
When Do Language Models Need to Be Large?

Zhixun Chen 1 Yali Du 1 David Mguni 2

Abstract

Many leading language models (LMs) use high-
intensity computational resources both during
training and execution. This poses the challenge
of lowering resource costs for deployment and
faster execution in decision-making tasks among
others. We introduce a novel plug & play LM
framework named Language Optimising Network
Distribution (LONDI). LONDI learns to selec-
tively employ large LMs only where complex
decision-making and reasoning are required while
using low-resource LMs (i.e. LMs require less
GPU usage, but may not be able to solve the prob-
lem alone) everywhere else. LONDI consists of
a system of two (off-)policy networks, an LM, a
large LM (LLM), and a reinforcement learning
module that uses switching controls to quickly
learn in which system states to call the LLM. We
then introduce a variant of LONDI that maintains
budget constraints on LLM calls and hence its
resource usage. We test LONDI’s performance
in a range of tasks in ScienceWorld and BabyAI-
Text and demonstrate that LONDI can solve tasks
only solvable by resource-intensive LLMs while
reducing GPU usage by up to 30%.

1. Introduction
Large language models (LLMs) have emerged as powerful
tools that can assist humans to accomplish a wide range of
tasks such as medical tasks (Lin et al., 2023c), language
education (Caines et al., 2023), autonomous driving (Fu
et al., 2023) and recreational games (Feng et al., 2024).
As LLMs originate from data center warehouses, they are
expected to gradually extend their reach to edge devices
such as personal computers, smartphones, and even Inter-
net of Things (IoT) devices (Central, 2023; Qualcomm,
2023). This shift is driven by the desire for enhanced data
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privacy, availability of AI functionalities, and personalised
experiences (Yi et al., 2023). For instance, Qualcomm has
effectively implemented stable diffusion, a text-to-image
generative LLM model, on smartphones (Qualcomm, 2023).
Multimodal LLMs have been integrated into smartphones,
enabling precise content searching through natural language
queries (Central, 2023).

However, current LLMs require massive computational re-
sources for training and execution, which makes the applica-
tion of LLMs in edge devices without large memory storage
still unrealistic (Ahmed & Wahed, 2020; Yi et al., 2023).
Smaller language models (LMs) may offer a practical solu-
tion to the computational constraints. Whereas the ability of
LLM is significantly correlated with the size of its param-
eter set (Brown et al., 2020). The performance of smaller
LMs is dramatically degraded compared with larger LMs,
rendering smaller LMs unable to solve some tasks (Ding
et al., 2023). A practical solution is to combine a large LM
with a small LM and activate the large LM only under a set
of conditions. Though there have been several attempts to
combine LMs in this way, the challenge of systematically
constructing a set of conditions to activate LMs has not yet
been fully resolved.

Dual process theory (DPT) (Kahneman, 2011) posits that
human thinking and decision-making involve two separate
cognitive processes or systems, with one being characterised
as fast, automatic, and intuitive, while the other is described
as slow, controlled, and reflective. According to this theory,
this delineation enables fast, reactive decision-making in
states where complex modes of thought are not required
while employing slower yet more sophisticated, complex
reasoning where it is required.

Inspired by DPT, we propose a dual language model struc-
ture that consists of two LMs and an adaptive reinforcement
learning (RL) agent, Switcher as a switch mechanism to
automate selective activations of the LMs. By applying
a smaller LM (which we call QUICK) as a fast response
module and a larger LLM (which we call DEEPTHINK) as
the slow thinking module, LONDI’s adaptive switch mech-
anism learns to efficiently manage cooperative delegation
between two LMs to solve tasks while reducing the resource
cost burden of LMs. Specifically, the switch agent, based
on switching control policy (Mguni et al., 2023a;b;c), deter-
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mines the states in which to activate DEEPTHINK, while
QUICK is utilised in all other states. Therefore, we ap-
proach the problem of computational constraints within
LLMs from a systematic standpoint using the switching con-
trol, which indicates that the switching policy only activates
DEEPTHINK at the beneficial set of states. LONDI has a
cost parameter c , which plays an important role in calibrat-
ing the resource-consumption/performance trade-off of the
system of MARL. Larger values of c incur higher costs for
each activation of the DEEPTHINK large language model
by the Switcher. The in turn makes the Switcher more se-
lective about activating the DEEPTHINK LLM, reserving
its activations to a smaller number of states where the boost
in performance is greatest. In the limit c → ∞ the Switcher
becomes extremely thrifty in which case LONDI solely uses
the QUICK model. Moreover, we introduce a variant of
LONDI, namely LONDI-B that imposes a budgetary con-
straint on the number of DEEPTHINK calls. In this setup,
LONDI maintains a budget on the number of DEEPTHINK
calls allowed.

Overall, LONDI has several advantages:
• By switching to DEEPTHINK only at states where it is
beneficial while leveraging the computational thriftiness of
QUICK, LONDI solves various tasks while reducing com-
putational expense (see Sec. 3.2, Appendix. E).
• LONDI can preserve fixed budgets on the number of
DEEPTHINK calls, balancing performance and computa-
tional cost under the limited budgets.(see Sec. 3.2).
• LONDI is a plug-and-play framework that seamlessly
adopts any QUICK and DEEPTHINK module. (see Ap-
pendix. E).

