction that points towards the class of interest. For example, in our786

is-true probe, the class of interest is the true statements.787

v⃗i =
∑
j ∈S

αj yj hi(xj) with S = {j | αj > 0}, aj ∈ R, yj ∈ {−1, 1}. (18)

22The length of the actualized part depends on the tokenization technique the language model uses. For
example, Llama-3 and Mistral models split Albania into [Al] [ban] [ia], while Gemma models have one
reserved token [Albania].
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In Eq. 18, S is a set of support vectors, αj is the Lagrangian multiplier [39], hi(xj) is the activation788

after the ith decoder for statement xj , and yj is the class label for xj .789

Interventions. Given a pre-actualized part of the statement xp, modelM, and a hidden representation790

hi(x
p), we apply directional interventions by translating the representation of the last token xp

[L]791

along ± ν⃗i (here, i stands for the index of the decoder):792

• Positive directional shift:793

I+i (hi (x
p)) =

[
hi(x

p)[1], . . . , hi(x
p)[L−1], hi(x

p)[L] + ν⃗i
]

• Negative directional shift:794

I−i (hi (x
p)) =

[
hi(x

p)[1], . . . , hi(x
p)[L−1], hi(x

p)[L] − ν⃗i
]

These interventions return modified representations, which we denote as I+i (xp) and I−i (xp), respec-795

tively. Furthermore, we compute the per-sample effect of the directional interventions. It is defined796

as a difference between the original probability and the probability we get after the intervention:797

∆I+i (xa,xp)← PM
(
xa | I+i (xp)

)
− PM (xa | xp) (19)

∆I−i (xa,xp)← PM
(
xa | I−i (xp)

)
− PM (xa | xp) (20)

To compare interventions across decoders and models, we look at the success rate of the interventions.798

The per-statement intervention is successful if ∆I+i and ∆I−i have opposing effects on the conditional799

probability PM (xa | xp). In other words, if ∆I+i is positive, then ∆I−i must be negative, and vice-800

versa.801

At the same time, we must ensure that the effect of the intervention is consistent in most statements802

x ∈ Dtest. If half of the statements have positive ∆I+i and another have negative ∆I+i , then our803

intervention produces a random change in PM. To ensure that the effect is consistent, we look at the804

dominant effect direction of the intervention, di ∈ {−1,+1}. Here, di = +1, if more than half ∆I+i805

are positive, and di = −1 if more than half is negative.806

In summary, a successful directional intervention is one that produces opposing effects when shifting807

along±ν⃗i, and aligns ∆I+i with the dominant direction. Supplementary Fig. 12 provides an overview808

of the workflow to determine the per-statement success of the intervention. Formally, we define a809

per-statement success s as810

s(x) = I
[ [

sign
(
∆I+i (xa,xp)

)
̸= sign

(
∆I−i (xa,xp)

)]
∧

[
sign

(
∆I+i (xa,xp)

)
= sign

(
di
)] ]

(21)

where811

I [·] =
{
1, if the condition holds,
0, otherwise.

Why do we only look at the sign? During our initial experiments, we observed that even when ν⃗i812

was trained to separate true and false statements, the effect of the intervention on PM(xa | xp) could813

vary across decoders. Specifically, in certain decoders, shifting along ±ν⃗i consistently increased814

the probability of xa, while in others it decreased it. These effects were consistent in the sense that815

shifting in the opposite direction produced the opposing effect. This phenomenon can be attributed816

to the complex interactions within each decoder of the model. As highlighted by Heimersheim817

and Nanda [40], activation patching experiments have revealed that interventions can have varying818

directions of effect depending on the decoder. Therefore, observing a sign flip in the effect of an819

intervention does not invalidate the direction ν⃗i, as long as it is consistent.820

Given a set of true statements from Dtest, we compute the overall success rate at a decoder i as821

follows:822

ωi =
1

N

∑
s (xj) , (22)

where N stands for the number of the true statements in Dtest and s (xj) is success for the jth823

statement as defined in Eq. 21.824
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If the overall success rate at decoder i is greater than 50%, we claim that the intervention at decoder825

i is successful. Hence, the manipulation criterion is fulfilled. We use a one-sided binomial test to826

confirm whether the overall success rate is significant:827

H0 : ωi ≤ 0.5 (23)
HA : ωi > 0.5 (24)

For example, the overall success rate of 61% with the dominant direction di = +1 tells us that if we828

have 100 statements, on average, we increase the probability of the correct answer in 61 statements.829

Similarly, a success rate of 98% with the dominant direction di = −1 indicates that shifting along830

+ν⃗i decreases the probability of the correct answer in approximately 98 out of 100 statements.831

Locality. To further determine the quality of the directional intervention, we assess whether changes832

in probability are concentrated on the actualized part, rather than being diffused across random tokens833

in the vocabulary V . In other words, our intervention should change PM(xa | xp) and should not834

change the probability of random tokens PM(r | xp).835

Specifically, we expect the intervention to primarily affect the likelihood of the correct continuation,836

PM(xa
[1:L] | x

p), while leaving the probability of a randomly sampled continuation, PM(r[1:L] | xp),837

mostly unchanged. Here, r[1:L] denotes a random sequence sampled from the vocabulary of the838

modelM. We quantify these changes as:839

∆Correct =
∣∣PM

(
xa | I+i (xp)

)
− PM

(
xa | I−i (xp)

)∣∣ (25)

∆Random =
∣∣PM

(
r | I+i (xp)

)
− PM

(
r | I−i (xp)

)∣∣ (26)

Further, we say that the intervention satisfies the locality criterion if840

E [∆Correct] > E [∆Random] . (27)

That is, the expected change in probability for the correct output, xa, exceeds the expected change841

for a randomly sampled output r.842

I.2 Results843

I.3 Generalization Across Data Sets844

To further support the claim that the multiclass sAwMIL captures veracity signals (and not merely a845

proxy), we demonstrate generalization performance across data sets. Supplementary Fig. 13 provides846

results for each data set and LLM. The columns correspond to three test data sets, and the cells specify847

the multiclass sAwMIL’s performance for a specific LLM. Multiclass sAwMIL provides reasonable848

generalization performance (see Supplementary Tab. 8). However, it is potentially overfitting to849

the highly specialized City Locations data set. Using more diverse data sets that contain a broader850

range of entities and cover a larger set of topics isolates the veracity signal better and produces851

better generalization performance. We refer the reader to Tables 13 through 15 in Supplementary for852

detailed statistics.853

Table 8: Aggregated generalization performance of the multiclass sAwMIL for each dataset. Each
cell shows a MCC value, which quantifies the performance of the multiclass sAwMIL trained and
tested on different combinations of the datasets. The value in the bracket is the standard error. Word
Definitions provides better generalization performance because it contains statements covering a
diverse set of topics, while the City Locations provide lower generalization performance.

Testing Dataset
Training Dataset City Locations Medical Indications Word Definitions

City Locations 0.963 (0.003) 0.624 (0.030) 0.633 (0.025)
Medical Indications 0.818 (0.033) 0.790 (0.009) 0.698 (0.018)
Word Definitions 0.896 (0.015) 0.723 (0.016) 0.868 (0.008)

We also observe that generalization performance is higher for chat models, where the average MCC854

score (on the non-training data set) is 77.2% (standard error: 0.2%), compared to 68.2% (standard855
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Figure 13: Generalization performance of the multiclass sAwMIL probe across data sets. Each
panel corresponds to a different training data set: City Locations, Medical Indications, and Word
Definitions. Each column corresponds to a different test data set. Each cell displays MCC values,
which quantify how well the probe generalizes to the test data set (a higher value is better). For each
model and data set, we report the maximum MCC achieved across all decoders. Generally, probes
trained on the chat models have better generalization performance than the default models. Panel A:
Generalization performance of multiclass sAwMIL when trained on City Locations. While the MCC
values are significantly higher than random baseline (with MCC = 0), the generalization ability is
lower than those in Panels B or C. Panel B: Generalization performance of multiclass sAwMIL when
trained on Medical Indications. In Panel A, we observe that training on City Locations and testing
on Medical Indications provides good but not excellent MCC values (average MCC of 0.624 with
standard error of 0.030). This is not the case in this panel, where Medical Indications is the training
data set and City Locations is the test data set (average MCC of 0.818 with standard error of 0.033).
Panel C: Generalization performance of multiclass sAwMIL when trained on Word Definitions. This
probe has high generalization performance across data sets. When City Locations is the test data set,
the average MCC is 0.896 with standard error of 0.015; and when Medical Indications is the test
data set, the average MCC is 0.723 with standard deviation of 0.016. For aggregated statistics, see
Supplementary Tab. 8.

error: 0.2%) achieved for the default models. This is more noticeable in Supplementary Fig. 13A,856

where default models have much lower MCC values than their chat model counterparts. For example,857

the chat model Llama-3.2-3B has 1.6 times higher MCC value than the default Llama-3.2-3B.858

Over the three panels, Gemma-7B seems to be an outlier, since the generalization performance drops859

significantly for the chat version of the model.860

Multiclass sAwMIL satisfies the generalization criterion defined in Supplementary Sec. E by transfer-861

ring veracity probes trained on one data set to another while maintaining strong performance. This862

provides further evidence that multiclass sAwMIL captures a veracity signal that is not specific to a863

data set.864

I.4 Interventions: Manipulation and Locality865

Previous experiments have shown that the multiclass sAwMIL identifies a strong and transferable866

veracity signal. We further look at how this signal is connected to the output of an LLM, PM.867

Here, we look at the interventions of one-vs-all sAwMIL probes, which are the building blocks of868

the multiclass sAwMIL. Specifically, we assess the effectiveness of interventions applied along the869

is-true and is-false directions. For simplicity, we exclude the one-vs-all probe for is-neither870

from the intervention analysis.871

The overall success rate measures how often directional interventions (adding or subtracting ±ν⃗i)872

produce a consistent change in the model’s output PM. We describe the setup in Supplementary873

