
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PDE-PFN: PRIOR-DATA FITTED NEURAL PDE
SOLVER

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent progress in scientific machine learning (SciML), existing approaches
remain impractical, as they often require explicit governing equations, impose rigid
input structures, and lack generalizability across PDEs. Motivated by the success
of large language models (LLMs) with broad generalizability and robustness to
noisy or unreliable pre-training data, we seek to bring similar capabilities to PDE
solvers. In addition, inspired by the Bayesian inference mechanisms of prior-data
fitted networks (PFNs), we propose PDE-PFN, a prior-data fitted neural solver
that directly approximates the posterior predictive distribution (PPD) of PDE
solutions via in-context Bayesian inference. PDE-PFN builds on a PFN architecture
with self- and cross-attention mechanisms of Transformer and is pre-trained on
low-cost approximate solutions generated by physics-informed neural networks,
serving as diverse but not necessarily exact priors. Through experiments on a
range of two-dimensional PDEs, we demonstrate that PDE-PFN achieves strong
generalization across heterogeneous equations, robustness under noisy priors, and
zero-shot inference capability. Our approach not only outperforms task-specific
baselines but also establishes a flexible and robust paradigm for advancing SciML.

Figure 1: The overall workflow of PDE-PFN. Our model performs in-context learning (ICL) based
on given observations (i.e., context) to infer solutions. Even when trained with an approximated PINN
prior, our method obtains clean solutions due to the implicit Bayesian inference capability of ICL.

1 INTRODUCTION

Partial differential equations (PDEs) have long been at the core of scientific and engineering research,
as they provide a mathematical description of the fundamental laws governing diverse natural and
engineered systems. Numerical methods such as finite element or finite difference schemes have
traditionally been employed (Quarteroni & Valli, 2008). However, these methods are not only
computationally expensive in high-dimensional or multi-scale settings but also typically require
complete observations of the system. With recent advances in machine learning, scientific machine
learning (SciML) (Raissi et al., 2019a; Willard et al., 2022; Subramanian et al., 2023; Kim et al.,
2023; 2024; Choi et al., 2024) has emerged as a promising paradigm for addressing these challenges.

Within the trend of SciML, we can see two main approaches: physics-informed neural network
(PINN)-based models (Raissi et al., 2019b; Shukla et al., 2020; Yang et al., 2021; Meng et al., 2020;
Yuan et al., 2022) and neural operator-based models (Li et al., 2020; Lu et al., 2021; Tran et al., 2021;
Guibas et al., 2021). PINN-based models embed physical laws into the learning process by enforcing
PDE residuals as constraints during training, enabling them to approximate solutions without requiring
large labeled datasets. However, a critical limitation of this approach is that it presupposes explicit

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

knowledge of the underlying PDEs, which is often impractical in many real-world scenarios where
governing equations are only partially known or entirely unavailable.

Neural operator-based models aim to learn mappings between infinite-dimensional function spaces,
enabling fast inference once trained, and they have achieved notable success on benchmark PDEs.
However, their applicability remains limited. First, these models are confined to the specific dataset
and task they were trained on, showing poor generalization when applied to new PDEs or distributions.
Second, they suffer from input rigidity: they require data to lie on fixed grids or pre-specified
coordinates, which prevents flexible inference when observation points vary. These limitations
collectively restrict the generalizability and flexibility of neural operator methods, underscoring the
need for a more versatile framework that can transfer across diverse PDEs and input conditions.

In recent years, large language models (LLMs) have revolutionized natural language processing
by introducing highly flexible and scalable architectures (Brown et al., 2020; Kaplan et al., 2020;
Touvron et al., 2023; Frieder et al., 2023; Chowdhery et al., 2023). Motivated by the success of LLMs
in enabling broad task generalization, scientific foundation models (SFMs) (McCabe et al., 2023;
Yang et al., 2023; Yang & Osher, 2024; Hang et al., 2024) have recently been proposed. These models
are typically pre-trained on a wide range of PDEs and subsequently fine-tuned for diverse downstream
tasks, extending their applicability beyond the narrow scope of conventional neural operators.

Although SFMs represent a meaningful advance by enabling generalization across different PDEs,
they continue to inherit other fundamental drawbacks from their neural operator backbones. In
particular, they lack task-level generalization beyond the operator tasks seen during training and
impose input rigidity, often constraining data to uniform grids or fixed spatial locations. To address
these limitations, we draw inspiration from prior-fitted networks (PFNs) (Müller et al., 2022), which
approximate the posterior predictive distribution (PPD) through Bayesian inference conditioned on
prior information. Building on this idea, we propose PDE-PFN, a new SciML method that adopts
a PFN architecture grounded in in-context learning. By directly approximating the PPD of PDE
solutions, our method achieves generalizability in terms of the task and PDE type while removing
structural constraints on input. In addition, its Bayesian inference enables robustness even when
trained with noisy priors, which significantly reduces the data collection costs in SciML.

Task generalizability on diverse PDEs with enhanced performance We first evaluated the
proposed method on the convection–diffusion–reaction (CDR) equations, a standard benchmark for
parameterized PDEs. Our model exhibited strong task generalizability, successfully handling diverse
tasks across both parameter and spatiotemporal domains without requiring task-specific fine-tuning. In
addition, although pre-trained solely on CDR equations, the model demonstrated PDE generalization
by accurately predicting solutions for different PDE families with only minimal fine-tuning. Across
these experiments, our method consistently matched or outperformed task-specific baselines and
further surpassed existing SFMs in terms of PDE generalizability.

Flexibility on input shape without prior physical knowledge Our method advances SciML by
removing two key constraints that limit existing approaches. First, it predicts solutions directly from
observed quantities, such as velocity and pressure, without requiring access to governing equations.
This feature is particularly important in real-world applications where the underlying equations
are incomplete or entirely unknown (Chien et al., 2012; Rouf et al., 2021; Beck & Kurz, 2021;
Nicolaou et al., 2023; Lee & Cant, 2024). Excluding explicit equations from the input is thus an
intentional design choice that broadens applicability across diverse domains. Second, in complex
systems such as semiconductor manufacturing, observational data are often collected from sparse
or irregularly distributed sensors rather than uniform grids (Myers & Schultz, 2000; Quirk & Serda,
2001; Chien et al., 2012). In such settings, the ability to handle inputs of arbitrary shape is essential.
Our method is free from structural constraints on input representation and allows target locations
to be flexibly specified as queries. Together, these properties make our approach both practical and
versatile, effectively overcoming the limitations of prior SciML models. A detailed comparison with
existing baselines is provided in Table 7 of Appendix D.

Robustness to noisy prior For LLMs, one of the most challenging steps is collecting prior data,
which typically involves crawling and cleaning sentences from the Internet. However, this process is
far from perfect due to two key issues: (i) the Internet, as a data source, is inherently unreliable; and
(ii) cleaning such vast amounts of data requires significant manual effort. Consequently, LLMs are
often trained on incomplete or imperfect prior data. This realistic yet critical issue has been largely
overlooked in the literature on SFMs, despite their similarities to LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Notably, numerical solvers are often expensive, time-consuming, and specialized for particular classes
of PDEs (e.g., the finite-difference time-domain (FDTD) method for Maxwell’s equations). In this
work, we are the first to explore the potential of pre-training a model with PINN-based low-cost,
noisy, and approximated data, demonstrating that our method can still achieve strong predictive
performance under such challenging conditions.

Zero-shot inference Our method supports zero-shot inference for predicting PDE solutions. In
contrast, ICON-LM (Yang et al., 2025) requires few-shot “demos”1 for an unknown target operator
before making predictions. Collecting such demos introduces an inherent delay, since inference
cannot proceed until these examples are available (see Figure 1). By design, our approach eliminates
this requirement and enables immediate inference as soon as the model is queried.

2 BACKGROUND

Consider a sequence of pairs (c1, y1), (c2, y2), · · · , (cn, yn), each within the measurable space
(C ×Y,A), where ci represents the spatiotemporal coordinate, yi denotes the corresponding solution,
n is data size, and A denotes the Borel σ-algebra on the measurable space C × Y . These pairs
are drawn from a family of probability density distributions {pq : q ∈ Q}, where Q represents
the parameter space, equipped with a σ-algebra B, ensuring that the mappings q 7→ pq(c, y) are
measurable. The true parameter π is an element of Q, and the pairs (ci, yi) are sampled according to
pπ. Lacking information on π, we adopt a Bayesian framework to establish a prior distribution Π
which is defined as a probability measure on (Q,B). Then we have

Π(A | c, y) =
∫
A
pq(c, y)dΠ(q)∫

Q pq(c, y)dΠ(q)
,

for any measurable set A ∈ B. This prior is updated with the observed data to form the posterior
distribution, which is defined as

Π(A | Dn) =

∫
A
Ln(q)dΠ(q)∫

Q Ln(q)dΠ(q)
,

where Ln(q) =
∏n

i=1
pq(ci,yi)
pπ(ci,yi)

for A ⊂ Q and Dn = {(ci, yi)}ni=1. The resulting posterior is

qn(c, y | Dn) =

∫
Q
pq(c, y)dΠ(q | Dn),

and the posterior predictive distribution (PPD) is formulated as

qn(y | c,Dn) =

∫
Q
pq(y | c) dΠ(q | Dn).

As noted by (Nagler, 2023; Walker, 2003; 2004b;a; Blasi & Walker, 2013), for a well-behaved prior,
the PPD converges toward true π as the data size n increases. This aligns with findings by Blasi &
Walker (2013), demonstrating that in well-specified scenarios, strong consistency is achieved as

Πn ({q : H(pπ, pq) > ϵ}) → 0 almost surely, (1)

for any ϵ > 0, where Πn(A) =
∫
A
dΠ(q | Dn) is the posterior measure and H is the Hellinger

distance defined by

H(p, q) =

(∫
C×Y

(
√
p−√

q)2
)1/2

.

Theorem 2.1. Let Dn, whose size is n, be a set of ground-truth prior data, and D̃n = Dn + ηn be
our (unbiased) observation, where ηn is a zero-mean noise distribution with a finite variance. Let
pπ(· | c) denote the true posterior, and let p̂θ̂(· | c, D̃n) be the corresponding learned (approximate)
posterior for some neural network parameters θ̂. Suppose that the same conditions as in Lemma A.1
hold (with D̃ in place of Dn). Then, it holds that

lim
n→∞

Ec

[
H
(
p̂θ̂(· | c, D̃n), pπ(· | c)

)]
= 0 almost surely,

where H(·, ·) denotes the Hellinger distance (see Appendix A for proof).
1In ICON and ICON-LM, a demo refers to a set of (input, output) pairs of an operator to be inferred.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: A schematic diagram of our model. (Left) Given the contexts D and queries T drawn
from the prior distribution D, our model ũθ is trained to infer the solutions of the queried points T in
the training phase. ICL is leveraged with self-attention (blue) within D and cross-attention (red) from
T to D. (Right) In the testing phase, the pre-trained ũθ takes contexts D and queries T drawn from
the ground truth distribution U , and predicts for the queried points T .

