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ABSTRACT

Our work focuses on the social reasoning capabilities of foundational models for
real-world human-robot interactions. We introduce the Social Human Robot Em-
bodied Conversation (SHREC) Dataset, a benchmark of ~400 real-world human-
robot interaction videos and over 10K annotations, capturing robot social errors,
competencies, underlying rationales, and corrections. Unlike prior datasets focused
on human-human interactions, the SHREC Dataset uniquely highlights the social
challenges faced by real-world social robots such as emotion understanding, in-
tention tracking, and conversational mechanics. Moreover, current foundational
models struggle to recognize these deficits, which manifest as subtle, socially situ-
ated failures. To evaluate AI models’ capacity for social reasoning, we define eight
benchmark tasks targeting critical areas such as (1) detection of social errors and
competencies, (2) identification of underlying social attributes, (3) comprehension
of interaction flow, and (4) providing rationale and alternative correct actions. Ex-
periments with state-of-the-art foundational models, alongside human evaluations,
reveal substantial performance gaps—underscoring the difficulty and providing

directions in developing socially intelligent AL

1 INTRODUCTION

In this work, we aim to advance the social reason-
ing capabilities of physically embodied Al agents,
particularly tabletop social robots, engaged in real-
world, socially interactive conversations. To this end,
we focus on understanding and modeling both social
competencies (i.e. desirable behaviors) and social
errors (i.e. norm violations or failures in interaction)
that arise during natural human-robot interactions.
While prior work in social intelligence has primar-
ily centered on human—human interaction datasets
(Mathur et al., 2025; Zadeh et al., 2019a; Wilf et al.,
2023), these settings do not capture the unique chal-
lenges that arise when robots interact with humans.
Unlike humans, embodied Al agents may have vary-
ing and lacking socio-cognitive skills such as emotion
understanding, belief tracking, or conversational co-
ordination (Lake et al., 2017; Deng et al., 2023; Bhat-
tacharyya & Wang, 2025; Arora et al., 2025), leading
to failure cases that are subtle, socially situated, and
poorly represented in existing resources.

To this end, we introduce the Social Human Robot
Embodied Conversation (SHREC) Dataset, a
dataset of 400+ videos capturing natural conversa-
tional interactions between a human and a physical
tabletop social robot, making it, to the best of our
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(Verbal Error Example)

Agent: It's important to realize
there are many amazing things
you achieve every day that you
can be thankful for. Would you
like to hear more examples?
User: No, | think | have a good..
(Robot Interrupts)

Agent: For instance, you would
say, | thank myself for studying
Spanish this morning...

(Nonverbal Error Example)
Agent: Are you ready?

User: (User leaves room)
Agent: Let’s get on with the face
recognition. Alright then. (User
has still not returned)

L2548
r—Error———
Human Annotation
(Channel: Verbal )

Social Attribute: Intention,
Conversational Mechanics
Rationale: “The user says no to
hearing another example, but
the robot says one anyways,
robot may have not recognized
response”
Correct Action: “the robot
should’ve continued without
Gnother example” )
N

(Channel: Nonverbal

Social Attribute: Engagement,
Intention

Rationale: “does not
acknowledge the fact that the
participant left the room and
tries to move forward with the
facial recognition”

Correct Action: “’agent should

\have waited for user to return" )

Figure 1: SHREC Dataset dataset offers real-
world Social Human Robot Embodied Con-
versation videos and annotations of errors
and competencies, the channel and type of
social attribute, along with rationale and pos-
sible corrective actions. (Top) Error sourced
from verbal (audio) channel, (Bottom) Error
sourced from non-verbal (visual) channel.
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knowledge, one of the largest real-world human—social robot interaction benchmark dataset available
to date (see App. Tab. 4). We focus on a tabletop social robot, which is a widely used class of
physically embodied agents, as a principled starting point for studying real-world social reasoning,
and introduce a benchmark dataset that addresses the scarcity of real-world social robot interaction
data available for advancing research in this area. The dataset is accompanied by 10K+ human
annotations of the robot’s social errors (undesirable behaviors) competencies (desirable behaviors),
rationale and corrective actions for the Al agent. These annotations are grounded from prior HRI
taxonomies (Tian & Oviatt, 2021; Fitrianie et al., 2022) of seven key social attributes that underpin
social interactions, emotion, engagement, conversational mechanics, knowledge state, intention,
social relationships, and norms.

Our dataset offers a novel resource to assess foundational models’ capabilties in identifying a social
robot’s social errors and competencies in real-world human-robot interactions, filling a gap not
addressed by current social intelligence benchmarks. To systematically evaluate social reasoning of
state-of-the-art Al models, we propose eight benchmark tasks, spanning four core dimensions: (1)
errors and competency detection in the robot’s behavior, (2) social attribute identification related to
the errors and competencies, (3) interaction progression reasoning, and (4) rationale and correction
reasoning (outlined in Sec. 3). Beyond assessing models’ social reasoning, generalization, and
robustness in real-world, multimodal, and socially grounded settings (Zhou et al., 2024; Davis &
Marcus, 2015; Lake et al., 2017; Sap et al., 2019a; Ross et al., 2022; Ludan et al., 2023), these tasks
also serve as structured probes for fundamental representation learning challenges. They require
multimodal alignment to integrate visual, auditory, and linguistic signals into representations for social
understanding; reasoning to infer how specific behaviors influence downstream interaction trajectories;
and reward-learning to align embodied agents to human social preferences. Our benchmark provides
not only a principled testbed for advancing socially intelligent foundation models but also a new
resource investigate these core learning problems.

We benchmarked 17 state-of-the-art LLMs and VLMs, including ChatGPT (Hurst et al., 2024)
and Gemini (Team et al., 2024) variants, on these tasks. While some models excel in specific
subtasks, none perform uniformly well across the board. Notably, the gap between model and human
performance remains substantial, underscoring the challenge and novelty of our benchmark. These
findings highlight Social Human Robot Embodied Conversation (SHREC) Dataset as a valuable
testbed for diagnosing and improving the social reasoning abilities of embodied Al agents, and for
guiding the development of reward models and evaluators aligned with social intelligence (Ouyang
et al., 2022; Zhou et al., 2024; Lee et al., 2023; Chen et al., 2024b; Zheng et al., 2023).

2 SHREC: DATASET OF HUMAN ROBOT SOCIAL EMBODIED CONVERSATION

Our dataset consists of 10,353 annotations from 403 interaction videos spanning over 3,500 minutes.
Under a newly accepted IRB protocol, we annotated and anonymized data on three prior human-robot
interaction studies (Shen et al., 2024; Jeong et al., 2023b; 2020) to be shared for dissemination. To
enable public access while preserving participant privacy, we follow institutional IRB procedures and
release the dataset under gated access. All personally identifiable information (PII) in transcripts is
filtered. For video anonymization, we leverage FRESCO (Yang et al., 2024), a zero-shot video-to-
video diffusion framework, to perform stylized face transfer. FRESCO’s spatial-temporal consistency
allows us to reliably replace participant faces while maintaining coherence across frames. This ensures
that the social signals (e.g., gaze, affect) critical for interaction analysis are preserved while protecting
individual identities through high-fidelity anonymization. n selecting FRESCO, we compared several
anonymization techniques on the same interaction clips, generating matched variants from the raw
videos and evaluating them with the identical pipeline (see Appendix I). Most vision-language models
(VLMs) operate at 1 Hz, which is the default temporal resolution used in our benchmark. Hence,
we release video frames sampled at 1 Hz to align with common VLM processing rates and ensure
compatibility across models. !

We describe the three real-world studies that form the foundation of the SHREC dataset: Empathic++
(Shen et al., 2024): a ChatGPT-powered social robotic agent acts as an empathic companion, facili-
tating the exchange of emotionally meaningful stories using narrative therapy techniques. The goal

'To support community interest in fine-grained temporal analysis, we will release an extended addendum
with 15Hz videos (processing is underway and sample videos are included in the supplementary). We maintain a
private hold-out set of ~40 videos to prevent data contamination and enable future benchmarking and evaluations.
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Figure 2: SHREC Dataset contains high overlapping annotations with a high level of agreement.
The dataset includes error and competency labels, and annotations for the source of evidence either
from nonverbal cues, verbal cues, and explanatory factors in the form of seven key social attributes.

is to enhance users’ feelings of connection and belonging through emotionally attuned interaction.
Wellness-Dorm (Jeong et al., 2020): A socially assistive robot was deployed as a positive psychology
coach for college students living in on-campus dormitories. The robot was manually scripted with
seven intervention types grounded in established principles of positive psychology, such as gratitude,
strengths-based reflection, and goal setting. Wellness-Home (Jeong et al., 2023b): Positive psychol-
ogy robots were deployed in participants’ homes. All three datasets are ready for dissemination (We
kindly recommend the reviewer to view the supplementary materials for examples of the dataset).

2.1 HUMAN ANNOTATIONS

As shown in Fig. 1 and App. H, annotators watch videos of conversational human-robot interactions
and are asked to detect segments which manifest a social error or competency. Social Competence
is defined as the behaviors where the agent successfully conduct social interactions by being aware of
and identifying social-emotional cues, processing such cues, and expressing a user-expected response
to these cues (Halberstadt et al., 2001). Social Error is defined as the behaviors where the robot
deviates from the desired behaviors expected by a user and degrades the user’s perception of a robot’s
social competence (Tian & Oviatt, 2021). Then, they are asked to identify which social attribute the
segment is related to (described in Sec. 2.1.1) and offer a rationale of why they believe so. If the
segment was an error, they are asked to suggest an alternative correct action.

