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Abstract
Real world visual data contains multiple attributes,
e.g., color, shape, foreground, background, etc.
To solve a specific learning task, machine learn-
ing models should use a specific set of attributes.
In principle, selecting which set of attributes as
the core (non-spurious) ones is determined by the
task regardless of how heavily other attributes are
(spuriously) correlated with the label. Without
prior knowledge for identifying the core attribute
or spurious one, we can hardly tell a learned cor-
relation is spurious or not in real-world scenarios.
In this work, we dive into this realistic setting and
since there is no prior knowledge to determine
which feature is core or spurious, we aim to learn
a regularized predictor to fairly balance both core
and spurious features. To achieve this, we start
by formalizing fairness of learned features in a
linear predictor under multi-view data distribution
assumption (Allen-Zhu & Li, 2023). We prove
that achieving this fairness can be bounded by
a simple regularization term and finally design
fairness-preserving regularizer. Experiments on
Waterbirds, CelebA and Wilds-FMOW datasets
validate the effectiveness of our method.

1. Introduction
Convolutional neural networks (CNNs) can successfully pre-
dict ground-truth label under a data distribution similar to
the given training set, but heavily fail when the distribution
is shifted by some spurious attributes—correlated with the
label in the training set but independent in the test set. This
unwanted correlation happens in many real-life scenarios,
and it has been observed that empirical risk minimization
(ERM) trained models could fail to exclude these spurious
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correlations (Liu et al., 2015a; Sagawa et al., 2020). This
phenomenon can be viewed as a consequence of the multi-
view nature of visual data structure (Allen-Zhu & Li, 2023;
Chen et al., 2023). For instance, a human face image will
contain different attributes: gender, ethnicity, nose, hair
color, etc. However, without telling a model to focus on
a specific attribute, e.g. hair color, rather than extract the
core feature of hair color, it may inevitably rely on other
spurious but still discriminative features that are highly bi-
ased towards a particular gender or region, leading to poor
performance on the minority groups.

When group information is available, an intuitive solution
to mitigate spurious correlation is to learn an invariant repre-
sentation (Sagawa et al., 2020; Zhou et al., 2021). Motivated
by this solution, one line of group-annotation-free works
aims to identify each group in a training set and regard them
as pseudo group labels (Nam et al., 2020; Liu et al., 2021;
Creager et al., 2021; Liu et al., 2023). The key inductive
bias of them is the first trained ERM model is biased and can
be used to detect spurious correlation, which can completely
fail in some cases pointed by (Yong et al., 2022).

As attribute identification can be ill-posed without prede-
fined assumptions, another line of group-annotation-free
works focus on learning rich features through different levels
of ensemble learning (Wang et al., 2019; Zhang et al., 2022;
Asgari et al., 2022). Recently, however, a nontrivial found-
ing in (Izmailov et al., 2022; Ye et al., 2023) is that ERM in
fact has the capacity to learn both spurious and core (non-
spurious) features. Based on this, recent work (Kirichenko
et al., 2023) claims that while both features are learned, the
spurious feature can be highly weighted in the final predic-
tion head of the model, leading to poor performance on the
minority groups. They utilized an effective two-stage frame-
work that first learned an ERM model and then retrained its
prediction head with an additional group-balance dataset.

Compared to the above previous works, we try to mitigate
spurious correlation without (1) group information at the
stages of training and validation, or (2) predefined assump-

Different from the conventional concept of fairness wherein
the error rates of both majority and minority groups are comparable,
we denote it in this paper as a compromise to balance core and
spurious features when prior knowledge for identifying them is
absent.
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tion on what spurious correlation will be, e.g. ERM trained
models will be biased to spurious features in the first place.
These can be unavoidable constraints in realistic applica-
tions, for instance, it will be a difficult and time-consuming
investigation to discover reliable information of what spu-
rious correlation is when there is a large mount of images
and tags from social media for a classification task. Our key
intuition is that real-world data contain multiple attributes,
and in principle, since there is no prior knowledge to iden-
tify the core feature from all learned ones, learning all of
them including core and spurious ones in a fair way can be
regarded as a vital trade-off.