This result demonstrates the sensitivity of the posterior distribution approximation, accomplished by
the neural network, to perturbations of the data by zero-mean noise. As the dataset size n increases, the
network becomes increasingly sensitive to the posterior distribution, converging to the expected value
under the prior distribution. This sensitivity to the data reflects the consistency and robustness of the
Bayesian inference process. Our model leverages this observation by performing Bayesian inference
that incorporates (noisy) prior data, allowing it to infer robust solutions for given spatiotemporal
conditions. The experimental results in Appendix H.4 confirm this behavior, showing how the
network’s solution converges to the true solution as n increases.

3 METHODS

In the Background section, we denoted the spatiotemporal coordinate as c for integration. However,
for more clarity, as shown in Figure 2, we separate the spatiotemporal coordinate c into a spatial
coordinate x and a temporal coordinate t, i.e., c = (x, t). Let α denote a parameter vector representing
the coefficients of the governing PDE dynamics. Figure 2 illustrates the schematic diagram of our
model. As defined in Figure 2, D = {(x(i)

D , t
(i)
D , y

(i)
D)}ND

i=1 and T = {(x(i)
T , t

(i)
T , y

(i)
T)}NT

i=1 represent
the context set and the query set for ICL, respectively. We assume these sets are independently and
identically sampled from a family of probability density distributions {pα : α ∈ Q}. Here, each
y corresponds to the quantity at (x, t) for a PDE solution u(α) determined by the PDE parameter
α. Depending on the problem setting, u can be either the ground-truth solution or an approximated
solution generated by a PINN, since we consider both exact and approximated prior data. The PPD of
the solutions given the context set can be expressed as

π(y | x, t,D) =

∫
Q
pα(y | x, t) dΠ(α | D).

This represents the posterior distribution of y given D, capturing the most probable solution distri-
bution for the parameter α. In this work, we aim to predict the solution from D by minimizing the
mean squared error (MSE) between the PPD-derived solution and the true solution, even with noise.

Model architecture Since our model is essentially a prior-data fitted network (PFN), we construct
its architecture by modifying certain components of the original PFN. To better handle the more
complex PDE data, we first incorporate a Fourier feature embedding into the input data before it is
passed to the encoder, extending the original design that was limited to tabular data. We also introduce

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

several modifications to the Transformer architecture. Specifically, to improve the model’s ability to
learn from complex data while reducing computational complexity and enhancing representational
capacity, we adopt the attentive graph filter (AGF) Wi et al. (2025) structure for Transformer layers.
A more detailed description of the model architecture can be found in Appendix E.

Benchmark PDEs We consider convection-diffusion-reaction (CDR) equations as benchmark
PDEs for diverse tasks2:

ut = N (·), N (t, x, u,β,ν, ρ1, · · · , ρJ) = −β · ∇u+∇ · (ν∇u) +

J∑
j=1

ρjfj(u), (2)

where u denotes the state variable; β is the convection (advection) velocity; ν denotes the anisotropic
diffusivity coefficient; and ρ1, ρ2, ρ3 are scalar coefficients corresponding to the nonlinear reaction
terms f1, f2, f3 : R → R, respectively. For clarity, we will refer to the two-dimensional CDR
equations, including cases where certain coefficients are zero, as the family of CDR equations. This
family encompasses not only generic parabolic equations but also extends to hyperbolic equations such
as convection equations. Hence, the family of CDR equations contains three key terms—convection,
diffusion, and reaction—each with distinct properties, making it an ideal benchmark problem. To
the best of our knowledge, this work is the first to address a wide range of reaction terms within the
family of CDR equations using a single unified model. We use a set of CDR-related terms and a linear
combination of three nonlinear reaction terms to generate prior data. This formulation enables the
incorporation of diverse reaction dynamics, making the benchmark problems more comprehensive.

PINN-based approximations of PDE solution space Although numerical solvers can solve the
family of CDR equations, in this work, we use the predictions from PINNs as a representative
example of low-cost approximated data. This allows us to evaluate the robustness of our model to
noise, which is commonly encountered in real-world scenarios. From this point, we refer to these
PINN-based approximations as PINN priors. To approximate the solution space for the PDEs, we
construct a practical parameter subspace, Ω ⊆ Q, which is the collection of coefficients in Eq. (2)
and has a dictionary form Ω = {α := (β,ν, ρ1, · · · , ρJ)}. Consequently, the target exact prior U
defined below represents the collection of solutions u(α) at Eq. (2) for each parameter α ∈ Ω, where
X and T correspond to the spatial and temporal domains of interest, respectively.

U =
⋃
α∈Ω

{u(α) |ut = N (t, x, u,α)}, u : X × T → R.

Since the target exact prior data U is hard to obtain, we instead use a PINN prior D that closely
approximates U as follows. Suppose ũ(α) is the prediction by PINN, which is trained to predict
the PDE ut = N (·) (see Appendix C for details). The PINN prior D is a collection of approximate
solutions ũ(α) for each α ∈ Ω,

D =
⋃
α∈Ω

{ũ(α)}, p(D) ∼ p(U).

Subsequently, the model performs the PPD of the generated prior p(D) through ICL.

Objective function From a given parameter space Ω, the parameter α is randomly drawn i.i.d.
from Ω. After this, the previous ũ(α) is given as an input to our model ũθ to minimize the MSE at
the predicted points, as expressed in Eq. (3). The specific MSE loss chosen to regress the solution
over the spatial and temporal domain for a given ũ(α) is defined as

Lα =
1

NT

NT∑
j=1

[
ũθ(x

(j)
T , t

(j)
T | D)− ũ(x

(j)
T , t

(j)
T)

]2
. (3)

In addition, we introduce a regularization term into the objective function to ensure orthogonality
during the SVD process within the AGF layer (see Appendix E for detail). We denote this term as
LAGF . To balance the trade-off between the loss and the regularization, we scale the latter by the

2We note that in Eq. (2) J reaction terms are considered. In previous works (Cho et al., 2023; 2024; Kang et al.,
2024), only one type of reaction term is considered. Therefore, one can consider that Eq. (2) is a comprehensive
dictionary (or a prior set for PFN training) of all popular CDR equations. Our experiments differ from previous
works in this regard.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

square root of the number of context points ND. Consequently, the final objective function L is
expressed as

L = Lα +
1√
ND

LAGF .

The concrete flow of the training and the evaluation process is described in Appendix F and G.

4 EXPERIMENTS

Our experimental section is divided into three phases. In the first phase, we introduce the dataset
and establish the baselines for our experiments. In the second phase, we pre-train our model on
the family of 2D CDR equations and evaluate it on a variety of tasks without any additional task-
specific fine-tuning. This allows us to examine the model’s ability to handle diverse tasks. In the
third phase, we fine-tune our model on different PDEs, including the shallow water equations (SWE)
and compressible Navier-Stokes equations (CNSE), in order to assess its generalization performance
across different PDEs. Table 1 summarizes the experiments in this section.

Table 1: Roadmap of the experiment section. ‘Inter’ and ‘Extra’ denote spatiotemporal interpola-
tion and temporal extrapolation tasks, respectively. The ‘Coeff/dataset’ column specifies either the
coefficients of the equation or the dataset used in evaluation.

Section Task Coeff/Dataset Equation Objective

4.2.1 Inter & Extra Seen Family of 2D CDR equations Task generalization
4.2.2 Inter & Extra Unseen Task generalization in parameter space

4.3.1 Inter & Extra Seen & Unseen SWE PDE generalization
4.3.2 Operator Learning Unseen CNSE PDE generalization for new task

4.1 EXPERIMENTAL SETUP

Dataset We consider a family of 2D CDR equations with three reaction terms as the
pre-training dataset. This family is constructed from equations with coefficient dictionary
(βx, βy, νx, νy, ρ1, ρ2, ρ3 ∈ {0.0, 0.5, 1.0}), resulting in a total of 2,187 unique PDEs. For PINN
prior, each PINN is trained independently, and its predicted solutions are used as noisy priors. On
average, the generated PINN priors exhibit an L2 relative error of 0.02280. For PDE generalization
experiments, we employ the SWE and CNSE datasets from PDEBench (Takamoto et al., 2022).
These two equations are chosen because they are commonly used to validate PDE solvers in SciML.
Both datasets consist of 1,000 samples generated from distinct initial conditions. The SWE dataset
contains a single feature, the water height, whereas the CNSE dataset includes x- and y-velocities,
pressure, and density. Detailed information on the datasets can be found in Appendix B.

Baseline methods We compare our model with six baseline models: deep operator network (Deep-
ONet) (Lu et al., 2021), Fourier neural operator (FNO) (Li et al., 2020), factorized Fourier neural
operator (F-FNO) (Tran et al., 2021), adaptive Fourier neural operator (A-FNO) (Guibas et al.,
2021), Poseidon (Herde et al., 2024), and auto-regressive denoising pre-training operator Trans-
former (DPOT) (Hao et al., 2024). These baselines are chosen for their scalability and ability to
effectively handle complex 2D PDEs. For Poseidon and DPOT, scientific foundation models with
publicly available pre-trained weights, we use the released weights and perform fine-tuning. The
other baselines are trained and evaluated separately on each dataset and task. For the spatiotemporal
interpolation task, DeepONet is the only baseline used, excluding those that require grid inputs. The
best hyperparameters for all models are selected based on their best validation performance in each
task. Detailed information on the baselines used in each experiment can be found in Appendix D.

4.2 PRE-TRAINING ON THE FAMILY OF 2D CDR EQUATIONS AND EVALUATION

The training dataset is constructed from 6 time steps within the range t ∈ [0.0, 0.5] at intervals of
0.1. Our model takes as an input set of contexts, which include domain coordinates paired with their
solution values, along with queries, which consist of domain coordinates where the solution values
are masked. We denote the version of our model pre-trained on numeric priors as Ours and the
version pre-trained on PINN priors as Ours (PINN). For the baselines, the training procedure differs
by task. In the spatiotemporal interpolation task, since DeepONet requires fixed points as branch
input, we predefined the fixed points in training data by sampling and the remaining points are used
as queries to be predicted. In the temporal extrapolation task, the baselines are trained to take the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

grid points at a time tn as input and predict the grid points at the subsequent time step tn+1. Further
information on the training procedure, such as the number of epochs, can be found in Appendix I.