2.1.1 SOCIAL ATTRIBUTES

Given a segment of social error or competencies, we are interested in the explanatory factors related
to a social error or competency. To do so, we consider seven specific categories of social attributes
that are related to social errors and competencies. The definitions for each of the attributes are
as follows: Emotions: The ability to identify and interpret emotional expressions in oneself and
others, allowing for empathetic responses and social awareness, e.g., recognizing that someone crying
might mean they’re sad (Golan et al., 2006). Engagement: The skill to observe and assess levels of
participation and involvement in social interactions, including cues that indicate interest or disinterest,
e.g., continuing to tell a story when a listener is engaged (Davis, 1980). Conversational Mechanics:
Understanding the structure and flow of conversations, including turn-taking, interruptions, and cues
for when to speak or listen, e.g., waiting for another person to finish speaking before taking a turn
(Fusaroli & Tylén, 2016). Knowledge State: The ability to assess what others know or believe, as
well as being aware of one’s own knowledge in social situations, e.g., make reference to a user’s
dog recalling that the user has a dog (Baron-Cohen et al., 1999). User Intention: The capacity to
infer the goals or purposes behind the actions and words of others, facilitating better responses in
social interactions, e.g., when the user says “I’ll be right back", indicates that the user will vacate
and then return (Dziobek et al., 2006). Social Context and Relationships: The ability to identify
and understand the dynamics of social relationships and the context in which they occur, influencing
behavior and expectations, e.g., knowing how to act in front of a close friend vs. colleague at work
(Baron-Cohen et al., 1999). Social Norms and Routines: The skill to identify accepted behaviors
and attitudes within a social group, as well as recognizing negative or harmful interactions that violate
these norms. e.g., understanding that waving hands at the beginning of the interaction is a sign of a
greeting (Thoits, 2004)
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Figure 3: Our benchmark offers eight tasks dedicated to probing four core facets of Al model’s
social reasoning: (1) detecting social errors and competencies, (2) identifying social attributes, (3)
understanding the flow of social interactions, and (4) rationalization and correction of social errors.

2.2 DATASET STATISTICS

We refer the reader to Figure 2 for the overall statistics of our Social Human Robot Embodied Con-
versation (SHREC) Dataset. As shown in Figure 2-(A), 85.1% of the dataset consists of overlapping
annotations, where multiple annotators independently labeled the same segment of an interaction.
Amongst the overlapping samples as shown in Figure 2-(D), we find a 91.3% overall agreement,
where annotators agree on the error/competency labels. In Figure 2-(B), we find that more annotations
come from verbal channel, rather than the non-verbal channel. As shown in Figure 2-(E), we find 56%
corresponds to competency labels and 43% corresponds to error labels. In Figure 2-(C), we display
the social attributes the annotators have selected, and we find that the most number of annotations
belong to the conversational mechanics category, followed by intention and engagement. Annotator
Consistency: To ensure consistent annotations, we recruited and trained 3 annotators. They were
provided a set of definitions and annotation guidelines as shown in Appendix H. The annotators met
multiple times to discuss edge scenarios and ambiguous segments. After annotating independently,
annotators cross-validated each other’s work for agreement. Some scenarios that were too subjective
to reach full consensus yielded some annotations in the Disagree category of 8.7%.

3 TASKS & EXPERIMENTS

We developed eight tasks to measure the social reasoning capability of foundational models. Each
task measures a different social reasoning capability of the model, spanning from identifying social
errors and competencies, to reasoning about the errors and offering correct actions. Below, we
describe four main research questions which motivated the design of the social reasoning tasks and
the corresponding tasks which serve to address these questions.

RQ1: Can AI models be used as an automatic evaluator of social interactions?
(1) Errors and Competence Detection, (2) Error Detection (Sec. 3.1, 4.1)

RQ2: Can AI models identify the explanatory factors associated with social errors and social
competencies?
(3) Social Attribute Identification, (4) Multiple Social Attribute Presence (Sec. 3.2, 4.2)

RQ3: Do Al models understand the sequential contingencies or the “flow”” of social interactions?
If-Then Reasoning: (5) Pre-Condition and (6) Post-Condition (Sec. 3.3, 4.3)

RQ4: Can AI models recognize the reasons of errors and infer the correct action?
(7) Rationale and (8) Correction Reasoning (Sec. 3.4, 4.4)

We utilize LLMs & VLMs and formulate the tasks in the following manner. We treat a foundational
model as 7. We define relevant contextual information (images and transcript) and the task-specific
question as query (). Formally, we define Q = {q1, g2, - .., gn} as the set of tokens representing the
question and the transcript (including video or image frames if multimodal LLM). For the image-
based models, we provide 15 uniformly sampled frames from the video segment. For video-based
models, we feed in the raw video as input and rely on model-specific preprocessing steps. The output
of the model is 7(Q) = O, where O is the set of tokens representing the output of the LLM. We
denote the ground-truth answer for each task as A, which can take the form of a multiple-choice
option (4, B, C, D, E), a Boolean value (True/False). Since O is often a free-form string, we apply
a post-processing step using Pydantic (Colvin et al., 2025), where another LLM coerces O into
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the discrete answer space of the task (e.g., mapping “The correct choice is option C” — “C”). We
then define correctness as Correctness(A, O) = 1 if Pydantic(O) = A, 0 otherwise. This definition
ensures that correctness measures exact agreement with the ground truth rather than string overlap.
Human Comparison: For fairness, we asked human annotators to perform the same tasks as the
LLMs/VLMs (given identical prompts as instructions). Unlike the original annotations, where
annotators watched videos and marked salient error/competency regions, here the annotator viewed
the pre-segmented data and completed the same task as the models. We then compared their responses
to the original ground-truth labels, yielding a consistent estimate of human-level performance under
identical constraints.

3.1 ERROR AND COMPETENCE

We use Error Detection and Competence Detection as a proxy to evaluate whether AI models can
effectively serve as automatic evaluators of social interactions (Ouyang et al., 2022; Zhou et al., 2024;
Lee et al., 2023; Chen et al., 2024b; Zheng et al., 2023). The model is provided with a prompt which
includes an interaction segment between a user and a social robot. The model then predicts whether
the sequence contains a social error, competence, or neither. For the Error Detection task, the model
is only required to determine whether a given instance constitutes an error or not. For these tasks, we
evaluate with accuracy and macro-F1 (unweighted average of F1) scores. These prompts are shown
below:

Social Error, Competence, None Detection (Error/Comp./None): We provide the interac-
tion between social agent and a user: {Interaction Transcript} Does the agent exhibit (A)
Social Competence or (B) Social Error or (C) None?

Social Error Detection (Error): We provide the interaction between social agent and a user:
{Interaction Transcript} Does the agent exhibit (A) Social Error or (B) No Social Error?

3.2 SOCIAL ATTRIBUTE

Additionally, if a sequence is identified as either a social error or competence, we further determine
the explanatory factor, i.e. which specific social attribute it was associated with. This helps assess
whether Al models can provide more detailed evaluations by identifying specific types of social
attributes. Furthermore, fine-grained feedback in the form of attribute-specific reward signals allows
us to disentangle different dimensions of social behavior—such as emotional response, conversational
mechanics, or knowledge state, thereby enabling more interpretable and targeted model improvements
(Wu et al., 2023b). By aligning rewards with these distinct social attributes, we can not only evaluate
whether a model exhibits socially competent behavior but also pinpoint which aspect it succeeded or
failed in, facilitating modular training and fine-tuning strategies. Using the same context as Section
3.1, LLMs and VLMs are further provided with the label indicating whether the instance is a social
error or competence, and the model predicts the relevant attribute(s) as defined in Section 2. This task
can be viewed as a multi-label classification problem, as multiple social attributes may co-occur in a
single instance. For example, a sequence might be annotated with both conversational mechanics
(e.g., a delayed response) and knowledge state (e.g., the robot forgetting the user’s name). To evaluate
whether models can detect instances associated with more than one social attribute, we introduce the
multiple social attribute detection task. Below, we show the prompt for this task:

s ™

Social Attribute Identification (Attr.): We provide the interaction between social agent and
a user: {Interaction Transcript}. This segment corresponds to an { Error or Competence} in
social behavior. Which of the following categories is this segment related to? (A) Emotions,
(B) Engagement, (C) Conversational Mechanics, (D) Knowledge State of Others and Self,
(E) Understanding Intention of the User, (F) Social Context and Relationships, (G) Social
Norms and Routines.

Multiple Social Attribute Presence (Multi. Attr.): We provide a transcript of an interaction
between the social agent and a user: {Interaction Transcript}. The agent’s behavior in this
interaction corresponds to {Error or Competence}. Consider the following seven social
attributes: [Same as Above]. Based on the transcript, determine whether the agent’s behavior
involves multiple social attributes. Respond with "True" if the behavior demonstrates more
than one social attribute. Respond with "False" otherwise.
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For the task of social attribute identification, we evaluate with accuracy and macro-F1 (F1) scores.
As there can be more than a single attribute label associated with a sample, we further report Partial
Match (PM) to evaluate the proportion of instances where the model correctly predicts at least one of
the true labels. For multiple social attribute detection, we evaluate with accuracy and macro-F1.

3.3 IF-THEN REASONING

We test whether or not Al models can understand sequential contingencies or the flow of social
interactions, by testing if they can predict probable pre-and-post conditions of a given competent
social interaction, otherwise known as if-then reasoning. Such inferential reasoning tasks, determine
whether models have learnt spurious task-specific correlations or more generalizable reasoning (Davis
& Marcus, 2015; Lake et al., 2017; Sap et al., 2019a). We formulate two tasks which checks for the
pre-conditons and post-conditions.

Interaction Flow (Pre-Condition\Post-Condition): We provide the agent\user’s behavior:
{Agenf\User Transcript}. From the following choices of the user\agent’s behaviors: (1)
{User\Agent Transcript 1}, (2) {UseP\Agent Transcript 2}, (3) {UseP\Agent Transcript 3}, (4)
{User\Agent Transcript 4}, (5) {User\Agent Transcript 5}, select which user\agent’s behavior
was the appropriate response before\after the agent\user’s action.

For pre-condition, given the agent’s response, the model must identify the plausible pre-condition,
i.e., the user’s behavior prior to the agent’s utterance. Vice versa, for post-condition, given the user’s
response, the model must predict the plausible post-conditions, i.e., the agent’s actions after the event.
These tasks are set-up as a multiple choice Q&A set up, where they are asked to predict the correct
choice of post or pre-condition transcript. To acquire incorrect answer choices, first, we remove any
samples that share the same transcript as the correct answer, if such samples exist. Next, we randomly
select four other samples and extract the relevant transcript (either the user’s or the agent’s utterance)
which serve as incorrect options. Finally, we shuffle the correct answer among the options to ensure
its position is randomized. For these tasks, we use accuracy scores for evaluation.

3.4 RATIONALE AND CORRECTION

We formulate two tasks, rationale, which require models to provide rationale on why the segment
contains a social error and correction, requiring models to suggest what would have been the correct
action. These tasks probes the model’s ability to not just diagnose an interaction segment but also
to explain why the detected behavior is incorrect or inappropriate and identify a correct alternative
action. Hence, they are directly tied to evaluating the social reasoning capabilities of Al models.
Furthermore, it is well-known that models and robots that can provide rationales and correct actions
enhance their robustness (Ross et al., 2022; Ludan et al., 2023) and trustworthiness (Kox et al., 2021;
Javaid & Estivill-Castro, 2021; Esterwood & Robert, 2025).