Sec. I.1.2. A higher success rate indicates that shifting along ±ν⃗i has higher chances to skew the874

conditional probability of the correct answers PM(xa | xp). Supplementary Fig. 14 shows the875
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Figure 14: Overall intervention success rate for the one-vs-all sAwMIL probes. We report the
maximum achievable success rate along the is-true and is-false directions. Panels A-C show
results for probes gi trained on specific data sets, while columns correspond to the is-true or
is-false probe. Default and chat Gemma-2-9b, as well as, some experiments with the default and
chat Qwen-2.5-14B and Gemma-7B models did not pass the consistency check – suggesting that
the interaction between directions ν⃗i and the conditional probability PM are not linear (or that the
one-vs-all sAwMIL probes failed to identify signals that linearly affect the model output PM.

overall success rate for each model and data set. Success rates below .5 suggest that interventions876

have close to a random effect on PM.877

Notably, some models have a success rate of 0. This occurs when:878

• Interventions along ±ν⃗i failed to induce opposing changes in PM, e.g., both +ν⃗i and −ν⃗i879

increased or decreased probabilities; or880

• The average change in PM(xa | xp) (i.e., ∆correct) matched the change in random se-881

quence continuation probabilities (∆random), violating the locality criterion in Equations 25882

through 27.883

The average success rate is 80.1% (standard error: 0.2%) for the is-true direction and 76.2%884

(standard error: 0.2%) for the is-false direction. We exclude the models whose intervention885

success rate was 0 in Supplementary Fig. 14.886

This experiment shows that in the majority of cases, we can use the is-true and is-false directions887

to manipulate the output of LLMs. The interventions are more successful for the chat models. The888

average success rate for chat models is 80.1% (standard error: 0.3%), and for default models is 70.9%889

(standard error: 0.2%).890

Anomalies. We observe some anomalous behavior when intervening in the LLMs:891

• In the Gemma-2-9B models, interventions along the direction ±ν⃗i consistently increased892

or decreased the probability PM(xa | xp), regardless of the sign of the intervention. This893

indicates that the direction ν⃗i identified by sAwMIL does not have a clear relationship with894

the model’s output probabilities. Thus, we cannot use ν⃗i to increase and decrease the895

probability of correct answers. A similar phenomenon is observed in the Qwen-2.5-14B896

(chat) model.897

• For the Gemma-7B (default) model, interventions along the is-false direction provide a898

higher success rate compared to the is-true direction.899

The exact reasons for these anomalies are unclear. However, we know that these models have900

additional fine-tuning processes. These additional training procedures may have influenced the901

internal representations of the models. Except for the Gemma-2-9B models and the Qwen-2.5-14B902

(chat) model, the one-vs-all sAwMIL probes pass both manipulation and locality criteria. We expect903

that the non-linear version of sAwMIL will overcome the issues with the models that have additional904

fine-tuning processes. This is part of our future work.905
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I.5 Recap: Overall Validity906

In this section and Sec. 5 of the manuscript, we established that the multiclass sAwMIL probe satisfies907

the validity criteria. Specifically, we confirmed that it satisfies the correlation and selectivity criteria,908

outperforming zero-shot prompting and mean-difference probe with conformal prediction intervals.909

We further demonstrated that multiclass sAwMIL satisfies the generalization criterion, indicating that910

we can successfully apply probes trained on multiclass sAwMIL to statements from other domains. In911

addition, we showed that the one-vs-all sAwMIL probes satisfy the manipulation and locality criteria.912

In a majority of cases, we can perform interventions that change the probabilities of correct replies.913

Together, these findings provide strong evidence for the overall validity of sAwMIL probes. Not914

all LLMs have a veracity mechanism that has a linear relationship with the output. Exploring this915

non-linear relationship is part of our future work.916
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J Algorithms917

In this section, we provide pseudo-codes for several procedures described in the main text. In918

Supplementary Alg. 1 provides pseudo-code for the Sparse Aware Multiple-Instance Learning919

(sAwMIL) probe, and Supplementary Alg. 2, we show pseudo-code for the mean-difference (MD)920

probe. In Supplementary Algorithms 3 and 4, we describe the procedure for the binary and multiclass921

conformal learning (described in Sec. 3.2).922

Algorithm 1 Training a one-vs-all sAwMIL classifier

Input: A training data set {(xi, yi,mi)}ni=1 with binary bag labels yi ∈ {0, 1}, bags xi ∈ RLi×d,
and intra-bag confidences mi ∈ {0, 1}Li , where Li is the number of items in a bag xi; also, a
balancing parameter η ∈ (0, 1].

Output: Parameters θ ∈ R1×d and b ∈ R for a linear probe gi.

1: Partition data into positive and negative sets:

X+ = {⟨xi,mi⟩ : yi = 1}, X− = {⟨xi,mi⟩ : yi = 0}

2: Compute the initial coefficient vector and the intercept ▷ See Bunescu and Mooney [19]

(θ̂, b̂)← solve_sMIL(X+,X−), where θ̂ ∈ R1×d and b̂ ∈ R.

3: Let X̄+ denote the set of all instances from the positive bags and X̄− all instances from the
negative bag.

4: Compute scores for every instance in a positive set

S+ ← X̄+θ̂
T
+ b̂, where X̄+ ∈ R|X̄+|×d.

5: Compute the threshold
q ← quantile(S+, 1− η).

6: for all positive instances ⟨x̄j , m̄j , ȳj⟩ ∈ X̄+, where x̄j ∈ R1×d, m̄j ∈ {0, 1} and ȳj = ∅ do
if (x̄j θ̂

T
+ b) ≥ qη and m̄j = 1 then set ȳj = 1;

else set ȳj = 0.
7: end for
8: Compute the final coefficient vector and the intercept ▷ via simple support vector machine

(θ, b)← solve_SIL(X̄+, X̄−).

return θ ∈ R1×d, b ∈ R.

41



Algorithm 2 Training a mean-difference (MD) probe, sometimes referred to as mean-mass or mean-
cluster difference classifier/probe/separator.

Input: A training dataset {⟨zi, yi⟩}ni=1 with binary labels yi ∈ {0, 1} and zi ∈ R1×d. In our
experiments, z is the embedding of the last token (unless otherwise noted).

Output: Parameters θ ∈ R1×d, β ∈ R, and Σ−1 ∈ Rd×d. These parameters are subsequently given
to a function f along with z to compute f(z) = σ

(
z (Σ−1 θT ) + b

)
, where σ is a sigmoid

function.

1: Partition data into positive and negative sets:

X+ = {zi : yi = 1}, X− = {zi : yi = 0}

2: Compute class means µ+ and µ−, and covariance matrices Σ+ and Σ− for X+ and X−.
3: Compute pooled covariance matrix (where n+ = |X+| and n− = |X−|):

Σ =
(n+ − 1)Σ+ + (n− − 1)Σ−

n+ + n− − 2

4: Compute the coefficient vector: θ = µ+ − µ−, where θ ∈ R1×d.
5: Compute scores for positive and negative sets:

s+ ← X+ (Σ−1θT ) and s− ← X− (Σ−1θT ), where s+ ∈ Rn+

and s− ∈ Rn−
.

6: Compute the intercept:

b =
1

2

(
mean

(
s+

)
+mean

(
s−

))
return Coefficient vector θ, intercept β, and the inverse covariance matrix Σ−1.

Algorithm 3 Inductive Conformal Predictions with binary nonconformity score.

Input: A calibration dataset {(zi, yi)}ni=1 ⊆ Dcal, where n = |Dcal|, yi ∈ {−1, 1} and zi ∈ RL×d

(L = 1 in a single instance setup); a confidence level α, a pretrained binary classifier g, and a
new sample znew.

Output: Prediction set Ynew

1: Initialize an empty score list S ← ∅
2: for all samples ⟨zi, yi⟩ ∈ Dcal do
3: zi = g (zi) ▷ zi ∈ R is a score
4: si = exp(−yi · zi) ▷ Nonconformity score, see Eq. 12.
5: S ← S ∪ { si}
6: end for
7: Compute a score for the new samples: znew = g (znew)
8: Initialize empty prediction set Ynew ← ∅
9: for all y ∈ {−1, 1} do

10: snew = exp(−y · znew)
11: ψy = I(snew<si):∀si∈S

|S| ▷ I(·) is an indicator function

12: if ψy > 1− α then
13: Ynew ← Ynew ∪ {y}
14: end if
15: end for
16: return Prediction set Ynew
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Algorithm 4 Inductive Conformal Predictions with multiclass nonconformity score.

Input: A calibration dataset {(zi, yi)}ni=1 ⊆ Dcal, where n = |Dcal|, yi ∈ {1, . . . ,K} (K is the
number of classes) and zi ∈ RL×d (L = 1 in a single instance setup); a confidence level α, a
pretrained multiclass classifier g, and a new sample znew.

Output: Prediction set Ynew

1: Initialize an empty score list S ← ∅
2: for all samples ⟨zi, yi⟩ ∈ Dcal do
3: p = g (zi) ▷ p ∈ ∆K−1 is a vector of probabilities
4: pz = maxj ̸=yi

pj ▷ Maximum non-target probability, where j ∈ {1, . . . ,K}
5: dp = pyi

− pz ▷ Probability margin
6: si =

1−dp

2 ▷ Non-conformity score, see Eq. 13.
7: S ← S ∪ { si}
8: end for
9: Compute probabilities for the new samples: pnew = g (znew)

10: Initialize empty prediction set Ynew ← ∅
11: for all y ∈ {1, . . . ,K} do
12: pz = maxj ̸=yi

pj ▷ where j ∈ {1, . . . ,K} and pj ∈ pnew
13: dp = py − pz
14: snew =

1−dp

2

15: ψy = I(snew<si):∀si∈S
|S| ▷ I(·) is an indicator function

16: if ψy > 1− α then
17: Ynew ← Ynew ∪ {y}
18: end if
19: end for
20: return Prediction set Ynew
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K More Tables on Classification Performance, Generalization Performance,923

and Confusion Matrices924

In this section, we report detailed tables of the following results.925

• Classification performance for all ⟨model, dataset⟩ pairs, including multiclass SVM (see926

Supplementary Tables 9– 12),927

• Generalization performance of multiclass sAwMIL across all datasets (see Supplementary928

Tables 13– 15),929

• Confusion matrices for all ⟨model, dataset⟩ pairs (see Supplementary Tables 16– 18).930

44



Table 9: Classification performance of the zero-shot prompting across datasets and models. We report
Weighted Matthew’s Correlation Coefficient (W-MCC) with the 95% confidence intervals. Recall that W-MCC
weighs MCC by acceptance rate (see Eq. 6). Confidence intervals are based on bootstrapping with n = 1,000
samples. The bold values mark W-MCC with significant confidence intervals.