Motivated by the above, we first follow the empirical found-
ing that ERM trained model captures both spurious and
core features (Kirichenko et al., 2023), but focus on how
to learn a fair prediction head without group information
or predefined assumption on spurious correlation. To an-
swer that, we first formalize the fairness of learned features
in a linear predictor under multi-view data distribution as-
sumption (Allen-Zhu & Li, 2023). Both core and spurious
features are defined during the data distribution generation
process. After being trained with a gradient-based learning
algorithm, the linear predictor can be represented as a linear
combination of core feature, spurious feature, and negligible
other noise. We finally define a fair predictor as the inner
products with core and spurious features being equal. To
bring this property into practice, we prove that given an
ERM trained feature extractor and the extracted features are
under multi-view data distribution assumption, achieving
this fairness can be bounded by a simple regularization term
without knowing what a core or spurious feature is.

2. Preliminary
We consider supervised visual classification task in the pres-
ence of spurious correlation. Given data x ∈ X and its
corresponding label y ∈ Y , the goal is to learn a predic-
tor f :X →Y . However, for each pair of (x, y) from the
training set Dtr with size n, there exists one unknown at-
tribute s, (one for notation simplicity), that is spuriously
correlated with y, e.g., (y=cow, s=grassland) and (y=
camel, s=desert) would dominate the training set instead
of (y = cow, s= desert) or (y = camel, s= grassland).
This discrete attribute, which in fact splits Dtr into several
groups, could result in a dramatic proportion shift within the
test set Dte. Specifically, following recent advances (Nam
et al., 2020; Liu et al., 2021; Kirichenko et al., 2023), we con-
sider the scenario that each group will be presented equally
during evaluation, i.e., the attribute will not be correlated
with the label in Dte.

Following (Izmailov et al., 2022; Ye et al., 2023), we assume
that both core and spurious features can be obtained by an
ERM model. And we utilize a two-stage training framework

where an ERM model is trained in stage one, and the last
layer—linear classifier, is retrained from random initializa-
tion in stage two with the backbone frozen and without any
group information. In the following, we will focus on the
second stage.

3. Fairness of Learned Features in a Linear
Predictor

In this section, we discuss how to define the fairness of
learned features in a linear predictor. Intuitively, we hope
that the linear predictor can predict equally well based on
spurious or core features. To elaborate this property in a
formal and detailed way, we first consider the training data
as a variation of multi-view data distribution introduced
in (Allen-Zhu & Li, 2023). Under this assumption, core
feature and spurious feature can be regarded as different
views of data. After training the classifier with a gradient-
based learning algorithm, it can be regarded as a linear
combination of core feature and spurious feature, and other
noise, which can induce a fair way to balance them.

Data distribution We define the training data distribu-
tion as a variation of multi-view data distribution. x is
composed of P patches {xk|xk ∈ Rd}Pk=1, and we rep-
resent x as average of patches (for ease of subsequent
derivation), x = 1

P

∑P
k=1 xk. We focus on binary clas-

sification problem where Y = {−1,+1}, and assume that
there are two sets of features, spurious and core ones, as-
sociated with the problem. Similar to (Shen et al., 2022;
Chen et al., 2023), we define two orthogonal unit vectors
v1,v2 ∈Rd, vT

1 v2 = 0, ∥v1∥2 = ∥v2∥2 = 1, as core and
spurious features respectively for simplicity of math, such
that the core (or spurious) feature of a given class y is yv1

(or yv2). We consider the following data distribution gener-
ation mechanism for Dtr:

1. Sample y ∈ Y uniformly.

2. Given y, each patch xk of x is defined as

xk = αkyv1 + βkyv2 + γkξk, (1)

where αk, βk, γk are non-negative scalars and ξk ∼
N (0, σ2(Id − v1v

T
1 − v2v

T
2 )). For each k, there is

one and only one scalar of the three can be nonzero.
The scalars are determined by sampling xk from a
distribution with unknown parameters:

either a core feature patch, with αk>0, βk=0, γk=0
while regarding αk as the magnitude (l2 norm) of xk,

or a spurious feature patch, with αk=0, βk>0, γk=0
while regarding βk as the magnitude (l2 norm) of xk,

or a noise patch, with αk=0, βk=0, γk=1.
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Finally x can be represented as:

x = ayv1 + byv2 + ϵ, (2)

where a= 1
P

∑P
k=1 αk, b=

1
P

∑P
k=1 βk can be regarded as

l2 norm of x in the direction of yv1 and yv2 respectively,
and ϵ = 1

P

∑P
k=1 γkξk. We assume that the noise parame-

ters σ are small enough compared to the size of the training
set n and number of patch P , such that v1,v2 will have the
relatively major contribution to the training process.