4.2.1 TASK GENERALIZATION FOR SEEN COEFFICIENTS

We first evaluate the task generalization ability in spatiotemporal interpolation and temporal extrapo-
lation without additional task-specific fine-tuning. Both tasks are conducted within the coefficient
dictionary used during pre-training, which we refer to as seen coefficients. For the spatiotemporal
interpolation task, the baseline DeepONet requires fixed points as branch input. Therefore, our model
is also provided with the same set of context points during evaluation to ensure a fair comparison.
Specifically, we use the points at t = 0.25 as validation queries and the points at t = 0.05, 0.15, 0.35,
and 0.45 as test queries. For the temporal extrapolation task, the points at t = 0.5 are used as contexts,
and those at t = 0.6 as queries for validation. At test time, the points at t = 0.6 serve as contexts,
and those at t = 0.7, 0.8, 0.9, and 1.0 are used as queries. The baselines predict a sequence of query
points through rollout, whereas our model can directly predict the query points from their coordinates
so that it is evaluated in this manner. The evaluation results are shown in Table 2.

Table 2: The evaluation results for the spatiotemporal interpolation and temporal extrapolation
tasks applied to the family of 2D CDR equations. They are measured at the seen coefficients
(βx, βy, νx, νy, ρ1, ρ2, ρ3 ∈ {0.0, 0.5, 1.0}). The best performance is marked in bold and the second-
best performance is marked with underline.

Task Metric Ours Ours (PINN) DeepONet FNO F-FNO A-FNO Poseidon DPOT

Spatiotemporal
interpolation

L1 Abs 0.01218 0.01507 0.01922
- - - - -L2 Rel 0.01643 0.02057 0.02479

L∞ Rel 0.04600 0.06584 0.05980

Temporal
extrapolation

L1 Abs 0.01474 0.01940 0.06529 0.03302 0.02731 0.05800 0.14252 0.04924
L2 Rel 0.02261 0.02705 0.08212 0.04058 0.03430 0.07915 0.15580 0.08587
L∞ Rel 0.08444 0.08802 0.22802 0.09553 0.09877 0.28905 0.28285 0.08587

The evaluation results demonstrate that both versions of our model outperform the baselines on both
tasks. This indicates that once trained on a single dataset, our model can achieve strong performance
without requiring task-specific fine-tuning. Even when trained with noisy PINN priors, our model
surpasses the baselines in two metrics, confirming its robustness to noise in the priors. Additionally,
we conduct experiments where the PINN prior is provided as a context set during evaluation in
Appendix H.1.

4.2.2 TASK GENERALIZATION FOR UNSEEN COEFFICIENTS

We further evaluate the task generalization ability on both tasks in parameter space using the family
of 2D CDR equations with unseen coefficients, without any additional fine-tuning. The unseen
coefficients are categorized into two cases: coefficient interpolation and coefficient extrapolation.
Coefficient interpolation experiments are performed on the equations with intermediate coefficient
values not seen during pre-training, (βx, βy, νx, νy, ρ1, ρ2, ρ3 ∈ {0.25, 0.75}). Coefficient extrapola-
tion experiments, on the other hand, are conducted on the equations with larger coefficient values
than those used in pre-training, (βx, βy, νx, νy, ρ1, ρ2, ρ3 ∈ {1.25, 1.5}). For evaluation with unseen
coefficients in the temporal extrapolation task, we modify the temporal extrapolation setup to remain
within the temporal domain used during training: the points at t = 0.1 are provided as contexts,
and models are asked to predict the values at t = 0.2, 0.3, 0.4, and 0.5. The evaluation results are
summarized in Table 3.

The evaluation results show that both versions of our model outperform the baselines on both tasks
under coefficient interpolation and extrapolation. This shows that our models can make accurate
predictions not only on PDEs with coefficients seen during training but also on PDEs with unseen
coefficients, without requiring additional fine-tuning. In other words, the models are able to generalize
across the parameter space, achieving both interpolation and extrapolation.

4.3 FINE-TUNING ON DIFFERENT PDES AND EVALUATION

To evaluate the PDE generalization ability of our model, we conduct experiments on heterogeneous
PDEs beyond the family of 2D CDR equations. On the shallow water equations (SWE) dataset, we
assessed whether our model could generalize, via fine-tuning, to heterogeneous PDEs on the same
tasks as in the family, namely spatiotemporal interpolation and temporal extrapolation. The baselines

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: The evaluation results for the spatiotemporal interpolation and temporal extrapolation tasks
applied to the family of 2D CDR equations. They are measured at the unseen coefficients. The best
performance is marked in bold and the second-best performance is marked with underline.

Coefficients Task Metric Ours Ours (PINN) DeepONet FNO F-FNO A-FNO Poseidon DPOT

Interpolation

Spatiotemporal
interpolation

L1 Abs 0.01241 0.01277 0.01347
- - - - -L2 Rel 0.01658 0.01761 0.01731

L∞ Rel 0.04274 0.05503 0.04114

Temporal
extrapolation

L1 Abs 0.08957 0.08709 0.11918 0.11625 0.11194 0.12220 0.17740 0.13879
L2 Rel 0.11990 0.12465 0.14903 0.14658 0.14348 0.18191 0.21340 0.15085
L∞ Rel 0.29526 0.36472 0.35196 0.28689 0.30813 0.64429 0.39890 0.15085

Extrapolation

Spatiotemporal
interpolation

L1 Abs 0.01661 0.01582 0.03576
- - - - -L2 Rel 0.02398 0.02038 0.04669

L∞ Rel 0.08324 0.06890 0.10392

Temporal
extrapolation

L1 Abs 0.01027 0.02063 0.05514 0.02652 0.02854 0.05013 0.14661 0.05186
L2 Rel 0.01068 0.02169 0.06450 0.03043 0.03300 0.06351 0.15650 0.05189
L∞ Rel 0.01661 0.03474 0.16555 0.06124 0.08343 0.20955 0.27502 0.05189

for each task are trained in the same manner as in the family. On the CNSE dataset, we further
examined whether the model could generalize to a new task, operator learning, under a different PDE.

4.3.1 PDE GENERALIZATION FOR SHALLOW WATER EQUATIONS

To evaluate the PDE generalization ability of our model, we conduct experiments on the SWE,
assessing whether the tasks defined in the family of 2D CDR equations can be successfully transferred
to this heterogeneous PDE by minimal fine-tuning. Out of the total 1,000 samples, 700 are used
for training, and the training, validation, and test datasets are constructed over the time interval
in the same manner as for the family of 2D CDR equations. The test dataset generated from the
initial condition samples used during training is referred to as the seen dataset, while the test dataset
generated from the remaining 300 samples is referred to as the unseen dataset. For the baselines,
training for each task is carried out in the same manner as in pre-training.

Table 4: The evaluation results for the spatiotemporal interpolation and temporal extrapolation tasks
applied to SWE. They are measured at the seen/unseen datasets. The best performance is marked in
bold and the second-best performance is marked with underline.

Evaluation
dataset Task Metric Ours Ours (PINN) DeepONet FNO F-FNO A-FNO Poseidon DPOT

Seen

Spatiotemporal
interpolation

L1 Abs 0.00208 0.00269 0.00271
- - - - -L2 Rel 0.00739 0.00822 0.00997

L∞ Rel 0.05897 0.06950 0.06951

Temporal
extrapolation

L1 Abs 0.01548 0.01418 0.06994 0.03271 0.02292 0.05036 0.02964 0.03327
L2 Rel 0.03273 0.03221 0.08319 0.05429 0.04110 0.07436 0.05208 0.05860
L∞ Rel 0.20590 0.24596 0.28736 0.24954 0.24478 0.38030 0.25668 0.29727

Unseen

Spatiotemporal
interpolation

L1 Abs 0.00213 0.00272 0.00278
- - - - -L2 Rel 0.00754 0.00828 0.01008

L∞ Rel 0.05986 0.06981 0.07047

Temporal
extrapolation

L1 Abs 0.01571 0.01448 0.07047 0.03342 0.02371 0.05099 0.03021 0.03372
L2 Rel 0.03323 0.03288 0.08347 0.05530 0.04218 0.07513 0.05306 0.05914
L∞ Rel 0.20686 0.24686 0.28441 0.24980 0.24378 0.38196 0.25710 0.29757

The experimental results in Table 4 show that both versions of our model outperform the baselines on
both spatiotemporal interpolation and temporal extrapolation tasks, regardless of whether the dataset
is seen or unseen. Specifically, Ours achieves the best performance on spatiotemporal interpolation,
while Ours (PINN) performs best on temporal extrapolation. These results demonstrate that our
approach can generalize the two tasks verified in pre-training to different PDEs through fine-tuning,
while also retaining generalization ability to unseen datasets.

4.3.2 PDE GENERALIZATION FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS

To further examine the PDE generalization ability of our model, we conduct experiments on the
compressible Navier–Stokes equations (CNSE), focusing in particular on learning the time trajectory
predicting operator. This experiment is designed not only to verify generalization across heterogeneous
PDEs but also to assess the potential of our approach in learning an operator that was not included
in previous experiments. The dataset consists of 1,000 samples, of which 700 are used for training,
100 for validation, and 200 for testing. The target operator is defined as follows: given the initial
condition of four features, the models are required to predict the solution of them at later times
t = 0.25, 0.5, 0.75, and 1.0 (see Appendix B.3 for a formal description). Baseline models except

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

DeepONet and DPOT are trained and evaluated using rollout predictions. In contrast, DeepONet and
our model directly predict the solutions given the initial condition. Additionally, since DPOT allows
the output timestep length to be adjusted, it also predicts the solutions in a single step.

Table 5: The evaluation results for the operator learning task applied to CNSE. The best performance
is marked in bold and the second-best performance is marked with underline.

Task Metric Ours Ours (PINN) DeepONet FNO F-FNO A-FNO Poseidon DPOT

Operator
learning

L1 Abs 0.09497 0.09429 0.17797 0.09581 0.08734 0.13637 0.13313 0.09164
L2 Rel 0.54833 0.54369 1.09567 0.57905 0.55420 0.65798 0.66904 0.67869
L∞ Rel 0.63533 0.63374 1.09165 0.70708 0.72876 0.85729 0.92909 1.15028

The experimental results in Table 5 show that both versions of our model outperform the baselines on
two relative error metrics. Notably, although DPOT’s pre-training corpus already includes the CNSE
dataset from PDEBench, our models still achieve superior performance over DPOT on both metrics.
While DPOT was originally evaluated on predicting one time step ahead, in our setting the task was
extended to predicting up to four time steps ahead. As a result, DPOT exhibited lower performance
than reported in the original paper. Experimental results confirm the generalization capability of our
approach for operator learning on heterogeneous PDEs involving multiple variables.