Official Model Name Type Probe Dataset CI.025 W-MCC CI.975

Llama-3-8B default Zero-shot City Locations 0.13 0.16 0.19
Llama-3.2-3B default Zero-shot City Locations 0.10 0.13 0.16
Mistral-7B-v0.3 default Zero-shot City Locations 0.00 0.00 0.00
Qwen-2.5-7B default Zero-shot City Locations 0.59 0.62 0.64
Qwen-2.5-14B default Zero-shot City Locations 0.73 0.75 0.77
Gemma-7B default Zero-shot City Locations 0.00 0.00 0.00
Gemma-2-9B default Zero-shot City Locations 0.50 0.52 0.55
Gemma-7B-it chat Zero-shot City Locations 0.55 0.58 0.60
Gemma-2-9B-it chat Zero-shot City Locations 0.74 0.76 0.78
Qwen-2.5-7B-Instruct chat Zero-shot City Locations 0.66 0.68 0.70
Qwen-2.5-14B-Instruct chat Zero-shot City Locations 0.81 0.83 0.85
Llama-3.1-8B-Instruct chat Zero-shot City Locations 0.65 0.67 0.69
Llama-3.2-3B-Instruct chat Zero-shot City Locations 0.51 0.53 0.56
Mistral-7B-Instruct-v0.3 chat Zero-shot City Locations 0.49 0.51 0.53
Bio-Medical-Llama-3-8B chat Zero-shot City Locations 0.49 0.51 0.53
Llama3-Med42-8B chat Zero-shot City Locations 0.58 0.61 0.63

Llama-3-8B default Zero-shot Medical Indications 0.20 0.23 0.26
Llama-3.2-3B default Zero-shot Medical Indications 0.09 0.13 0.16
Mistral-7B-v0.3 default Zero-shot Medical Indications 0.00 0.00 0.00
Qwen-2.5-7B default Zero-shot Medical Indications 0.30 0.33 0.36
Qwen-2.5-14B default Zero-shot Medical Indications 0.42 0.45 0.48
Gemma-7B default Zero-shot Medical Indications 0.01 0.02 0.03
Gemma-2-9B default Zero-shot Medical Indications 0.25 0.28 0.32
Gemma-7B-it chat Zero-shot Medical Indications 0.26 0.29 0.33
Gemma-2-9B-it chat Zero-shot Medical Indications 0.46 0.50 0.53
Qwen-2.5-7B-Instruct chat Zero-shot Medical Indications 0.30 0.33 0.36
Qwen-2.5-14B-Instruct chat Zero-shot Medical Indications 0.53 0.56 0.58
Llama-3.1-8B-Instruct chat Zero-shot Medical Indications 0.33 0.36 0.40
Llama-3.2-3B-Instruct chat Zero-shot Medical Indications 0.22 0.25 0.28
Mistral-7B-Instruct-v0.3 chat Zero-shot Medical Indications 0.29 0.32 0.34
Bio-Medical-Llama-3-8B chat Zero-shot Medical Indications 0.30 0.33 0.36
Llama3-Med42-8B chat Zero-shot Medical Indications 0.38 0.41 0.45

Llama-3-8B default Zero-shot Word Definitions 0.03 0.06 0.09
Llama-3.2-3B default Zero-shot Word Definitions -0.00 0.02 0.05
Mistral-7B-v0.3 default Zero-shot Word Definitions 0.00 0.00 0.00
Qwen-2.5-7B default Zero-shot Word Definitions 0.10 0.13 0.16
Qwen-2.5-14B default Zero-shot Word Definitions 0.43 0.46 0.49
Gemma-7B default Zero-shot Word Definitions 0.00 0.01 0.01
Gemma-2-9B default Zero-shot Word Definitions 0.18 0.21 0.24
Gemma-7B-it chat Zero-shot Word Definitions 0.18 0.20 0.23
Gemma-2-9B-it chat Zero-shot Word Definitions 0.31 0.34 0.37
Qwen-2.5-7B-Instruct chat Zero-shot Word Definitions 0.17 0.20 0.22
Qwen-2.5-14B-Instruct chat Zero-shot Word Definitions 0.51 0.54 0.56
Llama-3.1-8B-Instruct chat Zero-shot Word Definitions 0.17 0.20 0.23
Llama-3.2-3B-Instruct chat Zero-shot Word Definitions 0.04 0.07 0.11
Mistral-7B-Instruct-v0.3 chat Zero-shot Word Definitions 0.22 0.25 0.28
Bio-Medical-Llama-3-8B chat Zero-shot Word Definitions 0.11 0.14 0.17
Llama3-Med42-8B chat Zero-shot Word Definitions 0.15 0.18 0.21
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Table 10: Classification performance of the multiclass sAwMIL probe across datasets and models. This
probe is trained and evaluated on the bag representation of the statements. We report Weighted Matthew’s
Correlation Coefficient (W-MCC) with the 95% confidence intervals. Recall that W-MCC weighs MCC by
acceptance rate (see Eq. 6). Confidence intervals are based on bootstrapping with n = 1,000 samples. The bold
values mark W-MCC with significant confidence intervals. ‘Best Layer’ column specifies the layer where a
multiclass sAwMIL probe achieved the best W-MCC score.

Official Model Name Type Probe Dataset CI.025 W-MCC CI.975 Best Layer

Llama-3-8B default sAwMIL City Locations 0.87 0.88 0.88 16
Llama-3.2-3B default sAwMIL City Locations 0.87 0.88 0.88 10
Mistral-7B-v0.3 default sAwMIL City Locations 0.87 0.88 0.88 17
Qwen-2.5-7B default sAwMIL City Locations 0.88 0.89 0.89 19
Qwen-2.5-14B default sAwMIL City Locations 0.86 0.87 0.87 28
Gemma-7B default sAwMIL City Locations 0.89 0.90 0.90 20
Gemma-2-9B default sAwMIL City Locations 0.88 0.89 0.89 21
Gemma-7B-it chat sAwMIL City Locations 0.88 0.89 0.90 18
Gemma-2-9B-it chat sAwMIL City Locations 0.87 0.87 0.88 23
Qwen-2.5-7B-Instruct chat sAwMIL City Locations 0.85 0.86 0.87 20
Qwen-2.5-14B-Instruct chat sAwMIL City Locations 0.87 0.88 0.88 29
Llama-3.1-8B-Instruct chat sAwMIL City Locations 0.88 0.88 0.89 13
Llama-3.2-3B-Instruct chat sAwMIL City Locations 0.86 0.87 0.87 12
Mistral-7B-Instruct-v0.3 chat sAwMIL City Locations 0.87 0.88 0.88 10
Bio-Medical-Llama-3-8B chat sAwMIL City Locations 0.87 0.87 0.87 28
Llama3-Med42-8B chat sAwMIL City Locations 0.88 0.89 0.89 14

Llama-3-8B default sAwMIL Medical Indications 0.74 0.77 0.79 13
Llama-3.2-3B default sAwMIL Medical Indications 0.65 0.67 0.69 10
Mistral-7B-v0.3 default sAwMIL Medical Indications 0.75 0.76 0.78 13
Qwen-2.5-7B default sAwMIL Medical Indications 0.68 0.70 0.72 16
Qwen-2.5-14B default sAwMIL Medical Indications 0.72 0.74 0.75 22
Gemma-7B default sAwMIL Medical Indications 0.72 0.74 0.76 17
Gemma-2-9B default sAwMIL Medical Indications 0.74 0.76 0.78 18
Gemma-7B-it chat sAwMIL Medical Indications 0.50 0.52 0.54 15
Gemma-2-9B-it chat sAwMIL Medical Indications 0.76 0.78 0.80 21
Qwen-2.5-7B-Instruct chat sAwMIL Medical Indications 0.68 0.70 0.72 17
Qwen-2.5-14B-Instruct chat sAwMIL Medical Indications 0.72 0.74 0.76 23
Llama-3.1-8B-Instruct chat sAwMIL Medical Indications 0.78 0.80 0.82 18
Llama-3.2-3B-Instruct chat sAwMIL Medical Indications 0.65 0.67 0.69 15
Mistral-7B-Instruct-v0.3 chat sAwMIL Medical Indications 0.75 0.77 0.79 16
Bio-Medical-Llama-3-8B chat sAwMIL Medical Indications 0.74 0.76 0.78 11
Llama3-Med42-8B chat sAwMIL Medical Indications 0.67 0.69 0.70 8

Llama-3-8B default sAwMIL Word Definitions 0.83 0.84 0.86 13
Llama-3.2-3B default sAwMIL Word Definitions 0.77 0.79 0.81 10
Mistral-7B-v0.3 default sAwMIL Word Definitions 0.84 0.86 0.88 13
Qwen-2.5-7B default sAwMIL Word Definitions 0.84 0.86 0.87 16
Qwen-2.5-14B default sAwMIL Word Definitions 0.84 0.85 0.87 21
Gemma-7B default sAwMIL Word Definitions 0.77 0.79 0.81 14
Gemma-2-9B default sAwMIL Word Definitions 0.86 0.88 0.89 17
Gemma-7B-it chat sAwMIL Word Definitions 0.63 0.64 0.66 22
Gemma-2-9B-it chat sAwMIL Word Definitions 0.86 0.87 0.89 19
Qwen-2.5-7B-Instruct chat sAwMIL Word Definitions 0.84 0.86 0.87 18
Qwen-2.5-14B-Instruct chat sAwMIL Word Definitions 0.88 0.89 0.90 24
Llama-3.1-8B-Instruct chat sAwMIL Word Definitions 0.88 0.89 0.91 14
Llama-3.2-3B-Instruct chat sAwMIL Word Definitions 0.85 0.86 0.88 12
Mistral-7B-Instruct-v0.3 chat sAwMIL Word Definitions 0.86 0.87 0.89 11
Bio-Medical-Llama-3-8B chat sAwMIL Word Definitions 0.86 0.88 0.89 13
Llama3-Med42-8B chat sAwMIL Word Definitions 0.87 0.88 0.90 14
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Table 11: Classification performance of the mean-difference probe with conformal prediction intervals
(MD+CP) probe across datasets and models. This probe is trained and evaluated on the last token’s representation.
We report Weighted Matthew’s Correlation Coefficient (W-MCC) with the 95% confidence intervals. Recall
that W-MCC weighs MCC by acceptance rate (see Eq. 6). Confidence intervals are based on bootstrapping with
n = 1,000 samples. The bold values mark W-MCC with significant confidence intervals. ‘Best Layer’ column
specifies the layer where a multiclass sAwMIL probe achieved the best W-MCC score.

