
Under review as a conference paper at ICLR 2024

MAKING LARGE LANGUAGE MODELS BETTER REA-
SONERS WITH ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning is a cognitive process of using evidence to reach a sound conclusion.
The reasoning capability is essential for large language models (LLMs) to serve
as the brain of the artificial general intelligence agent. Recent studies reveal that
fine-tuning LLMs on data with the chain of thought (COT) reasoning process can
significantly enhance their reasoning capabilities. However, we find that the fine-
tuned LLMs suffer from an Assessment Misalignment problem, i.e., they frequently
assign higher scores to subpar COTs, leading to potential limitations in their
reasoning abilities. In this paper, we introduce an Alignment Fine-Tuning (AFT)
paradigm with a novel Constrained Alignment Loss to alleviate the assessment
misalignment problem. Specifically, the proposed loss has two objectives: a)
Alignment, which guarantees the scores of high-quality COTs surpass that of
subpar ones; b) Constraint, which keeps the subpar scores confined to a reasonable
range to prevent the model degradation. Extensive experiments on four reasoning
benchmarks with both binary and ranking feedback demonstrate the effectiveness
of AFT. AFT also performs well in multi-task and out-of-distribution situations.
Furthermore, we also delve deeply into recent ranking-based alignment methods,
such as DPO, RRHF, and PRO, and discover that the constraint, which has been
overlooked by these approaches, is also crucial for their performance.

1 INTRODUCTION

Reasoning is a cognitive process that involves utilizing evidence to reach a well-founded conclusion
(Qiao et al., 2023; Huang & Chang, 2023). Recently, there has been a growing focus on enhancing
the reasoning abilities of Large Language Models (LLMs) (Li et al., 2023b; Yuan et al., 2023a; Luo
et al., 2023; Mukherjee et al., 2023), because LLMs still lack reasoning skills (Wang et al., 2023b;d;
Zheng et al., 2023; Kaddour et al., 2023; Zhao et al., 2023a) that are essential for them to serve as the
brain of artificial general intelligence agents (Wang et al., 2023a; Yao et al., 2023; Song et al., 2023b).

Recent works (Chung et al., 2022; Hsieh et al., 2023; Mukherjee et al., 2023; Yue et al., 2023) find that
training LLMs using data with a chain of thought (COT) reasoning process is a very effective method
to improve the reasoning ability of LLMs. These studies typically train LLMs using maximum
likelihood estimation (MLE), and employ a next-token prediction objective. However, MLE only
assigns probability mass to the reference COT, which contradicts reasoning tasks where various
reasoning paths can lead to the correct answer. In this paper, we find that such vanilla fine-tuning
(VFT) paradigm causes LLMs to suffer from an Assessment Misalignment problem, i.e., LLMs
struggle with accessing the quality of different COTs, ultimately limiting their reasoning capabilities.
Take Figure 1 as an example, VFT-LLMs learn to generate the Reference Answer for the given
Question by allocating probability mass to this Reference Answer and treating all other answers as
negative outcomes. As a result, they struggle to assess the quality of other answers and tend to assign
lower perplexity (higher score) to incorrect Candidate Answer 1 compared to the correct Candidate
Answers 2.

This behavior of VFT-LLMs is not consistent with that of humans, as humans have the ability to
access the quality of different COTs after learning to reason. In addition, our pilot experiments
(Section 3) find that after the same VFT process, the LLMs with better reasoning performance can
give a more reasonable assessment to different COTs. Therefore, we hypothesize that we can improve
the reasoning ability of LLMs by alleviating the assessment misalignment problem caused by VFT.
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Question: Weng earns $12 an hour for babysitting. Yesterday, 
she just did 50 minutes of babysitting. How much did she earn?

Reference Answer (PPL 1.05) : Weng earns 12/60 = 
$<<12/60=0.2>>0.2 per minute. Working 50 minutes, she 
earned 0.2 x 50 = $<<0.2*50=10>>10.

Candidate Answer 1 (PPL 1.90) : Weng earns 12/60 = 
<<12/60=0.2>>0.2$ per minute Yesterday she did 50 minutes 
of babysitting, so she earned 50 * 0.2 = <<50*0.2=10>>10$.

Candidate Answer 2 (PPL 1.35) : Weng earns $12/hour x 60 
minutes = $<<12*60=720>>720 per hour. Working 50 
minutes, she earned $720 x 50/60 = $<<720*50/60=40>>40.