To further verify PDE generalization and input flexibility, we conduct supplementary experiments.
First, we evaluate operator learning in the same form as in the CNSE experiments on the Airfoil
dataset, which is constructed with an irregular mesh structure. In addition, we evaluate operator
learning across different features, rather than within the same features, using the Darcy Flow dataset.
Detailed information on these experiments is provided in Appendix H.

5 RELATED WORKS

In-context learning Transformers have shown remarkable ICL abilities in various studies. They
generalize to unseen tasks by emulating Bayesian predictors (Panwar et al., 2024) and linear models
(Zhang et al., 2024), while also efficiently performing Bayesian inference through Prior-Data Fitted
Networks (PFNs) (Müller et al., 2021). Their robustness extends to learning different function classes,
such as linear and sparse linear functions, decision trees, and two-layer neural networks, even under
distribution shifts (Garg et al., 2022). Furthermore, Transformers can adaptively select algorithms
based on input sequences, achieving near-optimal performance on tasks like noisy linear models (Bai
et al., 2023). They are also fast and effective for tabular data classification (Hollmann et al., 2022).

Scientific foundation models Recent studies have advanced in-context operator learning and PDE
solving through Transformer-based models. The work Ye et al. (2024) introduces PDEformer, a
versatile model for solving 1D PDEs with high accuracy in inverse problems. In-context operator
learning has also been extended to multi-modal frameworks, as seen in Yang et al. (2025), where
ICON-LM integrates natural language with equations to outperform traditional models. Additionally,
Yang & Osher (2024) and Yang et al. (2023) demonstrate the generalization capabilities of ICON in
solving various PDE-related tasks, highlighting ICON’s few-shot learning performance across various
problems in differential equations. Several other studies have addressed the problem of solving
diverse PDEs using a single trained model (Hang et al., 2024; McCabe et al., 2023; Herde et al.,
2024; Hao et al., 2024). However, many of these approaches rely on symbolic PDE information, true
or near-true solutions, and/or do not support zero-shot, in-context learning, making their objectives
different from ours.

6 CONCLUSION

We presented PDE-PFN, a new method for scientific machine learning that integrates in-context
learning and Bayesian inference to directly approximate the posterior predictive distribution of PDE
solutions. Our experiments demonstrated that PDE-PFN achieves both task and PDE generalization,
handles flexible input structures without relying on governing equations, and remains robust even
under noisy priors, while also enabling zero-shot inference. Together, these properties establish
PDE-PFN as a flexible and robust foundation for advancing scientific machine learning. Since our
current study focuses on demonstrating the feasibility of a PFN in SciML, its empirical verification
is limited to two-dimensional PDEs and has not yet been validated on higher-dimensional or more
complex systems. Future work will extend PDE-PFN to such challenging settings, further enhancing
its applicability to real-world scientific and engineering problems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ethical standards required for scientific inquiry. We have considered
the potential societal impacts of our work and have found no clear negative implications. We also
see no direct path from our model to malicious uses such as surveillance, disinformation, or privacy
breaches. On the other hand, we recognize that improvements in PDE-solving capabilities could
eventually be applied in real-world applications, such as climate modeling, biomedical simulations,
or engineering systems.

All experiments were conducted in compliance with relevant laws and ethical guidelines, ensuring
the integrity of our findings. We are committed to transparency and reproducibility in our research
processes.

REPRODUCIBILITY

We are committed to ensuring the reproducibility of our research. All experimental procedures, data
sources, and algorithms used in this study are clearly documented in the paper. The code will be
provided as the supplementary material and be made publicly available upon publication, allowing
others to validate our findings and build upon our work.

REFERENCES

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians: Provable
in-context learning with in-context algorithm selection. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 57125–57211. Curran Associates, Inc., 2023.

Andrea Beck and Marius Kurz. A perspective on machine learning methods in turbulence modeling.
GAMM-Mitteilungen, 44(1):e202100002, 2021.

Pierpaolo De Blasi and Stephen G. Walker. Bayesian asymptotics with misspecified models. Statistica
Sinica, pp. 169–187, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Chen-Fu Chien, Chia-Yu Hsu, and Chih-Wei Hsiao. Manufacturing intelligence to forecast and
reduce semiconductor cycle time. Journal of Intelligent Manufacturing, 23:2281–2294, 2012.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning for
low-rank physics-informed neural networks. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 11219–11231. Curran Associates, Inc., 2023.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong Park.
Parameterized physics-informed neural networks for parameterized pdes. In Proceedings of the
41st International Conference on Machine Learning, pp. 8510–8533, 2024.

Junho Choi, Taehyun Yun, Namjung Kim, and Youngjoon Hong. Spectral operator learning for
parametric pdes without data reliance. Computer Methods in Applied Mechanics and Engineering,
420:116678, 2024. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2023.116678.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. Journal of
Machine Learning Research, 24(240):1–113, 2023.

Simon Frieder, Luca Pinchetti, , Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information
Processing Systems, volume 36, pp. 27699–27744. Curran Associates, Inc., 2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 30583–30598. Curran Associates, Inc., 2022.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Zhou Hang, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver: Pde-
conditional transformers are universal pde solvers. arXiv preprint arXiv:2405.17527, 2024.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-
mar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale
pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. arXiv preprint
arXiv:2405.19101, 2024.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
that solves small tabular classification problems in a second. In NeurIPS 2022 First Table
Representation Workshop, 2022.

Mingu Kang, Dongseok Lee, Woojin Cho, Kookjin Lee, Anthony Gruber, Nathaniel Trask, Youngjoon
Hong, and Noseong Park. Can we pre-train icl-based sfms for the zero-shot inference of the 1d cdr
problem with noisy data? In Neurips 2024 Workshop Foundation Models for Science: Progress,
Opportunities, and Challenges, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

David I Ketcheson, Kyle Mandli, Aron J Ahmadia, Amal Alghamdi, Manuel Quezada De Luna,
Matteo Parsani, Matthew G Knepley, and Matthew Emmett. Pyclaw: Accessible, extensible,
scalable tools for wave propagation problems. SIAM Journal on Scientific Computing, 34(4):
C210–C231, 2012.

Namjung Kim, Dongseok Lee, and Youngjoon Hong. Data-efficient deep generative model with
discrete latent representation for high-fidelity digital materials. ACS Materials Letters, 5(3):
730–737, 2023.

Namjung Kim, Dongseok Lee, Chanyoung Kim, Dosung Lee, and Youngjoon Hong. Simple arith-
metic operation in latent space can generate a novel three dimensional graph metamaterials. arXiv
preprint arXiv:2404.06671, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chin Yik Lee and Stewart Cant. A grid-induced and physics-informed machine learning cfd frame-
work for turbulent flows. Flow, Turbulence and Combustion, 112(2):407–442, 2024.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=EPPqt3uERT.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Mingze Ma, Qingtian Zhu, Yifan Zhan, Zhengwei Yin, Hongjun Wang, and Yinqiang Zheng.
Robustifying fourier features embeddings for implicit neural representations. arXiv preprint
arXiv:2502.05482, 2025.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,
Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al.
Multiple physics pretraining for physical surrogate models. arXiv preprint arXiv:2310.02994,
2023.

Xuhui Meng, Zhen Li, Dongkun Zhang, and George Em Karniadakis. Ppinn: Parareal physics-
informed neural network for time-dependent pdes. Computer Methods in Applied Mechanics and
Engineering, 370:113250, 2020.

Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Padé activation units: End-to-end
learning of flexible activation functions in deep networks. In International Conference on Learning
Representations, 2019.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. In International Conference on Learning Representations,
2022.

Stephen C Myers and Craig A Schultz. Improving sparse network seismic location with bayesian
kriging and teleseismically constrained calibration events. Bulletin of the Seismological Society of
America, 90(1):199–211, 2000.

Samuel Müller, Noah Hollmann, Sebastian Pineda-Arango, Josif Grabocka, and Frank Hutter. Trans-
formers can do bayesian inference. CoRR, abs/2112.10510, 2021.

Thomas Nagler. Statistical foundations of prior-data fitted networks. In International Conference on
Machine Learning, pp. 25660–25676. PMLR, 2023.

Zachary G Nicolaou, Guanyu Huo, Yihui Chen, Steven L Brunton, and J Nathan Kutz. Data-driven
discovery and extrapolation of parameterized pattern-forming dynamics. Physical Review Research,
5(4):L042017, 2023.

Francisco Palacios, Juan Alonso, Karthikeyan Duraisamy, Michael Colonno, Jason Hicken, Aniket
Aranake, Alejandro Campos, Sean Copeland, Thomas Economon, Amrita Lonkar, et al. Stanford
university unstructured (su 2): an open-source integrated computational environment for multi-
physics simulation and design. In 51st AIAA aerospace sciences meeting including the new
horizons forum and aerospace exposition, pp. 287, 2013.

Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism. In
The Twelfth International Conference on Learning Representations, 2024.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. Learning mesh-based
simulation with graph networks. In International conference on learning representations, 2020.

Alfio Quarteroni and Alberto Valli. Numerical approximation of partial differential equations,
volume 23. Springer Science & Business Media, Berlin, 2008.

12

https://openreview.net/forum?id=EPPqt3uERT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Michael Quirk and Julian Serda. Semiconductor manufacturing technology, volume 1. Prentice Hall
Upper Saddle River, NJ, 2001.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019a. ISSN 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.10.045.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019b.

Nusrat Rouf, Majid Bashir Malik, Tasleem Arif, Sparsh Sharma, Saurabh Singh, Satyabrata Aich,
and Hee-Cheol Kim. Stock market prediction using machine learning techniques: a decade survey
on methodologies, recent developments, and future directions. Electronics, 10(21):2717, 2021.

Khemraj Shukla, Patricio Clark Di Leoni, James Blackshire, Daniel Sparkman, and George Em
Karniadakis. Physics-informed neural network for ultrasound nondestructive quantification of
surface breaking cracks. Journal of Nondestructive Evaluation, 39(3):61, 2020.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael W.
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Char-
acterizing scaling and transfer behavior. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.
Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Eleuterio F Toro, Michael Spruce, and William Speares. Restoration of the contact surface in the
hll-riemann solver. Shock waves, 4(1):25–34, 1994.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to
godunov’s method. Journal of computational Physics, 32(1):101–136, 1979.

Stephen Walker. On sufficient conditions for bayesian consistency. Biometrika, 90(2):482–488, 2003.

Stephen Walker. New approaches to bayesian consistency. The Annals of Statistics, 32(5), October
2004a. ISSN 0090-5364. doi: 10.1214/009053604000000409.