Rationale: We provide the interaction between social agent and a user, which corresponds to
an error in social behavior: {Interaction Transcript}. Select which is the correct rationale
behind the error. (1) {rationale 1} (2) {rationale 2} (3) {rationale 3} (4) {rationale 4} (5)
{rationale 5}

Correction: We provide the interaction between social agent and a user, which corresponds
to an error in social behavior: {Interaction Transcript}. From the following choices select
which behavior the social agent should have done instead. (1) { Correction 1} (2) { Correction
2} (3) {Correction 3} (4) {Correction 4} (5) {Correction 5}

For the rationale and correction task, models are given interaction segments corresponding to social
error. Then, for the rationale task, the model is asked to predict the correct reason for the error. For
the correction task, the model must choose the alternate correct action. Both tasks are set-up as
multiple choice Q&As, we provide five answer choices: one ground-truth option and four incorrect
choices sampled from other instances. To ensure the incorrect choices are distinct, we only select
samples with different social attribute annotations than that of the answer sample. These tasks are
evaluated with accuracy.
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Figure 4: Results per model across all 8 tasks. Human performance is marked in dashed lines. (L):
language-only inputs, (L+V): language and visual inputs. Models from the same family tend to show
similar shapes on the radar plot, reflecting consistent reasoning patterns across capabilities, which
supports the benchmark’s sensitivity to measure underlying social reasoning abilities.

4 RESULTS & DISCUSSION

We evaluate the performance of 17 language and vision-language models (VLMs), including
DeepSeek-R1-Qwen—-32B (Guo et al., 2025), gpt—4o-mini, gpt—4o (Hurst et al., 2024),
Llama-3.2,Llama-3.2-Vision-Instruct (Grattafiori et al., 2024), paligemma (Beyer
etal.,, 2024), Llava-Next—-Llama3 (Zhang et al., 2024), InternVL2-8B (Chen et al., 2024a),
MiniCPM (Yao et al., 2024), o1 (Jaech et al., 2024), gemini-1.5 (Team et al., 2024) and
gemini-2.0 (Pichai et al., 2024) and their variants on our benchmark tasks. Fig. 4 summa-
rizes the evaluation results. No single model excels across all social reasoning tasks, underscoring
the need for advancements in training FMs for social reasoning.

4.1 RQI1: CAN AI MODELS BE USED AS AUTOMATIC EVALUATORS OF SOCIAL
INTERACTIONS? [TAB. 1-LEFT]

We refer readers to the left side of Table 1, which presents results for the Error/Competence/None
Detection task. The best-performing models are gemini—-1.5-flash using both language and
video inputs, achieving 0.32 accuracy and 0.28 F1. For the binary Error Detection task, the same
model achieve higher performance—0.55 exact match and 0.52 F1—suggesting that models are
more effective at detecting errors alone than distinguishing among all three categories. Nonetheless,
the overall performance remains modest, reflecting the task’s complexity and the models’ difficulty
in capturing the nuances of social error and competence. Appendix F further analyzes model
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Errors and Competence ‘ Social Attribute
Error/Comp./None | Error | Attr. Identification | Multi. Attr. Presence
Model Name Acc. F1 | Acc F1 | Acc F1 Partial |  Acc. F1

(L) DeepSeek-R1-Distill-Qwen-32B | 0.22+0.02  0.18+0.02 | 0.51+0.02 0.41£0.01 | 0.02+0.01  0.35£0.01 0.67+0.02 | 0.52+0.01 0.41+0.03
(L) gpt-4o0-mini 0.26+0.02  0.21+0.02 | 0.52+0.02 0.46+0.01 | 0.01+0.01 0.17+0.01 0.41£0.04 | 0.46+0.02  0.40+0.03
(L) gpt-40 0.25+£0.02  0.23+0.02 | 0.50£0.02  0.42+0.02 | 0.02+0.01 0.20+0.01 0.49+0.03 | 0.52+0.04  0.44+0.06
(L) Llama-3.2 0.26+£0.01  0.23+0.00 | 0.50+£0.02 0.45+0.02 | 0.02+0.02 0.18+0.04 0.43+£0.07 | 0.55+£0.04  0.48+0.04
(L) Llama-3.2-11B-Vision-Instruct 0.22+0.04  0.17+0.03 | 0.50+0.05 0.41+0.04 | 0.01+0.01 0.24+0.01 0.56+0.03 | 0.50+0.02  0.37+0.03
(L+V) paligemma 0.19+£0.02  0.12+0.01 | 0.49+£0.02 0.36+0.02 | 0.00+0.00 0.11+x0.02 0.27£0.04 | 0.53+£0.03  0.32+0.02
(L+V) Llava-Next-Llama3 0.19+£0.03  0.16+0.03 | 0.49+0.03  0.34+0.02 | 0.01+0.01 0.09+£0.02 0.25+0.03 | 0.51£0.03  0.35+0.02
(L+V) InternVL2-8B 0.24+0.04  0.23+0.04 | 0.49+0.04 0.39+0.04 | 0.01+0.01 0.21+£0.02 0.51+0.06 | 0.67+£0.02  0.67+0.02
(L+V) MiniCPM-V-2_6 0.18+0.02  0.12+0.01 | 0.48+0.03  0.34+0.02 | 0.00+£0.00 0.27+0.02 0.58+0.04 | 0.51£0.01  0.40+0.08
(L+V) gpt-40-mini 0.20+£0.03  0.15+0.03 | 0.49+£0.02 0.38+0.01 | 0.03+0.03 0.17+£0.01 0.42+0.02 | 0.50+£0.01  0.35+0.01
(L+V) gpt-4o 0.26+0.03  0.25+0.03 | 0.50+£0.02 0.40+£0.02 | 0.01+0.02 0.21+0.02 0.51+0.04 | 0.49+0.01  0.36+0.01
(L+V) gpt-4o + few-shot 0.24+0.02  0.22+0.01 | 0.48+0.02 0.38+0.01 | 0.01+0.01 0.21+x0.02  0.52+0.04 | 0.49+0.01  0.35+0.02
(L+V) gpt-4o + cot 0.27£0.03  0.26+0.03 | 0.50£0.02  0.43+0.02 | 0.04£0.01 0.33+£0.02 0.64+£0.06 | 0.49+0.01  0.34+0.01
(L+V) ol 0.24+0.04  0.2120.04 | 0.50+£0.02 0.41+0.02 | 0.02+0.02 0.32+0.02 0.67£0.02 | 0.49+£0.01  0.35+0.02
(L+V) gemini-1.5-flash 0.32+0.01  0.28+0.02 | 0.55+£0.02 0.52+0.01 | 0.01+0.02 0.17+0.02 0.43+£0.05 | 0.45+0.03  0.25+0.02
(L+V) gemini-1.5-flash-8b 0.28+0.01  0.27+0.02 | 0.51£0.02 0.46+0.02 | 0.03£0.02 0.24+0.02 0.72+0.04 | 0.52+0.02  0.35+0.02
(L+V) gemini-2.0-flash-exp 0.27+£0.05  0.26+0.04 | 0.49+0.03  0.39+0.02 | 0.01+£0.00 0.28+0.01 0.62+0.03 | 0.47+0.03  0.31+0.02
Human ‘ 0.57 0.45 ‘ 0.77 0.71 ‘ 0.24 0.67 0.76 ‘ 0.57 0.75

Table 1: Results for Errors and Competence detection tasks and Social Attribute identification
tasks, with + indicating one standard deviation. (L): language-only, (L+V): language and vision.

performance by social attribute, revealing that some models excel in detecting specific types of errors.
These findings underscore the gap between current Al capabilities and human-level social reasoning,
pointing to the need for continued research in this area.

4.2 RQ2: CAN AI MODELS IDENTIFY THE EXPLANATORY FACTORS ASSOCIATED WITH
SOCIAL ERRORS AND SOCIAL COMPETENCIES? [TAB. 1-RIGHT]

In Table 1, under the column Attr. Identification, we evaluate the ability of foundational mod-
els to identify explanatory factors in the form of social attributes. We report accuracy, F1, and
partial accuracy (i.e., predicting at least one attribute correctly). Notably, most models perform
well on partial accuracy, demonstrating the ability to identify at least one relevant attribute. In
particular, Deepseek—R1-Distill-Qwen-32B, gemini-1.5-flash-8b, gemini-2.0,
o1, and several gpt -4 o0 variants with image input and chain-of-thought (CoT) reasoning achieve
partial accuracy scores above 0.60, highlighting their relative strength in capturing aspects of social
attribute prediction. However, all models struggle to predict the full and correct set of attributes, as
reflected in low accuracy and modest F1 scores, which indicates FMs remain limited in handling the
complex, multi-label, and co-occurring nature of social attribute classification. Human evaluation
further reveals that, despite a clear performance gap, this remains a challenging task even for humans.
To further probe these limitations, we refer readers to the right-most columns of Table 1, where we
assess whether models can detect the presence of multiple attributes within a segment. Interestingly,
InternVL2 achieves the highest accuracy and F1 in this setting. However, the majority of models
perform at or below 0.5, indicating persistent difficulty in recognizing multi-attribute cases—a key
failure mode in this task. Additional analysis is provided in Appendix C, which examines the role
of subjectivity and co-occurrence, as social attributes often co-occur in a single segment and are
subject to perceiver-dependent interpretations of social constructs (Searle, 1998; Mathur et al., 2024).
Furthermore, in Appendix G, Fig. 9, we carry out further analysis to identify which attributes are
easier for error detection.

4.3 RQ3: DO AI MODELS UNDERSTAND THE SEQUENTIAL CONTINGENCIES OR THE “FLOW*
OF SOCIAL INTERACTIONS? [TAB. 2-LEFT]

Many large language models, including early versions of BERT (Devlin et al., 2019) and ALBERT
(Lan et al., 2019), were trained with next sentence prediction (NSP) and sentence ordering objectives,
which aim to model discourse coherence and temporal continuity by predicting whether one sentence
logically follows another. This objective aligns with the structure of if-then reasoning tasks, partially
explaining the relatively strong performance of language-only models—particularly the gpt—4o
variants, which achieve 0.66 on pre-condition and 0.69 on post-condition inference. However, their
performance still lags behind humans. Despite progress in temporal reasoning (Sap et al., 2019a),
we observe a significant gap between nascent open-source vision-language models (VLMs) and
even text-only LMs, suggesting that visual input alone does not guarantee better reasoning about
interactional contingencies.