2. LONDI
2.1. Problem Formulation

To tackle the challenges of computational resources con-
strains, we introduce an adaptive learner which we call
Switcher that decides on the states to activate DEEPTHINK
while using the less computationally expensive QUICK lan-
guage model to determine actions everywhere else. The
Switcher needs to make a binary decision (whether to ac-
tivate DEEPTHINK or not) at each system state, where a
state in the current setting is a representation of a specific
context or condition. We can then formalise the Switcher
problem as an MDP (described in Appendix A) as the prob-
lem involves sequential decision-making (under uncertainty)
with Markovian transitions. Specifically, S represents the
system state space, A ≡ AS ∪ A denotes the action set
where action is executed in the environment and which is de-
cided by an ‘active’ language model, AS ≡ {0, 1} denotes
the Switcher’s binary action set, A represents the action set
common to both language models, P indicates the transition
after the action and R : S ×A → R represents the return

of the environment after the action of LLM activated by
the Switcher. At any given instant, only one of the DEEP-
THINK and QUICK modules is activated and hence able
to take action. To make a decision, the Switcher samples
a decision g from its policy g : S → {0, 1} where g = 1
indicates an activation of the DEEPTHINK module in which
case the action a ∼ πDEEP is executed while g = 0 indi-
cates that no activation of the DEEPTHINK module occurs
so the QUICK module is active in which case the action
a ∼ πswitch is executed where πQUICK and πDEEP are poli-
cies associated to the QUICK and DEEPTHINK modules
respectively.

Under the MDP setting, the goal of the Switcher is to max-
imise the cumulative return, namely the overall performance
of the structure. To prompt Switcher to make selective ac-
tivations decisions, a fixed cost associated with each acti-
vation is imposed on Switcher, represented by a constant
value c < 0. The incurred costs encourages the Switcher
to activate DEEPTHINK model only when the activation
is advantageous for the system’s performance, either in the
current state or in subsequent states. The objective of the
Switcher policy g is

vS(s|π, g) = Eg∼g

[ ∞∑
t=0

γt (r − c · 1(g(st)))
∣∣∣s0 = s; at ∼ π

]
and the action-value function of it is QS(s, a|π, g) =
Eg∼g[

∑∞
t=0 γ

t(r − c · 1(g(st)))|s0 = s; a0 = a; at ∼ π],
where π is either πQUICK or πDEEP. With this objective,
Switcher’s goal is to maximise the system performance
by activating DEEPTHINK at the required set of states to
enable the task to be solved with the minimal number of
DEEPTHINK activation. Therefore, by learning an optimal
g, Switcher acquires the optimal policy for activating DEEP-
THINK. For the budget-constrained variant LONDI-B, the
activation of DEEPTHINK becomes exorbitantly costly if
the number of DEEPTHINK activation surpasses the im-
posed budget threshold.

2.2. Switching Controls

The Switcher is tasked with learning the set of states that
require the additional decision capacity provided by the
DEEPTHINK model in order to achieve the optimal pol-
icy. To do this, at each state Switcher first makes a binary
decision to decide whether to activate its DEEPTHINK.
Switching controls enable Switcher to learn at which states
it ought to activate the DEEPTHINK model. Therefore, in
LONDI, the Switcher agent uses a form of policies known
as switching controls (Mguni et al., 2023b; Mguni, 2018).
This leads to an RL problem in which, unlike the standard
setup of an MDP, the Switcher agent now uses switching
controls to select its decisions.

Summary of events
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((a)) Task Map ((b)) budget=2 ((c)) budget=4 ((d)) budget=6 ((e)) budget=8

Figure 1. (a). The ScienceWorld task, Create a circuit. To complete the task, the agent must navigate to the hallway first and then
determine the correct room to enter then use the material present in the room. (b),(c),(d),(e) sub-figures are the heatmap of LONDI
DEEPTHINK calls with different budget on ScienceWorld task, Create a circuit. Since the agent needs to pass through the hallway to
reach the workshop initially, LONDI must activate DEEPTHINK model in the hallway at least once. Subsequently, the remaining budget
allocated to activating the DEEPTHINK model at the workshop to accomplish the task and obtain a higher reward. Therefore, as the
budget decrease, LONDI focuses its activations of DEEPTHINK solely at the critical parts of the map such as hallway, resulting in lighter
colors in the heatmap.

At a time t ∈ 0, 1...
• Encoder process the state st ∈ S
• Switcher decides whether to activate the DEEPTHINK
model according to the decision g ∼ g : S → {0, 1}:
• if g = 0 :
◦ The QUICK is activated and samples an action at from its
policy πQUICK. The switch receives a reward r ∼ R(st, at)
and the system shift to the subsequent state st+1

• if g = 1 :
◦ DEEPTHINK is activated and samples an action at from
its policy πDEEP. Switcher receives a reward r + c where
r ∼ R(st, at) and the system transitions to the state st+1.

We now describe how at each state Switcher decides
whether to activate DEEPTHINK. At any st, the decision to
turn the DEEPTHINK model is decided by a (categorical)
policy g : S → {0, 1}. We denote by {τk} the times that ac-
tivation takes place, for example, if the DEEPTHINK model
is first activated at state s5 then turned off at s7, then τ1 = 5
and τ2 = 7. Recalling the role of g, the switching times
obey the expression τk = inf{t > τk−1|st ∈ S, g(st) = 1}
and are therefore rules that depend on the state.. The ter-
mination times {τ2k−1} occur according to some external
(probabilistic) rule i.e., if at state st DEEPTHINK is active,
then DEEPTHINK deactivates at state st+1 with probability
p ∈]0, 1]. Hence, by learning an optimal g, Switcher learns
the best states to activate DEEPTHINK.