Stephen G Walker. Modern bayesian asymptotics. Statistical Science, pp. 111–117, 2004b.

Hyowon Wi, Jeongwhan Choi, and Noseong Park. Learning advanced self-attention for linear
transformers in the singular value domain. arXiv preprint arXiv:2505.08516, 2025.

Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating scientific
knowledge with machine learning for engineering and environmental systems. ACM Computing
Surveys, 55(4):1–37, 2022.

Liu Yang and Stanley J. Osher. Pde generalization of in-context operator networks: A study on 1d
scalar nonlinear conservation laws. Journal of Computational Physics, pp. 113379, 2024. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2024.113379.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neural
networks for forward and inverse pde problems with noisy data. Journal of Computational Physics,
425:109913, 2021.

Liu Yang, Siting Liu, Tingwei Meng, and Stanley J Osher. In-context operator learning with data
prompts for differential equation problems. Proceedings of the National Academy of Sciences, 120
(39):e2310142120, 2023.

Liu Yang, Siting Liu, and Stanley J Osher. Fine-tune language models as multi-modal differential
equation solvers. Neural Networks, pp. 107455, 2025.

Zhanhong Ye, Xiang Huang, Leheng Chen, Hongsheng Liu, Zidong Wang, and Bin Dong. Pdeformer:
Towards a foundation model for one-dimensional partial differential equations. arXiv preprint
arXiv:2402.12652, 2024.

Lei Yuan, Yi-Qing Ni, Xiang-Yun Deng, and Shuo Hao. A-pinn: Auxiliary physics informed neural
networks for forward and inverse problems of nonlinear integro-differential equations. Journal of
Computational Physics, 462:111260, 2022.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A THE PROOF OF THEOREM 2.1

In the following lemma, we first prove for Dn, i.e., noise-free. We then extend it to the case where
the noisy data D̃n is used for training.

Lemma A.1. Suppose that for any ϵ > 0, there exists a Transformer parameterized by θ̂ such that

Ec

[
KL

(
pθ̂(· | c,Dn), qn(· | c,Dn)

)]
< ϵ,

for any realization of Dn. If the posterior consistency condition Eq. (1) holds, and for any q ∈ Q,
pq(c) = pπ(c) almost everywhere on X , then the following holds almost surely:

Ec

[
H

(
pθ̂(· | c,Dn), pπ(· | c)

)] n→∞−−−−→ 0.

Proof. For any two probability distributions p and q, recall that the Hellinger distance satisfies

H(p, q)2 =
1

2

∫ (√
p(θ)−

√
q(θ)

)2

dθ ≤ 1

2
KL(p∥q).

Thus, if we can show that the Kullback–Leibler divergence KL
(
p̂θ̂(· | c, D̃) ∥ pπ(· | c)

)
vanishes

asymptotically, then the convergence in Hellinger distance follows. For any n, ϵ, we derive that

Ec

[
H

(
pθ̂(· | c,Dn), pπ(· | c)

)] (1)

≤ Ec

[
H

(
pθ̂(· | c,Dn), qn(· | c,Dn)

)]
+ Ec [H (qn(· | c,Dn), pπ(· | c))]

(2)

≤
√

1

2
Ec

[
KL

(
pθ̂(· | c,Dn), qn(· | c,Dn)

)]
+ Ec [H (qn(· | c,Dn), pπ(· | c))]

(3)

≤
√

ϵ

2
+ Ec

[
1−

∫
Y

√∫
pq(y | c)pπ(y | c)dΠn(q)dy

]1/2

≤
√

ϵ

2
+

[
1−

∫
C
pπ(c)

∫
Y

1

pπ(c)

√∫
q(y, c)pπ(y, c)dΠn(q)dydc

]1/2

≤
√

ϵ

2
+

[
1−

∫
C

∫
Y

∫ √
pq(y, c)pπ(y, c)dΠ

n(q)dydc

]1/2
=

√
ϵ

2
+

[∫
H (pq, pπ)

2
dΠn(q)

]1/2
≤

√
ϵ

2
+

[∫
H (pq, pπ) dΠ

n(q)

]1/2
(4)
=

√
ϵ

2
+

[∫
{q:H(pπ,pq)>ϵ}

H (pq, pπ) dΠ
n(q)

]1/2

+

[∫
{q:H(pπ,pq)≤ϵ}

H (pq, pπ) dΠ
n(q)

]1/2

(5)
=

√
ϵ

2
+ (Πn({q : H(pπ, pq) > ϵ}) + ϵ)1/2 →

√
ϵ

2
+

√
ϵ a.s.

The first inequality (
(1)

≤) is derived from the triangle inequality for the Hellinger distance, which states
that for any intermediate distribution q(· | c,Dn), we have

H
(
pθ̂(· | c,Dn), pπ(· | c)

)
≤ H

(
pθ̂(· | c,Dn), qn(· | c,Dn)

)
+H (qn(· | c,Dn), pπ(· | c)) .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The second inequality (
(2)

≤) uses the fact that the Hellinger distance H(p, q) is bounded above by the
square root of the KL divergence KL(p ∥ q), such that

H(p, q)2 ≤ 1

2
KL(p ∥ q).

Thus, we can bound the Hellinger distance by the KL divergence. In the third inequality (
(3)

≤), we
make use of the assumption

Ec

[
KL

(
pθ̂(· | c,Dn), qn(· | c,Dn)

)]
< ϵ,

and utilize the definition of the Hellinger distance. In (
(4)
=), we partition the domain into two regions–

one where the Hellinger distance H(pπ, pq) exceeds ϵ and another where it is less than or equal to
ϵ–and use this partitioning to demonstrate the inequality.

Finally, in (
(5)
=), by posterior consistency, the region where the Hellinger distance is greater than ϵ

vanishes as n → ∞ such that

Πn {q : H(pπ, pq) > ϵ} → 0 almost surely.

Since ϵ is arbitrary, we can conclude that

Ec

[
H

(
pθ̂(· | c,Dn), pπ(· | c)

)] n→∞−−−−→ 0 almost surely.

Based on Lemma A.1, we can prove Theorem 2.1 as follows.

Theorem A.2. Let Dn be a set of ground-truth prior data, whose size is n, and D̃n = Dn + ηn,
where ηn is a zero-mean noise distribution with a finite variance, be our observation. Therefore, D̃n

is an unbiased observation of Dn. Let pπ(· | c) denote the true posterior, and let p̂θ̂(· | c, D̃n) be the
corresponding learned (approximate) posterior for some neural network parameter θ̂. Suppose that
the same conditions as in Lemma A.1 hold (with D̃ in place of Dn). Then, for any ϵ > 0, it holds that

lim
n→∞

Ec

[
H
(
p̂θ̂(· | c, D̃n), pπ(· | c)

)]
= 0 almost surely,

where, H(·, ·) denotes the Hellinger distance.

Proof. In the noise-free setting of the previous lemma, it is established that

Ec

[
H
(
p̂θ̂(· | c,Dn), pπ(· | c)

)]
→ 0 as n → ∞ (a.s.).

In our case, since D̃n = Dn + ηn with E[ηn] = 0, every occurrence of Dn is replaced by D̃, and the
additional noise introduces an extra expectation Eηn

[·] in the relevant integrals. More precisely, one
has

KL
(
p̂θ̂(· | c, D̃) ∥ qn(· | c, D̃)

)
= KL

(
p̂θ̂(· | c,Dn + ηn) ∥ qn(· | c,Dn + ηn)

)
.

Because ηn is unbiased and of finite variance, the extra terms arising from the noise remain bounded
and can be integrated out without affecting the asymptotic convergence rate established in the noise-
free case. By posterior consistency, the region where H

(
pπ(·), pq(·)

)
> ϵ has vanishing measure

as n → ∞, i.e. Π
{
q : H(pπ, pq) > ϵ

}
−→ 0 almost surely. Uniform integrability and continuity

arguments used to control the posterior concentration remain valid, as the additional terms contributed
by ηn are absorbed by the outer expectation Eηn

[·]. Thus, one concludes that

lim
n→∞

Ec

[
H
(
p̂θ̂(· | c, D̃), pπ(· | c)

)]
= 0 almost surely.

This completes the proof that the consistency result of Lemma A.1 extends to the case where the
prior data is perturbed by small unbiased noise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B DATASETS

B.1 FAMILY OF 2D CONVECTION-DIFFUSION-REACTION EQUATIONS

The formulation of the family of 2D CDR equations with three reaction terms, used in Section 4.2, is
given as follows.

2D CDR: ut + β · ∇u−∇ · (ν∇u)−
3∑

j=1

ρjfj(u) = 0, x ∈ X , t ∈ T ,

where X = [0, π]×[0, π] and T = [0, 1] are solution domain with a resolution of 32×32×11. For the
family of 2D CDR equations, we use analytic solutions whenever they are available. When an analytic
solution is not available, the solution is generated using the spectral method, following the same
approach as in (Cho et al., 2023). The solutions are computed over the time interval t ∈ [0.0, 1.0]
with 1001 time steps at intervals of 0.001, from which 21 time steps at intervals of 0.05 (from t = 0.0
to t = 1.0) are used in the experiments. We pre-train our model on the family of 2D CDR equations
with coefficients (βx, βy, νx, νy, ρ1, ρ2, ρ3 ∈ 0.0, 0.5, 1.0). This results in a total of 2,187 unique
PDEs. For PINN prior, because a PINN can be trained on only a single PDE at a time, we train an
individual PINN for each of the 2,187 distinct 2D CDR equations.

B.2 SHALLOW WATER EQUATION

The 2D shallow water equation (SWE) dataset used in Section 4.3.1 is obtained from
PDEBench (Takamoto et al., 2022)3. The SWE is widely used as a benchmark dataset and cor-
responds to a hyperbolic PDE of the following form:

∂th+ ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x

(
u2h+

1

2
grh

2

)
+ ∂y(uvh) = −grh∂xb,

∂t(hv) + ∂y

(
v2h+

1

2
grh

2

)
+ ∂x(uvh) = −grh∂yb,

where u and v denote the horizontal and vertical velocities, h is the water depth, and gr is the
gravitational acceleration. The SWE is derived from the general Navier–Stokes equations and is well
suited for modeling free-surface flow problems.

The dataset contains simulation results for the water height h and is generated using the Py-
Claw (Ketcheson et al., 2012) Python package. It consists of samples produced from 1,000 different
initial conditions. The simulation domain is X = [−2.5, 2.5]2 over the time interval T = [0.0, 1.0],
with a resolution of 128× 128× 101. From this, we subsample 21 time steps at intervals of 0.05 for
use in our experiments.