Official Model Name Type Probe Dataset CI.025 MCC CI.975 Best Layer

Llama-3-8B default MD+CP City Locations 0.56 0.59 0.62 30
Llama-3.2-3B default MD+CP City Locations 0.56 0.59 0.62 27
Mistral-7B-v0.3 default MD+CP City Locations 0.58 0.61 0.64 22
Qwen-2.5-7B default MD+CP City Locations 0.50 0.53 0.56 21
Qwen-2.5-14B default MD+CP City Locations 0.57 0.60 0.62 32
Gemma-7B default MD+CP City Locations 0.61 0.64 0.66 21
Gemma-2-9B default MD+CP City Locations 0.67 0.70 0.73 24
Gemma-7B-it chat MD+CP City Locations 0.55 0.58 0.61 19
Gemma-2-9B-it chat MD+CP City Locations 0.73 0.75 0.78 24
Qwen-2.5-7B-Instruct chat MD+CP City Locations 0.52 0.55 0.58 22
Qwen-2.5-14B-Instruct chat MD+CP City Locations 0.63 0.66 0.69 39
Llama-3.1-8B-Instruct chat MD+CP City Locations 0.67 0.69 0.72 31
Llama-3.2-3B-Instruct chat MD+CP City Locations 0.56 0.59 0.62 15
Mistral-7B-Instruct-v0.3 chat MD+CP City Locations 0.61 0.64 0.67 14
Bio-Medical-Llama-3-8B chat MD+CP City Locations 0.65 0.68 0.71 22
Llama3-Med42-8B chat MD+CP City Locations 0.61 0.64 0.67 29

Llama-3-8B default MD+CP Medical Indications 0.37 0.40 0.43 17
Llama-3.2-3B default MD+CP Medical Indications 0.34 0.38 0.41 14
Mistral-7B-v0.3 default MD+CP Medical Indications 0.37 0.41 0.44 20
Qwen-2.5-7B default MD+CP Medical Indications 0.41 0.44 0.47 22
Qwen-2.5-14B default MD+CP Medical Indications 0.40 0.44 0.47 39
Gemma-7B default MD+CP Medical Indications 0.39 0.42 0.45 21
Gemma-2-9B default MD+CP Medical Indications 0.40 0.43 0.46 28
Gemma-7B-it chat MD+CP Medical Indications 0.27 0.30 0.34 17
Gemma-2-9B-it chat MD+CP Medical Indications 0.40 0.43 0.46 21
Qwen-2.5-7B-Instruct chat MD+CP Medical Indications 0.40 0.43 0.47 22
Qwen-2.5-14B-Instruct chat MD+CP Medical Indications 0.41 0.45 0.48 35
Llama-3.1-8B-Instruct chat MD+CP Medical Indications 0.40 0.43 0.47 20
Llama-3.2-3B-Instruct chat MD+CP Medical Indications 0.31 0.35 0.38 11
Mistral-7B-Instruct-v0.3 chat MD+CP Medical Indications 0.35 0.39 0.42 15
Bio-Medical-Llama-3-8B chat MD+CP Medical Indications 0.37 0.40 0.44 15
Llama3-Med42-8B chat MD+CP Medical Indications 0.40 0.43 0.47 24

Llama-3-8B default MD+CP Word Definitions 0.27 0.30 0.33 12
Llama-3.2-3B default MD+CP Word Definitions 0.28 0.31 0.34 11
Mistral-7B-v0.3 default MD+CP Word Definitions 0.30 0.33 0.35 15
Qwen-2.5-7B default MD+CP Word Definitions 0.30 0.33 0.36 20
Qwen-2.5-14B default MD+CP Word Definitions 0.32 0.35 0.38 28
Gemma-7B default MD+CP Word Definitions 0.31 0.34 0.37 15
Gemma-2-9B default MD+CP Word Definitions 0.31 0.34 0.37 23
Gemma-7B-it chat MD+CP Word Definitions 0.32 0.35 0.37 17
Gemma-2-9B-it chat MD+CP Word Definitions 0.32 0.35 0.37 19
Qwen-2.5-7B-Instruct chat MD+CP Word Definitions 0.33 0.35 0.38 21
Qwen-2.5-14B-Instruct chat MD+CP Word Definitions 0.32 0.35 0.37 31
Llama-3.1-8B-Instruct chat MD+CP Word Definitions 0.33 0.36 0.39 13
Llama-3.2-3B-Instruct chat MD+CP Word Definitions 0.17 0.20 0.24 10
Mistral-7B-Instruct-v0.3 chat MD+CP Word Definitions 0.31 0.34 0.36 18
Bio-Medical-Llama-3-8B chat MD+CP Word Definitions 0.27 0.30 0.33 19
Llama3-Med42-8B chat MD+CP Word Definitions 0.36 0.38 0.41 24
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Table 12: Classification performance of the multiclass SVM probe across datasets and models. This probe
is trained on the last token’s representations and evaluated on the bag representation of the statements. We report
Weighted Matthew’s Correlation Coefficient (W-MCC) with the 95% confidence intervals. Recall that W-MCC
weighs MCC by acceptance rate (see Eq. 6). Confidence intervals are based on bootstrapping with n = 1,000
samples. The bold values mark W-MCC with significant confidence intervals. ‘Best Layer’ column specifies the
layer where a multiclass sAwMIL probe achieved the best W-MCC score.

Official Model Name Type Probe Dataset CI.025 W-MCC CI.975 Best Layer

Llama-3-8B default SVM City Locations 0.79 0.81 0.83 13
Llama-3.2-3B default SVM City Locations 0.70 0.73 0.75 27
Mistral-7B-v0.3 default SVM City Locations 0.84 0.86 0.87 13
Qwen-2.5-7B default SVM City Locations 0.66 0.68 0.71 26
Qwen-2.5-14B default SVM City Locations 0.78 0.80 0.82 29
Gemma-7B default SVM City Locations 0.69 0.72 0.74 21
Gemma-2-9B default SVM City Locations 0.78 0.81 0.83 14
Gemma-7B-it chat SVM City Locations 0.47 0.49 0.51 14
Gemma-2-9B-it chat SVM City Locations 0.77 0.79 0.81 27
Qwen-2.5-7B-Instruct chat SVM City Locations 0.00 0.00 0.00 2
Qwen-2.5-14B-Instruct chat SVM City Locations 0.65 0.67 0.69 31
Llama-3.1-8B-Instruct chat SVM City Locations 0.58 0.60 0.61 15
Llama-3.2-3B-Instruct chat SVM City Locations 0.58 0.60 0.62 19
Mistral-7B-Instruct-v0.3 chat SVM City Locations 0.87 0.88 0.89 17
Bio-Medical-Llama-3-8B chat SVM City Locations 0.46 0.49 0.51 12
Llama3-Med42-8B chat SVM City Locations 0.72 0.74 0.76 31

Llama-3-8B default SVM Medical Indications 0.53 0.56 0.59 13
Llama-3.2-3B default SVM Medical Indications 0.53 0.55 0.57 11
Mistral-7B-v0.3 default SVM Medical Indications 0.63 0.66 0.68 11
Qwen-2.5-7B default SVM Medical Indications 0.54 0.56 0.59 17
Qwen-2.5-14B default SVM Medical Indications 0.62 0.65 0.67 24
Gemma-7B default SVM Medical Indications 0.66 0.69 0.72 15
Gemma-2-9B default SVM Medical Indications 0.62 0.65 0.68 21
Gemma-7B-it chat SVM Medical Indications 0.37 0.41 0.45 15
Gemma-2-9B-it chat SVM Medical Indications 0.69 0.71 0.74 23
Qwen-2.5-7B-Instruct chat SVM Medical Indications 0.16 0.19 0.22 19
Qwen-2.5-14B-Instruct chat SVM Medical Indications 0.32 0.35 0.38 11
Llama-3.1-8B-Instruct chat SVM Medical Indications 0.50 0.52 0.54 12
Llama-3.2-3B-Instruct chat SVM Medical Indications 0.43 0.45 0.48 20
Mistral-7B-Instruct-v0.3 chat SVM Medical Indications 0.70 0.72 0.75 18
Bio-Medical-Llama-3-8B chat SVM Medical Indications 0.50 0.52 0.54 16
Llama3-Med42-8B chat SVM Medical Indications 0.48 0.51 0.53 16

