
Advances in Cognitive Systems 12 (2025) Submitted X/20XX; published X/20XX

An Ecosystem for Scalable Symbolic Modeling in Neurosymbolic AI;

or Shapes of Cognition

Marjorie McShane MARGEMC34@GMAIL.COM
Sergei Nirenburg ZAVEDOMO@GMAIL.COM
Sanjay Oruganti SANJAYOVS.RPI@OUTLOOK.COM
Jesse English DRJESSEENGLISH@GMAIL.COM

Language-Endowed Intelligent Agents Lab, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract
Abstract. Symbolic AI has a bad reputation. When used alone, it is associated with small, brittle systems
in narrow domains; and when incorporated into neurosymbolic architectures, it tends to serve as a minor
flourish to fundamentally empirical systems. But it does not need to be this way. Here we present an
ecosystem for developing transparent, scalable, neurosymbolic AI that serves agents, developers, system
users, and outside stakeholders alike, while staying true to the scientific grounding of cognitive
modeling. This ecosystem underlies Language-Endowed Intelligent Agents (LEIAs) developed within
the OntoAgent cognitive architecture and the HARMONIC cognitive-robotic one. This paper has
different objectives for different audiences. To readers outside of the symbolic modeling community, it
explains why symbolic modeling is useful, feasible, and scalable. To readers within the symbolic
modeling community, it proposes specific development methodologies that can help us to collectively
make our case to a wide variety of stakeholders, with the goal of expanding the footprint of symbolic
modeling in neurosymbolic systems to make the latter transparent, explainable and, ultimately,
trustworthy.

1. Introduction

The AI community at large views symbolic modeling with skepticism, and this is understandable. In the
early days, limitations on processing speed and memory capacity, compounded by the fact that the field
wasn’t paying sufficient attention to knowledge content, meant that symbolic modeling efforts resulted in
small and brittle demonstration systems that could not scale. That is how the notion of a “knowledge
bottleneck” took hold. The empirical turn of the 1990s was greeted by a collective sigh of relief and the
widespread hope that symbolic modeling might be avoided wholesale. Now, decades later, at the crest of
excitement over large language models, it is a perfect time to assess what the field at large has lost by not
pursuing symbolic modeling in earnest and how we can most effectively correct course.

What we have lost is modeling human-like cognitive functioning in AI systems, centrally, explainability,
transparency, reliability, targeted correctability, and the ability of systems to teach and learn like people
do—all of which are required in many critical application areas (McShane et al., forthcoming). The way to
correct course is through a novel approach to neurosymbolic AI that (a) has a strong symbolic center (an
“orchestrator” in Agentic AI terms) supported by well-selected empirical tools and (b) uses novel
methodologies to satisfy the needs of a variety of stakeholders whose buy-in is essential.

Our program of R&D, which pursues these aims, is called Language-Endowed Intelligent Agents
(LEIAs). LEIAs are neurosymbolic, multimodal, cognitive-robotic systems implemented in the

Proceedings of the Twelfth Annual Conference on Advances in Cognitive Systems ACS-2025 (47-66)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

2

HARMONIC architecture, shown in Fig. 1 (Oruganti et al. 2024a, 2024b). The cognitive (strategic) layer
primarily relies on knowledge-based methods to support reliability and transparency, whereas the robotic
(tactical) layer primarily relies on machine learning, which is effective and sufficient since the associated
capabilities (e.g., the “how” of moving a robotic arm) need not be explained. The components of the
cognitive and robotic layers function both independently and interactively.

Fig. 1. The HARMONIC cognitive-robotic architecture. The diagram illustrates the processing modules of
the architecture. The all-important knowledge substrate of the agent/robot (its ontological world model that
includes models of self and other agents, lexicons supporting language understanding and generation, and
episodic memory) is omitted for purposes of diagram clarity and is explained in the text.

 LEIAs represent a non-traditional take on Agentic AI, which we call OntoAgentic AI. Whereas typical
agentic AI systems use LLMs both as the orchestrator and for support functions, OntoAgentic AI uses a
LEIA as the orchestrator and leverages both LEIA agents and LLM-based systems for support functions.
OntoAgentic AI, therefore, offers reliable, explainable control of overall system operation as well as the
cognitive operation of each individual LEIA. This program of R&D is detailed in two recent books that are
available open access: Linguistics for the Age of AI (McShane & Nirenburg, 2021) and Agents in the Long
Game of AI: Computational cognitive modeling for trustworthy, hybrid AI (McShane, Nirenburg, &
English, 2024). They will be referred to hereafter as LingAI and LongGame, respectively.
 This paper describes an ecosystem for developing scalable neurosymbolic AI that serves agents,
developers, system users, and outside stakeholders alike, while staying true to the scientific principles and
objectives of cognitive modeling. The impetus for a writing paper of this kind is the following: Although it
is widely acknowledged that empirical methods are not a full answer to AI (Marcus, 2025), symbolic
modeling, if used at all in today’s AI systems, still continues to play a subsidiary role, even in most
neurosymbolic architectures. We believe that the most promising way to reawaken the larger AI
community’s interest in symbolic modeling is to build what we call OntoAgentic AI systems using
methodologies that make it clear to all stakeholders that the enterprise is scientifically justified, useful,
feasible, scalable, and worthy of support.
 The paper is intended for two different kinds of readers. To readers outside of the symbolic modeling
community, it explains why modern-day symbolic modeling is useful, feasible, and scalable—quite
different from its outdated reputation. To readers within the symbolic modeling community, this paper
proposes specific development methodologies that can help us to collectively make our case to a wide

48

3

variety of stakeholders, with the goal of expanding the footprint of symbolic modeling in neurosymbolic
AI. No doubt other cognitive systems developers attending this conference build systems with some of the
features listed above. However, what we have not seen outside of our team is collecting all of these features
in a single package that promises to fundamentally improve the reputation of symbolic modeling. A central
requirement is directly addressing knowledge content, to counterbalance the predominance of attention to
architectures in the cognitive systems literature (see Nirenburg, McShane & English, 2023, for discussion).
 The original version of this paper referred to this ecosystem as shapes of cognition, since we find shapes
to be a useful inspiration in our day-to-day work. In fact, we internally refer to microtheories using names
like shapes of meaning, shapes of coreference, shapes of control, and so on. Whereas shapes might seem
like an obvious knowledge engineering anchor for readers schooled in linguistics and/or early AI, for those
fully ensconced in statistical AI, the only shapes that might come to mind are nets and black boxes—the
latter being anti-shapes. If nets and black boxes were enough, then the work of symbolic cognitive modeling
would be strictly academic—not uninteresting, but pursued exclusively to satisfy human curiosity.
However, nets and black boxes are demonstrably not enough, with contributions arguing this point being
too numerous to list (e.g., Connell & Lynott, 2024; Cuskley, Woods and Flaherty, 2024; Kapoor et al., 2024;
Xu, Jain & Kankanhalli, 2024). In this version of the paper, we have backed off of the shapes metaphor but
suggest that visually oriented thinkers like us might benefit from keeping it in mind throughout.