3. Experiments
3.1. Experimental Setup

We conducted a series of experiments to test whether
LONDI: 1. Solves complex interactive tasks while reduc-
ing the computational cost. 2. Works within the budget
limit. 3. Develops the ability to optimise its utilisation of

DEEPTHINK within a specified budget for DEEPTHINK
calls. 4. Is plug & play, namely robust and consistent with
different components. We use ScienceWorld (Wang et al.,
2022) and BabyAI-Text (Carta et al., 2023) environments to
test the performance of LONDI. We employ SAC (Haarnoja
et al., 2018) to learn the control policy for switching. The
presented plots display the average results obtained from 5
different seeds.

We evaluated the effectiveness of LONDI in two environ-
ments, namely Scienceworld and BabyAI-Text. Additional
information regarding benchmark description and experi-
mental setups is shown in G. We use a pre-trained Flan-T5
small model as our QUICK model and a pre-trained Flan-
T5 large model (Chung et al., 2022) as our DEEPTHINK
model. The baselines are SWIFTSAGE, FrugalGPT and
Probabilistic policy. The details of the baselines are shown
in Appendix G.5. Ablation studies are displayed in Ap-
pendix E to verify LONDI is robust to different components
and the effectiveness of switching control structure.

3.2. Results and Analysis

Switching cost variation. To evaluate the performance of
LONDI, we verified it with different cost values on different
benchmarks. The results indicate that the cost c enables the
resource/performance trade-off to be carefully calibrated
by LONDI. With small cost, LONDI is willing to activate
DEEPTHINK more and achieve higher reward. But when
the cost is expensive, LONDI becomes extremely economi-
cal and rarely use DEEPTHINK model. Therefore, LONDI
in this situation uses QUICK model mostly and the reward
is reduced. The results shown in the Tables 1 and 2 suggest
that as the computational cost increases, LONDI’s perfor-
mance declines, implying that higher costs lead to fewer
invocations of the resource-intensive DEEPTHINK model.
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Model Reward

DeepTHINK only 77.6 ± 2.3
LONDI (cost=0.1) 76.5±3.4
LONDI (cost=0.2) 73.3±3.7
LONDI (cost=0.3) 49.6±2.6
LONDI (cost=0.4) 43.3±2.0

QUICK only 43.2±1.7

Table 1. Performance of LONDI on ScienceWorld task: Identify
Longest-then-shortest-lived animal with different cost (normal-
ized)

Model Reward Success Rate

DEEPTHINK only 0.96±0.02 0.87±0.05
LONDI (cost=0.05) 0.91±0.03 0.79±0.05
LONDI (cost=0.15) 0.82±0.05 0.72±0.07
LONDI(cost=0.25) 0.69±0.05 0.51 ±0.08
LONDI (cost=0.35) 0.51±0.03 0.36±0.04

QUICK only 0.49±0.01 0.34±0.02

Table 2. Performance of LONDI on BabyAI-Text with mixed tasks.
The cost and reward are normalised values.

Budget version of LONDI. LONDI-B possesses a more
straightforward adjustable parameter which directly con-
strains the utilization of the DEEPTHINK model, thereby
limiting the computational expenses of the module. To as-
sess the computational resource requirements, we measure
the average performance of LONDI-B across five evaluation
episodes and monitor the average GPU usage. The areas
under the GPU usage curve are calculated based on numpy
functions. The results are shown in Table 3. The DEEP-
THINK calls in all LONDI-B structures remain within the
specified budget. With a higher budget, the DEEPTHINK
module is activated more frequently and the performance
increases correspondingly. The computation metrics AUC
indicate that LONDI-B significantly decreases the compu-
tational resource usage compared with only using the large
language model. Specifically, LONDI with a budget of 2
achieves 90% performance compared with DEEPTHINK
only but calls the DEEPTHINK model almost 60% fewer
times.
Comparison to Baselines. To compare the performance
of LONDI-B with baselines, we modify the QUICK and
DEEPTHINK modules of SWIFTSAGE into the same set-
ting, namely Flan-T5 small and large. The budget for calling
DEEPTHINK model is set to be half of the calls of DEEP-
THINK only in all tasks for LONDI-B and baselines. The
results shown in Table 4 indicate that LONDI-B’s perfor-
mance is marginally inferior to DEEPTHINK only, but out-
performs SWIFTSAGE, FrugalGPT and probabilistic policy
in both baselines. In addition, considering that LONDI-B
only calls the DEEPTHINK model half than DEEPTHINK

Table 3. Computational cost of LONDI-B on the ScienceWorld
task: Identify Longest-then-shortest-lived animal. DEEPTHINK
Calls column represents the relative percentage of DEEPTHINK
activations compared with DEEPTHINK only. AUC column gives
the area under the GPU usage curve for the same number of
timesteps.