4.4 RQ4: CAN AI MODELS RECOGNIZE THE REASONS OF ERRORS AND INFER THE CORRECT
ACTION? [TAB. 2-RIGHT]
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The rationale and cor-
rection tasks evaluate a

If-Then Reasoning

| Rationale & Correct.

Pre-Condition | Post-Condition | Rationale | Correction

model’s ablhty to inter- Model Name Acc. | Acc. | Ace. | Acc.
pret 1nteraction context, (L) DeepSeck-R1-Distill-Qwen-32B |  0.58+0.03 0.61+0.02 0.38+0.05 | 0.2420.01
infer th f so- (L) gpt-do-mini 0.58+0.02 0.62+0.03 0.29+0.04 | 0.3120.08
Ciaf ertroers Coarui:?)n?petzﬁ (L) gpt-40 0.660.00 0.67+0.02 | 0.36x0.01 | 0.38+0.04
- (L)Llama-3.2 0.190.08 0.30£0.01 0.22+0.02 | 0.17£0.02
cies. and suggest appropri_ (L) Llama-3.2-11B-Vision-Instruct 0.36+0.05 0.36+0.05 0.3240.05 | 0.19+0.02
ate éllternative correct ac (L+V) paligemma 0.07£0.02 0.04+0.03 0.06+0.05 | 0.03+0.01
- (L+V)Llava-Next-Llama3 0.020.01 0.020.01 0.07+0.02 | 0.01x0.01
tions, making them key in-  (L+V) InternVL2-8B 0.390.09 0.43+0.02 | 0.39£0.05 | 0.24+0.03
. . (L+V) MiniCPM-V-2_6 0.41£0.07 0.47+0.02 | 0.33£0.05 | 0.240.05
dicators of social reason- (V) gpt-do-mini 0.57£0.05 0.63:0.04 | 026£0.04 | 030+0.06
ing' These are among the (L+V) gpt-4o 0.64+0.05 0.66+0.05 0.39+0.08 | 0.39+0.08
most challenging tasks in (L+V) gpt-40 + few-shot 0.62+0.04 0.640.03 0.39£0.04 | 0.38+0.04
(L+V) gpt-40 + cot 0.610.05 0.69+0.05 | 0.40£0.03 | 0.400.05
the dataset, as reflected (L+V) ol 0.59+0.08 0.68+0.02 0.44+0.10 | 0.40+0.03
by h level difficul (L+V) gemini-1.5-flash 0.600.10 0.640.07 0.32+0.04 | 0.26%0.07
y human-level dificulty.  (1v) gemini-1.5-flash-8b 0.54+0.09 0.53+0.06 0.33£0.06 | 0.27+0.04
For the rationale task, the (L+V) gemini-2.0-flash-exp 0.62+0.07 0.59+0.09 0.2240.04 | 0.40+0.05

Human | 0.77 | 0.87 | 063 | 054

o1 model performs best

with a score of 0.44, fol-
lowed by gpt-4o0 with Table 2: If-Then Reasoning & Rationale & Correction Results; +

Chain-of-Thought (CoT) indicates one std. dev. (L): language-only, (L+V): language & vision.
at 0.40. For the correction task, o1, gpt—4o with CoT, and gemini-2.0-flash again perform
well, each achieving a score of 0.40. These trends are consistent with recent advancements in
reasoning, where best-performing models like o1, gpt —40 with CoT, and gemini-2.0-flash
are specifically trained to handle complex reasoning tasks (Team et al., 2023; OpenAl, 2023).

5 RELATED WORK

Datasets for Social Interaction Analysis Several datasets have been developed to analyze human
social interactions, many of which focus on conversational data or multimodal behaviors. For
example, the MELD (Friends TV Series) Dataset (Poria et al., 2019) and the CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-MOSEI) dataset (Zadeh et al., 2018b) provide
annotated multimodal data for studying emotions and sentiment in dialogue. More closely related
to our work, the SociallQA (Sap et al., 2019b) dataset introduced 38,000 multiple-choice questions
derived from the ATOMIC (Sap et al., 2019a) knowledge graph, which is a large-scale graph of
commonsense knowledge. These questions are aimed at testing models’ understanding of social
norms, intentions, and emotional responses in social scenarios. Furthermore, the Social-IQ Dataset
(Zadeh et al., 2019a) was designed to evaluate social intelligence in Al with human-to-human
interaction videos, including multimodal question-answer pairs that assess the ability to understand
and respond to social situations effectively. A recent benchmark, SOCIAL GENOME (Mathur et al.,
2025), evaluates multimodal models’ ability to generate grounded social reasoning traces from videos,
incorporating fine-grained cues and external knowledge. Social Interaction Analysis with Language
Models Several previous studies have focused on the social reasoning capabilities of language-model
social agents. Theory of Mind (ToM) has been tested through a variety of tasks, often times through
measuring an LLM’s ability to understand others’ mental states using a series of reasoning-specific
tasks (Ullman, 2023), or identifying social errors and understanding the perspectives of participants
through faux pas tasks (Shapira et al., 2023). Frameworks such as COKE utilize contextual meanings
of input entities to more accurately map knowledge graphs to be used in LLMs (Wu et al., 2023a),
and the SOCIALIQA benchmark similarly provides a collection of commonsense questions with
appropriate and inappropriate responses to be used in LLMs (Sap et al., 2019b). In studying emotional
understanding, psychometric assessments have been developed to measure emotional understanding
of an LLM based on a given scenario (Wang et al., 2023). Benchmarks such as Socratis measured
emotional intelligence utilizing a repository of emotional reactions and appropriate scenarios (Deng
etal., 2023).

6 CONCLUSION

We present the Social Human Robot Embodied Conversation (SHREC) Dataset, consisting of 400+
real-world interaction videos, 10,000+ annotations and eight new benchmark tasks spanning error
detection, attribute reasoning, interaction flow, and rationale/correction inference, SHREC offers
a critical resource to address unique socio-cognitive limitations of embodied agents. Through
systematic evaluation of state-of-the-art LLMs and VLMs, we find that their overall performance falls
far short from human-level, which underscores the limitations of current models in social reasoning.
We envision SHREC as a foundation for advances in social reasoning for embodied social Al agents.
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A EXPERIMENTAL SETUP

We evaluate each model on three separately sampled subsets per task. We then compute the mean
performance (e.g., accuracy, F1) across these subsets and report + one standard deviation to capture
the variability due to sampling. All local experiments were conducted on an internal compute cluster
equipped with NVIDIA RTX A6000 GPUs, each with 48GB of memory. A total of four GPUs
were available, as confirmed by system diagnostics. For open-source models, we estimate GPU
memory requirements based on parameter size: DeepSeek-R1-Distill-Qwen-32B ( 32B parameters)
requires 64 GB VRAM, LLaMA-3.2 (8B) 16 GB, LLaMA-3.2-11B-Vision-Instruct ( 11B) 22 GB,
Llava-Next-Llama3 ( 13B) 26 GB, InternVL2-8B ( 8B) 16 GB, MiniCPM-V 2.6 ( 2.6B) 5 GB, and
Paligemma ( 3B) 6 GB. These models were run sequentially, with each task requiring approximately
2 hours per model per subset. With 8 tasks and 3 sampled subsets per task, this yields an estimated 48
GPU-hours per model. Proprietary models such as OpenAI’s GPT-40 and Google’s Gemini 1.5/2.0
were accessed via their respective APIs, so hardware specifications are not available. Nevertheless,
the same 3-subset evaluation protocol was used, and the number of prompts per task was matched to
ensure comparability. The total compute estimate for open-source models amounts to approximately
480 GPU-hours, with API-based models assumed to have undergone a similar number of queries.

The below describes the number of samples for each task used for our evaluation. Given that we
utilize the overlapping and agreed samples for our tasks, in sum, we have ~8040 available annotations
for Tasks: (1-4) and (5-6):Social Error and Competence Detection, Error Detection, Social Attribute
Identification, Multiple Attribute Presence Test, Correction and Rationale Reasoning. For the pre-
condition and post-condition tasks, you are able to sample from the competent samples of the dataset,
yielding in ~ 4500 samples. However, one could construct the task with varying pre and post
condition choices, resulting in even more combinations for testing.

A.1 SociAL ERROR AND COMPETENCE DETECTION (EC)

We randomly sampled 3 seeds of ~ 200 samples from the dataset (~600 samples in total), 300
samples are sourced from the empathic dataset and 300 samples are sourced from the wellness dataset.
This yielded in samples corresponding to 29.5% samples in competency, 50% error, 20.5% none
categories respectively.

A.2 SOCIAL ATTRIBUTE IDENTIFICATION

Similarly, We randomly sampled 3 seeds of ~70 samples from the dataset. This resulted with samples
with the following label distribution: (1) Emotion: 15%, (2) Engagement: 34%, (3) Conversational
Mechanics: 70%, (4) Knowledge State: 48%, (5) Intent of User: 48%, (6) Social Context and
Relationships : 53%, (7) Social Norms and Routine: 30%. The proportion sums greater to 70% as
multiple social attribute can co-occur in a given sample. Furthermore, as the task is conditional on
whether or not the segment corresponded on social error or social competence. 66% of the samples in
our evaluation set corresponds to a social error, 33% of the samples corresponds to social competence.

A.3 IF-THEN REASONING

Similarly, We sampled 3 seeds of ~70 samples from the dataset. Specifically, we acquired samples
that were annotated as social competence, (i.e. 100% samples in competency, 0% error and 0% in
None).

Rationale and Correction Reasoning: We sampled 3 seeds of ~70 samples from the dataset.
Specifically, we acquired samples that were annotated only as social error, (i.e. 0% samples in
competency, 100% error and 0% in None).
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B PROMPT EXAMPLES

PROMPT EXAMPLE 1: ERRORS AND COMPETENCE DETECTION (EMPATHIC DATASET)

The social robotic agent is designed to be a social support companion that facilitates the
exchange of emotionally relevant stories and employs narrative therapy techniques to enhance
feelings of connection and belonging.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.