2. Principles of the LEIA Ecosystem

Below are select principles of the LEIA ecosystem that serve to make its symbolic side scientifically sound,
feasible, scalable, explainable, and worthy of support by the broader community. Readers interested in a
more exhaustive listing of theoretical and methodological principles can consult LingAI and LongGame.

Human knowledge and reasoning are modeled using formal structures, following a long scientific
tradition that spans many fields. Below is a sampling of format-related choices related to ontology, lexicon,
and language-oriented reasoning in the LEIA ecosystem:

• Ontology is modeled as a frame-based inheritance hierarchy (not, for example, as the Cyc ontology’s
“sea of assertions”1).

• The same ontological metalanguage is used for episodic memory, the semantic descriptions of lexical
senses, and the meaning representations over which agent cognitive processes operate.

• The lexicon structurally aligns syntactic and semantic descriptions of words and constructions.
• Syntactic analysis uses tree structures and transformations that manipulate them.
• The linguistic effects of parallelism—be it syntactic, semantic, lexical, or morphological—are

formalized and inform many aspects of language processing.
• Ontological scripts are ontological concepts (using extended expressive means) that predict how the

world typically works and guide all aspects of agent operation.
• The more complex scripts are developed and documented using flow charts that are inspired (but not

constrained) by best practices of UML code documentation.

Procedural knowledge is grounded in conceptual knowledge, not only in theory but also in practice.
Specifically, the code that allows LEIAs to carry out mental and physical actions is organized as procedural
attachments to knowledge structures, which not only organizes the codebase (in service of scaling up) but
also allows LEIAs to understand and explain their own and others’ actions. Informed by decisions on the

1 Although the Cyc ontology originally used a frame-like architecture, the knowledge representation strategy shifted
to a “sea of logical assertions,” with each assertion being equally about each of the terms used in it (Mahesh et al.,
1996, p. 21). For further discussion, including why we don’t use Cyc, see LongGame section 3.1.

49

4

robotics side of LEIAs, some actions are treated as non-decomposable monoliths, whereas others are
decomposable into structured control primitives. Parameterized control schemas encode reference values,
control parameters, and error signal quantifications, which supports both feedback and feedforward
mechanisms. These modular units enable the system to dynamically compose, tune, and stabilize behaviors
in response to human requests, intent, and environmental context, forming a critical interface between high-
level reasoning and low-level robotic control and actuation in the HARMONIC architecture.
 LEIAs are modeled to get by in a complex world the same way as people do, by orienting around
what is typical using generalized recovery methods for what isn’t.2 LEIAs’ ability to recognize and reuse
complex instances, rather than always engage in first-principles reasoning, reduces the computational
burden and increases explanatory power (Gentner, 1983; Newell & Simon, 1972; Thalmann, Souza, &
Oberauer, 2019). Associated strategies include acting by habit, reasoning by analogy, satisficing, assessing
actionability, and relying on social support from one’s team members.
 LEIAs are modeled to learn over time in a similar way as people do, which is key to overcoming the
knowledge bottleneck and scaling up systems over time. Automatic learning is feasible thanks to (a) the
highly structured knowledge bases, (b) the availability of metalevel scripts that guide agents through the
learning process, and (c) the availability of large language models that serve as sources of raw data that
LEIAs can convert into interpreted knowledge (which must, however, be vetted by people due to the
potential for hallucinations). Manual and semi-automatic knowledge acquisition, which are necessary
adjuncts to automatic learning, are supported by well-developed methodologies (see LongGame, chapter 9
for details).
 Language models are used for what they are good for: manipulating the surface form of language.
In addition to the learning-oriented example above, we use language models for various support tasks—
such as to select which of multiple semantically correct paraphrases (generated by a LEIA’s symbolic
processing) is most suitable for the given context, and to help identify knowledge-acquisition priorities,
such as the most commonly used words and expressions in task-oriented dialogs across domains. What we
are not doing is spending excessive resources on testing the limits of reliability of language models, which
is being rigorously explored by others.
 The methodology of developing LEIAs supports flesh-and-blood human developers. At the same
time as we are explicitly modeling LEIAs, we are also implicitly modeling ourselves as system developers,
taking into consideration what can be expected of real people in the day-to-day work of knowledge and
system engineering. This explains our prioritization of graphics and tightly organized knowledge and code
bases. Whereas agents can operate using data and using code that most humans find impenetrable (as has
been amply shown by the history of quick ramp-up demonstration systems), if we are to keep people in the
loop as symbolic systems scale up, organization as assessed from the human perspective is of utmost
importance.
 For symbolic modeling to be embraced more widely, a large variety of stakeholders need to buy
in. One key to this, we think, is to make real-time agent operation traceable using human-interpretable
under-the-hood panels. Developers of symbolic systems—ourselves included—have to face the fact that
using proof-of-concept demo systems as a yardstick for progress can fail to impress. Observers are justified
in wondering what’s underneath, how much of the code will be thrown away in the next round, and whether
the approach has any potential for scaling up. Showing what is happening underneath in human-
interpretable ways is not difficult if the knowledge bases and algorithms are actually as transparent and
explainable as the overarching principles of symbolic modeling would expect them to be.
 Ideally, a paper about structures, shapes, and visualizations would be chock full of diagrams. Although
this will be possible in the conference talk, it is not possible given space constraints here. Our goals here

2 Prioritizing frequent phenomena is not the same as the low-hanging-fruit approaches that hamstrung real progress
in natural language process. For discussion, see LingAI.