Learning algorithm As {xk|xk ∈ Rd}Pk=1 can also be
viewed as the intermediate output of the previous convo-
lution layer in a CNN (Allen-Zhu & Li, 2023), we simply
define a global average pooling layer and a linear classifier
W = [w+1,w−1] ∈ Rd×|Y| after the top layer of the CNN
backbone to present the model as F (x) = wT

+1x−wT
−1x.

It is trained by minimizing the following empirical cross-
entropy loss:

min
W

Lce =
1

n

n∑
i=1

l(y(i) · F (x(i))), (3)

where l(z) = log(1 + exp(−z)). We learn the model using
gradient descent starting from Gaussian initialization with
learning rate η. At step t, we have

w
(t+1)
j = w

(t)
j − η

n

n∑
i=1

l
′(t)
i jy(i)x(i), j ∈ Y. (4)

Combining Eq. (2), W can be regarded as a linear com-
bination of core feature v1, spurious feature v2, random
initialization W (0) and noise of each sample ϵ(i). Similar
to (Cao et al., 2022), it is not difficult to have the following
lemma:

Lemma 3.1. Given the above data distribution and learning
algorithm, there exist unique coefficients λ(t)

j,1, λ
(t)
j,2 and ρ

(t)
j,i

such that:

w
(t)
j = w

(0)
j + λ

(t)
j,1 · jv1 + λ

(t)
j,2 · jv2 +

n∑
i=1

ρ
(t)
j,iϵ

(i), (5)

where λ
(t)
j,1 ≈ ⟨w(t)

j , jv1⟩, λ(t)
j,2 ≈ ⟨w(t)

j , jv2⟩.

Finally, we can give the formulation of fairness for core and
spurious features in linear predictor as follows:

Definition 3.2. Given a linear classifier wj for class j ∈ Y
satisfying Lemma 3.1. We say wj is fair if

⟨w(t)
j , jv1⟩ = ⟨w(t)

j , jv2⟩. (6)

4. Fairness-Preserving Regularizer
In Definition 3.2, there are two unknown vectors v1,v2.
To bring fairness of learned features into practice, we first
convert it into an optimization problem by introducing a
predefined constant C > 0:

min
wj

|⟨wj , jv1⟩ − C|+ |⟨wj , jv2⟩ − C|, j ∈ Y. (7)

Based on the conditions introduced in Section 3, we give
our main result in the following theorem.
Theorem 4.1. Consider an ERM trained backbone and a
linear classifier W = [w−1,w+1] satisfy Lemma 3.1, then
minimizing Eq. (7) can be upper-bounded by the following
objective given a pair of (x, y) from training set Dtr:

min
wy

1

P

P∑
k=1

|⟨wy,xk⟩ − ∥xk∥2 · C| (8)

We give a formal proof in Appendix A. Intuitively, we use
each data sample as a bridge to feature disentanglement due
to its multi-view data distribution nature. At each patch of
data, the feature is purified enough to be a local and stronger
fairness regularizer for its classifier, thus achieving a weaker
yet global fairness. In practical, both ⟨wy,xk⟩ and ∥xk∥2
are not difficult to obtain, and we will show how to eliminate
the constant C in the following.