Llama-3-8B default SVM Word Definitions 0.76 0.79 0.81 15
Llama-3.2-3B default SVM Word Definitions 0.72 0.74 0.76 13
Mistral-7B-v0.3 default SVM Word Definitions 0.74 0.76 0.78 11
Qwen-2.5-7B default SVM Word Definitions 0.72 0.74 0.77 16
Qwen-2.5-14B default SVM Word Definitions 0.78 0.81 0.83 22
Gemma-7B default SVM Word Definitions 0.74 0.76 0.79 16
Gemma-2-9B default SVM Word Definitions 0.79 0.81 0.83 23
Gemma-7B-it chat SVM Word Definitions 0.63 0.65 0.68 25
Gemma-2-9B-it chat SVM Word Definitions 0.63 0.65 0.67 41
Qwen-2.5-7B-Instruct chat SVM Word Definitions 0.18 0.21 0.23 6
Qwen-2.5-14B-Instruct chat SVM Word Definitions 0.52 0.55 0.57 25
Llama-3.1-8B-Instruct chat SVM Word Definitions 0.00 0.04 0.06 29
Llama-3.2-3B-Instruct chat SVM Word Definitions 0.59 0.62 0.64 11
Mistral-7B-Instruct-v0.3 chat SVM Word Definitions 0.78 0.80 0.81 18
Bio-Medical-Llama-3-8B chat SVM Word Definitions 0.58 0.60 0.62 5
Llama3-Med42-8B chat SVM Word Definitions 0.71 0.73 0.75 28
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Table 13: Generalization performance of the multiclass sAwMIL trained on the City Locations dataset. The
performance is measured by the Matthew’s Correlation Coefficient (MCC) with 95% confidence intervals, based
on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence intervals.
The ‘Rel. Depth’ column specifies the relative depth of the layer where the multiclass sAwMIL probe achieves
the best MCC score.

Model Name Training Dataset Test Dataset CI.025 MCC CI.975 Rel. Depth

Gemma-7B-it City Locations City Locations 0.93 0.94 0.95 0.59
Gemma-7B-it City Locations Medical Indications 0.43 0.46 0.49 0.63
Gemma-7B-it City Locations Word Definitions 0.44 0.47 0.50 0.63
Gemma-2-9B-it City Locations City Locations 0.96 0.97 0.98 0.56
Gemma-2-9B-it City Locations Medical Indications 0.67 0.70 0.73 0.44
Gemma-2-9B-it City Locations Word Definitions 0.69 0.71 0.74 0.49
Llama-3.2-3B-Instruct City Locations City Locations 0.95 0.96 0.97 0.52
Llama-3.2-3B-Instruct City Locations Medical Indications 0.59 0.62 0.65 0.56
Llama-3.2-3B-Instruct City Locations Word Definitions 0.62 0.65 0.67 0.48
Llama3-Med42-8B City Locations City Locations 0.96 0.97 0.98 0.42
Llama3-Med42-8B City Locations Medical Indications 0.75 0.78 0.81 0.90
Llama3-Med42-8B City Locations Word Definitions 0.75 0.78 0.80 0.45
Llama-3.1-8B-Instruct City Locations City Locations 0.96 0.97 0.98 0.48
Llama-3.1-8B-Instruct City Locations Medical Indications 0.73 0.75 0.78 0.52
Llama-3.1-8B-Instruct City Locations Word Definitions 0.79 0.81 0.83 0.42
Bio-Medical-Llama-3-8B City Locations City Locations 0.96 0.97 0.98 0.97
Bio-Medical-Llama-3-8B City Locations Medical Indications 0.59 0.62 0.65 0.42
Bio-Medical-Llama-3-8B City Locations Word Definitions 0.53 0.56 0.59 0.26
Mistral-7B-Instruct-v0.3 City Locations City Locations 0.95 0.96 0.97 0.48
Mistral-7B-Instruct-v0.3 City Locations Medical Indications 0.72 0.75 0.78 0.55
Mistral-7B-Instruct-v0.3 City Locations Word Definitions 0.69 0.71 0.74 0.35
Qwen-2.5-7B-Instruct City Locations City Locations 0.94 0.95 0.96 0.67
Qwen-2.5-7B-Instruct City Locations Medical Indications 0.71 0.74 0.76 0.70
Qwen-2.5-7B-Instruct City Locations Word Definitions 0.62 0.64 0.67 0.70
Qwen-2.5-14B-Instruct City Locations City Locations 0.96 0.97 0.98 0.62
Qwen-2.5-14B-Instruct City Locations Medical Indications 0.74 0.77 0.80 0.64
Qwen-2.5-14B-Instruct City Locations Word Definitions 0.73 0.75 0.77 0.60
Gemma-7B City Locations City Locations 0.96 0.97 0.98 0.74
Gemma-7B City Locations Medical Indications 0.55 0.58 0.60 0.41
Gemma-7B City Locations Word Definitions 0.61 0.63 0.66 0.52
Gemma-2-9B City Locations City Locations 0.97 0.98 0.99 0.63
Gemma-2-9B City Locations Medical Indications 0.52 0.55 0.58 0.44
Gemma-2-9B City Locations Word Definitions 0.54 0.56 0.58 0.27
Llama-3.2-3B City Locations City Locations 0.95 0.96 0.97 0.37
Llama-3.2-3B City Locations Medical Indications 0.35 0.38 0.41 0.33
Llama-3.2-3B City Locations Word Definitions 0.48 0.50 0.52 0.30
Llama-3-8B City Locations City Locations 0.96 0.97 0.98 0.32
Llama-3-8B City Locations Medical Indications 0.59 0.62 0.65 0.35
Llama-3-8B City Locations Word Definitions 0.56 0.58 0.61 0.26
Mistral-7B-v0.3 City Locations City Locations 0.96 0.97 0.98 0.42
Mistral-7B-v0.3 City Locations Medical Indications 0.50 0.53 0.55 0.39
Mistral-7B-v0.3 City Locations Word Definitions 0.58 0.61 0.63 0.39
Qwen-2.5-7B City Locations City Locations 0.94 0.95 0.96 0.70
Qwen-2.5-7B City Locations Medical Indications 0.48 0.52 0.55 0.59
Qwen-2.5-7B City Locations Word Definitions 0.51 0.54 0.57 0.59
Qwen-2.5-14B City Locations City Locations 0.95 0.96 0.97 0.79
Qwen-2.5-14B City Locations Medical Indications 0.59 0.62 0.65 0.45
Qwen-2.5-14B City Locations Word Definitions 0.62 0.64 0.67 0.43
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Table 14: Generalization performance of the multiclass sAwMIL trained on the Medical Indications dataset.
The performance is measured by the Matthew’s Correlation Coefficient (MCC) with 95% confidence intervals,
based on bootstrapping with n = 1,000 samples. The bold values mark MCC significant confidence intervals.
The ‘Rel. Depth’ column specifies the relative depth of the layer where a multiclass sAwMIL probe achieves the
best MCC score.

Model Name Training Dataset Test Dataset CI.025 MCC CI.975 Rel. Depth

Gemma-7B-it Medical Indications City Locations 0.90 0.91 0.93 0.70
Gemma-7B-it Medical Indications Medical Indications 0.65 0.68 0.72 0.59
Gemma-7B-it Medical Indications Word Definitions 0.64 0.67 0.69 0.59
Gemma-2-9B-it Medical Indications City Locations 0.91 0.92 0.94 0.63
Gemma-2-9B-it Medical Indications Medical Indications 0.81 0.83 0.85 0.49
Gemma-2-9B-it Medical Indications Word Definitions 0.78 0.80 0.82 0.61
Llama-3.2-3B-Instruct Medical Indications City Locations 0.80 0.82 0.85 0.41
Llama-3.2-3B-Instruct Medical Indications Medical Indications 0.73 0.76 0.79 0.48
Llama-3.2-3B-Instruct Medical Indications Word Definitions 0.65 0.67 0.70 0.48
Llama3-Med42-8B Medical Indications City Locations 0.95 0.96 0.97 0.52
Llama3-Med42-8B Medical Indications Medical Indications 0.80 0.83 0.85 0.45
Llama3-Med42-8B Medical Indications Word Definitions 0.76 0.78 0.80 0.45
Llama-3.1-8B-Instruct Medical Indications City Locations 0.92 0.93 0.94 0.55
Llama-3.1-8B-Instruct Medical Indications Medical Indications 0.81 0.83 0.85 0.55
Llama-3.1-8B-Instruct Medical Indications Word Definitions 0.77 0.79 0.81 0.42
Bio-Medical-Llama-3-8B Medical Indications City Locations 0.85 0.86 0.88 0.39
Bio-Medical-Llama-3-8B Medical Indications Medical Indications 0.78 0.81 0.83 0.81
Bio-Medical-Llama-3-8B Medical Indications Word Definitions 0.70 0.73 0.75 0.32
Mistral-7B-Instruct-v0.3 Medical Indications City Locations 0.93 0.94 0.95 0.39
Mistral-7B-Instruct-v0.3 Medical Indications Medical Indications 0.78 0.80 0.83 0.45
Mistral-7B-Instruct-v0.3 Medical Indications Word Definitions 0.74 0.77 0.79 0.45
Qwen-2.5-7B-Instruct Medical Indications City Locations 0.78 0.80 0.83 0.52
Qwen-2.5-7B-Instruct Medical Indications Medical Indications 0.74 0.77 0.79 0.67
Qwen-2.5-7B-Instruct Medical Indications Word Definitions 0.64 0.67 0.69 0.63
Qwen-2.5-14B-Instruct Medical Indications City Locations 0.90 0.92 0.93 0.49
Qwen-2.5-14B-Instruct Medical Indications Medical Indications 0.79 0.82 0.84 0.57
Qwen-2.5-14B-Instruct Medical Indications Word Definitions 0.76 0.79 0.81 0.57
Gemma-7B Medical Indications City Locations 0.60 0.63 0.66 0.56
Gemma-7B Medical Indications Medical Indications 0.75 0.78 0.80 0.63
Gemma-7B Medical Indications Word Definitions 0.55 0.57 0.59 0.70
Gemma-2-9B Medical Indications City Locations 0.83 0.85 0.87 0.56
Gemma-2-9B Medical Indications Medical Indications 0.77 0.80 0.82 0.44
Gemma-2-9B Medical Indications Word Definitions 0.64 0.67 0.69 0.39
Llama-3.2-3B Medical Indications City Locations 0.49 0.51 0.53 0.41
Llama-3.2-3B Medical Indications Medical Indications 0.74 0.76 0.79 0.44
Llama-3.2-3B Medical Indications Word Definitions 0.59 0.62 0.64 0.52
Llama-3-8B Medical Indications City Locations 0.75 0.77 0.80 0.45
Llama-3-8B Medical Indications Medical Indications 0.77 0.80 0.83 0.39
Llama-3-8B Medical Indications Word Definitions 0.63 0.65 0.68 0.26
Mistral-7B-v0.3 Medical Indications City Locations 0.58 0.60 0.63 0.42
Mistral-7B-v0.3 Medical Indications Medical Indications 0.77 0.80 0.82 0.42
Mistral-7B-v0.3 Medical Indications Word Definitions 0.63 0.65 0.68 0.42
Qwen-2.5-7B Medical Indications City Locations 0.80 0.82 0.84 0.67
Qwen-2.5-7B Medical Indications Medical Indications 0.76 0.78 0.81 0.63
Qwen-2.5-7B Medical Indications Word Definitions 0.59 0.62 0.65 0.74
Qwen-2.5-14B Medical Indications City Locations 0.80 0.82 0.84 0.70
Qwen-2.5-14B Medical Indications Medical Indications 0.76 0.79 0.82 0.60
Qwen-2.5-14B Medical Indications Word Definitions 0.70 0.72 0.75 0.60