50

McShane, Nirenburg, Oruganti, and English

5

must, therefore, be correspondingly modest: to provide a glimpse into LEIA modeling in support of the
generalizations above. In what follows, we describe how we realize our shapes-inspired approach to
neurosymbolic AI using three points of departure: the ontology, the lexicon, and applications. The
phenomena discussed in each subsection are listed in boldface. It might be useful for readers to skim through
them first, to understand the flow of the description. As a final note about scope, this is not a survey paper
and shares none of the objectives of that genre.

2. Starting from the Ontology…

LEIA cognition and operation orient around meaning, which is defined in terms of an unambiguous,
language-independent ontology, following the theory of Ontological Semantics (Nirenburg & Raskin,
2004).

The ontology is structured as a frame-based, property-rich inheritance network.3 The power of
meaning specification is enhanced by allowing different strengths of constraints on properties, recorded
using facets: value, default, sem, and relaxable-to (distinguished below using differences in typeface
weights). A small excerpt from the concept SURGERY illustrates the structure of concept descriptions.

SURGERY

IS-A value MEDICAL-PROCEDURE
AGENT default SURGEON

sem PHYSICIAN

relaxable-to HUMAN, ROBOT
LOCATION default OPERATING-ROOM

sem MEDICAL-BUILDING
relaxable-to PLACE

Organizing the ontology as a structured inheritance hierarchy offers multiple advantages. It allows agents
to reason about subclasses and superclasses. It fosters both manual knowledge acquisition and agent
learning, since only locally distinct property values of a new concept need be specified once its parent has
been identified. It facilitates agent reasoning about the salient distinctions between proximate concepts in
the ontological space. And it facilitates broadscale knowledge acquisition by making clear which properties
are most salient within a given subhierarchy and, therefore, must be locally specified in all concepts.
 Procedural knowledge is recorded as ontological scripts (cf. Schank & Abelson, 1977). Scripts are
ontological event frames enhanced by additional expressive means, such as coindexed ontological
instances. They record expectations about how complex events typically play out. In applications, they are
instantiated as plans, which reflect a particular path through the script with particular participants and props.
As an example, below is a small excerpt from the script for filling a gas tank, which shows the top level
and the first subevent (in the full script, each subevent heads its own frame, drilling down any number of
levels to leaf events).

3 Related phenomena in the literature include prototypes (Rosch, 1973), memory organization packets (Schank,
1982), and templates (Sung et al., 2021).

51

6

FILL-GAS-TANK
IS-A MACHINE-MAINTENANCE
AGENT HUMAN-OR-AGENT-#1
THEME GAS-TANK-#1
CAUSED-BY FLUID-LEVEL-#1 (DOMAIN GAS-TANK) (RANGE < .2) ; fuel level is low
EFFECT FLUID-LEVEL-#2 (DOMAIN GAS-TANK) (RANGE > .9) ; fuel tank is full

 HAS-EVENT-AS-PART REMOVE-#1, INSERT-#1, PUMP-LIQUID-#1, REMOVE-#2, MOVE-#2, CLOSE-CONTAINER-#1
REMOVE-#1

AGENT HUMAN-OR-AGENT-#1
THEME GAS-CAP-#1 (PART-OF-OBJECT GAS-TANK-#1)
SOURCE GAS-TANK-#1
CALL-EFFECTOR pointer to the robotic code that makes this happen

This script says that you fill a gas tank because the gas level is low and the result is that the tank is full.
There are six ordered, top-level subevents: open the gas tank, remove the nozzle from the fuel dispenser,
insert the nozzle into the gas tank, pump the gas until the tank is full, pull the nozzle out of the gas tank,
return it to the fuel dispenser, and close the gas tank. Coreferences among participants and props are
indicated using indices that indicate ontological instances. The CALL-EFFECTOR property links the
knowledge structure to the code that enables simulated or embodied LEIAs to carry out the action. The fact
that CALL-EFFECTOR is appended to REMOVE-#1 indicates that, in the robotic layer of the LEIA, opening
the gas tank (i.e., removing the gas cap) is treated as an atomic action that is initiated using a single function
call.
 Scripts are first developed graphically, using flow charts, and then translated into the ontological
metalanguage. In order to develop large, symbolic systems over time without losses, knowledge engineers
and system engineers need to sign off on a grain-size of algorithm that stretches both beyond their comfort
zones. This is because implementation decisions that might initially seem unimportant can have serious
consequences for an algorithm’s extensibility (i.e., the system’s scalability) over time. This is something
we have learned through experience. For example, earlier versions of the language understanding system
used by LEIAs started as a quick ramp-up computer engineering project in service of typical NLP
applications, such as machine translation and question answering. That system served research goals and
prototype applications, but the codebase was accessible only to its developer and proved difficult to transfer
to other developers and scale up. Subsequently, we redesigned the language understanding process as an
ontological script divided neatly into subscripts that handle different linguistic phenomena, with the leaves
of those subscripts calling the associated analytical procedures. This organization of language
understanding is detailed in chapters 2-7 of LingAI. The overall top-level algorithm of the entire process is
available here: https://homepages.hass.rpi.edu/mcsham2/Appendix-Long-Game/APP-Long-Game-
NLU.pdf. Once all human developers in the loop have signed off on a graphic representation of an
algorithm, it is reformulated as a set of the ontological scripts that support actual system operation. The
graphic representation remains in play for teaching, explaining, and enhancing agent operation.
 Scripts can be learned dynamically because both they themselves and the learning process are
structured. To overcome the knowledge bottleneck, agents must engage in lifelong large-scale learning.
One type of learning that is particularly important for agents serving as apprentices is learning scripts. But
script learning is not a single capability. On the one hand, scripts can range from simple to complex; and
on the other hand, script learning relies on a large number of enabling capabilities. So, saying that an agent
can learn scripts is too vague to be informative. The question is, what exactly does this learning involve?
Answering this requires decomposing script learning into its many component tasks and, for each one,
identifying which actual phenomena the agent can handle at any given time. Our model for doing that is a
good example of graphics support not only the modeling itself but also its dissemination.

52

McShane, Nirenburg, Oruganti, and English

7

 The top level of the script-learning script is shown in Fig. 2. The gradient coloring is intended to convey
that, in a given learning scenario, individual modules can present different development challenge levels,
with white being simple and dark blue being difficult.

Fig. 2. The script for learning scripts. Shading reflects varying challenge levels.
Asterisks indicate optional modules.

Fig. 3 shows how the coloring strategy captures how different learning scenarios can pose different
challenge levels in different modules.

Fig. 3. Color coding helps to visualize different foci and challenges across script-learning scenarios.