✗

✓

Figure 1: Perplexity of different answers given by the vanilla fine-tuning (VFT) LLM, where LLM
assigns a lower perplexity to the incorrect candidate answer compared to the correct candidate answer.

To address the assessment misalignment problem, in this paper, we propose an alignment fine-tuning
(AFT) paradigm to improve LLM reasoning with three steps: 1) fine-tuning LLMs using COT
training data; 2) generating multiple COT responses for each question using the fine-tuned LLMs,
and categorizing them as positive and negative based on whether they deduce the correct answer; 3)
calibrating the scores of positive and negative responses given by LLMs with a novel Constrained
Alignment (CA) loss. Specifically, the CA loss ensures that all positive scores (the scores of positive
COTs) are larger than negative scores. In addition, the negative scores are protected by a constraint
term, which is proven to be very important in preventing model degradation. Beyond just binary
positive and negative feedback, the CA loss can be seamlessly adapted to ranking situations when
ranking feedback is accessible. Furthermore, we also delve deeply into recent ranking-based methods
for alignment, such as DPO (Rafailov et al., 2023), PRO (Song et al., 2023a) and RRHF (Yuan et al.,
2023b), and find that the constraint, which has been overlooked by these approaches, is also crucial
for their effectiveness.

In summary, our contributions are: 1) We discover that LLMs fine-tuned by the vanilla fine-tuning
(VFT) paradigm suffer from an Assessment Misalignment problem: they frequently assign lower
scores to high-quality COTs compared to low-quality ones, which hinders their reasoning ability;
2) We present an alignment fine-tuning (AFT) paradigm with a novel constrained alignment loss to
address the identified problem; 3) Experiments on four reasoning benchmarks with both binary and
ranking feedback demonstrate the effectiveness of AFT. AFT also performs well in multi-task and
out-of-distribution situations; 4) We delve deeply into recent ranking-based alignment methods and
find that the constraint, which has been overlooked by them, is also crucial for their performance.

2 RELATED WORKS

2.1 IMPROVE REASONING OF LARGE LANGUAGE MODELS

Reasoning is a cognitive process that utilizes evidence to reach a well-founded conclusion and is a
core ability of LLMs to serve as the brain of the artificial general intelligence agent. Researchers
have proposed a lot of methods to improve the reasoning ability of LLMs, which can be broadly
divided into three groups: 1) pre-training: The pre-training methods pre-train LLMs on a vast of
unsupervised datasets, such as the pile (Gao et al., 2020), the stack (Kocetkov et al., 2022), with a
simple next token prediction objective. Researchers find that a larger model pre-trained on more
data tends to have better reasoning ability (OpenAI, 2023; Anil et al., 2023; Touvron et al., 2023); 2)
fine-tuning: The fine-tuning methods can also enhance the reasoning ability of LLMs. Researchers
have found that fine-tuning LLMs on the data with the reasoning chain-of-thought process can
significantly improve the reasoning of LLMs (Mukherjee et al., 2023; Chung et al., 2022; Li et al.,
2023a); 3) prompting: The prompting methods aim to improve the reasoning ability of LLMs by
carefully designed prompting strategy without updating the model parameters (Wei et al., 2022; Wang
et al., 2023c; Bi et al., 2023), which is very convenient and practical. In this paper, we focus on the
fine-tuning methods and find that traditional vanilla chain-of-thought fine-tuned LLMs suffer from an
assessment misalignment problem, which hinders their reasoning ability. To this end, we propose an
alignment fine-tuning paradigm to address this problem to enhance the reasoning ability of LLMs.

2.2 PREFERENCE ALIGNMENT OF LARGE LANGUAGE MODELS

Preference alignment research focuses on directing AI systems toward human-intended preferences
Wang et al. (2023e). There are three primary categories of preference alignment methods: 1)
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Wu et al., 2023), which
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trains a reward model by utilizing human feedback. The reward model acts as a reward function for
optimizing an agent’s policy through reinforcement learning (RL) techniques, such as Proximal Policy
Optimization (Schulman et al., 2017). RLHF is employed to align powerful LLMs, like ChatGPT and
GPT-4. However, RL-based methods face limitations concerning training efficiency and complexity;
2) Rejective Sampling (Touvron et al., 2023; Gulcehre et al., 2023; Dong et al., 2023; Liu et al., 2023),
which aligns large language models by sampling multiple responses and choosing high-quality ones
to further enhance their training; 3) Supervised Fine-tuning with Ranking (Liu et al., 2022; Yuan
et al., 2023b; Zhao et al., 2023b; Song et al., 2023a; Rafailov et al., 2023), which incorporates a
ranking loss to help LLMs align with human preferences. Previous preference alignment research has
mainly focused on improving the safety of LLMs, frequently neglecting the importance of preference
alignment for reasoning. In this paper, we point out the effectiveness of preference alignment for
reasoning and introduce a novel constrained alignment loss to make LLMs better reasoners.