Model DEEPTHINK Calls Reward AUC

DEEPTHINK only 5±0.00(1) 77.6±2.3 3130±5
LONDI-B (budget=5) 4.87±0.04 (0.97) 76.5±3.3 2968±45
LONDI-B (budget=4) 3.96±0.03 (0.79) 75.3±3.5 2843±53
LONDI-B (budget=3) 2.82±0.04 (0.56) 72.3±3.7 2759±47
LONDI-B (budget=2) 1.72±0.05 (0.34) 70.6±3.2 2671±43
LONDI-B (budget=1) 0.83±0.02 (0.17) 65.7±2.1 2593±32

QUICK only 0±0.00 43.3±1.7 2451±2

only, it significantly minimize the computational cost of
the system. More detailed information can be found in
Appendix 7. 1

Table 4. Average performance of LONDI-B and baselines on Sci-
enceWorld and BabyAI mixed tasks. The reward value is normal-
ized.

Model ScienceWorld BabyAI

DEEPTHINK only 0.87±0.02 0.96±0.02
LONDI-B 0.72±0.06 0.87±0.05

SWIFTSAGE 0.68±0.04 0.43±0.02
FrugalGPT 0.64±0.03 0.75±0.03

Probabilistic policy 0.44±0.08 0.41±0.07
QUICK only 0.33±0.01 0.34±0.01

4. Conclusion
In this paper, we introduce LONDI, a novel framework
that leverages performance and computational cost by se-
lectively activating LLM to cooperate with LM. LONDI
combines LM and LLM in a way that enables LLM to
support LM, thereby improving its performance. Simulta-
neously, LONDI can assist LLM in reducing computational
and energy consumption. The budget variant of LONDI,
known as LONDI-B, enhances the combination by offering
an intuitive control facility for the user to limit the number
of LLM calls. In our empirical investigations, we conducted
a comprehensive set of experiments in ScienceWorld and
BabyAI-Text. Across these domains, LONDI shows perfor-
mance improvements and computational cost decreases.

1The switching policy employed by SWIFTSAGE is based on
predefined rules and empirical observations specific to the Science-
World environment. It becomes challenging for this approach to
perform effectively when applied to other environments or domains
that may have different dynamics and characteristics.
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Impact Statement
The objective of this paper is to reduce the overall com-
putational consumption of LLM in addressing complex in-
teractive tasks. One possible application of our work is
to assist the downstream of LLM to edge devices, whose
computational resources and energy consumption are lim-
ited. With LONDI, the edge devices can apply an afford-
able small LLM locally as QUICK and consider the cloud
server as DEEPTHINK. Therefore, the edge devices can
communicate to the cloud server for support only at nec-
essary states, which minimises the overall consumption of
energy and computational resources. This approach enables
edge devices to achieve improved real-time decision-making
capabilities, ensuring bandwidth and energy efficiency. Ad-
ditionally, it could enables individuals to have an enhanced
AI experience that is accessible to all with edge devices,
ensures privacy through local data processing, and allows
for customization and personalisation.
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Appendix
A. Preliminary: Markov Decision Process
In this paper, we consider a setting in which an agent is tasked with solving a decision-making problem. We give some
preliminaries on Markov decision processes which is the underlying formalism for our problem. A Markov decision
process (MDP) (Puterman, 2014) is given by a tuple ⟨S,A,P,R,γ ⟩ where S represents the set of states, A means the set of
(discrete) actions, the transition probability P : S × A× S → [0, 1] indicates the system dynamics, the reward function
R : S ×A → R describes the performance of the agent, the reward discount factor γ ∈ [0, 1] defines the level of discount
applied to the rewards. At time t, the system is at state st ∈ S and the agent decides on its action at ∈ A using the policy
π : S ×A → [0, 1], where π(a|s) is the probability of choosing action a ∈ A under state s ∈ S . The action transitions the
system to a new state st+1 ∼ P(·|st, at) and the agent then receives a scalar reward r ∼ R(st, at). In the standard setup of
an MDP, the agent’s objective is to maximise the cumulative expected rewards vπ(s) := E[

∑+∞
t=0 γ

tR(st, at)|at ∼ π(·|st)]
using a policy π∗ ∈ Π where Π is the policy set of the agent.

B. Related Work
Recently, various tools have been proposed to augment the capabilities of LLMs. SayCan (Ahn et al., 2022) employs an
LLM with an additional value function to assign scores to high-level actions, and then utilises a low-level planner to map
these actions to determine their feasibility in the physical world. (Lin et al., 2023b) proposes an encoder-decoder structure
to facilitate the planning ability of LM. (Huang et al., 2022) decomposes tasks into mid-level plans and maps outputs to
available actions. DEST (Wang et al., 2023) applies a self-explanation mechanism for error correction and a goal-selector to
rank sub-goals. Combining with PDDL, (Guan et al., 2023) utilises LLM to generate, translate and validate PDDL models
to address planning tasks. Combined with reinforcement learning, GFlan (Carta et al., 2023) employs Flan-T5 (Chung et al.,
2022) as the action policy and updates it with online PPO algorithm (Schulman et al., 2017). However, all these methods
encounter the problem of high computational resource cost. To address the challenge of high computational costs, in this
paper, we introduce a switching mechanism within a dual LM structure delineated by a low-cost and high-cost LM.