In the left-hand scenario, agents receive language inputs that are difficult to understand: they might be
highly fragmentary, elliptical, or ambiguous; they might include many unknown words or concepts; and/or
they might be structurally complex. But in that scenario, agents are not asked to identify missing
information in the script, and they are not asked to doublecheck what they have learned with their human
partners. By contrast, in the right-hand scenario, everything is easy except that the agent is supposed to
detect and fill lacuna as well as describe back what it learned—both of which, for whatever reason, are
difficult in the given situation. So, when agents are being evaluated for their ability to learn scripts, they are
actually being evaluated for different things based on which challenges the scenario presents. Moreover,
when we are training agents to become better learners, the best strategy is to thoughtfully select a subset of
challenges to focus on at a time.
 Consider some examples of different challenge levels in the different modules, which reflects how
closely what the agent encounters matches what it expects (i.e., what is covered by its knowledge bases and
reasoning capabilities).

1. Detecting what needs to be learned:
a. Easy: “Here’s how you [do something]. First [do A]. Then [do B]. And finally [do C].”
b. A little harder: “[Doing X] requires [doing Y]. But first you have to make sure that [not Z].”
c. Hard: A cognitive robot is instructed to shadow a person and figure out what needs to be learned,

including what constitutes a typical sequence of actions.

53

8

2. Clarifying input understanding through dialog:
a. Easy: The meaning of a single word or the referent for a single referring expression is unclear

in an otherwise understood input.
b. Harder: Multiple words, referring expressions, or speech acts are unclear, requiring the agent to

figure out the most efficient strategy for clarifying them (e.g., cycling through them or asking
for a paraphrase of the whole thing).

c. Hard: Multiple aspects of an input are unclear but the agent is authorized to act as long as it has
reached an acceptable threshold of understanding and has identified a usefully actionable chunk
of communication. Determining what is actionable, and deciding what to do with the
incompletely understood parts, can be quite challenging (McShane et al., 2025).

3. Detecting and filling lacunae in the information provided:
a. Easy: Agents know that they cannot learn a new concept without knowing its parent (its anchor

it in the ontology), so if this information is lacking, it needs to be sought out.
b. Harder: Events in the script might be presented using language that does not make their ordering

clear: for example, “You have to X and Y” can imply in that order or allow for either order.
c. Hard: When people describe a complex event, they can imagine many things to be self-evident,

such as that coffee beans need to be ground, and that you have to close the windows of a vehicle
before washing it.

These examples should suffice to give an idea of (a) how learning functionalities are graded, (b) how that
grading is conceptualized as being closer or farther away from explicitly recorded expectations, and (c)
how grading helps us to organize and evaluate development efforts.
 Two-action scripts, called scriptlets, guide agent behavior in easily visualizable, traceable ways. A
counterproductive strategy for developing symbolic systems is to have idiosyncratic approaches to treating
each different phenomenon. A characteristic example is having a dedicated dialog model to handle exactly
and only dialog. This is redundant. In LEIAs, dialog is treated like any other action, and the typical serve-
return expectations about dialog interactions are treated in a generic way using two-action scripts we call
scriptlets. The pairs of actions in scriptlets are linked using the property HAS-ADJACENCY-PAIR and its
inverse ADJACENCY-PAIR-OF. Table 1 shows a sample subtree of adjacency pairs that involve requests for
explanations.

Table 1. The ontological subtrees involving explanation, unexpanded. At all levels, the paired concepts are linked by
the relations HAS-ADJACENCY-PAIR and ADJACENCY-PAIR-OF.

- REQUEST-EXPLANATION - PROVIDE-EXPLANATION
+ REQUEST-INFO-AGENT-PERCEPTION + EXPLAIN-AGENT-PERCEPTION
+ REQUEST-INFO-AGENT-ACTION + EXPLAIN-AGENT-ACTION
+ REQUEST-INFO-AGENT-KNOWLEDGE + EXPLAIN-AGENT-KNOWLEDGE
+ REQUEST-AGENT-REASONING + EXPLAIN-AGENT-REASONING

Table 2 shows an expanded subtree whose leaf concepts include links to procedures that detect and respond
to each kind of request for explanation. For example, the boldface concepts prepare the agent to detect and
respond to questions about what the agent heard, what it thought somebody pointed to, and what it saw.

Table 2. An example of a pair of expanded subtrees.
- REQUEST-INFO-AGENT-PERCEPTION - EXPLAIN-AGENT-PERCEPTION

- REQUEST-INFO-PERCEPTION-RECOGNITION - EXPLAIN- PERCEPTION-RECOGNITION
- REQUEST-REPEAT-STRING - REPEAT-STRING
- REQUEST-POINTED-TO-OBJ - CONVEY-POINTED-TO-OBJ
- REQUEST-SEEN-OBJ - CONVEY-SEEN-OBJ

54

McShane, Nirenburg, Oruganti, and English

9

Many kinds of events outside of dialog have adjacency pairs: telling a joke pairs with laughing, waving ‘hi’
to someone pairs with waving ‘hi’ back, and so on. Adjacency pairs, like all ontological knowledge, record
how things tend to work in the world. Agents have general procedures that handle situations that do not
correlate with the most typical expectations.
 The agent’s thoughts are recorded as meaning representations that mirror the structure of
ontological knowledge. When LEIAs interpret stimuli, reason, or plan, they do it using the same
metalanguage as the ontology. For example, the following meaning representation expresses the idea that
Tony was watching a tiger.

VOLUNTARY-VISUAL-EVENT-1
AGENT HUMAN-1
THEME TIGER-1
TIME < find-anchor-time
ASPECT progressive

 episodic-mem VOLUNTARY-VISUAL-EVENT-#9
HUMAN-1

 HAS-NAME Tony
 episodic-mem HUMAN-#17

TIGER-1
DISCOURSE-STATUS new
episodic-mem TIGER-#1

Although it is difficult and expensive to enable agents to interpret their experiences, reason, and learn in
terms of an ontological model, there are four main benefits to doing this: (1) interpreted knowledge
structures are unambiguous and optimally suited to goal-oriented reasoning, unlike uninterpreted linguistic
or non-linguistic data; (2) agents can use all of the knowledge stored about ontological concepts in their
reasoning; (3) all of their knowledge and traces of their reasoning are human-inspectable, which will allow
humans to develop trust in agent systems; and (4) the vast majority of agent knowledge and reasoning is
language-independent, which allows for LEIAs to be ramped up in any natural language with only a change
in the language processors at the flanks of the cognitive architecture.
 Meaning representations are stored in episodic memory, which mirrors the shape of the ontology
and enables agents to reason about instances using knowledge of their types. Episodic knowledge is
not part of ontology, but it structurally mirrors the ontology, differing in that it records indexed knowledge
about instances rather than types of concepts. The correlation between the ontology and episodic memory
means that agents can reason about elements of episodic knowledge by consulting the concept in the
ontology, along with its full property-based description. Below is an excerpt from a remembered instance
of SURGERY: a particular SURGEON (indexed as #14 in the agent’s memory) operated on a particular PATIENT
(#89) in a particular HOSPITAL (#3) on December 12, 2024.

