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Abstract
We investigate a family of Multi-Step Proximal Point Methods, the Backwards Differentiation For-
mulas, which are inspired by implicit linear discretization of gradient flow. The resulting meth-
ods are multi-step proximal point methods, with similar computational cost in each update as the
proximal point method. We explore several optimization methods where applying an approximate
multistep proximal points method results in improved convergence behavior. We argue that this is
the result of the lowering of truncation error in approximating gradient flow.

1. Introduction

In this paper, we consider the following following optimization problem:

min
x∈Rn

F (x) = f(x) + h(x) (1)

where f(x) is a L- smooth function, h(x) is a closed convex but not neccessary smooth function
and g(x) is bounded below. The problem with the following settings has been raised in many
applications [3, 4, 6, 15, 16]. In this paper, we consider a family of multi-step proximal point
updates. The algorithm is a generalization of proximal point method [8] where you use a linear
combination of previous τ step as the point instead of just the last iterate.

x̃k =
τ∑

i=1

ξixk−τ+i, xk+1 = F(x̃k) (2)

Here, F is an approximate proximal point step. When τ = 1, ξ1 = 1 and (2) reduces to the
“vanilla” approximate proximal point method, of which there are many works [1, 2, 8, 10]. In this
paper, we investigate improvements garnered by higher order τ > 1. Note that unlike nonlinear
explicit discretization methods (like Runge-Kutta), there is very little overhead in increasing τ , as
the averaging is done in an online manner.

However, there are two questions that could arise naturely. First, suppose that we are given τ ,
how do we choose ξi optimally? Second, can increasing τ always improve performance?

For the first question, we link the MulstiStep Proximal Methods to the discretization of Gradient
Flow. Using dynamical systems to interpret optimization methods has garnered considerable interest
[11, 12, 14, 17]. In order to optimize the peformance in practice, the coefficient should be chosed
to maximize the order of truncation error which leads to so called BDF Scheme.

For the second question, the answer is under two aspects. The multistep proximal point methods
do not speeed up the convergence rate because their convergence rate is the same as the gradient
flow. However, the methods give significant better results in many optimization problems such as
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proximal gradient with 1 norm over compressed sensing,proximal gradient with LSP penalty over
compressed sensing,alternating projections over random linear subspaces and alternating minimiza-
tion for matrix factorization.

2. Numerical Experiments

In this section, we empirically validate our proposed methods by considering several optimization
problems: proximal gradient with L-1 norm, proximal gradient with LSP penalty, and alternating
minimization for matrix factorization. For those experiments, we calculate the equation (2) based
on the following two approaches:

Approach 1: The idea of the first approach is based on approximating

proxαf+αh(x̃
k) = argmin

x

Fk(x)︷ ︸︸ ︷
αf(x) +

1

2
∥x− x̃(k,1)∥22︸ ︷︷ ︸

smooth term

+ αh(x)︸ ︷︷ ︸
prox term

(3)

by the following.

Initialize x̃k,1 = x̃k based on left side of (2) and perform m iterations of the following update

x̃(k,j+1) = proxβαh(x̃
(k,j) − αβ∇f(x̃(k,j))− β(x̃(k,j) − x̃(k,1))).

Then update xk+1 = x̃(k,m+1).

Approach 2: The second approach is based on alternating minimization which is efficient in large-
scale optimization [9, 13] and can be computed in parallel [5, 7]. The idea is approximating (3) by
the following alternating descent.

Initialize x̃k,1
1 , x̃k,2

2 = x̃k based on left side of (2) and perform m iterations of the following
update:

x̃k,j+1
1 = argmin

x1

f(x1, x̃
k,j
2 ) + h(x1, x̃

k,j
2 ) +

1

2α
∥x1 − x̃k,j

1 ∥2

x̃k,j+1
2 = argmin

x2

f(x̃k,j
1 ,x2) + h(x̃k,j

1 ,x2) +
1

2α
∥x2 − x̃k,j

2 ∥2.

Then update xk+1 = x̃(k,m+1).

2.1. Proximal Gradient with ℓ1 norm

The Proximal Gradient with ℓ1 norm over compressed sensing problem is formulated as:

min
x∈Rn

1

2
∥Ax− b∥2 + λ∥x∥1

where A ∈ Rm×n and b ∈ Rm, with m ≪ n (underdetermined system) and the ℓ1 norm is to
make the solution of the system to be as sparse as possible. We choose m = 100 and n = 500
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Figure 1: Comparsion of different BDF schemes for Proximal Gradient with L − 1 norm over
compressed sensing. We use Approach 1 to estimate the proximal mapping approximation with

and λ = 0.1. The entries of Ai,j ,bi ∼ N (0, 1). We use approach 1 to approximate the proximal
mapping with the number of inner approximations to be 1, 5, 10 and choose the maximum outer
iteration to be 1000. The results are given in figure 1 In the above experiment, we can see that the
higher order BDF scheme outperforms the lower BDF scheme.

2.2. Proximal Gradient with LSP penalty over compressed sensing

The Proximal Gradient with LSP penalty over compressed sensing is formulated as follows:

min
x∈Rn

1

2
∥Ax− b∥2 + h(x)

where h(x) =
∑

i log(1+ |xi|/λi), A ∈ Rm×n and b ∈ Rm. Similarly, m ≪ n since the system is
underdertmine system. Compared to ℓ-1 norm settings, which gives each entry of x equal threshold
to be sparse. The LSP penalty enjoys the benefit that you can have different thresholds for different
entry.

For the experiment settings, we choose m = 100 and n = 500. We choose λi uniformly random
from 0 to 1. For matrix A, we choose each entry of Ai,j randomly by gaussian distribution with
mean 0 and standard deviation 1. For matrix b, we choose each entry bi by Gaussian distribution
with mean 0 and standard deviation 1. We use Approach 1 to approximate the proximal mapping
with the number of inner approximations to be 1 and choose the maximum outer iteration to be
10000. The results are given in figure 3 . Similar to ℓ1 norm setting, the higher-order BDF performs
better than lower order BDF scheme.
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Figure 2: Comparsion of different BDF schemes for Proximal Gradient with LSP penalty over
compressed sensing. The figure uses Algorithm Approach 1 to make the proximal mapping ap-
proximation. The figure uses 1 inner iteration

2.3. Alternating Minimization For Matrix Factorization

The Matrix Factorization problem can be formulated as the following:

min
U,V

1

2
∥UVT −R∥2F

The objective function is a classical ill-conditioned non-convex function. For the experiment set-
tings, we choose U as a 100× 50 matrix and V as a 50× 100 matrix. We choose R = UtrueVtrue
where Utrue and Vtrue have the same dimension as U and V. We use Approach 2 to approximate
the proximal mapping with the number of inner approximations 1 and choose the maximum outer
iteration to be 1000.

3. Conclusion and Future Work

The goal of this work is to investigate the use of approximate implicit discretizations of (Proximal
Flow) in badly conditioned non-smooth problem settings. In this work, we figure out that the
higher-order approximate implicit discretization helps in many optimization problems. However, it
is worth pointing out that it is also important to find an efficient manner of choosing the approximate
methods. In our work, we provide two approaches that approximate the implicit updates, and both
work well in practice. For future work, it will be interesting to investigate applying higher-order
discretization to other flows, such as rescaled proximal or accelerated proximal flow.
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Figure 3: Comparsion of different BDF schemes for matrix factorization. The figure uses using
Approach 2 to do the proximal mapping approximation. The top figure has an inner iteration 1.
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