Answer the following questions about social interactions. Now, given the Images and
Conversation History between the social agent (Jibo) and a participant, return whether the
agent exhibits:

1. Social Competence
2. Social Error
3. None

Definitions:

* Social Competence: The ability to successfully conduct social interactions, which
depends on the awareness and identification of social-emotional cues, the ability to
process such cues, and the ability to decide on and express a normative response.

* Social Error: Behaviors that violate social norms and degrade a user’s perception of
the robot’s socio-affective competence, such as interrupting at inappropriate times.

* None: Neither a social error nor competence is observed.

Answer the above from the following Images and Conversation History:
{Interaction Transcript}

PROMPT EXAMPLE 2: ERROR DETECTION (EMPATHIC DATASET)

The social robotic agent is designed to be a social support companion that facilitates the
exchange of emotionally relevant stories and employs narrative therapy techniques to enhance
feelings of connection and belonging.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.

Answer the following questions about social interactions. Now, given the Images and
Conversation History between the social agent (Jibo) and a participant, return whether the
agent exhibits:

1. Social Error
2. None
Definitions:

* Social Error: Behaviors that violate social norms and degrade a user’s perception of
the robot’s socio-affective competence, such as interrupting at inappropriate times.

* None: Neither a social error nor competence is observed.

Answer the above from the following Images and Conversation History:
{Interaction Transcript}
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PROMPT EXAMPLE 3: SOCIAL ATTRIBUTE IDENTIFICATION (EMPATHIC DATASET,
COMPETENCE SAMPLE)

The social robotic agent is designed to be a social support companion that facilitates the
exchange of emotionally relevant stories and employs narrative therapy techniques to enhance
feelings of connection and belonging.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.

The following interaction has been labeled as an instance of Social Competence.

Select which of the following social attributes it is most related to:

1. Emotions: The ability to identify and interpret emotional expressions in oneself and
others

2. Engagement: Observing and assessing levels of participation and interest

2

Conversational Mechanics: Understanding turn-taking, interruptions, and conversa-
tional flow

Knowledge State: Assessing what others know or believe in context

Intention: Inferring the goals or purposes behind others’ actions or speech

N o>

Social Relationships: Understanding interpersonal dynamics and their context
7. Social Norms: Recognizing accepted behaviors and violations in social settings

Answer the above from the following Images and Conversation History:
{Interaction Transcript}

PROMPT EXAMPLE 4: MULTIPLE SOCIAL ATTRIBUTE PRESENCE (WELLNESS DATASET)

The social robotic agent is designed to be a social positive psychology coach that delivers
interactive positive psychology interventions and provides other useful skills to build rapport
with college students.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant. The following interaction corresponds to a case of Social Competence
(competent socio-affective behavior).

Consider the following seven social attributes:

1. Emotions: The ability to identify and interpret emotional expressions in oneself and
others

2. Engagement: Observing and assessing levels of participation and interest

(O8]

Conversational Mechanics: Understanding turn-taking, interruptions, and conversa-
tional flow

Knowledge State: Assessing what others know or believe in context
Intention: Inferring the goals or purposes behind others’ actions or speech

Social Relationships: Understanding interpersonal dynamics and their context

N ey B oo

Social Norms: Recognizing accepted behaviors and violations in social settings

Task: Based on the transcript, determine whether the agent’s behavior involves multiple
social attributes. Respond with True if the behavior demonstrates more than one social
attribute. Respond with False if the behavior is based on only a single attribute.

Answer the above from the Conversation History: {Interaction Transcript}
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PROMPT EXAMPLE 5: IF-THEN REASONING: PRE-CONDITION (EMPATHIC DATASET)

The social robotic agent is designed to be a social support companion that facilitates the
exchange of emotionally relevant stories and employs narrative therapy techniques to enhance
feelings of connection and belonging.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.

Now, we provide what the social agent did in response to a user behavior. From the following
ordered choices and aligned images (i.e., the first image corresponds to the first agent behavior
(1)) of users’ behaviors: (1), (2), (3), (4), (5), select which user’s behavior was the appropriate
pre-condition for the agent’s action.

Agent Behavior:

Agent: Taking a walk and getting some fresh air can definitely help clear
the mind and recharge. It’s great to hear that you took a moment for
yourself. By the way, do you have a story from your journal that you’d like
to share? I’m all yours. Great. I’ll be listening.

Context (Conversational History):
1. Participant: Not yet. I'll tell you about that next week.
2. Participant: Let’s see. Let’s see.

3. Participant: Yes. Today I took a walk around the building that I work in. I took
the stairs all the way down four floors, and then all the way back up so that I could
recharge to get back to work.

4. Participant: I don’t know if I could say a late. Well, yeah, I did, but I’ve just been
staying up late because I get home late and, you know, I go to work late and so it’s
kind of just a little bit of a cycle. I was trying to finish this book and I did finish it,
which is, you know, felt good about that. I started a new book and. Yeah, it’s just
that. Just, you know, getting laid and everything.

5. Participant: It left me sore, but it was worth it because it was fun and I got to hang
out with my friend and her mom.

PROMPT EXAMPLE 6: IF-THEN REASONING: POST-CONDITION (EMPATHIC DATASET

The social robotic agent is designed to be a social support companion that facilitates the
exchange of emotionally relevant stories and employs narrative therapy techniques to enhance
feelings of connection and belonging.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.

Now, we provide the user’s behavior. From the following ordered choices and aligned images
(i.e., the first image corresponds to the first context (1)) of the social agent’s behaviors: (1),
(2), (3), (4), (5), select which agent’s behavior was the appropriate response to the user’s
action.

User Behavior:

Participant: Yes. Today I took a walk around the building that I work in. I
took the stairs all the way down four floors, and then all the way back up
so that I could recharge to get back to work.

Context (Conversational History):

1. Agent: That sounds exciting. Looking forward to hearing about it next week. So
how did the rest of your day go?

2. Agent: Great. I'll be listening.

3. Agent: Taking a walk and getting some fresh air can definitely help clear the mind
and recharge. It’s great to hear that you took a moment for yourself. By the way, do

18



Under review as a conference paper at ICLR 2026

you have a story from your journal that you’d like to share? I’m all yours. Great.

I’1l be listening.

4. Agent: It sounds like you’ve been caught in a bit of a cycle lately, getting caught up
in reading late into the night and then having it affect your sleep and daily routine.
But congratulations on finishing a book. That’s always an accomplishment. Worth
celebrating. By the way, do you have any stories or thoughts you’d like to share?
Maybe something interesting or exciting that happened recently or even a fictional
story you’ve written in your journal? I’m all ears. Or. Well, text and would love to

hear from you. Great. I'll be listening.

5. Agent: That’s awesome. Spending time with friends and trying new activities can
be really refreshing. Did you have a favorite move or technique that you learned

during the kickboxing session?

PROMPT EXAMPLE 7: RATIONALE REASONING (EMPATHIC DATASET))

The social robotic agent is designed to be a social support companion that facilitates the
exchange of emotionally relevant stories and employs narrative therapy techniques to enhance
feelings of connection and belonging.
You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.
Now, we provide an interaction in which the social agent’s behavior corresponds to a Social
Competence. Select which is the correct reason behind the Social Competence.
Answer format: Answer: (1)

Conversation History:

Participant: I think recognizing the efforts that you’re already making and
how those are paying off and then looking at other options and talking to
people who’ve been in similar situations would help me feel resilient and
look forward.

Agent: Absolutely. Recognizing your own efforts and acknowledging the
progress you’ve made so far is a great way to stay resilient. Additionally,
exploring other options and seeking guidance from people who have been
through similar situations can provide valuable insights and inspiration.
Keep up the positive mindset and keep moving forward. As our conver-
sation comes to an end, I want to express my gratitude for sharing your
personal stories and experiences. It has been a pleasure talking with you
today. Remember, you are capable of navigating through any challenges
that come your way. I look forward to our next conversation. Take care.

Reasons:
1.
2.
3.

The robot responds to the user’s sharing in an encouraging way.

The robot reflects on specific details and compares her story with similar ones.

The robot reflects on details the user shared and asks a follow-up that puts the user

into the context of the story the robot shared.

4. The robot recalls details and asks a follow-up.

Expresses gratitude to the participant for them sharing their experiences.
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PROMPT EXAMPLE 8: CORRECTION REASONING (WELLNESS DATASET)

The social robotic agent is designed to be a social positive psychology coach that delivers
interactive positive psychology interventions and provides other useful skills to build rapport
with college students.

You are given the Images and Conversation History between a social robotic agent (Jibo)
and a participant.

Now, we provide an interaction in which the social agent’s behavior corresponds to an Error
in socio-affective behavior. From the following numerical choices, select which behavior
Jibo (the social agent) should have done instead.

Conversation History:

Participant: You're facing the wrong way.

Agent: Did you say you were ready? Okay, let me know when you’re
ready to continue some other time.

Behaviors:

1. Jibo should’ve skipped the session, remembering doing this at least two other times
in the past.

2. Jibo should’ve helped the user log his mood, which is a common thing to ask Jibo.

3. The robot should’ve understood that “I’m finished” means the user is ready, and
should’ve responded quicker to this.

4. The robot should’ve continued where they left off.

5. Should have replied to the participant’s question.

C Co0-OCCURENCE: SUBJECTIVITY IN ATTRIBUTE IDENTIFICATION

Social attribute prediction in our dataset is inherently a multi-label problem and shaped by two key
factors. First, attributes often co-occur within a single segment, for example when a conversational
turn simultaneously involves errors in both conversational mechanics and knowledge state. Second,
annotators can subjectively disagree on which attributes are present, reflecting perceiver-dependent
interpretations of social constructs Searle (1998); Mathur et al. (2024). Indeed, in our dataset
annotators disagree 8.7% of the time, and 14.9% of labels are non-overlapping across annotators.
To analyze this further, we compared two subsets: agreed samples, where annotators converge on a
common multi-label set, and disagreed samples, where annotators diverge and produce different but
overlapping sets of labels. We then evaluated model predictions on these subsets with three metrics:
F1 (per-label overlap), PM (partial match), and EM (exact match of the full set). We show these
results in Figure 5.