3 PILOT EXPERIMENTS

In this section, we first briefly introduce the vanilla fine-tuning (VFT) paradigm, and then we
demonstrate the Assessment Misalignment problem of VFT for reasoning.

3.1 VANILLA FINE-TUNING

VFT finetunes LLMs on a dataset {(qi, ci, ai)}Ni=1 with N examples. Each example consists of a
question qi, a COT reasoning process ci, and an answer ai. The LLMs are finetuned to generate the
reference response ri = [ci; ai] based on qi with a MLE objective loss function:

LV FT = −
|ri|∑
j=1

logP (ri,j | ri,<j , qi; θ). (1)

where θ is the model parameter and ri,j is the j-th token of ri.

3.2 ASSESSMENT MISALIGNMENT OF VFT FOR REASONING

Intuitively, the MLE objective seeks to exclusively allocate probability mass to the reference COT
ci for question qi, which does not correspond with the characteristics of reasoning tasks, where the
correct COT is not limited to the reference one. This objective uniformly treats all other correct and
incorrect COTs as negative examples. As a result, it will impede LLMs from learning to assess the
quality of various COTs and degrade their reasoning ability.

To demonstrate this, we first fine-tune LLama-7B, LLama-13B, LLama2-7B, and LLama2-13B on the
training data of GSM8k and ECQA with Equation 1 (please refer to Section 5.1 for the detailed VFT
settings). Then, for each question qi in the training data, we use VFT-LLMs to generate three positive
COTs {cp1i , cp2i , cp3i } that induce to the correct answer and three negative COTs {cn1i , cn2i , cn3i } that
induce to the incorrect answer, respectively. Upon manually examining 50 examples, we observe that
the quality of positive COTs is noticeably better than that of negative COTs.

We further compute the token-averaged log-likelihood score of each positive and negative COT c
using the fine-tuned LLMs as follows:

scθ =
1

|c|

|c|∑
j=1

logP (cj | c<j , q; θ), (2)

where q is the corresponding question. It is reasonable to expect that the fine-tuned LLMs will be able
to assess the quality of different candidate COTs of previously encountered questions, i.e., assigning
higher scores to the positive ones. Therefore, we use an assessment accuracy AAccuracy to assess
the capability of fine-tuned LLMs in assigning appropriate scores to various COTs:

AAccuracy =
1

9N

N∑
i=1

3∑
j=1

3∑
k=1

I(sc
pj
i

θ > s
cnk
i

θ ) (3)

As shown in Table 1, the assessment accuracy of the VFT-LLMs falls short of expectations, with an
average AAccuracy of merely around 70% on GSM8K and 62% on ECQA, respectively. Note that
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MODELS
GSM8K (PEARSON = 0.93) ECQA (PEARSON = 0.98)

TAccuracy(%) AAccuracy(%) TAccuracy(%) AAccuracy(%)

LLama-7B 36.48±0.92 68.41±0.32 70.40±0.92 61.62±0.01
LLama2-7B 40.71±0.16 71.22±0.12 72.34±0.22 61.96±0.02
LLama-13B 42.07±0.15 72.25±0.23 72.74±0.43 61.89±0.01
LLama2-13B 47.29±1.24 73.06±0.78 74.76±0.56 62.29±0.01

Table 1: The final task accuracy (TAccuracy) and the assessment accuracy (AAccuracy) of different
vanilla fine-tuned models. TAccuracy and AAccuracy exhibit a strong positive correlation, with
Pearson Correlation Coefficients of 0.93 and 0.98 at GSM8K and ECQA, respectively.

this is a two-class classification problem where a random baseline can achieve the 50.00% accuracy.
These results show that the assessment ability of VFT-LLMs is far from expected, as they cannot
accurately discern the quality of various COTs of previously learned questions. This behavior of
VFT-LLMs is not consistent with that of humans, as humans have the ability to access the quality
of different COTs after learning to reason. In addition, we also notice that LLMs with stronger
reasoning abilities have better assessment accuracy. Specifically, the task accuracy and the assessment
accuracy exhibit a strong positive correlation, with Pearson Correlation Coefficients of 0.93 and 0.98
at GSM8K and ECQA, respectively. This observation inspires us to improve the reasoning ability of
LLMs by aligning their scoring behaviors with the golden standard assessment.