Closest to our work is the SWIFTSAGE (Lin et al., 2023a) framework, which combines a small LM module as the fast
system and a large LLM module as the slow system. By combining two LLMs with varying sizes and computing power,
the framework tackles intricate interactive reasoning tasks while mitigating the computational load. Although it achieves
remarkable performance with GPT-4, the method to interpolate between the two modules uses a hand-crafted heuristic
protocol which can lead to suboptimal performance (see Sec. 3.2). Another similar work is the FrugalGPT (Chen et al.,
2023), which combines a cascade of LLMs and a score function to decide which LLM to use. However, defining an
appropriate score function to guide the LLM selection process is challenging in complex planning tasks. Therefore, the
computational constraint problem is imperfectly resolved in both cases. In comparison, LONDI uses reinforcement learning
in conjunction with a type of policy known as switching controls to learn at which system states the DEEPTHINK module
should be activated. Moreover, this systematic learning approach to the LLM activation enables a variant of LONDI to
maintain a budget constraint on the number of DEEPTHINK calls.

The switching structure is similar to the mechanism of a psychological framework, dual process theory (Wason & Evans,
1975; Kahneman, 2011). Dual process structures have inspired various mechanisms in reinforcement learning used to
improve learning efficiency. ROSA (Mguni et al., 2023a) and LIGS (Mguni et al., 2022) incorporate a dual switching method
to activate a reward-shaping module to promote state visitations and coordination between adaptive agents in an RL and
MARL respectively. LICRA (Mguni et al., 2023b) adds a trainable switch to decide whether to use a costly execution-policy
system to generate actions. Similarly, MANSA (Mguni et al., 2023c) has an additional switch to decide whether to activate
centralised training, a computationally expensive learning mode that facilitates coordination among adaptive agents.

C. Algorithm
We now describe the methodology for the LONDI framework. At a state st, the system initially checks the switch state mt.
If the switch is currently off, mt = 0, the Switcher agent is applied to determine whether DEEPTHINK is needed. Otherwise
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mt = 1, the structure considers the switching probability pi
2. If pi(·|st) = 1, the switch keeps the same and the structure

directly utilises DEEPTHINK to generate action. If pi(·|st) = 0, the structure activates Switcher agent to decide whether
to turn on the switch again. If the Switcher module is used, it considers the state information st processed by the encoder
and samples the action according to its discrete policy gt ∼ g : S → 0, 1. If the Switcher output 0, gt = 0, the switch is
off, mt = 0, and the QUICK model is called to generate action and interact with the environment. Otherwise gt = 1, the
switch is on, mt = 1, and the DEEPTHINK model is activated to generate action. The trajectories of the process are stored
in a replay buffer for further training. To further explain the work flow of LONDI, a schematic is shown in Figure 2. In
the budget-constrained variant LONDI-B, the key distinction lies in the replacement of the cost function with a parameter
budget n, effectively limiting the computational resources allotted for the task. The switching control policy employed by
LONDI-B takes into account the remaining computational budget, adjusting its decision-making process accordingly by:
gt ∼ g(·|st, n). If the switching control mechanism invokes operations that surpass the predetermined budget limitations,
the reward in and after that step will be reduced by a budget penalty np , discouraging such over-expenditure of resources.
Instead of completely prohibiting the agent from accessing the DEEPTHINK model after exhausting budget, we apply
this additional penalty np approach because it allows the agent to explore and consider information from later stages. If a
particular point turns out to be highly important despite incurring a negative reward initially, the agent can strategically
allocate a portion of its budget to access that point during subsequent training iterations. By applying a penalty rather than
an outright restriction, the agent retains the flexibility to reevaluate and potentially utilize information from points that may
become more valuable in later stages of the process.

Figure 2. The schematic of LONDI. The Diamond represents the decision point, the square means a process or action, and the oval-like
shape means data storage. The Switcher agent receives an environmental observation and makes a decision on which LLM module to
utilise based on factors such as switch state, switch probability, and observation. The transition is then stored in the buffer for training the
Switcher policy in subsequent iterations.

2The probability here is a Bernoulli distribution p(x) = px(1 − p)1−x and the parameter p and q = 1 − p of the distribution is
adjustable based on the difficulty of the environment. Considering that the DEEPTHINL model in our setting (Flan model) cannot
undertake long step planning, the switching probability pi is applied ensures the possibility of sustained activation of the DEEPTHINK
model, which improves the performance in complex and sparse reward tasks. pi(·|st) means the value of pi at state st, whose value is
sampled from the Bernoulli distribution.
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Algorithm 1 Language Optimising Network Distribution (LONDI)

Input: QUICK policy πQUICK, DEEPTHINK policy πDEEP, Switching Control Policy g, learning algorithm ∆g, experi-
ence buffer B, switching probability pi, switch state mt, switch cost c

Output: Optimised policy g
Initialise g, pi, mt

for t = 1, T do
Initialise mt = 0
while not done do

Given environment state st evaluate gt ∼ g(·|st)
if mt > 0 then

if pi(·|st) = 1 then
Sample action at using DEEPTHINK policy πDEEP

else
if gt = 1 then

Sample action at using DEEPTHINK policy πDEEP

else
Sample action at using QUICK policy πQUICK, mt = 0

end if
end if

else if gt = 1 then
Sample action at using DEEPTHINK policy πDEEP, mt+ = 1

else
Sample action at using QUICK policy πQUICK

end if
Apply at to environment to obtain st+1, τt+1 and rt+1

if gt = 1 then
rt+1− = c

end if
Store (st,, gt, rt+1, st+1) in B

end while
for Epochs and Batch numbers do

Sample B to obtain (st,gt,rt+1,st+1) and update g with ∆g

end for
end for

D. Architecture and of LONDI
We now describe a concrete realisation of LONDI’s core components which consist of 2 language models, a large language
model (LLM) DEEPTHINK, a small language model as QUICK and a switching control RL algorithm as Switcher. Each
component (including the LLMs) can be replaced by various other components.
• QUICK model. In this paper, we use a pretrained Flan-T5-small model (Chung et al., 2022) as the QUICK module.
• DEEPTHINK model. We use a pre-trained Flan-T5-large model (Chung et al., 2022) as the DEEPTHINK module. It
performs twice as well as the QUICK module on average.3