B.3 2D COMPRESSIBLE NAVIER-STOKES EQUATION

The 2D compressible Navier–Stokes equations dataset, referred to as CNSE, used in Section 4.3.2
was obtained from PDEBench. The Navier–Stokes equation is one of the most widely adopted
benchmarks for evaluating SciML PDE solvers, and in this work we focus on the compressible fluid
case. The governing equations are given by

∂tρ+∇ · (ρv) = 0,

ρ (∂tv + v · ∇v) = −∇p+ η∆v +
(
ζ +

η

3

)
∇(∇ · v),

∂t

(
ϵ+

1

2
ρv2

)
+∇ ·

[(
ϵ+ p+

1

2
ρv2

)
v − v · σ′

]
= 0,

where ρ denotes the mass density, v the velocity, p the gas pressure, ϵ = p/(Γ − 1) the internal
energy with Γ = 5/3, σ′ the viscous stress tensor, and η, ζ the shear and bulk viscosity, respectively.

3Dataset source: https://github.com/pdebench/PDEBench

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Numerical solutions were computed in the spatial domain X = [0.0, 1.0]2 and temporal domain T =
[0.0, 1.0] using a second-order HLLC scheme (Toro et al., 1994) with the MUSCL method (Van Leer,
1979) for the inviscid part, and a central difference scheme for the viscous part. We use the solution
computed by setting the Mach number as M = |v|/cs = 1.0, where cs = Γp/ρ is the sound
velocity, and both viscosity coefficients as η = ζ = 0.1. Periodic boundary conditions were applied,
and distinct initial conditions were generated from random fields. The dataset contains simulation
results for x- and y-velocities v, pressure p, and density ρ. The dataset consists of 1,000 samples
simulated from different initial conditions, originally computed on a 128 × 128 × 21 grid. Each
feature in the dataset was normalized individually for the experiment. For our experiments, we
employed a subsampled version of the dataset with resolution 64 × 64 × 5. In the experiment
we consider a field u(x, t) = [v(x, t), p(x, t), ρ(x, t)] ∈ R4 for x ∈ X , t ∈ T . Here u(x, t)
denotes a four-dimensional vector field representing four features of the system and the initial
condition u(x, 0.0) = u0(x) for x ∈ X . We are interested in learning the trajectory-predicting
operator G† : u0(x) 7→

(
u(x, 0.25), u(x, 0.5), u(x, 0.75), u(x, 1.0)

)
, which maps the initial state

u0 ∈ L2
(
(0.0, 1.0)2;R4

)
to the solution at four future time instances.

B.4 AIRFOIL

The Airfoil dataset used in Section H.2 was obtained from the dataset provided by (Li et al., 2023)4.
This dataset was originally generated in (Pfaff et al., 2020) by solving the Euler equations for
compressible flow using the finite volume method built into the SU2 library (Palacios et al., 2013)5.
The Euler equations have the following formulation:

∂tρ+∇ · (ρv) = f1,

∂t(ρv) +∇ · (ρv ⊗ v + pI) = f2,

∂t(ρE) +∇ · (ρEv + pv) = f3,

ρ := ρ(x, t), v := v(x, t), p := p(x, t), x ∈ X , t ∈ [0, T],

where ρ denotes the density, v the velocity field, p the pressure, E the total energy per unit mass, and
f1, f2, f3 are generic source terms. Li et al. (2023) formulated this problem as a non-Markovian initial
value problem and used a significantly larger time step size. The dataset spans t ∈ T = [0.0, 4.8] with
101 time steps, each spaced by a time interval of 0.24. At each timepoint, the dataset contains values
for 5,233 irregular mesh nodes, including node position, node type, velocity, pressure, and density.
Similar to CNSE, we consider a field u(x, t) = [v(x, t), p(x, t), ρ(x, t)] ∈ R4 for x ∈ X , t ∈ T .
Here u(x, t) denotes a four-dimensional vector field representing four features of the system. The
initial condition is given by u(x, 0) = u0(x) for x ∈ Ω. We want to learn the trajectory-predicting
operator G† : u0(x) 7→

(
u(x, 1.2), u(x, 2.4), u(x, 3.6), u(x, 4.8)

)
, which maps the initial state

u0 ∈ L2
(
X ;R4

)
to the solution at four future time instances.

B.5 DARCY FLOW

The Darcy Flow dataset used in Section H.3 is also obtained from PDEBench. Darcy Flow is a widely
adopted benchmark for evaluating operator learning models, formulated as a time-independent elliptic
PDE. The governing equation is given by:

−∇(a(x)∇u(x)) = f(x), x ∈ X ,

u(x) = 0, x ∈ ∂X ,

where the source term f(x) is fixed to a constant value of 0.1. The dataset consists of steady-state
solutions u corresponding to the viscosity fields a. To obtain these solutions, we simulate the following
time-dependent formulation with random initial conditions until convergence to steady state:

∂tu(x, t)−∇ (a(x)∇u(x, t)) = f(x), x ∈ X

Numerical solutions are simulated using a second-order central difference scheme in both time and
space. Each data sample is represented as an input–output pair, where the input is a viscosity field

4Dataset Source: https://github.com/BaratiLab/OFormer
5Dataset and numerical solver source: https://github.com/merantix-momentum/gnn-bvp-solver

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

a(x) and the output is the corresponding steady-state solution u(x). Both inputs and outputs are
discretized on a 128 × 128 spatial grid. The dataset contains 2,000 samples, each generated from
distinct random initial conditions within the simulation domain X = [0.0, 1.0]2. Unlike the CNSE
setting, here we aim to learn the operator mapping a viscosity field a(x) ∈ L2

(
(0.0, 1.0)2;R

)
to

the corresponding steady-state solution u(x) for x ∈ X . Specifically, we want to learn the operator
G† : a(x) 7→ u(x).

The specific information about PDE types used in each experiment is described in Table 6. Moreover,
the detailed values regarding how many training, validation, and testing data points in each experiment
are provided in Appendix I. For the spatiotemporal interpolation with unseen coefficients in the
family of 2D CDR equation experiments, we use the same time range as in the corresponding task
with seen coefficients.

Table 6: Time range of data points used for training, validation, and testing in all experiments.

PDE
(Section) Task Train Valid Test

Context Query Context Query

Family of 2D
CDR equations
(Section 4.2)

Spatiotemporal
interpolation t ∈ [0.0, 0.5]

predefined in
t ∈ [0.0, 0.5]

grid at
t = 0.25

predefined in
t ∈ [0.0, 0.5]

grids at
t ∈ {0.05, 0.15, 0.35, 0.45}

Temporal
extrapolation t ∈ [0.0, 0.5]

grid at
t = 0.5

grid at
t = 0.6

grid at
t = 0.6

grids at
t ∈ [0.6, 1.0]

Unseen coeff
temporal
extrapolation

- - - grid at
t = 0.1

grids at
t ∈ [0.2, 0.5]

SWE
(Section 4.3.1)

Spatiotemporal
interpolation t ∈ [0.0, 0.5]

predefined in
t ∈ [0.0, 0.5]

grid at
t = 0.25

predefined in
t ∈ [0.0, 0.5]

grids at
t ∈ {0.05, 0.15, 0.35, 0.45}

Temporal
extrapolation t ∈ [0.0, 0.5]

grid at
t = 0.5

grid at
t = 0.6

grid at
t = 0.6

grids at
t ∈ [0.6, 1.0]

CNSE
(Section 4.3.2) Operator learning t ∈ {0.0, 0.25,

0.5, 0.75, 1.0}
grid at
t = 0.0

grids at
t ∈ {0.25, 0.5, 0.75, 1.0}

grid at
t = 0.0

grids at
t ∈ {0.25, 0.5, 0.75, 1.0}

Airfoil
(Section H.2) Operator learning t ∈ {0.0, 1.2,

2.4, 3.6, 4.8}
grid at
t = 0.0

grids at
t ∈ {1.2, 2.4, 3.6, 4.8}

grid at
t = 0.0

grids at
t ∈ {1.2, 2.4, 3.6, 4.8}

Darcy Flow
(Section H.3) Operator learning a 7→ u

C PINN USED IN PRIOR GENERATION

In this study, we utilize the PINN introduced by Raissi et al. (2019a) to generate PINN priors. The
loss function employed during the training of the PINN is as follows:

L = Lu + Lf + Lb,

where Lu,Lf and Lb are defined as

Lu =
1

Nu

∑
(ũ(x, 0)− u(x, 0))

2
, Lf =

1

Nf

∑
(N (t, x, u, α))

2
, Lb =

1

Nb

∑
(ũ(0, t)− ũ(2π, t))

2
,

for Nu points at initial condition, Nf collocation points, and Nb boundary points.

The generation time for the PINN prior varies depending on the number of training epochs and the
PINN loss threshold. Based on the configuration used in our experiments, it took approximately 373
seconds to generate the prior for a single coefficient combination of the 2D CDR and utilized up to
4,552 MB of memory.

D DETAILED DESCRIPTION OF THE BASELINES

We provided descriptions of each baseline discussed in Section 4.1.

• DeepONet is a neural operator architecture designed to learn operators mapping input
functions to output functions. It combines branch and trunk networks to predict values in a
function space.

• FNO learns solution operators for partial differential equations (PDEs) using the Fourier
transform. By mapping inputs to a frequency domain, FNO captures complex patterns and
long-range dependencies and models complex systems.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• F-FNO extends the Fourier Neural Operator by factorizing its layers to reduce computational
costs. This factorization enables efficient learning of solution operators for complex systems.

• A-FNO is a variant of the Fourier Neural Operator that dynamically adjusts the resolution
of the frequency domain during training. This adaptation aims to capture relevant features
across scales, enabling more flexible modeling of complex systems.

• Poseidon is a multiscale operator transformer architecture designed to model solution op-
erators for PDEs with continuous-in-time capability. It introduces time-conditioned layer
normalization and processes multi-resolution input features to capture complex spatiotem-
poral dynamics.

• DPOT is a scalable neural operator model designed for PDEs, featuring a Fourier attention
mechanism that enables efficient learning of complex spatiotemporal dynamics. Its architec-
ture incorporates an auto-regressive denoising pre-training strategy, facilitating stable and
flexible modeling across diverse PDE datasets with varying resolutions and geometries.

In the spatiotemporal interpolation task, models other than DeepONet are excluded from comparison
because they cannot process mesh-structured inputs. DeepONet requires input data from fixed
positions for each dataset; therefore, for a fair comparison, our model is also provided with context
data from the same positions during evaluation. For Poseidon and DPOT, which are scientific
foundation models providing pre-trained weights, we utilized their released weights and performed
fine-tuning. For a fair comparison, we trained them and our model using only half the number of
epochs compared to the other models. Furthermore, computational costs, memory usage, experiment
settings, and hyperparameters are comprehensively outlined in Appendix I.