936

50



Table 15: Generalization performance of the multiclass sAwMIL trained on the Word Definitions dataset.
The performance is measured by the Matthew’s Correlation Coefficient (MCC) with 95% confidence intervals,
based on bootstrapping with n = 1,000 samples. The bold values mark MCC with significant confidence
intervals. The ‘Rel. Depth’ column specifies the relative depth of the layer where a multiclass sAwMIL probe
achieves the best MCC score.

Model Name Training Dataset Test Dataset CI.025 MCC CI.975 Rel. Depth

Gemma-7B-it Word Definitions City Locations 0.90 0.92 0.93 0.70
Gemma-7B-it Word Definitions Medical Indications 0.53 0.56 0.60 0.67
Gemma-7B-it Word Definitions Word Definitions 0.78 0.80 0.82 0.67
Gemma-2-9B-it Word Definitions City Locations 0.94 0.96 0.97 0.56
Gemma-2-9B-it Word Definitions Medical Indications 0.65 0.69 0.71 0.41
Gemma-2-9B-it Word Definitions Word Definitions 0.88 0.90 0.91 0.54
Llama-3.2-3B-Instruct Word Definitions City Locations 0.84 0.86 0.88 0.48
Llama-3.2-3B-Instruct Word Definitions Medical Indications 0.60 0.63 0.66 0.44
Llama-3.2-3B-Instruct Word Definitions Word Definitions 0.85 0.86 0.88 0.44
Llama3-Med42-8B Word Definitions City Locations 0.94 0.95 0.97 0.35
Llama3-Med42-8B Word Definitions Medical Indications 0.76 0.79 0.81 0.45
Llama3-Med42-8B Word Definitions Word Definitions 0.87 0.89 0.91 0.45
Llama-3.1-8B-Instruct Word Definitions City Locations 0.95 0.96 0.97 0.45
Llama-3.1-8B-Instruct Word Definitions Medical Indications 0.72 0.75 0.77 0.32
Llama-3.1-8B-Instruct Word Definitions Word Definitions 0.90 0.91 0.93 0.45
Bio-Medical-Llama-3-8B Word Definitions City Locations 0.78 0.81 0.83 0.35
Bio-Medical-Llama-3-8B Word Definitions Medical Indications 0.70 0.73 0.76 0.32
Bio-Medical-Llama-3-8B Word Definitions Word Definitions 0.87 0.89 0.90 0.39
Mistral-7B-Instruct-v0.3 Word Definitions City Locations 0.93 0.94 0.96 0.48
Mistral-7B-Instruct-v0.3 Word Definitions Medical Indications 0.74 0.77 0.80 0.52
Mistral-7B-Instruct-v0.3 Word Definitions Word Definitions 0.87 0.88 0.90 0.35
Qwen-2.5-7B-Instruct Word Definitions City Locations 0.85 0.87 0.88 0.63
Qwen-2.5-7B-Instruct Word Definitions Medical Indications 0.74 0.76 0.79 0.67
Qwen-2.5-7B-Instruct Word Definitions Word Definitions 0.85 0.87 0.88 0.63
Qwen-2.5-14B-Instruct Word Definitions City Locations 0.95 0.96 0.97 0.66
Qwen-2.5-14B-Instruct Word Definitions Medical Indications 0.77 0.79 0.82 0.66
Qwen-2.5-14B-Instruct Word Definitions Word Definitions 0.88 0.90 0.92 0.51
Gemma-7B Word Definitions City Locations 0.88 0.90 0.91 0.56
Gemma-7B Word Definitions Medical Indications 0.59 0.63 0.66 0.48
Gemma-7B Word Definitions Word Definitions 0.81 0.83 0.85 0.56
Gemma-2-9B Word Definitions City Locations 0.92 0.93 0.94 0.56
Gemma-2-9B Word Definitions Medical Indications 0.70 0.73 0.75 0.46
Gemma-2-9B Word Definitions Word Definitions 0.86 0.88 0.90 0.41
Llama-3.2-3B Word Definitions City Locations 0.76 0.78 0.81 0.41
Llama-3.2-3B Word Definitions Medical Indications 0.70 0.73 0.76 0.41
Llama-3.2-3B Word Definitions Word Definitions 0.79 0.81 0.83 0.41
Llama-3-8B Word Definitions City Locations 0.84 0.86 0.88 0.39
Llama-3-8B Word Definitions Medical Indications 0.74 0.76 0.79 0.39
Llama-3-8B Word Definitions Word Definitions 0.85 0.87 0.89 0.39
Mistral-7B-v0.3 Word Definitions City Locations 0.77 0.79 0.81 0.52
Mistral-7B-v0.3 Word Definitions Medical Indications 0.73 0.76 0.78 0.39
Mistral-7B-v0.3 Word Definitions Word Definitions 0.85 0.87 0.89 0.45
Qwen-2.5-7B Word Definitions City Locations 0.90 0.92 0.93 0.67
Qwen-2.5-7B Word Definitions Medical Indications 0.72 0.74 0.77 0.59
Qwen-2.5-7B Word Definitions Word Definitions 0.85 0.87 0.88 0.59
Qwen-2.5-14B Word Definitions City Locations 0.92 0.94 0.95 0.45
Qwen-2.5-14B Word Definitions Medical Indications 0.72 0.75 0.78 0.66
Qwen-2.5-14B Word Definitions Word Definitions 0.85 0.87 0.88 0.47
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Table 16: Row-wise confusion matrices for zero-shot prompting across all ⟨model, dataset⟩ pairs.
Each row corresponds to a specific model and a dataset. Columns are grouped by the ground-truth
labels (True, False, Neither) with groups of subcolumns that specify the distribution of predictions
(true, false, neither, abstain). For each statement in a dataset, the predicted class is the class with
the highest probability (as estimated by zero-shot prompting). The values in each group of four
subcolumns sum to 1 because they are normalized counts. For example, in the first row under the
True ground-truth label, we see that true predictions have the value of 0.89 – that means that 89% of
all the true statements are classified as true.

Ground-truth label → True False Neither
Predicted → True False Neither Abstain True False Neither Abstain True False Neither Abstain

Model ↓ Data Set ↓

Bio-Medical-Llama-3-8B
City Locations 0.89 0.11 0.00 0.00 0.06 0.94 0.00 0.00 0.18 0.82 0.00 0.00
Medical Indications 0.79 0.21 0.00 0.00 0.32 0.68 0.00 0.00 0.27 0.73 0.00 0.00
Word Definitions 0.61 0.39 0.00 0.00 0.37 0.63 0.00 0.00 0.05 0.95 0.00 0.00

Gemma-2-9B
City Locations 0.50 0.10 0.39 0.01 0.03 0.53 0.43 0.01 0.05 0.00 0.93 0.02
Medical Indications 0.70 0.12 0.18 0.00 0.34 0.51 0.14 0.00 0.57 0.19 0.24 0.00
Word Definitions 0.36 0.20 0.40 0.05 0.17 0.26 0.53 0.04 0.14 0.12 0.72 0.01

Gemma-2-9B-it
City Locations 0.98 0.02 0.00 0.00 0.03 0.97 0.00 0.00 0.06 0.45 0.49 0.00
Medical Indications 0.87 0.12 0.01 0.00 0.25 0.75 0.00 0.00 0.23 0.59 0.18 0.00
Word Definitions 0.76 0.16 0.09 0.00 0.25 0.70 0.06 0.00 0.10 0.65 0.25 0.00

Gemma-7B
City Locations 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Medical Indications 0.16 0.00 0.00 0.84 0.09 0.00 0.00 0.91 0.03 0.00 0.00 0.96
Word Definitions 0.03 0.00 0.00 0.97 0.03 0.01 0.00 0.96 0.00 0.00 0.00 1.00

Gemma-7B-it
City Locations 0.76 0.23 0.01 0.00 0.05 0.95 0.00 0.00 0.04 0.64 0.32 0.00
Medical Indications 0.69 0.30 0.01 0.00 0.27 0.73 0.00 0.00 0.37 0.61 0.02 0.00
Word Definitions 0.27 0.63 0.09 0.01 0.09 0.89 0.02 0.00 0.04 0.77 0.15 0.04