4 METHODOLOGY

We have demonstrated that the scoring behaviors of vanilla fine-tuned LLMs exhibit misalignment
with the gold standard assessment. In this section, we propose an alignment fine-tuning (AFT)
paradigm to address this problem to enhance their reasoning ability. Specifically, on top the VFT
objective LV FT , AFT further introduce an alignment objective L∗

A:

LAFT = LV FT + L∗
A. (4)

In the following part of this section, we will introduce the design process of L∗
A.

4.1 GENERATE CANDIDATE COTS FOR TRAINING DATA

To implement AFT, we first need to generate multiple COTs for each question in the training set. For
each training example (q, c, a), we first sample k generation results {(ci, ai)}ki=1 from the VFT-LLMs
based on the input question q. Then, we divide these generation results into two groups, namely
positive group GP and negative group GN , based on the correctness of their answer. Formally, a
generation results (ci, ai) belongs to GP if ai = a, otherwise it is part of GN . Generally, the quality
of COTs in the positive group GP is better than that of GN .

4.2 ALIGNMENT

As demonstrated by our pilot experiment, VFT-LLMs fail to give reasonable scores to COTs in GP

and GN. To align the scoring behaviors of LLMs with the golden standard assessment, we need to
design an objective to let the scores of all positive COTs in GP larger than that of negative COTs in
GN. This objective bears resemblance to contrastive learning, which aims to ensure that the score of
positive example is larger than those of all negative examples, utilizing an InfoNCE loss:

LInfoNCE = − log

[
exp(s

cp
θ )

exp(s
cp
θ ) +

∑
cn∈GN

exp(scnθ )

]
= log

1 + ∑
cn∈GN

exp(scnθ − s
cp
θ )

 (5)

Intuitively, minimizing Equation 5 aims to make the positive score s
cp
θ larger than all negative scores.

However, since there is more than one positive example in GP , inspired by (Su et al., 2022; Wang
et al., 2022), we extend LInfoNCE to accommodate multiple positive examples:

LA = log

1 + ∑
cp∈GP

∑
cn∈GN

exp(scnθ − s
cp
θ )︸ ︷︷ ︸

alignment term

 (6)
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where scθ is the average log-likelyhood score of the COT c calculated by Equation 2. Minimizing LA

encourages all positive scores to be larger than all negative scores.

4.3 CONSTRAINT

Nevertheless, although the quality of negative COTs may not be as high as that of positive COTs, they
still retain a respectable quality, as they are sampled from fine-tuned and powerful LLMs. We find
that reducing their scores by Equation 6 without setting any constraint will result in the degradation
of the LLMs. Therefore, we further design two constrained methods, Detached Constraint (DC), and
Boundary Constraint (BC) to avoid such catastrophe.

4.3.1 DETACHED CONSTRAINT

To prevent model degradation, DC adds constraint to negative scores by detaching their gradient:

LDC
A = log

1 + ∑
cp∈GP

∑
cn∈GN

exp
(
D(scnθ )− s

cp
θ

)︸ ︷︷ ︸
detached alignment term

 , (7)

where D(·) denotes the detach operation, which means the gradient would not back-prop through the
negative scores. As a result, LDC

A achieves the alignment by only increasing positive scores without
explicitly decreasing negative ones.

4.3.2 BOUNDARY CONSTRAINT

Besides DC, we also want to explore whether better results can be obtained by marginally explicitly
decreasing negative scores. To this end, we propose BC that adds a constraint term to LA:

LBC
A = log

1 +
∑

cp∈GP

∑
cn∈GN

exp(scnθ − s
cp
θ )︸ ︷︷ ︸

alignment term

+exp(T − scnθ )︸ ︷︷ ︸
constraint term


 (8)

Intuitively, the constraint term increases the score of the negative COT scnθ , with the extent of
improvement regulated by the value of T . We aim for T to achieve the effect of increasing scnθ when
it is lower than a boundary B. In this paper, we chose B as the minimum positive COT score minus a
hyper-parameter β, i.e., B = s

cp∗
θ − β, where scp∗θ = mincp∈GP

s
cp
θ . To achieve this, we analyze the

gradient of Equation 8 with respect to the parameters θ:

∇θLBC
A ∝ −

∑
cp∈GP

∑
cn∈GN

[
exp(scnθ − s

cp
θ )(∇θs

cp
θ −∇θs

cn
θ ) + exp(T − scnθ )∇θs

cn
θ

]

=−
∑

cp∈GP

∑
cn∈GN

exp(scnθ − s
cp
θ )∇θs

cp
θ︸ ︷︷ ︸

increase s
cp
θ

+
[
exp(T − scnθ )− exp(scnθ − s

cp
θ )

]
∇θs

cn
θ︸ ︷︷ ︸

change scnθ based on the coefficient


(9)

Because the score sc∗θ increases along the gradient ∇θs
c∗
θ , based on ∇θLBC

A , for each pair (cp, cn),
LBC
A consistently increases scpθ due to the positive coefficient exp(scnθ − s

cp
θ ) > 0. In contrast, it

elevates the negative score scnθ when:

exp(scnθ − s
cp
θ ) < exp(T − scnθ ) ⇒ scnθ <

T + s
cp
θ

2
= B (10)

Otherwise, it tends to decrease or keep the score of scnθ . Combing B = s
cp∗
θ − β and Equation 10,

we can achieve the value of T = 2s
cp∗
θ − 2β − s

cp
θ .

4.4 EXTENDING TO RANKING CONSTRAINED ALIGNMENT

The quality of the different COTs is not a simple binary relationship GP ≻ GN, i.e., the quality
of positive COTs is better than that of negative COTs. In a more general situation, COTs in each
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MODELS METHODS GSM8K AQUA ECQA AVERAGE (∆)

LLAMA-7B

VFT 36.48±0.92 31.19±0.28 70.40±1.07 46.02 ( – )
RFT 39.75±1.03 32.81±1.48 72.23±0.11 48.28 (↑ 2.26)

AFT (LDC
A ) 40.43±1.04 33.01±0.95 72.23±0.43 48.55 (↑ 2.53)

AFT (LBC
A ) 40.26±0.36 33.20±1.24 72.15±0.57 48.53 (↑ 2.51)

LLAMA2-7B

VFT 40.71±0.16 31.49±1.96 72.34±0.22 48.18 ( – )
RFT 43.65±0.13 33.25±1.23 73.86±0.38 50.25 (↑ 2.07)

AFT (LDC
A ) 44.25±0.43 33.49±0.63 73.71±0.65 50.75 (↑ 2.57)

AFT (LBC
A ) 44.16±0.81 32.89±0.98 73.23±0.82 50.09 (↑ 1.91)

LLAMA-13B

VFT 42.07±0.15 33.91±0.60 72.74±0.43 49.57 ( – )
RFT 46.13±1.41 34.29±1.28 75.03±0.35 51.80 (↑ 2.23)

AFT (LDC
A ) 46.31±1.52 34.49±1.21 74.32±0.09 51.70 (↑ 2.13)

AFT (LBC
A ) 46.46±0.28 34.79±0.37 74.53±0.68 51.93 (↑ 2.36)

LLAMA2-13B

VFT 47.29±1.24 34.68±1.36 74.76±0.56 52.24 ( – )
RFT 50.12±1.57 34.95±0.88 76.21±0.80 53.75 (↑ 1.51)

AFT (LDC
A ) 50.67±1.16 35.78±0.45 76.42±0.82 54.29 (↑ 2.05)

AFT (LBC
A ) 51.03±0.54 35.49±1.19 76.57±0.83 54.36 (↑ 2.12)

Table 2: The accuracy of different methods on three reasoning datasets with binary feedback. ∆
denotes the improvement compared to VFT. AFT significantly outperforms VFT and is slightly better
than RFT (Yuan et al., 2023a). Note that RFT is a concurrent work to ours.

group can also have quality differences, which means the quality of all generated COTs can be
ranked as a sequence c1 ⪰ c2 ⪰ · · · ⪰ ck. If we can obtain such a quality ranking sequence, we can
easily extend our binary-feedback boundary-constrained alignment loss LBC

A to a ranking-feedback
boundary-constrained alignment loss as follows:

LRBC
A = log

1 +
∑

ci≻cj

exp(scjθ − sciθ )︸ ︷︷ ︸
alignment term

+exp(2s
cj∗
θ − 2β − sciθ − s

cj
θ )︸ ︷︷ ︸

constraint term


 (11)

Where s
cj∗
θ = minck≻cj s

ck
θ is the minimal score of COTs that have the better quality than cj .