Table 7: Major comparisons between baselines and our model on the shape of input and target
data (context and query in our model). Neural operator baselines (excluding DeepONet) can only
predict targets at predetermined locations and are limited to processing grid-structured input data.
DeepONet, on the other hand, can handle inputs of various shapes but requires fixed-coordinate input
values, though it can produce target solutions at desired coordinates. In contrast, our model imposes
no restrictions on the shape, coordinates, or number of inputs and can generate target solutions at
arbitrary coordinates.

Data FNO & F-FNO & A-FNO
& Poseidon & DPOT DeepONet Ours

Input data Grid of predefined coordinate Mesh of predefined coordinate Mesh of arbitrary coordinate
Target data Grid of predefined coordinate Mesh of arbitrary coordinate Mesh of arbitrary coordinate

E MODEL ARCHITECTURE

Our model is fundamentally based on the Prior-Fitted Network (PFN) architecture (Müller et al.,
2022), and consists of three main components: an encoder, a Transformer block, and a decoder. In
this section, we describe the encoder. For clarity, we denote the training contexts and queries as D
and T , respectively, consistent with the main text. Each input in D and T is composed of spatial
coordinates x, temporal coordinates t, and solution values y; for queries T , the solution values are
masked. The encoder enriches these inputs through a Fourier feature embedding (FFE) followed by a
multilayer perceptron (MLP).

Encoder The role of FFE is to augment the raw inputs with high-frequency components, enabling
the model to better capture complex solution patterns. This advantage of using FFE in conjunction
with MLPs has been verified in (Tancik et al., 2020; Ma et al., 2025). For grid-based inputs, we can
employ a discrete Fourier transform via fast Fourier transform (FFT). For coordinate-based inputs, we
use sinusoidal feature mappings with predetermined frequencies. Specifically, given an input v ∈ R,
we define the embedding as

FFE(v;n) = [sin(v · ω1), cos(v · ω1), · · · , sin(v · ωn), cos(v · ωn)],

where the frequency coefficients are set as ωi = 2π/i. After applying FFE, the encoder constructs
three types of feature vectors: lCD := [xD, tD,FFE(xD),FFE(tD)] for context domain information,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 3: A diagram of PDE-PFN’s architecture. The diagram is presented as an extension of Figure 2.
The model consists of three main components: an encoder, a Transformer block, and a decoder. FFE
denotes the Fourier feature embedding, and Act denotes the activation function.

lCS := [yD,FFE(yD)] for context solutions, and lQD := [xT , tT ,FFE(xT),FFE(tT)] for query
domain information, by concatenating the raw inputs and FFE results. Each of these vectors is
passed through a separate MLP to learn PDE-specific embeddings. Each MLP consists of two linear
layers and a single activation function between linear layers. For the activation, we employ a rational
activation function (Molina et al., 2019), which has an adaptive nature and has been shown to provide
greater flexibility compared to conventional nonlinearities. Finally, lCD and lCS are concatenated
after passing each MLP to form the context representation used by the Transformer block.

Transformer block The encoder output is then processed through a Transformer block, which
consists of a sequence of Transformer layers. Instead of the vanilla Transformer layer, we adopt
the attentive graph filter (AGF) layer Wi et al. (2025), which provides greater flexibility while
reducing computational complexity. The AGF layer enhances standard linear attention by learning
attention in the singular value domain. Specifically, it decomposes the attention operation into a set
of spectral components and adaptively learns their importance, enabling the model to capture the
dependencies more effectively. Specifically, the attention matrix A ∈ Rn×m can be decomposed
using singular value decomposition (SVD) as A = UΣV T , where U and V are orthogonal matrices,
and Σ = diag(σ1, σ2, . . . , σr) contains the singular values. Therefore, as discussed in Section 3,
when using the AGF layer, we include a regularization term to ensure the orthogonality of the matrices
U and V . The regularization term is defined as follows:

LAGF =
1

nm

(∥∥U⊤U − I
∥∥+

∥∥V ⊤V − I
∥∥) ,

where I is identity matrix. AGF learns to adaptively reweight these spectral components, effectively
filtering the most informative modes while suppressing noise or redundant information. By learning
attention in the singular value domain, AGF provides a more powerful representation of global
dependencies compared to conventional linear attention, while avoiding the quadratic complexity of
the vanilla Transformers.

To further enrich the model capacity, we separate the parameters used for self-attention and cross-
attention within each layer. As illustrated in Figure 2, self-attention is applied among the contexts
D, while cross-attention allows queries T to attend to contexts D. In the figure, self-attention and
cross-attention are represented by red and blue arrows, respectively. The numbers of blue rods D and
red rods T are described in Table 12 in Appendix I.

Decoder The output of the Transformer block is finally passed through a decoder, implemented
as a simple MLP. Similar to the encoder, this MLP consists of two linear layers and a single

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

activation function between linear layers. The decoder maps the latent representations produced by
the Transformer into the predicted solution values at the queried coordinates.

F TRAINING

Unlike other task-specific models, our model is trained in an integrated manner, enabling it to solve
multiple tasks simultaneously in that dataset. For cases where both spatiotemporal interpolation and
temporal extrapolation tasks must be evaluated, such as in the family of 2D CDR equations and SWE
datasets, we perform training with temporal extrapolation as the primary objective. In this setup,
other baselines treat grid data points at tn and tn+1 as fixed input–output pairs. In contrast, our model
constructs pairs by randomly mixing the data points within each (tn, tn+1) pair independently, rather
than preserving their exact correspondence. This strategy enables the model to learn in a way that
supports both spatiotemporal interpolation and temporal extrapolation within a unified framework.
For the CNSE, Airfoil, and Darcy Flow datasets, where we conducted experiments only on operator
learning, random mixing was not applied.

Training algorithm We train our model as follows:

Algorithm 1 Training our model

1: Input: contexts D and queries T from prior p(D) in dataset
2: Output: Our model ũθ which can approximate the PPD
3: Initialize the model ũθ

4: for i = 1 to n do
5: Sample α ∈ Ω and D,T ⊆ ũ(α) ∼ p(D) (D := {(x(i)

D , t
(i)
D)}ND

i=1, T := {(x(j)
T , t

(j)
T)}NT

j=1)
6: if dataset ∈ {Family of 2D CDR, SWE} then
7: Regenerate D′ and T ′ by shuffling data points in D∪T independently within each (tn, tn+1)

pair, while preserving |D′| = ND and |T ′| = NT

8: end if
9: Compute MSE loss Lα = 1

NT

∑NT

j=1

{
ũθ(x

(j)
T , t

(j)
T |D′

n)− ũ(x
(j)
T , t

(j)
T)

}2

10: Compute AGF regularization term LAGF and objective function L = Lα + LAGF

11: Update parameters θ with an AdamW optimizer
12: end for

G EVALUATION

We employ L1 absolute, L2 relative, and L∞ relative errors between the model’s prediction for test
queries and the ground truth. The errors are then averaged over the target parameter space or test
dataset. Given the true solution yα,k and the corresponding prediction ŷα,k at the k-th time point out
of a total of K evaluation time points, each metric is computed as follows:

Lp abs error =
1

|Ω| ·K
∑
α∈Ω

K∑
k=1

||yα,k − ŷα,k||p , Lp rel error =
1

|Ω| ·K
∑
α∈Ω

K∑
k=1

||yα,k − ŷα,k||p
||yα,k||p

.

H ADDITIONAL EXPERIMENTS

H.1 TEST TIME EVALUATION GIVEN PINN PRIOR IN THE FAMILY OF 2D CDR EQUATIONS

As an additional experiment on the family of 2D CDR equations, we modify the test procedure from
Section 4.2.1. While keeping all other experimental settings the same, we compare the evaluation
results when noisy PINN priors are provided as input during testing. This experiment is designed to
assess the robustness of the models in producing accurate solutions despite noisy inputs.

As shown in the experimental results presented in Table 8, Ours achieves the best performance,
demonstrating strong robustness. For Ours (PINN), however, the performance in terms of two relative
errors on the spatiotemporal interpolation task is inferior to that of DeepONet. This can be attributed

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: The evaluation results for the spatiotemporal interpolation and temporal extrapolation task
applied to the family of 2D CDR equations given a noisy PINN prior at evaluation. They are measured
at the seen coefficients (βx, βy, νx, νy, ρ1, ρ2, ρ3 ∈ {0.0, 0.5, 1.0}). The best performance is marked
in bold and the second-best performance is marked with underline.

Task Metric Ours Ours (PINN) DeepONet FNO F-FNO A-FNO Poseidon DPOT

Spatiotemporal
interpolation

L1 Abs 0.01953 0.02445 0.02540 - - - - -
L2 Rel 0.02755 0.03467 0.03413 - - - - -
L∞ Rel 0.10158 0.10716 0.09286 - - - - -

Temporal
extrapolation

L1 Abs 0.01655 0.02099 0.06888 0.03458 0.02816 0.05794 0.14018 0.05051
L2 Rel 0.02486 0.02893 0.08591 0.04268 0.03582 0.07903 0.15380 0.08624
L∞ Rel 0.08830 0.09333 0.23386 0.10203 0.10677 0.28805 0.28481 0.08624

to the fact that Ours (PINN) is pre-trained to predict solutions from PINN priors as inputs, which may
cause the model to generate outputs closer to the PINN prior rather than the analytic solution when
the prior is provided at test time. Nevertheless, since Ours (PINN) still achieves better performance
in terms of L1 absolute error, we can conclude that it also exhibits a certain degree of robustness.

H.2 OPERATOR LEARNING IN AIRFOIL

To evaluate input flexibility in operator learning, we conduct experiments on the Airfoil dataset
defined on an irregular mesh structure. This dataset consists of 2,000 samples, of which 700 are used
for training, 100 for validation, and 200 for testing. The target operator is formulated similarly to that
in Section 4.3.2: given the initial condition, the model is required to predict the solutions at four time
steps, t = 1.2, 2.4, 3.6, and 4.8 (see Appendix B.4 for a formal description). Most of the baselines
used in Section 4 rely on data defined on a regular grid, so that cannot be applied here, since the
Airfoil dataset is defined on an irregular mesh. Consequently, among the existing baselines, we only
use DeepONet and additionally include Oformer (Li et al., 2023) as a new baseline.

Table 9: The evaluation results for the operator learning task applied to the Airfoil dataset. The best
performance is marked in bold and the second-best performance is marked with underline.