Llama-3-8B
City Locations 0.35 0.65 0.00 0.00 0.22 0.78 0.00 0.00 0.47 0.52 0.00 0.01
Medical Indications 0.33 0.67 0.00 0.00 0.08 0.92 0.00 0.00 0.19 0.81 0.00 0.00
Word Definitions 0.45 0.55 0.00 0.00 0.33 0.67 0.00 0.00 0.37 0.63 0.00 0.00

Llama-3.1-8B-Instruct
City Locations 0.95 0.05 0.00 0.00 0.03 0.97 0.00 0.00 0.08 0.65 0.27 0.00
Medical Indications 0.54 0.46 0.00 0.00 0.07 0.93 0.00 0.00 0.13 0.86 0.01 0.00
Word Definitions 0.54 0.46 0.00 0.00 0.21 0.79 0.00 0.00 0.06 0.94 0.00 0.00

Llama-3.2-3B
City Locations 0.29 0.71 0.00 0.00 0.11 0.89 0.00 0.00 0.43 0.57 0.00 0.00
Medical Indications 0.46 0.54 0.00 0.00 0.34 0.66 0.00 0.00 0.50 0.50 0.00 0.00
Word Definitions 0.48 0.52 0.00 0.00 0.44 0.56 0.00 0.00 0.46 0.54 0.00 0.00

Llama-3.2-3B-Instruct
City Locations 0.93 0.07 0.00 0.00 0.15 0.85 0.00 0.00 0.04 0.84 0.13 0.00
Medical Indications 0.35 0.65 0.00 0.00 0.07 0.93 0.00 0.00 0.15 0.85 0.00 0.00
Word Definitions 0.60 0.40 0.00 0.00 0.46 0.54 0.00 0.00 0.06 0.93 0.01 0.00

Llama3-Med42-8B
City Locations 0.96 0.04 0.00 0.00 0.04 0.96 0.00 0.00 0.22 0.64 0.14 0.00
Medical Indications 0.69 0.31 0.00 0.00 0.13 0.87 0.00 0.00 0.17 0.82 0.00 0.00
Word Definitions 0.47 0.52 0.01 0.00 0.18 0.81 0.01 0.00 0.08 0.89 0.03 0.00

Mistral-7B-Instruct-v0.3
City Locations 0.88 0.00 0.09 0.03 0.04 0.09 0.50 0.37 0.08 0.00 0.90 0.02
Medical Indications 0.47 0.04 0.49 0.00 0.07 0.09 0.85 0.00 0.03 0.00 0.97 0.00
Word Definitions 0.63 0.02 0.33 0.02 0.40 0.01 0.55 0.04 0.25 0.00 0.73 0.02

Mistral-7B-v0.3
City Locations 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Medical Indications 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
Word Definitions 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

Qwen-2.5-14B
City Locations 0.95 0.05 0.00 0.00 0.02 0.98 0.00 0.00 0.04 0.47 0.49 0.00
Medical Indications 0.53 0.46 0.01 0.00 0.04 0.95 0.00 0.00 0.00 0.77 0.23 0.00
Word Definitions 0.50 0.41 0.09 0.00 0.05 0.90 0.05 0.00 0.00 0.53 0.47 0.00

Qwen-2.5-14B-Instruct
City Locations 0.93 0.07 0.00 0.00 0.02 0.98 0.00 0.00 0.00 0.28 0.71 0.00
Medical Indications 0.63 0.23 0.14 0.00 0.04 0.87 0.09 0.00 0.00 0.46 0.54 0.00
Word Definitions 0.55 0.32 0.13 0.00 0.06 0.89 0.06 0.00 0.01 0.37 0.62 0.00

Qwen-2.5-7B
City Locations 0.92 0.07 0.01 0.00 0.03 0.96 0.01 0.00 0.09 0.68 0.23 0.00
Medical Indications 0.56 0.44 0.00 0.00 0.11 0.89 0.00 0.00 0.25 0.75 0.00 0.00
Word Definitions 0.60 0.39 0.01 0.00 0.31 0.67 0.02 0.00 0.35 0.64 0.01 0.00

Qwen-2.5-7B-Instruct
City Locations 0.89 0.11 0.00 0.00 0.02 0.98 0.00 0.00 0.02 0.57 0.37 0.03
Medical Indications 0.41 0.56 0.02 0.00 0.04 0.94 0.02 0.00 0.01 0.92 0.06 0.01
Word Definitions 0.56 0.39 0.04 0.01 0.27 0.70 0.03 0.01 0.25 0.61 0.12 0.03
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Table 17: Row-wise confusion matrices for mean-difference probe with conformal prediction
intervals (MD+CP) across all ⟨model-dataset pairs⟩. Each row corresponds to a specific model
and a dataset. Columns are grouped by the ground-truth labels (True, False, Neither) with groups
of subcolumns that specify the distribution of predictions (true, false, neither, abstain). For each
statement in a dataset, the predicted class is the class with the highest probability (as estimated by
MD+CP). The values in each group of four subcolumns sum to 1 because they are normalized counts.
For example, in the first row under the True ground-truth label, we see that true predictions have the
value of 0.89 – that means that 89% of all the true statements are classified as true.

True Labels → True False Neither
Predicted → True False Neither Abstain True False Neither Abstain True False Neither Abstain

Model ↓ Data Set ↓

Bio-Medical-Llama-3-8B
City Locations 0.89 0.01 0.10 0.00 0.01 0.91 0.08 0.00 0.17 0.39 0.44 0.00
Medical Indications 0.69 0.13 0.18 0.00 0.09 0.76 0.16 0.00 0.22 0.59 0.20 0.00
Word Definitions 0.73 0.10 0.17 0.00 0.08 0.73 0.19 0.00 0.37 0.42 0.21 0.00

Gemma-2-9B
City Locations 0.91 0.00 0.09 0.00 0.00 0.91 0.09 0.00 0.19 0.25 0.56 0.00
Medical Indications 0.76 0.09 0.15 0.00 0.10 0.75 0.15 0.00 0.11 0.77 0.12 0.00
Word Definitions 0.79 0.10 0.11 0.00 0.09 0.81 0.10 0.00 0.46 0.39 0.15 0.00

Gemma-2-9B-it
City Locations 0.91 0.01 0.08 0.00 0.01 0.91 0.08 0.00 0.06 0.59 0.35 0.00
Medical Indications 0.70 0.09 0.21 0.00 0.09 0.72 0.19 0.00 0.42 0.29 0.29 0.00
Word Definitions 0.76 0.10 0.14 0.00 0.10 0.75 0.15 0.00 0.23 0.61 0.16 0.00

Gemma-7B
City Locations 0.92 0.01 0.08 0.00 0.01 0.91 0.08 0.00 0.13 0.55 0.33 0.00
Medical Indications 0.71 0.10 0.19 0.00 0.08 0.71 0.20 0.00 0.19 0.52 0.29 0.00
Word Definitions 0.70 0.10 0.20 0.00 0.08 0.75 0.17 0.00 0.36 0.36 0.28 0.00

Gemma-7B-it
City Locations 0.91 0.01 0.08 0.00 0.02 0.88 0.10 0.00 0.31 0.42 0.27 0.00
Medical Indications 0.58 0.12 0.30 0.00 0.11 0.59 0.30 0.00 0.32 0.35 0.32 0.00
Word Definitions 0.76 0.12 0.12 0.00 0.11 0.79 0.10 0.00 0.31 0.48 0.21 0.00

Llama-3-8B
City Locations 0.90 0.02 0.07 0.00 0.00 0.93 0.07 0.00 0.65 0.22 0.14 0.00
Medical Indications 0.73 0.10 0.17 0.00 0.11 0.74 0.15 0.00 0.64 0.26 0.11 0.00
Word Definitions 0.73 0.09 0.18 0.00 0.07 0.74 0.19 0.00 0.47 0.31 0.22 0.00

Llama-3.1-8B-Instruct
City Locations 0.90 0.01 0.09 0.00 0.01 0.91 0.08 0.00 0.38 0.16 0.46 0.00
Medical Indications 0.76 0.11 0.12 0.00 0.10 0.78 0.12 0.00 0.49 0.39 0.12 0.00
Word Definitions 0.81 0.07 0.11 0.00 0.08 0.80 0.12 0.00 0.24 0.59 0.17 0.00

Llama-3.2-3B
City Locations 0.91 0.02 0.08 0.00 0.02 0.89 0.08 0.00 0.12 0.71 0.17 0.00
Medical Indications 0.72 0.12 0.16 0.00 0.12 0.71 0.17 0.00 0.19 0.64 0.17 0.00
Word Definitions 0.73 0.09 0.18 0.00 0.11 0.71 0.18 0.00 0.31 0.44 0.26 0.00

Llama-3.2-3B-Instruct
City Locations 0.92 0.02 0.06 0.00 0.04 0.89 0.07 0.00 0.45 0.34 0.21 0.00
Medical Indications 0.59 0.11 0.31 0.00 0.11 0.62 0.27 0.00 0.32 0.38 0.30 0.00
Word Definitions 0.60 0.10 0.30 0.00 0.09 0.63 0.28 0.00 0.37 0.40 0.23 0.00

Llama3-Med42-8B
City Locations 0.89 0.01 0.09 0.00 0.01 0.92 0.07 0.00 0.16 0.53 0.31 0.00
Medical Indications 0.75 0.12 0.13 0.00 0.10 0.78 0.12 0.00 0.11 0.83 0.05 0.00
Word Definitions 0.84 0.09 0.07 0.00 0.08 0.87 0.05 0.00 0.59 0.32 0.09 0.00

Mistral-7B-Instruct-v0.3
City Locations 0.92 0.01 0.07 0.00 0.02 0.90 0.08 0.00 0.67 0.14 0.19 0.00
Medical Indications 0.68 0.10 0.22 0.00 0.11 0.70 0.19 0.00 0.31 0.52 0.17 0.00
Word Definitions 0.78 0.11 0.11 0.00 0.11 0.79 0.11 0.00 0.33 0.50 0.16 0.00