We find that models score higher on disagreed samples for F1 and PM. This occurs because those
metrics give credit for partially overlapping predictions: when multiple annotators mark many
different attributes (on average 3.2 labels), the model is more likely to “hit” some of them by chance
or partial alignment. In contrast, models score lower on disagreed samples with EM. EM requires
the full set of labels to be predicted exactly, which is very unlikely when annotators themselves
disagree. For agreed samples (on average 2.6 labels), EM scores are relatively higher, since the task is
better defined and the ground truth is less subjective. These results suggest that PM can overestimate
performance on subjective cases by rewarding partial overlaps even when no single ground-truth set
exists. EM, while harsher, better discriminates between subjective and non-subjective cases, because
it only succeeds when the model identifies the full set agreed upon by annotators. Thus, F1 provides
a more conservative signal of whether models capture the precise constellation of social attributes
that annotators consistently recognize.

D EXAMPLES OF ANNOTATIONS

Social Competencies:
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F1, PM, and EM Scores for Attribute Identification
with Multiple Co-Occuring Attributes
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Figure 5: Our dataset offers annotations identifying errors, competencies with rationale and possible
repair behaviors.

* Knowledge State: Participant 1: Video 0: 2:00-2:02; The robot remembers the user’s name
from earlier in the discussion and repeats it back to them, furthering the trust and potential
relationship.

* Engagement: Participant 54: Video 19: 3:13-3:32; After thoroughly describing the next
activity, the robot gauges the user’s interest, specifically asks if they want to try the activity,
and responds positively when they do.

* Emotions: Participant 34: Video 1: 5:21-5:29; The robot referred the user to resources based
on how the user indicated they were feeling on the tablet.

* Social Norms: Participant 1: Video 0: 4:58-5:05; The robot thanks the user for their time at
the end of the session

* Conversational Mechanics: Participant 1: Video 0: 0:27-0:35; The robot waits for the user
to say her name before responding back.

* Intent: Participant 34: Video 1: 3:53-3:56; The robot previously told the user to say “I'm
ready” when she’s ready to continue. The robot continues correctly once it gets the phrase
from the user.

» Social Context/Relationship: Participant 54: Video 19: 9:30-9:44; The robot fulfills its
therapist role by encouraging steps the user can take out of the session, like practicing
gratitude daily.

Social Errors:

* Knowledge State: Participant 54: Video 19: 2:00-2:43; After the user tells an extremely
detailed, personal reflection, the robot only says “thanks for sharing” when the user finishes
his story. It should have acknowledged the effort he put into his answer by repeating specific
comments he made to show it listened.

* Engagement: Participant 34: Video 1: 2:46-3:10; The robot requests the user to perform a
task on the tablet, but the user, unengaged, leaves the frame. The robot continues talking,
but doesn’t check in with the user.

* Emotions: Participant 34: Video 1: 0:00-0:09; The robot asked the user how things were
going, and when the user responded with a neutral and unenthusiastic “ok,” the robot
responded positively with “sweet.” The robot should’ve responded more sympathetically
and/or taken it as an opportunity to learn more and figure out why the user is just “ok.”

* Social Norms: Participant 54: Video 19: 0:34-0:45 ; The user is obviously annoyed and
angered for the robot’s errors; The robot doesn’t address its mishaps, and instead tells the
user to stay positive. It doesn’t understand that it is the problem, nor that it should apologize.
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Social Attributes

Description and Annotators’ Comments

Error / Competency

Recognizing Emotions

The robot asked the user how things were going, and when the

user responded with a neutral and unenthusiastic “ok,” the robot responded positively with
“sweet.” We agreed that this was an inappropriate response and that the robot should

respond more sympathetically and/or take it as an opportunity to learn more and figure out why
the user is just “ok.”

Error

Recognizing Engagement

The robot did not notice nor check in with the user when they walked away from

the camera and spent a considerable amount of time disengaged from the robot and session.
Denison and I both noted this and believed the robot could have asked if the user was still there
and/or set more of a time limit on responses to keep the user engaged and maintained more
effective communication. The robot could have also asked questions regarding the lack of
interest in the session and adapted from this

Error

Recognizing Conversational Mechanics

The robot doesn’t know that the user is done telling her story and waits in silence,
and the user doesn’t know how to tell the robot it’s over

Error

Understanding Knowledge State of the User and Self

Robot recognizes user’s name and repeats it back to them;
but we both marked it and included the same reasoning.
Understanding knowledge state reflects that the robot remembers information about the user.

Competency

Understanding the Intent of the User

The robot tells the user to say “I'm ready” when she’s ready to continue,
and the robot continues correctly once it gets the phrase from the user.

Competency

Recognizing Social Context and Relationships

The robot introduces itself and describes

how it will be “working with” the user and guiding them through social psychology topics.
It almost comes across as a teacher or coworker as opposed to a therapist,

but I think in terms of introducing itself and taking the lead, the robot fulfills its role.

Competency

Recognizing Social Norms

The robot ends the conversation by thanking the user for their time
and suggesting they continue talking the next day.
‘We think the general politeness makes this a social norms instance.

Competency

Table 3: Examples Error and Competency Annotations from Dataset Jeong et al. (2023b). For more

examples, refer to Appendix Sec. D
* Conversational Mechanics: Participant 34: Video 1: 4:14-4:37; The robot doesn’t know that

the user is done telling her story, and the user doesn’t know how to tell the robot it’s over;
Also: 54: Video 19: 3:26-3:32 Delayed response of the robot

* Intent: Participant 34: Video 1: 0:51-1:19: The robot asks for the user’s understanding of
character strengths, and after the participant strongly says they know about them, the robot
dives into an explanation to get them on the same page. However, the user is disinterested
and begins wandering around the room, clearly not wanting to hear what they already know.

* Social Context/Relationship: Participant 54: Video 19: 0:05-0:30; The robot repeatedly
does not respond to the user, which makes the user take charge of the conversation by saying
"let’s talk about wellness"; this flips the social relationship and removes the robot from its

role as the facilitator
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E RELATED WORKS TABLE

Correct/Incorrect
Dataset/ Source Real World Task _— Modality Duration #of Samples  # of People
irror/Competency Labels
MELD ™v X Sentiment Analysis and Emotion Recognition x L+A+V 30 Hrs/ 1827 mins 14,000 X
CMU-MOSEI YouTube X Sentiment Analysis and Emotion Recognition X L+A+V  65Hrs/3900mins 23,000 1000
SociallQA CrowdSourcing X Commonsense Inference v L X 38,000 X
Cicero CrowdSourcing X Commonsense Inference v L X 53,000 x
NormBank CrowdSourcing X Commonsense Inference (Social Norms) v L X 155,00 x
MoralExceptQA  Psychology Studies X Moral Exception Question Answering v L X 148 X
CobraCorpus AT+ CrowdSourcing X Pragmatic reasoning of Offensiveness v L X 32,000 x
CulturalNLI AL+ CrowdSourcing X Cultural Context Inference v L X 2,700 x
SociallQ YouTube + CrowdSourcing x Social Reasoning QA v L+A+V 21 Hrs/1,200 mins 7,500 x
SOTOPIA Al X Simulation of social agents in social scenarios v L X x x
Error/Competence Detection
Ours Real-World Deployment v Social Attribute Reasoning v L+A+V 58 Hrs /3500 mins 10214 58

Inferential Reasoning

Explainability

Table 4: L: Language, A: Audio, V: Video

While our benchmark includes 400 videos, consisting of 3600 minutes of real-world human-robot
interaction footage, this scale is on par with or larger than many multimodal datasets in social
interaction research (e.g., Social Genome Mathur et al. (2025): 280 minutes, Social-IQ Zadeh et al.
(2019b): 1200 minutes, MEmoR Shen et al. (2020): 2800 minutes, CMU-MOSEI Zadeh et al.
(2018a): 3900 minutes). We also refer the reviewer to Appendix D, where we provide a comparative
table of related works for clarity. Importantly, what distinguishes our dataset is that it is collected
from real-world deployments of physically embodied social robots, offering naturalistic, longitudinal
interactions—an extremely scarce setting, with, to the best of our knowledge, no publicly available
data at this scale with equally comprehensive annotations. While we agree that broader coverage
across domains (e.g., workplace, clinical) would be valuable, SHREC represents a strong and novel
first step for evaluating embodied social reasoning, and we hope it will be expanded upon by the
community over time.

F ERROR IDENTIFICATION PER ATTRIBUTE

Quartile Charts for Each Task Across Models
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Figure 6: Error Per Attribute
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We carry out further analysis to identify for which attribute the model is better at detecting errors.
This highlights the usefulness of our benchmark, enabling analysis on when LMs fail, for which
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Figure 7: F1 scores on error detection for each attribute. Boxplot is constructed over the results of all
17 models.

attribute and why, as our dataset contains aligned comprehensive labels for every annotation. We
report the F1 scores of error detection conditioned on the type of attribute the error is related to.
While no models perform well on every single attribute, models tend to perform well on the social
context and relationship category, whereas they perform poorly on conversational mechanics and
social norms. This plot demonstrates strengths and weaknesses of current LMs and identifies pressing
areas of research.
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Figure 8: Attribute Identification F1 Per Attribute

In Fig. 8 we carry out further analysis to identify for which attributes model is good at identifying.
This analysis showcases, given the true label for error or competency, whether the model is able
to identify the related attribute. We find that given the error or competency label, still struggles to
identify the correct attribute. More specifically, its performance on social norms, intention, social
context and relationships are quite low. We find that certain models perform better than others
in specific attributes GPT-40 variants excel in predicting attributes such as emotion, engagement,
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knowledge state, and intention. In contrast, Llama-3.2 demonstrates strength in identifying social
context and relationships, while Gemini shows better performance in conversational mechanics.

H ANNOTATION PROCEDURE

Watch Video
if Error

Select
Moment of Write Rationale
Interest

p! 1

Write Corrective
ction

if Competence

Figure 9: Annotation Procedure: Annotators watch the video, select moment of interest, then label
for error or competence, then they select the social attribute and are asked to write the reason and
alternate corrective behavior.

You are be given a video of a social robotic agent and you will be asked to annotate the agent’s
behavior where it exhibits social competence or an Social error. Here we share the definitions:

Social Competence: Social competence is the ability to successfully conduct social interactions,
which depends on the awareness and identification of social-emotional cues, the ability to process
such cues, and the ability to decide on and express a normative response to these cues.