Metric Ours Ours (PINN) DeepONet Oformer

L1 Abs 0.11047 0.10755 0.23160 0.12039
L2 Rel 0.18831 0.18357 0.44101 0.19744
L∞ Rel 0.33584 0.32887 0.73076 0.32318

The difference from the experimental results reported in the original Oformer paper arises because
their setting involved using the first four time steps as input to predict subsequent time steps,
whereas our experiment is formulated based on the initial condition only. The experimental results
in Table 9 show that both versions of our model outperform the baselines on two metrics. These
results demonstrate that our model’s ICL capability effectively extends to irregular mesh data and can
generalize well to new PDE problems. Detailed information on the best hyperparameter settings can
be found in Appendix I.3.

H.3 OPERATOR LEARNING IN DARCY FLOW

To further evaluate the PDE generalization ability of our model in operator learning, we conducted
additional experiments on the Darcy Flow dataset. This dataset consists of 2,000 samples, with 1,400
used for training, 200 for validation, and 400 for testing. The operator learning task is defined as
predicting the steady-state solution u(x) from a given viscosity field a(x) (see Appendix B.5 for
a formal description). Unlike the CNSE dataset, where both context and query represent the same
feature, the Darcy Flow dataset involves mapping between different quantities. This makes it a distinct
form of operator learning task.

Table 10: The evaluation results for the operator learning task applied to Darcy Flow. The best
performance is marked in bold and the second-best performance is marked with underline.

Metric Ours Ours (PINN) DeepONet FNO F-FNO A-FNO Poseidon DPOT

L1 Abs 0.00796 0.00742 0.00996 0.00792 0.00806 0.00906 0.00998 0.00726
L2 Rel 0.28771 0.28091 0.40759 0.29292 0.34149 0.40357 0.41001 0.51505
L∞ Rel 0.39694 0.40124 0.59057 0.46398 0.59381 0.80674 0.52933 0.51505

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The experimental results in Table 10 show that both versions of our model outperform the baselines
on two metrics. These findings further confirm that our model maintains strong PDE generalization
ability even when the operator learning task requires transferring between different physical quantities.
Detailed information on the best hyperparameter settings can be found in Appendix I.3.

H.4 SENSITIVITY ANALYSIS TO THE NUMBER OF TEST CONTEXT POINTS IN THE FAMILY OF
2D CDR EQUATION

In this section, we provide empirical validation of Theorem 2.1, which establishes the theoretical
consistency of the neural network’s posterior predictive distribution (PPD) as the size of the data Dn

increases. Specifically, we evaluate the sensitivity of the neural network’s PPD to the number of the
context set D provided during the test process.

To this end, we conduct an evaluation of spatiotemporal interpolation on the family of 2D CDR
equations experiment by varying the number of the context set D while keeping other factors
unchanged, including the best hyperparameter settings. The results, depicted in Figure 4, clearly
demonstrate that as the size of D increases, the error consistently decreases across all three evaluation
metrics. This behavior aligns perfectly with the theoretical prediction in Theorem 2.1, where the
posterior approximation is shown to converge toward the true distribution as the data size grows.

30
00

25
00

20
00

15
00

12
50

10
0075

0
50

0
30

0
20

0
10

0

Test context points number

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

L 1
 a

bs
ol

ut
e

er
ro

r

30
00

25
00

20
00

15
00

12
50

10
0075

0
50

0
30

0
20

0
10

0

Test context points number

0.016

0.018

0.020

0.022

0.024

L 2
 re

la
tiv

e
er

ro
r

30
00

25
00

20
00

15
00

12
50

10
0075

0
50

0
30

0
20

0
10

0

Test context points number

0.045

0.050

0.055

0.060

0.065

L
 re

la
tiv

e
er

ro
r

Figure 4: Sensitivity to the number of the context data D̄ during test.

These experimental findings not only validate the theoretical insights of Theorem 2.1 but also
emphasize the robustness and accuracy of the neural network’s PPD approximation under the
given prior. The decreasing error trend highlights how the model effectively integrates increasing
amounts of data to produce predictions that are more consistent with the true underlying posterior
distribution. This synergy between theory and empirical observation strongly supports the reliability
and effectiveness of the proposed approach.

I EXPERIMENTAL DETAILS

I.1 ENVIRONMENTS

The experiments on the family of 2D CDR equations, SWE, CNSE, and Darcy Flow were conducted
using an NVIDIA RTX A6000, while the CNSE experiments were conducted on an NVIDIA RTX
A5000. Details of the Python version and the packages used in the experiments can be found in the
accompanying code’s environment file.

I.2 COST COMPARISON ON THE MAIN EXPERIMENTS

In addition to the comparison between the baselines in Table 7, the additional comparison between
the baselines is shown below in Table 11. In this tables, we compare the number of parameters,
inference time, and the GPU memory usage for all models in their best settings. The inference
time and GPU memory usage are measured in the test process on the family of 2D CDR equations
temporal extrapolation task. In the experiment, both versions of our model are run with the same
hyperparameters; therefore, we report the results under the single label Ours.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Additional comparisons between baselines and our model in the family of 2D CDR
equations temporal extrapolation test process.

Model Number of parameters inference time per sample(s) GPU memory usage(MB)

Ours 4,488,873 0.24 26.64
DeepONet 723,969 0.01 11.06
FNO 143,268,097 0.10 1098.86
F-FNO 23,631,105 0.02 98.47
A-FNO 7,155,472 0.08 35.62
Poseidon 157,625,930 0.27 2408.40
DPOT 475,926,558 0.20 1825.72

I.3 HYPERPARAMETERS

In this section, we describe the number of data points for each equation and the hyperparameters
used in the experiments for each model. In Table 12, the data points used in each experiment are
shown separately for training, validation, and testing. For the training data, the context and query sets
are constructed differently depending on the task. In the family of 2D CDR equations experiments
with unseen coefficients, we only performed testing without training or validation; therefore, only the
testing data points are reported.

Table 12: Number of data points used for training, validation, and testing in all experiments.

PDE Task Train Valid Test

Context Query Context Query

Family of 2D CDR equations

Spatiotemporal interpolation 6,144 1,024 1,024 1,024 4,096

Temporal extrapolation 6,144 1,024 1,024 1,024 4,096

Unseen coeff
temporal extrapolation - - - 1,024 4,096

SWE Spatiotemporal interpolation 98,304 16,384 16,384 16,384 65,536

Temporal extrapolation 98,304 16,384 16,384 16,384 65,536

CNSE Time trajectory predicting
operator learning 20,480 4,096 16,384 4,096 16,384

Airfoil Time trajectory predicting
operator learning 26,165 5,233 20,932 5,233 20,932

Darcy Flow a 7→ u
operator learning

a : 16,384
u : 16,384

a : 16,384
u : 16,384

a : 16,384
u : 16,384

a : 16,384
u : 16,384

a : 16,384
u : 16,384

In the family of 2D CDR equation experiments, the evaluations on unseen coefficients are conducted
without additional training. Therefore, we report only the hyperparameters used for the spatiotemporal
interpolation and temporal extrapolation tasks trained on seen coefficients. During fine-tuning after
pre-training, the first linear layer of the encoder and the final linear layer of the decoder are re-
initialized to deal with cases where the number of variables to be predicted differs. For the family of
2D CDR equations, SWE, CNSE, and Airfoil experiments, we employ sinusoidal FFE, whereas FFT-
based embeddings are used in the Darcy Flow experiments. For fairness, all best hyperparameters were
selected based on those that achieved the highest performance on the validation. The hyperparameters
for our model and the baselines in each experiment can be found in Table from 13 to 15. In each
experiment, both versions of our model are run with the same hyperparameters; therefore, we report
the results under the single label Ours.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 13: Best hyperparameter for each model used in the family of 2D CDR equations and SWE
experiments.

Model Hyperparameter Name
Family of 2D CDR equations SWE

Spatiotemporal
interpolation

Temporal
extrapolation

Spatiotemporal
interpolation

Temporal
extrapolation

Ours

Attention layers number 16
Attention hidden dimension 64
Attention head number 5
FFE dimension 0
AGF depth 15
En/Decoder hidden dimension 512

DeepONet
Branch net depth 6 5 5 6
Trunk net depth 5 5 6 6
Hidden dimension 256 256 256 256

FNO Layers number - 4 - 3
Hidden dimension - 256 - 128

F-FNO Layers number - 5 - 3
Hidden dimension - 256 - 128

A-FNO Layers number - 12 - 3
Hidden dimension - 256 - 256

Poseidon Pre-trained weight - L - T

DPOT Pre-trained weight - L - M

PINN prior Training loss threshold 1× 10−4 -
Maximum training epoch 200 -

Table 14: Best hyperparameter for each model used in the CNSE and Darcy Flow experiments.
Model Hyperparameter Name CNSE Darcy Flow

Ours

Attention layers number 16
Attention hidden dimension 64
Attention head number 5
FFE dimension 0 3
AGF depth 15
En/Decoder hidden dimension 512

DeepONet
Branch net depth 6 6
Trunk net depth 5 5
Hidden dimension 256 256

FNO Layers number 3 6
Hidden dimension 256 128

F-FNO Layers number 4 3
Hidden dimension 256 256

A-FNO Layers number 8 16
Hidden dimension 256 128

Poseidon pre-trained weight T T

DPOT pre-trained weight L S

Table 15: Best hyperparameter for each model used in the Airfoil experiments.
Model Hyperparameter Name Operator Learining

Ours

Attention layers number 16
Attention hidden dimension 64
Attention head number 5
FFE dimension 2
AGF depth 15
En/Decoder hidden dimension 512

DeepONet
Branch net depth 6
Trunk net depth 5
Hidden dimension 256

Oformer Layers number 3
Hidden dimension 64

26

	Introduction
	Background
	Methods
	Experiments
	Experimental Setup
	Pre-training on the Family of 2D CDR Equations and Evaluation
	Task Generalization for Seen coefficients
	Task Generalization for Unseen coefficients

	Fine-tuning on different PDEs and Evaluation
	PDE Generalization for Shallow Water Equations
	PDE Generalization for Compressible Navier-Stokes Equations

	Related Works
	Conclusion
	The Proof of Theorem 2.1
	Datasets
	Family of 2D convection-diffusion-reaction Equations
	Shallow Water Equation
	2D Compressible Navier-Stokes Equation
	Airfoil
	Darcy Flow

	PINN Used in Prior Generation
	Detailed Description of the Baselines
	Model Architecture
	Training
	Evaluation
	Additional Experiments
	Test Time Evaluation Given PINN Prior in the Family of 2D CDR Equations
	Operator Learning in Airfoil
	Operator Learning in Darcy Flow
	Sensitivity Analysis to the Number of Test Context Points in the Family of 2D CDR Equation

	Experimental Details
	Environments
	Cost Comparison on the Main Experiments
	Hyperparameters