• Switching Control Policy (Mguni et al., 2023b). A soft actor-critic (SAC) (Haarnoja et al., 2018) agent called Switcher
whose policy’s action set consists of 2 actions: 1) call the DEEPTHINK LLM 2) call the QUICK model.
• Switching Control Encoder. To enable SAC to perform in a textual environment we introduce an encoder to process text
information. It consists of a transformer to turn text into a matrix and an MLP to condense information.

3The performance comparison is under our experiment setting, not the general comparison in all environments.
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Algorithm 2 Language Optimising Network Distribution-Budget (LONDI-B)

Input: QUICK policy πQUICK, DEEPTHINK policy πDEEP, Switching Control Policy g, learning algorithm ∆g, experi-
ence buffer B, switching probability pi, switch state mt, switch budget n, switch budget limit n0, switch budget penalty
np, switch cost c

Output: Optimised policy g
Initialise g, pi
for t = 1, T do
mt = 0, n = n0,
while not done do

Given environment state st and switch budget n, evaluate gt ∼ g(·|st, n)
if mt > 0 then

if pi(·|st) = 1 then
Sample action at using DEEPTHINK policy πDEEP

else
if gt = 1 then

Sample action at using DEEPTHINK policy πDEEP, n− = 1
else

Sample action at using QUICK policy πQUICK, mt = 0
end if

end if
else if gt = 1 then

Sample action at using DEEPTHINK policy πDEEP, mt+ = 1, n− = 1
else

Sample action at using QUICK policy πQUICK

end if
Apply at to environment to obtain st+1, τt+1 and rt+1

if gt = 1 then
rt+1− = c

end if
if n < 0 then

rt+1− = np

end if
Store (st,, gt, rt+1, st+1,n) in B

end while
for Epochs and Batch numbers do

Sample B to obtain (st,gt,rt+1,st+1,n) and update g with ∆g

end for
end for

E. Ablation Study
We conducted a series of ablation studies to verify the effectiveness of LONDI. In the subsequent analysis, we made
adjustments to various elements of our framework to substantiate the following assertions:

LONDI effectively adapts to different components. To validate the dynamic modification capability of LONDI in
activating the DEEPTHINK module based on the QUICK module’s capability, we replaced the QUICK module with both a
random agent and a more proficient FLAN-T5-small model. As shown in Figure 3 and Table 5, the results indicate that
LONDI learns to activate the DEEPTHINK module according to the QUICK’s performance. With a random QUICK module
and a lower-performance QUICK module, LONDI can still achieve similar performance by activating the DEEPTHINK
module more frequently. With lower performance DEEPTHINK module Flan-T5-small, LONDI shows the same tendency
with various costs, which indicates that LONDI is a plug-in structure that can be used with distinct LLMs by only adjusting
a few hyperparameters.
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Figure 3. Performance of LONDI with a random agent as QUICK module on ScienceWorld task: Identify Longest-then-shortest-lived
animal. The Flan-T5-large bar represents Flan-T5-large as the DEEPTHINK module. The Flan-T5-small bar represents Flan-T5-small as
the QUICK module.

Table 5. Performance of LONDI with different QUICK modules on ScienceWorld task: Create a circuit. LONDI(L) means we modify the
QUICK module to another FLAN-T5-small model which has a longer training length on this task.

Model Reward Rel. DEEPTHINK Calls

DEEPTHINK only 70±2.0 1±0.00
LONDI(L) 56±3.5 0.3±0.02

LONDI 52±3.1 0.5±0.04
QUICK only 9±0.0 0±0.00

FLAN-T5-small-L 30±2.3 0±0.00

Switching Controls are important. A central component of LONDI is its switching control mechanism which determines
when to activate the DEEPTHINK model. In particular, the switching control mechanism allows the Switcher agent
to learn to activate the DEEPTHINK model only at states where it is needed to drive higher performance. To evaluate
the importance of the switching control component and the effect of budget constrain, we compared the performance of
LONDI-B with a variant of LONDI-B in which the switching control mechanism is replaced with probabilistic policy.
Observe that activating the DEEPTHINK model at all states degenerates the method to DEEPTHINK and similarly, never
activating the DEEPTHINK degenerates the framework to QUICK. Table 6 shows the comparison of the performances
of the variants under different budgets. We examined the performance of the variants of LONDI-B on the task called
identifying the longest-lived animal. The results indicate that having the switching control component and hence, the ability
to learn an optimal switching control in LONDI-B produces a significantly better performance compared to simply activating
DEEPTHINK with Bernoulli distribution while LONDI-B uses fewer DEEPTHINK calls.

Table 6. The performance of LONDI-B and a variant of LONDI-B with a random Switcher (Rand. Switcher) agent with different budgets
on ScienceWorld task: Identify Longest-lived animal. Data in blue and brown are related to LONDI-B and the random variant LONDI-B
resp. The budget usage column represents the DEEPTHINK calls of LONDI under the different budget settings, where the budget usage
of variant LONDI-B is always equal to the setting number. The average row represents the mean value of structures whose budget greater
than zero. LONDI-B outperforms the variant with a random agent for all budgets larger than zero.