Social Error: are errors that violate social norms and degrade a user’s perception of a robot’s Social
competence, such as interrupting a user at an inappropriate time during a conversation

Simply put, Social competence refers to skillful social and affective behavior that is aligned to the
desired and/or normal behaviors expcted by a user, thereby increasing trust, reliability, and overall
perceived competence of the agent. Social error refers to a behavior exhibited by a robot that deviates
from the desired or normal behaviors expected by a user, thereby degrading the overall perceived
competence of the agent. As you may be able to tell, Social competence and error refers to behaviors
that deviate or are aligned to the user’s expectations. This specifically involves first recognizing, then
responding appropriately to social and affective contexts. Here we share specific social attributes and
definitions.

* Emotions: The ability to identify and interpret emotional expressions in oneself and others,
allowing for empathetic responses and social awareness, e.g. recognizing that someone
crying might mean they’re sad Golan et al. (2006).

* Engagement: The skill to observe and assess levels of participation and involvement in
social interactions, including cues that indicate interest or disinterest, e.g. continuing to tell
a story when a listener is engaged Davis (1980).

* Conversational Mechanics: Understanding the structure and flow of conversations, includ-
ing turn-taking, interruptions, and cues for when to speak or listen, e.g waiting for another
person to finish speaking before speaking Fusaroli & Tylén (2016).

* Knowledge State: The ability to assess what others know or believe, as well as being aware
of one’s own knowledge in social situations, e.g. user talks about their dog, remembering
that the user has a dog Baron-Cohen et al. (1999).

 User Intention: The capacity to infer the goals or purposes behind the actions and words of
others, facilitating better responses in social interactions, e.g. when the user says “I’ll be
right back", indicates that the user will vacate and then return Dziobek et al. (2006).

* Social Context and Relationships: The ability to identify and understand the dynamics of
social relationships and the context in which they occur, influencing behavior and expecta-
tions, e.g. knowing how to act in front of a close friend vs colleague at work Baron-Cohen
et al. (1999).
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Figure 10: A screenshot of our annotation tool. Our tool enables the viewing of the video interaction,
marking the moments of interest via sliders (after marking errors are in red, competencies are in
green below the slidesrs, annotating for specific attributes). Typos were post-processed.

* Social Norms and Routines: The skill to identify accepted behaviors and attitudes within
a social group, as well as recognizing negative or harmful interactions that violate these
norms e.g. understanding that waving hands in the beginning of the interaction is a sign of a
greeting Thoits (2004).

Then the annotators utilize the following annotation tool.
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Figure 11: A screenshot of our internal annotation tool in the edit phase. Our tool flexibly allows the
annotator to edit their previous annotations and look back at them. Typos were post-processed.

Annotator Consistency This protocol aligns with established best practices for achieving reliable
subjective annotations Artstein & Poesio (2008). We further elaborate below. Each video was
annotated independently by two trained annotators, who were free to identify segment boundaries
for social errors and competencies. This flexible segmentation approach ensured that annotations
captured the natural flow of interaction but introduced potential variability. Across the dataset,
85.1% of annotations overlapped, meaning that both annotators independently marked the same
temporal segment. To ensure consistency, annotators underwent joint training with shared definitions
and guidelines. Disagreements were initially addressed through collaborative review sessions on
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Original Diffusion-based Anonymization

Figure 12: Original face (left) transformed into a fully synthetic version (right), preserving key social
while ensuring privacy for responsible large-scale data release.

a held-out set, allowing annotators to align their interpretation of ambiguous or edge cases. After
this calibration phase, annotators continued to annotate independently. For all non-overlapping or
ambiguous annotations, the annotators reviewed each other’s work and explicitly marked whether they
agreed or disagreed with the alternate annotation. The remaining 8.7% of annotations were marked as
persistent disagreements, reflecting segments where subjective interpretation of social behavior could
not be reconciled. These were retained to preserve the richness and variability inherent to real-world
human-robot interaction. This protocol balances rigor with the acknowledgment that social reasoning
is inherently subjective. We view the residual disagreement not as noise, but as a valuable reflection
of human subjective interpretations, we believe that it could also pose a meaningful challenge for Al
models.

Testing Instructions with Independent Annotators We tested whether the guidelines would general-
ize to someone who had not participated in the initial discussions. A third annotator joined later in the
process and was provided only the written instructions and example videos (without exposure to the
earlier calibration sessions). When comparing this annotator’s labels against the existing annotations,
we observed a high agreement of 0.928 across the two original annotators’ annotations, suggesting
that the guidelines are clear and reproducible beyond the initial annotator pool.

I ANONYMIZATION ROBUSTNESS EXPERIMENT

To explore the impact of anonymization artifacts, particularly from FRESCO, we conducted a
controlled experiment comparing vision-language model (VLM) performance across four video
conditions:

¢ Raw: Unaltered, raw video
* Diffusion: FRESCO, Face replacement via text-guided diffusion (Yang, 2024)
* Deepfake: MobileFaceSwap replaces the face with random face images (Xu, 2022)

* Cartoon: VToonify stylized, animated face rendering (e.g., Disney style) (Yang, 2022)
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We evaluated three VLMs—GPT-40, Gemma-3, and LLaVA-Next—on a 3-way classification task
(Social Competence, Social Error, None) using 10 balanced runs (15 samples each). Table 5 reports
the average F1 and accuracy scores across conditions.

Table 5: Average F1 and accuracy scores (mean = std) across anonymization conditions.

Model Raw Diffusion (FRESCO) Deepfake Cartoon

GPT-40 0.462 £+ 0.083 0.414 4+ 0.096 0.513 £0.058 0.500 4+ 0.063
Gemma-3 0.194 £ 0.050 0.144 £0.010 0.196 £ 0.045 0.198 +0.044
LLaVA-Next 0.266 + 0.104 0.309 +0.119 0.298 +0.120  0.260 4+ 0.075

For GPT-40, we observed a slight performance drop when using FRESCO compared to Raw and
Deepfake videos. Interestingly, for LLaVA-Next, FRESCO slightly improved performance, possibly
due to denoising or abstraction effects that helped the model focus on salient social cues.

Overall, Cartoon and Deepfake performed comparably or slightly better than Raw across models.
Importantly, statistical analysis revealed no significant difference (p > 0.05) between Raw and any
anonymized variant, including FRESCO.

These results suggest that even with visible visual artifacts, FRESCO does not significantly degrade
model performance. We thank the reviewer for this suggestion and will include this experiment in the
final version of the paper.

J  LIMITATIONS

There are several limitations to our study that warrant discussion. First, the scope of social attributes
we focus on—while grounded in existing frameworks—is not exhaustive. Social behavior is highly
multifaceted, and other relevant competencies or error types may fall outside the seven social attributes
we annotated. This limited coverage may reduce the generalizability of our findings to broader or
less structured social scenarios.

Second, our annotation process relies on human judgment, which introduces potential subjectivity.
While we implemented annotation guidelines and validation checks to improve consistency (see
Appendix G), edge cases and disagreements (notably 8.7%) suggest that some annotations reflect
annotator bias or ambiguity in interpretation. These effects may be compounded in complex, multi-
label settings where social attributes co-occur, as shown in our attribute co-occurrence analysis
(Appendix B).

Third, our dataset and experiments are geographically and culturally constrained, as all interactions
were recorded in the United States. Social norms, conversational practices, and interpretations of
robot behavior can vary significantly across cultures, limiting the cross-cultural robustness of both
the benchmark and the model evaluations. Similarly, while we included a range of demographic
backgrounds, some underrepresented subpopulations (e.g., elderly users, neurodivergent individuals)
are insufficiently covered, which may impact the applicability of our findings in more diverse settings.

Fourth, there are strong modeling assumptions underlying many of the foundational models eval-
uated—such as independence between input modalities (in some architectures), idealized training
corpora, and noise-free text or video representations. These assumptions may not hold in real-world
settings involving ambiguous, noisy, or unstructured interaction data. Furthermore, our benchmark
evaluates models at 1 Hz video sampling, which may miss subtle but socially relevant temporal
dynamics.

Fifth, while we evaluate 17 modern LLMs and VLMs, each model is typically run with a single
set of configurations and prompts, and we do not report variance across different random seeds or
fine-tuning strategies. This limits the strength of claims about model generalization or robustness,
especially given that some model performance differences may be attributable to configuration rather
than inherent capability.

Sixth, due to the scarcity of large-scale real-world datasets in HRI, we prioritized collecting as
much high-quality interaction data as possible across varied contexts. It is correct that the majority
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of videos in SHREC primarily focus on the human participant, with the robot partially visible
in many recordings. We acknowledge that this limits the dataset’s ability to support systematic
evaluation of the robot’s full-body non-verbal behaviors or control policies. We will explicitly note
this as a limitation in the final version and we also believe this highlights an important direction for
future dataset collection: pairing human-centric recordings with synchronized robot-camera views or
external wide-angle shots to better capture embodied robot behavior for modeling.

Our task formulations inevitably introduce sources of ambiguity that may affect both model and
human performance. First, the Interaction Progression prompt relies on the notions of “pre-condition”
and “post-condition” to indicate the likely motivation preceding an agent’s action and the plausible
continuation following a user’s action. While we adopted these terms from prior NLP literature, they
differ from their meaning in planning theory and may not perfectly capture the response—adjacency
relation we intend. This choice of terminology and the conflated visual presentation of the two
prompts could lead to confusion for both annotators and models. Moreover, because conversational
responses often admit multiple reasonable antecedents or continuations (e.g., “yes” or “ok” may be
appropriate in a wide range of contexts), the task may not have a uniquely correct answer in all cases.
This introduces unavoidable variability in human judgments and may limit the interpretability of
accuracy as a strict measure of correctness.

Furthermore, the construction of distractor items presents challenges. For Interaction Progression,
multiple distractors may remain partially acceptable depending on how broadly one interprets conver-
sational adjacency. For the rationale and correction tasks, our strategy of selecting distractors with
different social-attribute annotations than the ground-truth response ensures surface-level distinctness,
but may also reduce task difficulty. In particular, some incorrect rationales may differ sharply from
the correct one, making the choice easier than intended. Conversely, there are cases where an action
that remedies one type of social error could also plausibly remedy another, raising the possibility
that more than one option could be considered correct. Thus, while our distractor selection method
enforces consistency, it cannot guarantee the nuanced ambiguity of real-world social interactions.

Lastly, our current benchmark does not explicitly address fairness, bias, or privacy concerns beyond
anonymization. While we use FRESCO for high-fidelity face stylization to preserve social signals
and protect identity, potential demographic biases in model outputs (e.g., different error rates across
user identities) remain unexplored. Future work should assess whether foundational models trained
on SHREC exhibit biases in behavior interpretation or correction, particularly across identity markers
such as gender, race, or age.