Mistral-7B-v0.3
City Locations 0.91 0.01 0.08 0.00 0.02 0.92 0.06 0.00 0.63 0.20 0.17 0.00
Medical Indications 0.70 0.12 0.18 0.00 0.10 0.73 0.17 0.00 0.23 0.54 0.22 0.00
Word Definitions 0.72 0.08 0.20 0.00 0.08 0.77 0.15 0.00 0.42 0.34 0.24 0.00

Qwen-2.5-14B
City Locations 0.91 0.02 0.07 0.00 0.02 0.89 0.09 0.00 0.48 0.26 0.27 0.00
Medical Indications 0.74 0.09 0.17 0.00 0.10 0.73 0.17 0.00 0.37 0.42 0.20 0.00
Word Definitions 0.81 0.09 0.10 0.00 0.11 0.80 0.09 0.00 0.40 0.47 0.13 0.00

Qwen-2.5-14B-Instruct
City Locations 0.92 0.01 0.07 0.00 0.01 0.89 0.09 0.00 0.52 0.11 0.37 0.00
Medical Indications 0.78 0.12 0.10 0.00 0.11 0.80 0.09 0.00 0.40 0.49 0.10 0.00
Word Definitions 0.81 0.09 0.10 0.00 0.08 0.85 0.07 0.00 0.31 0.62 0.07 0.00

Qwen-2.5-7B
City Locations 0.94 0.02 0.05 0.00 0.03 0.90 0.07 0.00 0.40 0.52 0.08 0.00
Medical Indications 0.72 0.12 0.17 0.00 0.10 0.78 0.13 0.00 0.34 0.43 0.23 0.00
Word Definitions 0.72 0.08 0.19 0.00 0.08 0.74 0.19 0.00 0.34 0.41 0.25 0.00

Qwen-2.5-7B-Instruct
City Locations 0.92 0.02 0.07 0.00 0.03 0.91 0.07 0.00 0.50 0.46 0.04 0.00
Medical Indications 0.76 0.09 0.15 0.00 0.11 0.78 0.11 0.00 0.64 0.23 0.13 0.00
Word Definitions 0.84 0.10 0.07 0.00 0.11 0.82 0.07 0.00 0.47 0.42 0.11 0.00
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Table 18: Row-wise confusion matrices for the multiclass sAwMIL across all ⟨model-dataset
pairs⟩. Each row corresponds to a specific model and a dataset. Columns are grouped by the
ground-truth labels (True, False, Neither) with groups of subcolumns that specify the distribution of
predictions (true, false, neither, abstain). For each statement in a dataset, the predicted class is the
class with the highest probability (as estimated by multiclass sAwMIL). The values in each group of
four subcolumns sum to 1 because they are normalized counts. For example, in the first row under the
True ground-truth label, we see that true predictions have the value of 0.80 – that means that 80% of
all the true statements are classified as true. In other words, each row is a flattened (and normalized)
confusion matrix.

True Labels → True False Neither
Predicted → True False Neither Abstain True False Neither Abstain True False Neither Abstain

Model ↓ Data Set ↓

Bio-Medical-Llama-3-8B
City Locations 0.80 0.01 0.00 0.18 0.00 0.88 0.00 0.11 0.00 0.00 1.00 0.00
Medical Indications 0.77 0.10 0.00 0.12 0.10 0.81 0.01 0.08 0.00 0.00 1.00 0.00
Word Definitions 0.86 0.09 0.01 0.03 0.11 0.87 0.01 0.02 0.00 0.01 0.98 0.01

Gemma-2-9B
City Locations 0.87 0.00 0.00 0.13 0.00 0.85 0.00 0.15 0.00 0.00 1.00 0.00
Medical Indications 0.81 0.08 0.01 0.11 0.10 0.73 0.01 0.16 0.01 0.00 0.97 0.02
Word Definitions 0.86 0.10 0.00 0.04 0.11 0.85 0.01 0.03 0.01 0.01 0.98 0.00

Gemma-2-9B-it
City Locations 0.85 0.02 0.02 0.12 0.02 0.87 0.00 0.11 0.00 0.00 0.98 0.02
Medical Indications 0.76 0.10 0.01 0.13 0.07 0.84 0.01 0.09 0.01 0.00 0.99 0.01
Word Definitions 0.83 0.08 0.00 0.08 0.07 0.88 0.01 0.05 0.00 0.01 0.98 0.01

Gemma-7B
City Locations 0.86 0.01 0.00 0.13 0.01 0.89 0.00 0.11 0.00 0.00 1.00 0.00
Medical Indications 0.75 0.09 0.00 0.17 0.08 0.73 0.01 0.18 0.01 0.01 0.95 0.04
Word Definitions 0.82 0.11 0.04 0.02 0.15 0.81 0.01 0.03 0.02 0.01 0.95 0.01

Gemma-7B-it
City Locations 0.86 0.02 0.01 0.11 0.02 0.87 0.00 0.11 0.00 0.00 0.99 0.01
Medical Indications 0.58 0.05 0.01 0.35 0.15 0.50 0.00 0.35 0.00 0.01 0.94 0.05
Word Definitions 0.69 0.16 0.04 0.11 0.12 0.77 0.03 0.07 0.01 0.01 0.96 0.01

Llama-3-8B
City Locations 0.87 0.01 0.00 0.12 0.01 0.85 0.00 0.14 0.00 0.00 1.00 0.00
Medical Indications 0.78 0.09 0.01 0.12 0.11 0.77 0.01 0.11 0.00 0.01 0.98 0.01
Word Definitions 0.87 0.12 0.00 0.00 0.13 0.85 0.01 0.00 0.01 0.01 0.97 0.00

Llama-3.1-8B-Instruct
City Locations 0.87 0.02 0.00 0.11 0.02 0.86 0.00 0.13 0.00 0.00 1.00 0.00
Medical Indications 0.80 0.12 0.00 0.09 0.09 0.85 0.00 0.06 0.00 0.00 1.00 0.00
Word Definitions 0.87 0.06 0.00 0.07 0.07 0.86 0.00 0.06 0.00 0.01 0.98 0.01

Llama-3.2-3B
City Locations 0.84 0.03 0.00 0.12 0.04 0.86 0.01 0.09 0.00 0.01 0.99 0.01
Medical Indications 0.71 0.10 0.00 0.19 0.09 0.70 0.01 0.20 0.00 0.00 0.98 0.02
Word Definitions 0.74 0.14 0.02 0.10 0.11 0.77 0.02 0.10 0.01 0.01 0.96 0.02

Llama-3.2-3B-Instruct
City Locations 0.86 0.02 0.00 0.11 0.02 0.82 0.00 0.16 0.00 0.00 1.00 0.00
Medical Indications 0.67 0.12 0.00 0.21 0.11 0.72 0.00 0.18 0.00 0.00 0.99 0.01
Word Definitions 0.86 0.11 0.03 0.00 0.14 0.85 0.01 0.00 0.01 0.01 0.98 0.00

Llama3-Med42-8B
City Locations 0.87 0.01 0.00 0.12 0.01 0.84 0.00 0.15 0.00 0.00 0.99 0.01
Medical Indications 0.81 0.10 0.00 0.10 0.11 0.82 0.00 0.07 0.00 0.00 1.00 0.00
Word Definitions 0.86 0.06 0.01 0.06 0.08 0.85 0.00 0.07 0.01 0.01 0.97 0.02

Mistral-7B-Instruct-v0.3
City Locations 0.86 0.01 0.00 0.13 0.01 0.79 0.00 0.19 0.00 0.00 1.00 0.00
Medical Indications 0.77 0.09 0.00 0.14 0.10 0.76 0.00 0.14 0.00 0.01 0.99 0.01
Word Definitions 0.84 0.08 0.03 0.05 0.09 0.87 0.01 0.03 0.01 0.01 0.98 0.01

Mistral-7B-v0.3
City Locations 0.86 0.01 0.00 0.13 0.01 0.86 0.00 0.13 0.00 0.00 1.00 0.00
Medical Indications 0.75 0.08 0.00 0.17 0.09 0.76 0.00 0.15 0.00 0.00 0.99 0.01
Word Definitions 0.87 0.11 0.02 0.00 0.14 0.85 0.01 0.00 0.01 0.01 0.98 0.00

Qwen-2.5-14B
City Locations 0.87 0.01 0.00 0.12 0.01 0.86 0.00 0.13 0.00 0.00 0.99 0.01
Medical Indications 0.78 0.12 0.00 0.10 0.11 0.76 0.00 0.13 0.00 0.00 0.99 0.00
Word Definitions 0.86 0.12 0.02 0.00 0.13 0.86 0.01 0.00 0.01 0.02 0.98 0.00

Qwen-2.5-14B-Instruct
City Locations 0.82 0.01 0.00 0.17 0.01 0.87 0.00 0.11 0.00 0.00 1.00 0.00
Medical Indications 0.80 0.12 0.01 0.07 0.07 0.86 0.01 0.07 0.00 0.00 0.99 0.00
Word Definitions 0.86 0.07 0.01 0.05 0.06 0.86 0.00 0.08 0.00 0.01 0.98 0.01

Qwen-2.5-7B
City Locations 0.84 0.01 0.00 0.16 0.01 0.84 0.00 0.14 0.00 0.00 1.00 0.00
Medical Indications 0.74 0.10 0.01 0.15 0.10 0.77 0.01 0.13 0.00 0.00 0.98 0.01
Word Definitions 0.83 0.12 0.02 0.03 0.10 0.87 0.01 0.03 0.01 0.01 0.97 0.01

Qwen-2.5-7B-Instruct
City Locations 0.82 0.02 0.01 0.15 0.02 0.85 0.00 0.13 0.00 0.00 0.99 0.01
Medical Indications 0.78 0.08 0.01 0.13 0.14 0.72 0.02 0.12 0.01 0.01 0.98 0.01
Word Definitions 0.83 0.13 0.02 0.02 0.09 0.87 0.02 0.02 0.01 0.01 0.97 0.01
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L Code Availability938

The code is available at anonymous.4open.science/r/tot-4122/.939
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