Budget LONDI-B Probabilistic policy Budget Usage

No limit 83.2±2.1 69.3±7.2 3.93±0.04\4.8±0.42
budget=4 81.6±4.2 68.2±6.9 3.82±0.06\4±0.00
budget=3 77.6±5.3 66.4±7.5 2.76±0.07\3±0.00
budget=2 75.8±6.1 59.7±8.1 1.87±0.09\2±0.00
budget=1 66.4±3.2 50.8±6.4 0.82±0.04\1±0.00
budget=0 42.3±1.6 42.3±1.6 0.02±0.01\0±0.00
Average 75.4±4.1 61.2±6.1 2.32±0.05\2.5±0.00
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Figure 4. An illustration of one BabyAI task, PutNextLocal:"put the blue key next to the green ball". The shadow area represents the
observable space of the agent.

F. Additional Results
The detail results of all tasks 4 on the Scienceworld are shown in Table 7. The cost of LONDI and QUICK is the proportion
compared to the AUV of the DEEPTHINK model in the same timesteps. The results indicated that LONDI facilitates the
collaboration between QUICK and DEEPTHINK models. The structure performs slightly worse than DEEPTHINK but
significantly better than QUICK. However, LONDI requires only slightly more computational resources than QUICK only,
while consuming significantly less than DEEPTHINK only.

Table 7. Detailed results on the ScienceWorld benchmark across different tasks. The budget or allowance for invoking the computationally
intensive DEEPTHINK model is set to be half of the number of times the DEEPTHINK model would be called if it were the sole model
employed.

Task name LONDI-B QUICK DEEPTHINK LONDI-B cost QUICK cost DEEPTHINK cost
Find an animal 78±4.1 23±0.4 100±0.0 0.74±0.02 0.68±0.01 1
Find a living thing 75±2.9 20±0.2 100±0.0 0.76±0.01 0.7±0.01 1
Find a non-living thing 78±3.2 58±1.7 100±0.0 0.72±0.02 0.69±0.00 1
Find plant 89±3.1 34±1.2 100±0.0 0.78±0.03 0.64±0.00 1
Inclined planes(determine angle) 52±3.2 10±0.0 73±2.1 0.80±0.02 0.74±0.01 1
Friction(known surfaces) 64±4.1 38±1.4 73±2.2 0.85±0.02 0.65±0.01 1
Identify Longest-then-shortest-lived animal 72±3.7 43±1.6 78±2.3 0.85±0.03 0.78±0.00 1
Identify Longest-lived animal 76±6.1 42±1.6 83±2.1 0.79±0.02 0.72±0.00 1
Identify shortest-lived animal 87±3.2 50±1.8 100±0.0 0.83±0.02 0.74±0.01 1
Create a circuit 52±3.1 9±0.0 70±2.5 0.79±0.02 0.62±0.01 1

G. Implementation Details
G.1. Benchmark descriptions

ScienceWorld. The ScienceWorld environment (Wang et al., 2022) simulates a residential setting comprising 10 intercon-
nected areas with a diverse range of up to 200 objects, including devices, instruments, plants/animals, electrical components,
substances, and containers, as well as common environmental items like furniture, books, and paintings. The action space in
the ScienceWorld environment consists of 25 high-level actions, encompassing both science-specific actions and general
actions. The agent can only observe the information of its current area. For different tasks, the agent needs to combine
high-level actions and objects into applicable actions and receive periodic rewards if they move towards the goal. A sample
illustration of one task: Create a circuit is displayed in Figure 1(a).
BabyAI-Text. BabyAI (Chevalier-Boisvert et al., 2019) is a 2D grid-based simulation environment that offers tasks of

increasing complexity. The environment has various objects and the agent can pick up, drop, and move objects, and doors
can be unlocked using keys of matching colors, which may be concealed within boxes. The agent’s field of vision is limited
to a 7x7 grid, and it cannot see beyond walls or closed doors. The available actions for the agent include moving forward,
turning left or right, opening doors or boxes, picking up items, dropping items, and signaling completion. The agent can
only hold one item at a time. The objective is to reach the goal state as quickly as possible, with the goal state being assigned
a reward that diminishes over time. In this experiment, we use the modified textual version of BabyAI proposed by (Carta

4solvable by Flan-t5-large model
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et al., 2023). One example task is shown in Figure 4.

G.2. Hyperparameter Settings

All hyperparameters used in our experiments are shown in the table below. The values included in square brackets indicate
ranges of values that were used for performance tuning. All the training and evaluation is done on one NVIDIA A10 with
24GB memory. The training of LONDI with any version takes 8 hours under the setting of Table 8.