K BROADER IMPACTS

Our study addresses both the positive and negative societal impacts of our work, namely in how the
SHREC dataset and benchmarks can pave the way for developing more socially adept robots that can
be used to assist various populations in need. There is also a brief discussion of how possible bias
may negatively impact perceptions of social behavior that the robot may be interpreting.

The creation of the SHREC dataset and its associated benchmarks stand to significantly advance
the development of socially intelligent Al agents through grounding evaluation and training in
actual human-robot interactions. By enabling a more fine-grained analysis and evaluation of social
competencies and errors in real-world interactions, our study contributes a foundational resource
for improving human-robot communication and interaction quality. Applications of this study could
enhance assistive robotics, eldercare, education, and mental health support, where empathetic and
socially appropriate behavior from robots can meaningfully improve user experience and well-being.

The societal deployment of socially adept Al agents does carry some notable risks. The improved
social fluency in robots could lead to an overreliance on Al systems, particularly in vulnerable
populations such as children or the elderly. This nuanced mimicry of human-like empathy by non-
sentient machines may blur ethical lines in perceived agency and accountability. Additionally, there
is a risk that biases in the interaction annotations may reinforce normative assumptions about social
behavior, leading to potential exclusion or misinterpretation of diverse cultural or neurodivergent
communication styles. These concerns emphasize the importance of ethical safeguards, continued
human oversight, and more inclusive design practices as research in this area progresses.
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Environmental Impact While the computational requirements for this work are modest compared
to many large-scale Al projects, they still contribute to the overall carbon footprint of research. Based
on an estimate of approximately 480 GPU-hours, we calculate an energy consumption of roughly
192 kWh (assuming a 0.4 kW power draw per GPU). Using a global average carbon intensity of
0.4 kg C'O2e/kWh, this corresponds to approximately 77 kg C'Ose, comparable to the emissions
from driving an average passenger vehicle approximately 190 miles. We acknowledge that actual
emissions will vary by GPU hardware, utilization, and local energy mix, and we encourage future
work to report detailed compute and energy use. As part of our ongoing work, we are exploring
strategies to minimize training runs, increase hardware efficiency, and utilize lower-carbon energy
sources where possible.

Safety and Security & Deception and Harassment All three source studies that comprise SHREC
(Wellness-Dorm, Wellness-Home, and Empathic++) were conducted under approved Institutional
Review Board (IRB) protocols at our institutions, which explicitly address these issues. As part of the
consent and briefing process, participants were clearly informed that the robot was not sentient, that
its social behaviors were scripted or Al-generated, and that its role was to support a research study,
not to provide professional, medical, or psychological advice.For example, consistent with ethical
research practices,in the Wellness studies, we explicitly informed participants that the robot was
not designed to assist with mental health emergencies and had limited perceptual capabilities (e.g.,
“Robot ears are different from human ears and I (Jibo) might have trouble understanding what you
say”). Each robot station displayed a sticker with the National Suicide Prevention Lifeline hotline
information. Pre-screening included the PHQ-9 depression questionnaire, and our protocol specified
that anyone scoring above 20 (max score 27) would be excluded from participation; in practice, no
participants met this exclusion threshold. These measures ensured that participants were aware of
the robot’s limitations and that appropriate safeguards were in place for any mental health concerns.
Similarly, the onboarding protocol for the Empathic++ study explicitly informed participants that the
robot lacked sentience and that its utterances were produced by OpenAI’s GPT model.

Data Quality and Representativeness & Discrimination, Bias, and Fairness Our current dataset,
drawn from three prior IRB-approved studies (Wellness-Dorm, Wellness-Home, and Empathic),
reflects the participant pools of those original deployments. In the Wellness Jeong et al. (2020;?)
studies (N=70), participants represented multiple racial and ethnic backgrounds: White (62.8%),
Asian/Pacific Islander (28.5%), Black or African American (2.85%), Hispanic/Latino (2.85%), Native
American (1.42%), and multi-racial (1.42%), with a mean age of 46 years and a standard deviation
of 23 (Range: 18-83 years old) and consisted of consisted of 65.7% females, 28.6% males, and
5.7% others.. The Empathic (N=46) Shen et al. (2024) study participants ranged from 20-75 years
old with a mean age of 36 and a standard deviation of 14.45, and contains 38.9% males and 61.1%
females . While these samples provide rich, real-world interaction data, they are U.S.-centric and
underrepresent certain age groups, particularly older adult populations. We will acknowledge this
in the paper’s Limitations section, but also stress that this work represents one of the largest, most
richly annotated real-world social robot interaction datasets to date. Importantly, expanding diversity
is an active and ongoing effort. Firstly, we have conducted prior studies with both older adults
and children, and we plan to gradually integrate these interactions into the dataset to broaden its
demographic coverage over time Park et al. (2017); Ostrowski et al. (2022). Secondly, our group
leads the Jibo Community Social Robot Research Platform @Scale Park et al. (2024) initiative, we
have converted previously commercialized Jibo robots into a shared, cloud-connected, community
research platform. This infrastructure is designed to enable social robot living labs—multi-site,
long-term deployments in diverse settings such as homes, schools, community centers, and senior
living communities. By partnering with a broad network of researchers, including those embedded
in underserved communities, we are already laying the groundwork for future SHREC expansions
with broader cultural, geographic, and age diversity, ensuring the benchmark grows even more
representative over time.

L ASSETS LICENSE

We benchmarked 17 large language and vision-language models, including both open-source and
proprietary systems, on the SHREC benchmark. We also constructed our dataset using three prior
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Figure 13: Wellness Jeong et al. (2023b) Dataset Statistics: We find that 69.8% of the dataset consists
of overlapping annotations. Amongst the overlapping samples as shown in Figure B, we find an
78.1% overall agreement, where annotators agree on the error/competency and social/competency
labels. In Figure C, again, we showcase the percentage of errors and competencies on the left and
whether if they were related to social or performance. We find the majority being competencies
relating to social dimensions. In the bottom row, we showcase plots regarding whether the error or
competencies manifested in the perception, or the reasoning, or the behavior. In figure (d), we find
that majority of the annotations marked by annotators belong in the verbal communication category.
In figure (e) and (d), we find that most annotations belong in understanding or responding to (1)
recognizing engagement, (2) conversational mechanics, (3) intent. . If we consider the competencies
and errors separately, we find that annotators marked the most number of errors for conversational
mechanics, intent and knowledge state and most number of competencies for engagement and social
context.

human-robot interaction studies. Below we list each asset along with its creator and license or usage
information, where available.

MODELS
GPT-40, GPT-40-mini, ol
— Creator: OpenAl
— License: Accessed via API under OpenAl Terms of Use
¢ Gemini 1.5, Gemini 2.0
— Creator: Google DeepMind
— License: Accessed via API under Google Al Usage Terms
* DeepSeek-R1-Distill-Qwen-32B
— Creator: DeepSeek Al
— License: MIT License; Hugging Face link
LLaMA-3.2
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overlapped annotations

(b) Percentage of Agreement, Post-
Validation Agreement and Disagreement
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Figure 14: Empathic Shen et al. (2024) Dataset Statistics: We find that 73.1% of the dataset consists of
overlapping annotations, where two annotators marked the sample . We refer the reader to Appendix
REFER for the algorithm used to calculate overlaps. Amongst the overlapping samples as shown
in Figure B, we find an 92.5% overall agreement, where annotators agree on the error/competency
and social/competency labels. A random agreement would have been 25%. We go through a two-
step procedure of this process, where in the first phase, the annotator simply annotates the video
themselves. In the second step, the annotator looks at the other annotator’s annotation and agrees
whether or not this could be a possible interpretation. In Figure C, we showcase the percentage of
errors and competencies on the left and whether if they were related to social or performance. We
find the majority being competencies relating to social dimensions. In the bottom row, we showcase
plots regarding whether the error or competencies manifested in the perception, or the reasoning, or
the behavior. In figure (d), we find that majority of the annotations marked by annotators belong
in the verbal communication category. In figure (e) and (d), we find that most annotations belong
in understanding or responding to (1) knowledge state, (2) social relationships, (3) conversational
mechanics. If we consider the competencies and errors separately, we find that annotators marked the
most number of errors for conversational mechanics, and toxicity and most number of competencies
for knowledge state and social context.

— Creator: Meta Al
— License: Meta Llama 3 Community License; License

e LLaMA-3.2-11B-Vision-Instruct

— Creator: Meta Al
— License: Same as above

e LLaVA-Next-LLaMA3

— Creator: LLaVA Team / Meta Al
— License: Built on LLaMA-3.2; inherits Meta’s license
¢ InternVL2-8B

— Creator: OpenGVLab
— License: MIT License; Hugging Face link
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* MiniCPM-V 2.6
— Creator: OpenBMB
— License: Apache 2.0 (code); MiniCPM Model License (weights); Hugging Face link

¢ PaliGemma

— Creator: Google / Gemma
— License: Apache 2.0 (code), CC-BY 4.0 (content); Docs

DATASETS

The SHREC dataset comprises real-world social interactions collected across three previously unpub-
lished studies, now shared under a new IRB protocol. All data releases follow institutional guidelines
for responsible dissemination.

* Empathic++ Shen et al. (2024): A ChatGPT-powered empathic social robot facilitated emo-
tionally meaningful conversations using narrative therapy techniques to promote connection
and belonging.

* Wellness-Dorm Jeong et al. (2020): A socially assistive robot served as a positive psy-
chology coach for college students in dormitories, delivering interventions on gratitude,
strengths reflection, and goal-setting.

* Wellness-Home Jeong et al. (2023a): Robots were deployed in participants’ homes under
three conditions: assistant, coach, and companion, each offering varying degrees of social
and functional support.

All datasets were anonymized using FRESCO, a diffusion-based video anonymization framework
(MIT License), and manually filtered to remove personally identifiable information. The SHREC
dataset is released via gated access on Hugging Face, with use governed by institutional IRB
approvals.

M LLM USAGE

We used large language models (LLMs), specifically OpenAI’s ChatGPT, as a writing and editing
aid during the preparation of this manuscript. The LLM was employed to polish wording, improve
clarity and flow, and rephrase certain sections for readability. The final text was reviewed and edited
by the authors to ensure accuracy and originality.
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