SURGERY-#10
AGENT SURGEON-#14
BENEFICIARY PATIENT-#89
THEME APPENDIX.PART-OF.PATIENT-#89
LOCATION HOSPITAL-#3
DATE 2024-12-12

55

10

Each of the property fillers (SURGEON-#14, PATIENT-#89, HOSPITAL-#3) also has its own property-rich
description in episodic memory.
 Structured episodic knowledge supports reasoning by analogy. Reasoning by analogy enables agents
to circumvent reasoning from first principles by repeating something that worked in the past (e.g., Gentner
& Smith, 2013). For example, if an agent needs to create a plan from an option-filled ontological script, the
least-effort strategy is to copy the last plan that worked or some other previous plan that worked well or
frequently, as long as the given circumstances don’t block that plan. Similarly, if the agent receives an
ambiguous input, but its past analyses of an identical or similar input resulted in a particular interpretation,
then the least-effort action is to interpret the new instance in the same way. For example, if an agent’s human
collaborator has formerly said “I need a cup of coffee” as a signal that he’s about to take a break (not as a
request that the agent get him one), then the agent can select that interpretation without extensive reasoning
or the need to initiate a clarification dialog.
 Of course, matching in service of analogical reasoning can be tricky: how similar and in what ways do
past and current meaning representations (situations, inputs, decisions, etc.) need to be in order to warrant
reasoning by analogy? This could spiral into endless complexity but our practical approach to agent
modeling helps. The fact is, LEIAs don’t need to be able to reason by analogy at a human level in order to
use analogy as a useful tool. We can prepare them to reason by analogy in specific ways in specific kinds
of situations, depending on user requirements. If they recognize a constellation of feature values (a pattern
or shape) that enables them to reliably reason by analogy, then they do. If not, they use some other reasoning
strategy. Of course, this requires that we, as developers, specify exactly how we want reasoning by analogy
to work, without offloading it to the unreliable operation of language models. Explicit cognitive modeling
of this sort contributes both to cognitive science and to the development of reliable agent systems.
 Structured episodic knowledge supports memory consolidation. For example, if the agent observes
multiple instances in which its human partner, Lou, puts his hammer, screwdriver, or wrench back in his
toolbox right after he uses it, then this is best consolidated into the fact that Lou always puts back his tools
after he uses them. As with reasoning by analogy, we must give LEIAs specific reasoning procedures for
identifying what counts as a habit. These procedures (as yet not developed) will be attached to the concept
IDENTIFY-HABIT. There will be a similar concept, CREATE-HABIT, whose functional attachment guides the
agent in morphing its own deliberative action (involving System 2 reasoning) into a habitual one (involving
System 1 reasoning).4
 Structured episodic knowledge supports plan selection, since an individual’s past preference for
how to carry out an action can be copied when creating a new plan from an option-filled script. For
example, two different people might teach the agent to carry out a complex action in two different ways, as
we demonstrated in past proof-of-concept systems. The agent records both of these as options in its
ontological script for the action, and it records the actual preferences of each teacher in its episodic memory
of those teaching scenarios. Effectively, these memories are like different stencils over the full script,
providing guidance for how the agent should create its plan when working with each collaborator.

3. Starting from the Lexicon…

The computational lexicon used by LEIAs is key to language understanding, language generation, and
learning through language.

The lexicon is organized around correlations of structured syntactic and semantic descriptions.5
Human-oriented lexicons and syntactic theories of language classify word senses according to constructions

4 See, e.g., Sun, Slusarz & Terry (2005) for more on the two-system view.
5 For related literature, see Fillmore & Baker (2009) on frames, and Hoffmann & Trousdale (2013) on construction

grammar. Note that the construction semantics used by LEIAs differs from construction grammar in that it is

56

McShane, Nirenburg, Oruganti, and English

11

like transitive, intransitive, and ditransitive. Our approach to lexical storage, called construction semantics,
takes constructions to a new level by precisely specifying the aligned syntactic and semantic expectations
of word senses (see LongGame, sections 3.3 and 4.2.2). As an example, Table 3 shows three lexical senses
that have the same semantic structure, recorded in their sem-struc zones (ADMIRE with an AGENT and a
THEME), but different syntactic structures, recorded in their syn-struc zones. Variables indicate cross-
references, and ^ indicates “the meaning of” the variable. The class names for the syntactic and semantic
structures are values of the syn-class and sem-shape fields, respectively.

Table 3. Three constructions with the semantic shape (in boldface) but different syntactic shapes.
admire-v1 look-v24 put-v29
ex: John admires his uncle. ex: John looks up to his uncle. ex: John puts his uncle on a pedestal.
syn-class: v-trans syn-class: v-part-pp syn-class: v-do-pp
sem-shape: EVENT(AGENT,THEME) sem-shape: EVENT(AGENT,THEME) sem-shape: EVENT(AGENT,THEME)
 syn-struc