Table 8. Hyperparameter Setting of LONDI

Clip Gradient Norm 1
γ 0.99
Learning rate 1× 10−4

Number of minibatches 4
Rollout length 128
Number of optimisation epochs 4
Optimisation algorithm Adam
τ 5× 10−3

ϵ 1× 10−8

Encoder MLP layer 1
Encoder MLP hidden unit 256
Use Generalised Advantage Estimation True
Coefficient of switch cost [-1,-5,-10,-15,-20,-25,-30,-40]
Switch budget penalty [-25,-45,-65]
Encoder output size [4,8,16]
Switching probability [0.1,0,3,0.5,0.7,0.9]
Switch budget penalty 0.1(normalized)

G.3. Training Details of Flan models

Following the training setup of (Lin et al., 2023a) in ScienceWorld, we utilize flan-t5-large (783m) and flan-t5-small (77m)
as the foundation, and fine-tuned them using the seq2seq action-prediction data (62k). In order to mitigate the potential
bias arising from data imbalance in the sequence-to-sequence learning process, we employed a down-sampling technique,
selectively reducing the representation of certain task types and actions, thereby curating a more balanced final dataset for
the training phase. The training configs are consistent with (Lin et al., 2023a), a learning rate of 1e-4 and batch size of 128
employed for training 500 steps. The detailed information of the dataset is shown in Figure 5.

For experiments in BabyAI-Text, we apply a variant of Flan-T5, GFlan small and large (Carta et al., 2023), as
our QUICK and DEEPTHINK model. For the training of language models, we follow the training framework of (Carta
et al., 2023), which utilizes a Python library Lamorel to enable the dispatching of calls to the deployed LLMs from a single
line of code within the RL loop, requesting the probability of actions for all environments. Therefore, RL can call and
communicate with all LLMs in parallel. In addition, Lamorel help the update of LLMs using RL algorithm (i.e. PPO) loss.
The hyperparameters of PPO are shown below.

G.4. Prompt of DEEPTHINK model

The prompt here is used by DEEPTHINK in ScienceWorld, the structure follows the setpup of (Lin et al., 2023a), which
has planning stage and grounding stage. The planning stage includes a concise summary of the task description and the
sequence of previous actions, followed by posing five critical questions related to the current state.
• “To complete the task, which objects do I need to collect? Please list them and their possible locations one by one.”
• “Are there any objects that have not been collected yet?”
• “To complete the task most efficiently, what are the important subgoals to achieve? Please list the subgoals one by one.”
• “Considering these subgoals, what have I already completed? And which subgoal should I focus on right now?”
• “Have I made any mistakes that might prevent me from efficiently completing the next subgoal? If any, how should
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Figure 5. The statistics of ScienceWorld benchmark. *Len represents the average length of the trajectories of oracle agents. Number
of downsample variations are shown in each split. The rightmost column represents the quantity of data points utilized for the action-
prediction seq2seq task during the training phase of Flan model.

Table 9. Hyperparameter Setting of PPO in GFlan

Variables Values
Number of transitions collected between two updates 320 (8 environments ×40 steps in each environment)
Number of epochs per update 4
Batch size 32
Entropy loss coefficient 0.01
Value function loss coefficient 0.5
Discount factor 0.99
Learning rate 1× 10−6

λ factor of the Generalized Advantage Estimator 0.99
Optimisation algorithm Adam
Clipping parameter ϵ 0.2
Maximum gradient norm 0.5
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I fix them?” The grounding stage includes a comprehensive list of supported action types in a formal manner at first,
complemented by remarks. The output of the planning stage are then given as advice. Recent action history of the past 10
time steps are also given. With these information, the LLM is required to focus on the next subgoal and generate a list of
actions to achieve it.

G.5. Baselines

We introduced all baseline methods and their experimental settings when we used to compare them with the LONDI as
follows.

SWIFTSAGE(Lin et al., 2023a) utilizes a rule-based method to switch the activation between DEEPTHINK and QUICK
model: 1) There are five consecutive time steps with zero reward. 2) The QUICK’s prediction for the next action can result
in a critical decision, such as giving the final answer for the experiment result. 3) The QUICK’s prediction for the next
action is invalid in the current environment or the observation of the action suggests that an exception is encountered. In this
paper, we keep the DEEPTHINK and QUICK models of SWIFTSAGE consistent with those used in LONDI.

FrugalGPT(Chen et al., 2023) utilizes a cascade of LLMs and a score function to minimize the cost. The cascade tries with
the smallest LLM first and the score function grades the response and query pair. If the score is higher than the threshold,
the agent accept the answer. Otherwise, the cascade tries the larger LLM and the score function grades again until the
answer meets the requirement or the largest LLM is used. In this experiment, we use the environment feedback as the
score and set the threshold based on different tasks. In addition to the reward of environment, we added another reward
that is proportional to the distance between the current location of agent and goal position. This was done to ensure more
accurate feedback in alignment with the agent’s actions. In this paper, the LLM cascade of FrugalGPT includes QUICK and
DEEPTHINK models which are identical to those employed in LONDI.

Probabilistic policy is a policy that based on Bernoulli distribution (Ber, 2008): P (x) = px(1−p)1−x. For the experiments,
we configured the probability p to be 0.5, implying that the values 0 and 1 had an equal chance of being selected. When
the sample value of the distribution is 1, the policy decides to use the DEEPTHINK model. Otherwise, the policy use the
QUICK model.

H. Limitations
Although LONDI has shown adaptability to other environments, the trainable model free switcher limits its applicability to
more resources constraint environments since the model-free algorithm requires large sample data for training which is
not applicable in some real-world situation. One possible solution is to use model-based algorithms instead, which could
alleviate sample efficiency problem. In addition, LONDI cannot be directly generalized to another unseen environments
without training, which could reduce its application scope in real life. One possible approach is to combine reinforcement
learning with causal inference to achieve better generalizability.
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