How to decide C According to Eq. (7), C can be regarded
as the magnitude of the classifier. Since it would have
a huge influence on decision boundaries, we replace this
hyper-parameter with a max-min normalization process, and
finally achieve our fairness-preserving regularizer:

lfp =
1

P

P∑
k=1

| ̂⟨wy,xk⟩ − ∥̂xk∥2|, (9)

where ̂⟨wy,xk⟩ is max-min normalized version of ⟨wy,xk⟩
and ∥̂xk∥2 as well. Note that in Eq. (8), assigning differ-
ent C for different pair of (x, y) will not change the op-
timization direction to fairness property. Therefore, it is
not difficult to find that Eq. (8) can be upper-bounded by
Eq. (9).

Overall training Recall that in the second stage, we only
retrain the last layer—linear classifier W with the ERM
trained backbone frozen. The classifier is optimized by the
following objective:

min
W

Lce + δ
1

n

n∑
i=1

lfp(x
(i), y(i)), (10)

where δ is the weighting factor of the fairness-preserving
regularization term and is simply set to 1 through all experi-
ments.
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Table 1. Comparison to other methods. The number is averaged over 3 independent running seeds and the number in brackets represents
standard deviation. “Group” means whether used group information. “WGA” denotes worst group accuracy and “MGA” represents mean
group accuracy.

Method Group Waterbirds CelebA FMOW
WGA MGA WGA MGA WGA MGA

GDRO ✓ 68.5(6.0) - 66.3(7.8) - 30.2 -
ERM-DFR ✓ 91.1(0.8) - 89.4(0.9) - 41.6(0.6) -

ERM 70.0(2.1) 90.4(0.2) 44.3(1.8) 95.5(0.1) 31.8(0.9) 52.4(0.1)
RWY 65.4(0.6) - 46.1(2.1) - 30.5(0.6) -

ERM-FRR 71.2(2.7) 92.1(0.2) 42.2(1.6) 95.5(0.1) 31.6(0.6) 52.5(0.2)
ERM-FP 87.3(1.8) 93.7(1.2) 47.3(1.5) 95.5(0.1) 32.4(0.8) 52.8(0.1)

5. Results
In this section, we evaluate our fairness-preserving regular-
izer on three image classification datasets under spurious
correlation compared to upper-bound methods with group
supervision and existing methods without prior knowledge
for identifying groups. We also illustrate visualization re-
sults of our method.

Datasets We consider three image classification under
spurious correlation benchmarks. Waterbirds (Sagawa
et al., 2019) is used for binary image classification of bird
types (landbird or waterbird). The background(land or wa-
ter) is spuriously correlated with the class, because most
landbirds are shown on land, and most waterbirds are shown
over water. CelebA hair color (Liu et al., 2015b) aims
at the binary classification of whether a person in an im-
age is blond or not. Gender is a spurious attribute in the
dataset, as most images labeled ”blonde” depict females.
WILDS-FMOW (Christie et al., 2018; Koh et al., 2021;
Sagawa et al., 2021) consists of satellite images, and the
goal is to classify images according to the type of building
or land use. The spurious attribute lies in the region (Asia,
Europe, Africa, America, and Oceania). The training data
additionally contains another group Other, which is dropped
during evaluation. Following the WILDS benchmark for
this dataset, the groups are defined by just the value of the
spurious attribute. In particular, the worst group accuracy
corresponds to the worst accuracy across regions. Images of
these regions are unevenly represented in the data, resulting
in uneven representation. In addition, the test images were
taken several years later than the train images, so there is an
additional type of domain shift.

The Waterbirds and CelebA datasets are commonly used to
benchmark the performance of group robustness methods,
while the FMOW dataset presents challenging real-world
problems with spurious correlations. In the above datasets,
the inputs do not resemble natural images from data sets
such as ImageNet (Russakovsky et al., 2015), so models
cannot simply rely on feature transfer, but must learn the
relevant features from data to obtain good performance.

Implementation Details According to prior
works (Sagawa et al., 2019; Idrissi et al., 2022), we
use a ResNet-50 (He et al., 2016) pre-trained on ImageNet-
1K (Russakovsky et al., 2015) on three benchmark datasets.
In the first stage (ERM training), we set the number of
epochs to 100 for Waterbirds and 20 for both CelebA and
FMOW. In the second stage, we re-initialize the final linear
classifier and set the number of epochs to 10% of the first
stage.