subject $var1
v $var0

 directobject $var2
sem-struc
 ADMIRE

AGENT ^$var1
THEME ^$var2

syn-struc
 subject $var1
 v $var0
 part up
 pp

prep to
obj $var2

sem-struc
 ADMIRE

 AGENT ^$var1
THEME ^$var2

syn-struc
subject $var1
v $var0
directobject $var2

 pp
prep on
obj

det a
n pedestal

sem-struc
 ADMIRE

AGENT ^$var1
THEME ^$var2

 Lexical senses can include procedural attachments, many of which rely on predictive structural
features of language. We could cite innumerable examples of this since language is a very organized
system, but for reasons of space we constrain ourselves to three. (1) When modifiers like very and extremely
are used to modify scalar attributes, they pull their values up or down the relevant scale in ways that can be
approximated using a simple model: the meaning of pretty is recorded as AESTHETIC-ATTRIBUTE .8 (on the
abstract scale {0,1}); very pretty pulls it up to .9, and extremely pretty to 1. (2) The adverb respectively
triggers a predictable procedure that structurally realigns compared entities: Tom and Edith drive a Porsche
and a BMW, respectively remaps to Tom drives a Porsche and Edith drives a BMW. (3) Referring
expressions—even challenging ones like elided ones and those with broad reference—can be resolved with
high confidence when they occur in coreference-predicting configurations. For example, even though the
pronoun it can be difficult to resolve in many contexts, it is easy to resolve with high confidence when
identical or feature-matching direct objects occur in sequential, coordinated verb phrases: Patty grabbed
the cupcake and scarfed it down; Patty grabbed it and scarfed it down. These examples give only the
smallest taste of how formalizable patterns of language use can be implemented as algorithms attached to
lexical senses. This not only organizes the knowledge underlying language processing, it also allow for the
individual algorithms treating different phenomena to be enhanced as resources permit. For further
discussion of coreference, including explanatory flowcharts, see chapter 5 of LingAI and chapter 5 of
LongGame.
 One of the steps in language understanding is aligning the shapes of syntactic parses with the
shapes of the syntactic descriptions of lexical senses. Language understanding by LEIAs is a six-stage

computational rather than theoretical, it treats semantics as centrally as syntax, and it grounds meaning in a formal
ontology.

57

12

process that involves multiple stages of syntactic analysis followed by multiple stages of semantic and
pragmatic analysis, as detailed in LingAI and LongGame. The stages that involve syntax are Basic Syntax,
which involves an external parser, and two sequential stages of LEIA processing: OntoSyntax and Basic
Semantics. Continuing with our example Tony was watching a tiger, OntoSyntax determines that the first
verbal sense of watch, watch-v1 (Table 4) is syntactically compatible with the syntactic parse (both are
transitive), and Basic Semantics determines that this sense is semantically compatible with the input (Tony
is an ANIMAL and a tiger is a PHYSICAL-OBJECT).6

Table 4. The lexical sense watch-v1 can be used to analyze Tony was watching a tiger, resulting in the meaning
representation to the right. The shape of the sem-struc in watch-v1 copies into the meaning representation, as shown
using boldface.

watch-v1
syn-struc

subject $var1
v $var0
directobject $var2

 sem-struc
 VOLUNTARY-VISUAL-EVENT

AGENT ^$var1 (sem ANIMAL)
 THEME ^$var2 (sem PHYSICAL-OBJECT)

VOLUNTARY-VISUAL-EVENT-#9
AGENT HUMAN-#17
THEME TIGER-#1
TIME < find-anchor-time
ASPECT progressive
lex-map watch-v1

However, not all examples are so simple because word senses can be used in non-basic ways as well. For
example, the sentence Mary needed to feed Spot before going out to dinner includes three verbs whose basic
forms are recorded in the lexicon as shown in table 5.

Table 5. Three lexical senses needed to understand Mary needed to feed Spot before going out to dinner.
need-v2
 def need plus an xcomp
 ex I needed to do my homework
 syn-struc

subject $var1
verb $var0
xcomp $var2

 sem-struc
MODALITY

TYPE OBLIGATIVE
VALUE 1
SCOPE ^$var2

 ATTRIBUTED-TO ^$var1
^$var2

AGENT ^$var1

feed-v1
 def To give food to; transitive
 ex She fed the dog
 syn-struc

subject $var1
verb $var0
directobject $var2

 sem-struc
FEED

AGENT ^$var1
BENEFICIARY ^$var2

go-v54
 def phrasal: X go out to dinner
 ex We’re going out to dinner.
 syn-struc

subject. $var1
verb $var0
prep-part out
pp

prep to
obj dinner

 sem-struc
EAT-AT-RESTAURANT
 AGENT ^$var1

In our sentence, the first verb, need, is used in its basic form (all of its expected syntactic dependencies are
accounted for), but the others, feed and go, are not. Feed needs to be converted into an infinitive clause and
its missing subject needs to be understood as coreferential with that of need; and go needs to be converted
into a present participle and its missing subject needs to be understood as coreferential with that of need
and feed. In the tradition of generative grammar, dynamic modifications to recorded lexical knowledge are
treated using transformations (Chomsky, 1957). But, whereas generative grammar considers only the

6 The semantic constraints are written in gray because they are not written explicitly in the lexicon; they are drawn
from the ontology during language analysis and generation.

58

McShane, Nirenburg, Oruganti, and English

13

syntactic aspect of transformations, LEIAs need to carry along the semantic interpretations as well—a
process detailed in LongGame.
 To recap, semantic analysis is informed by the syntactic parse, which is in the shape of a tree. That shape
must either directly align with the syntactic shapes (syn-strucs) of argument-taking words in the lexicon or
dynamic transformations—which map base shapes into derived shapes—must account for the
discrepancies. If a particular input is not properly understood by the semantic analyzer, possible fail points
are the lack of a lexical sense of the needed shape or the lack of a transformation to convert an existing
lexical sense into the shape needed by the input. Knowledge engineers and software engineers jointly
determine—through a combination of introspection and testing—how robust dynamic transformations can
be, and when it is better to record complex constructions as explicit shapes in the lexicon, thus obviating
the need to execute transformations.
 Language generation leverages underspecified ontological templates that reflect standard shapes
of meaning. Language generation involves the following steps: first the agent recognizes the need to say
something; then it formulates the meaning it wants to express using an ontologically-grounded meaning
representation; and finally it decides how to express it using the word senses stored in its lexicon
(LongGame, Section 4.3).7 Here we describe how the last step relies on ontological structures that we call
shapes of meaning.
 Shapes of meaning are variable-inclusive templates for ontological concepts that we hypothesize
scaffold human thought just as linguistic constructions scaffold human languages. For example, just as the
sentence “Who do you think wanted to be selected?” contains nested constructions that are part of a person’s
knowledge of English (a wh-question scopes over a verb that selects an infinitival complement), the
meaning of that sentence reflects nested frames of ontological concepts that are independent of any natural
language. We computationally model the process of language generation by formalizing the links between
shapes of meaning and their corresponding linguistic constructions.8
 The key insight of shapes of meaning is that the overall shape of the meaning to be expressed (i.e., the
full proposition) affects how the individual components need to be expressed. Consider the examples in
Table 6, all of which include the information that a bicycle is blue. Depending on what else is included in
the meaning representation, the bicycle’s blueness is expressed variously in English.

Table 6. Different meaning representations and renderings involving a bicycle’s blue color, with time and
aspect removed for clarity of presentation.

BICYCLE-#2
 COLOR blue

COST-#1
DOMAIN BICYCLE-#2

 RANGE .8
BICYCLE-#2

 COLOR blue

AMUSE-#1
CAUSED-BY COLOR-#1
EXPERIENCER HUMAN-#1

COLOR-1
 DOMAIN BICYCLE-#3
 RANGE blue

The bicycle is blue. The blue bicycle is expensive. The fact that the bicycle was blue
amused me.

The shape in the left-hand column is an OBJECT described by an ATTRIBUTE. Given that shape in isolation—
it is the entire idea to be expressed—the agent needs to create a copular sentence, which is a sentence with
the verb to be. By contrast, when an OBJECT modified by an ATTRIBUTE is used as a case-role filler in

7 Actually, the agent can also generate language reflexively, as to shout “Fire!” when it perceives fire, but that goes
beyond the scope of this paper.
8 An obvious question is, why doesn’t language understanding require shapes of meaning? As explained in LongGame,
language understanding and language generation pose very different challenges to agents that are overcome in
different ways.

59

14

another frame, as in the middle column, then a prenominal adjectival modifier is the default choice. Finally,
when an ATTRIBUTE heads its frame and is used as a case-role filler in another frame, then a formulation
like “the fact that N is Adj” is needed.
 What we notice here is that the agent must first detect the shape of the overall meaning to be expressed
and then figure out how to select and manipulate (using transformations) associated lexicon entries to create
a sentence. This processing is carried out by two different routines that wrap the shape of meaning, as
illustrated in Figure 4.

Fig. 4. Visualizing a shape of meaning (in the orange box) being used for language generation.

 The meaning representation to the upper left reflects what the agent wants to say. This example assumes
that HUMAN-#20 is the LEIA’s memory anchor for a man named Sam who is a boss, and that HUMAN-#25
is the memory anchor for a man named Harry. The relevant shape of meaning is shown in the orange box.
It covers the case when one human or intelligent agent wants, needs, requires, etc., another one to do
something. Wanting, needing, and requiring are examples of MODALITY: e.g., the meaning want is
MODALITY (TYPE volitive) (VALUE 1). Modalities scope over EVENTs that, themselves, can be of any shape.

60

McShane, Nirenburg, Oruganti, and English

15

In our example, the EVENT takes an AGENT, a THEME, and an optional BENEFICIARY. The key feature of this
shape is that the MODALITY is ATTRIBUTED-TO someone different than the AGENT of the EVENT (i.e., they
are not coreferential). So, this shape can be used to generate the sentences shown in Fig. 2 (as well as many
more), but it cannot be used to generate John wants to <has to, must, is trying to etc.> fix the engine since,
in these, the modality is attributed to the same individual who is carrying out the event. The routine called
“Wrapper fit?” determines whether a given shape is applicable for processing the given meaning
representation, and the routine called “Apply wrapper” guides the agent in using the lexicon to express the
meaning, which centrally includes modifying the basic, stored information using transformations. The
ongoing work of developing shapes of meaning involves positing shapes (deciding which frames to include,
which are variable and fixed elements, etc.) and testing their combinability and generativity using ever more
complex meanings.
 Readers familiar with machine learning might wonder why we don’t just have the agent learn the
correspondences between meaning representations and sentences of English using a large corpus of such
pairings, by analogy with machine translation. There are both practical and scientific reasons not to do so.
The practical reason is that no such corpus exists and it would require a very large, expensive knowledge
acquisition effort to acquire a large enough one. The scientific reason is that, even if the former could be
done, it would not contribute to our understanding of human language processing, which is one objective
of this program of work.

4. Under the Hood of LEIA Cognition

LEIA systems are deployed in a kit with under-the-hood panels that show dynamic, human-interpretable
traces of system functioning (LingAI, section 8.1.5; LongGame, section 8.7; Nirenburg et al., 2024). We
first introduced under-the-hood panels in the Maryland Virtual Patient (MVP) proof-of-concept clinician
training application (McShane et al., 2008; McShane & Nirenburg, 2021, ch. 8), where they showed traces
of the physiological simulation of the virtual patient, the patient’s interoception (perception of bodily
sensations), its thoughts, the knowledge it learned, and how it interpreted text inputs from the user, who
was playing the role of attending physician. For screen shots, see
https://homepages.hass.rpi.edu/mcsham2/Appendix-Materials/Appendix-Ch-8-MVP-Screen-Shots.pdf.

More recently, we have included under-the-hood panels in multiple simulation systems that demonstrate
the cognition of robots implemented within our new HARMONIC architecture. Fig. 5 illustrates the use of
under-the-hood panels in a demonstration system in which two simulated robots, a drone and a ground
vehicle, work as a team to fulfill a search-and-retrieve request by a person. Specifically, a human named
Danny, who is located remotely, asks the team to find his keys, which he misplaced in his apartment.

61

16

Fig. 5. A LEIA simulation system supplemented with under-the-hood panels that show traces of system
functioning. The left-hand side of the interface shows the environment and the robots’ actions in it; the middle
panel shows the chat window; and the right-hand side shows four of the many under-the-hood panels that
can be viewed during system operation.

At the point of the simulation captured by this screen shot, the ground vehicle has just proposed to the drone
that they search the apartment. The TMRs (Recent) panel shows the ground vehicle’s interpretation of
Danny’s most recent utterance. The upper Thoughts panel shows a trace of the ground vehicle’s thoughts
over the course of the multi-turn interaction, translated into English for the benefit of people viewing the
demonstration (agents think using structures of the ontological metalanguage). The Agenda panel shows
the agent’s plan, with gray actions already having been completed and black ones in process. And the lower
Thoughts panel shows a trace of the drone’s thoughts throughout the interaction. Although we currently
allow for only four panels to be shown at a time (a matter of screen real estate) others are available as well.
For example, at a particular moment in time, the ground vehicle and drone are looking at a couch and a
cabinet, respectively, as shown in Fig. 6. Note that vision meaning representations (VMRs) are structurally
identical to text meaning representations, which in turn mirror the structures in the ontology.