Methods We consider five methods for learning the fea-
tures. GDRO (Sagawa et al., 2019) is a state-of-the-art
method that uses the group information on the training
data to minimize the worst group loss instead of the av-
erage loss, which is often considered an oracle method or
upper-bound on the worst group performance under spurious
correlations (Liu et al., 2021; Creager et al., 2021). ERM-
DFR (Kirichenko et al., 2022) is based on the ERM method,
simply retraining the last layer of the model on a small held-
out dataset where the spurious correlation does not hold.
ERM (Empirical Risk Minimization) is the standard train-
ing on the original training data, without any techniques
targeted at improving the worst group performance. RWY
reweights the loss in each class according to the size of
the class (Idrissi et al., 2022). One similar work to ours is
FRR (Addepalli et al., 2023). They adopted two-stage train-
ing and regularized the classifier by reconstructing the final
output feature assuming that simplicity bias could make
neural network brittle. We do not hold such assumption.

Comparison to other methods Comparison results to
other related methods are illustrated in Table 1. Compared
with the method without group information, our method
performs better than the one-stage method of RWY on all
three datasets. Also as a two-stage method, ERM-FRR has
a gap of 16.1% on WGA and a gap of 1.6% on MGA from
our method on Waterbirds. While on CelebA, WGA is 5.1%
lower than our method. On FMOW, our method outperforms
ERM-FRR by 0.8% on WGA.
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Figure 1. Visualization results. The first (second) line are from
Waterbirds (CelebA).

Visualization For an image-label pair, we can easily visu-
alize both ∥̂xk∥2 and ̂⟨wy,xk⟩ by up-sampling them to the
image size. We illustrate ∥̂xk∥2 right after ERM training,
̂⟨wy,xk⟩ before the second stage retraining, and ̂⟨wy,xk⟩

after retraining, as Figure 1. From left to right, each column
represent ∥̂xk∥2 after training, ̂⟨wy,xk⟩ before retraining
and ̂⟨wy,xk⟩ after retraining. It is shown that our regu-
larization term can make the classifier focus on activated
features relatively fairly, rather than focus some of them and
ignore the other.

6. Conclusion
In this work, we discussed how to achieve a compromise to
balance core and spurious features when there is no prior
knowledge for identifying each of them. We aimed to learn
a regularized predictor to fairly balance both core and spuri-
ous features. We designed fairness-preserving regularizer
by proving that achieving fairness of learned features in a
predictor can be bounded by this regularizer.
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Fairness-Preserving Regularizer

A. Proof of Theorem 4.1
Proof. We start by minimizing the following equation, which is a combination of two absolute value terms:

min
wj

|⟨wj , jv1⟩ − C|+ |⟨wj , jv2⟩ − C|. (11)

Consider a data point (x, y) from training set Dtr and its corresponding classifier weight wy , multiplying the two terms by
a, b respectively does not change the optima:

min
wy

|a · ⟨wy, yv1⟩ − a · C|+ |b · ⟨wy, yv2⟩ − b · C|. (12)

Using Eq.(2), we have:

min
wy

| 1
P

P∑
k=1

αk · ⟨wy, yv1⟩ −
1

P

P∑
k=1

αk · C|+ | 1
P

P∑
k=1

βk · ⟨wy, yv2⟩ −
1

P

P∑
k=1

βk · C|.

=| 1
P

P∑
k=1

⟨wy, αkyv1⟩ − αk · C|+ | 1
P

P∑
k=1

⟨wy, βkyv2⟩ − βk · C|

≤ 1

P

P∑
k=1

|⟨wy, αkyv1⟩ − αk · C|+ |⟨wy, βkyv2⟩ − βk · C|

≤ 1

P

P∑
k=1

|⟨wy, αkyv1⟩ − αk · C|+ |⟨wy, βkyv2⟩ − βk · C|+ |⟨wy, γkξk⟩ − ∥γkξk∥2 · C|

=
1

P

P∑
k=1

|⟨wy,xk⟩ − ∥xk∥2 · C|,

(13)

while the first inequality holds for triangle inequality, and the last equation holds for Eq. (1). Therefore, minimizing Eq. (7)
can be upper-bounded by Eq. (8).