Fig. 6. Traces of vision meaning representations (VMRs).

62

McShane, Nirenburg, Oruganti, and English

17

 Agent cognition can also be demonstrated from inside our development environment, called DEKADE.
We will walk through a short demo of agent learning, using inline screen shots to avoid breaking the flow.
Information that the agent (Hal-2) needs to learn is typed into the chat window.

The agent generates a TMR, saved as analysis.1/1, and remembers that it learned a new ontological concept
(SYSTEMIC-SCLEROSIS) and a new lexical sense (sclerosis-n1, which covers the whole collocation “systemic
sclerosis”).

The language analysis can be viewed by clicking on analysis.1/1

The learned ontological frame can be viewed by clicking on @SYSTEMIC-SCLEROSIS.

63

18

And the learned lexical sense can be viewed by clicking on ~sclerosis-n1.

The agent’s agenda during learning can also be viewed, and each of the remembered events opens up into
a detailed trace of the associated processing.

When more information is provided about the newly-learned concept, its ontological description becomes
correspondingly more detailed.
 Static screen shots with short descriptions don’t do justice to how effective demonstration systems are
when supplemented by under-the-hood panels. Of course, there is no end to how user-friendly they could
be made given additional resources.

5. Final Thoughts

Although we have not emphasized the shapes analogy in this paper, we will use it to wrap up the discussion.
The shapes orientation says: Let’s exploit the fact that human knowledge and reasoning have long been
conceptualized as highly structured. Let’s focus on typical cases first, since that will go a long way to

64

McShane, Nirenburg, Oruganti, and English

19

making agents useful. Let’s enable agents to recover from atypical cases using generalized recovery
strategies (getting by with incomplete understanding; learning something new; asking a human for help).
Let’s think about models as pictures, be they diagrams or templates, so we can clearly understand,
remember, and explain them to all relevant stakeholders. And let’s open the hood on agent operation to
prove that our demonstration systems actually implement our theoretical claims and have the potential to
rise to the challenge of scalability and real-world utility.

Acknowledgements

This research was supported in part by Grants N00014-23-1-2060 and N00014-24-1-2679 from the U.S.
Office of Naval Research. Any opinions or findings expressed in this material are those of the authors and
do not necessarily reflect the views of the Office of Naval Research.

References

Chomsky, N. (1957). Syntactic Structures. Mouton.
Connell, L., & Lynott, D. (2024). What can language models tell us about Human Cognition? Current

Directions in Psychological Science, 33(3), 181-189.
Cuskley, C., Woods, R., & Flaherty, M. (2024). The limitations of large language models for understanding

human language and cognition. Open Mind 8: 1058-1083.
Fillmore, C. J., & Baker, C. F. (2009). A frames approach to semantic analysis. In B. Heine & H. Narrog

(Eds.), The Oxford Handbook of Linguistic Analysis (pp. 313–340). Oxford University Press.
Gentner, D. & Smith, L. A. (2013). Analogical learning and reasoning. In D. Reisberg (Ed.), The Oxford

Handbook of Cognitive Psychology, 668–681. New York, NY: Oxford University Press.
Hoffmann, T., & Trousdale, G. (Eds.). (2013). The Oxford Handbook of Construction Grammar. Oxford

University Press.
Kapoor, S., et al. (2024). Large language models must be taught to know what they don’t know. Advances

in Neural Information Processing Systems 37: 85932-85972.
Marcus, G. (2025). Game over for pure LLMs. Even Turing Award winner Rich Sutton has gotten off the

bus. Marcus on AI (in Substack). September 26.
McShane, M., & Nirenburg, S. (2021). Linguistics for the Age of AI. The MIT Press. Available open-access

at https://direct.mit.edu/books/oa-monograph/5042/Linguistics-for-the-Age-of-AI.
McShane, M., Nirenburg, S., & English, J. (2024). Agents in the Long Game of AI: Computational cognitive

modeling for trustworthy, hybrid AI. MIT Press. Available open-access at
https://direct.mit.edu/books/oa-monograph/5833/Agents-in-the-Long-Game-of-AIComputational.

McShane, M., Nirenburg, S., English, J., & Oruganti, S. (2025). Pursuing actionable perception
interpretation in cognitive robotic systems. Advances in Cognitive Systems 2025.

McShane, M.. Nirenburg, S., Goodman, K., Oruganti, S., and English, J. (Forthcoming). Trust through
explainability in cognitive agents, in EXPLAINS 2024. Springer.

Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall.
Nirenburg, S., & Raskin, V. (2004). Ontological Semantics. MIT Press.
Nirenburg, S., McShane, M., & English, J. (2023). Content-centric computational cognitive modeling.

Advances in Cognitive Systems, vol. 10. http://www.cogsys.org/journal/volume10/article-10-6.pdf
Oruganti, S., Nirenburg, S., McShane, M., English, J., Roberts, M., & Arndt, C. (2024a). HARMONIC: A

framework for explanatory cognitive robots. Proceedings of ICRA@40. Rotterdam, The Netherlands.
Oruganti, S., Nirenburg, S., McShane, M., English, J., Roberts, M., & Arndt, C. (2024b). HARMONIC:

Cognitive and Control Collaboration in Human-Robotic Teams. arXiv preprint arXiv:2409.18047.

65

20

Rosch, E. H. (1973). Natural categories. Cognitive Psychology, 4(3): 328–350. doi:10.1016/0010-
0285(73)90017-0. ISSN 0010-0285.

Schank, R. (1982). Dynamic Memory: A theory of learning in computers and people. Cambridge University
Press.

Schank, R., & Abelson, R. P. (1977). Scripts, Plans, Goals and Understanding: An inquiry into human
knowledge structures. Erlbaum.

Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A
dual-process approach. Psychological Review, 112(1), 159–192.

Sung, J.Y., Harris, O.K., Hensley, N.M., Chemero, A.P., Morehouse, N.I. (2021). Beyond cognitive
templates: Re-examining template metaphors used for animal recognition and navigation. Integrative
and Comparative Biology, 61(3): 825-841.

Thalmann, M., Souza, A.S., Oberauer, K. (2019). How does chunking help working memory? Journal of
Experimental Psychology: Learning, Memory, and Cognition, 45(1): 37-55.

Xu, Ziwei, Jain, S., & Kankanhalli, M. (2024). Hallucination is inevitable: An innate limitation of large
language models. arXiv preprint arXiv:2401.11817.

66