Compared with LBC
A , LRBC

A can bring LLMs more detailed training signals of the COT assessment,
which can further enhance their performance. We also try to extend LDC

A to the ranking situation,
and we find it slightly underperforms in comparison to LRBC

A . Please refer to Appendix D for details.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets We conduct our experiments on three widely used reasoning datasets with human-
annotated chain-of-thoughts, including math reasoning tasks GSM8K (Cobbe et al., 2021), AQUA-
RAT (Ling et al., 2017) and commonsense reasoning task ECQA (Aggarwal et al., 2021). Further-
more, we create GSM8K-RANK to evaluate the effectiveness of our AFT in the ranking situation.
Please refer to Appendix A for more details of these datasets.

Parameter Setting We conduct experiments on four large language models, LLama(2)-7B and
LLama(2)-13B. We do not conduct experiments on larger models due to resource limitations. We
sample k = 6 COTs from VFT-LLMs with a sampling temperature of 1. Our detached constrained
alignment loss does not introduce any hyper-parameter, and we search the boundary constraint
hyper-parameter β based on the validation set. For more training details, please refer to Appendix B.
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METHODS LLAMA-7B LLAMA-13B LLAMA2-7B LLAMA2-13B AVERAGE (∆)

VFT 20.82±0.71 24.12±0.42 24.08±0.22 30.28±1.46 24.83 ( – )
RFT 25.09±1.18 28.21±0.86 28.25±0.78 34.53±0.51 29.02 (↑ 4.19)
RRHF 7.51±0.56 9.92±0.82 9.21±0.25 13.35±1.26 10.00 (↓ 14.8)
PRO 18.73±0.31 20.34±1.51 21.40±0.92 23.55±0.98 21.00 (↓ 3.82)

AFT (LRBC
A ) 26.08±1.05 28.97±0.35 29.05±0.75 35.48±1.35 29.90 (↑ 5.07)

Table 3: Test accuracy of different methods on GSM8K-RANK with ranking feedback.

Baselines and Metrics We compare our AFT with VFT, RFT (Yuan et al., 2023a), RRHF (Yuan
et al., 2023b), and PRO (Song et al., 2023a) ( Please refer to Appendix C for details of our baselines).
We use the accuracy to measure the model performance. Specifically, we conduct 3 runs with 3
different seeds and report the average results with the standard deviation.

5.2 RESULTS WITH BINARY FEEDBACK

Table 2 displays the results of different fine-tuning methods on three reasoning datasets. As is
shown: 1): AFT significantly outperforms VFT (p ≤ 0.1, T-test), improving the average accuracy
by 1.91% ∼ 2.57% for all models; 2) Our proposed two constrained alignment strategies slightly
outperform RFT with the binary feedback, we think the reason is that the alignment loss can leverage
negative examples, which RFT cannot. These results demonstrate the importance of revealing the
assessment misalignment problem of VFT and the effectiveness of our AFT approach.

5.3 RESULTS WITH RANKING FEEDBACK

As described in Section 4.4, our AFT can also be easily adapted to the ranking situation where we
can obtain the quality ranking sequence of generated COTs. Table 3 illustrates the results of different
methods in the GSM8k-RANK. As is shown: 1) Our AFT surpasses all other methods, demonstrating
its effectiveness with ranking feedback. For instance, AFT exceeds the strongest baseline RFT by
0.88% in average accuracy. This superiority can be attributed to AFT’s ability to help LLMs recognize
quality differences among any given pair in a ranking context, while RFT only focuses exclusively on
optimizing the probability of the highest-quality examples; 2) Prior methods utilizing ranking loss
have a substantial negative impact on model performance. For example, integrating RRHF loss into
VFT leads to a 14.8% reduction in accuracy. In fact, the performance reduction is also observed in
their own paper (Song et al., 2023a), which demonstrates that ranking loss often enhances the reward
of LLMs, yet results in lower BLEU scores. However, they do not identify the cause, and in this
paper, we find that a potential reason for the performance decline is the absence of a constraint in
their loss, which we will discuss in Section 6.1.

6 ANALYSIS

6.1 DELVE DEEPLY INTO RECENT RANKING LOSSES FOR ALIGNMENT

Our experiments on GSM8K-RANK show that adding ranking loss will harm the model performance.
We find the reason is that previous alignment ranking losses will unreasonably decrease the score of
non-optimal COTs 1. To empirically validate this hypothesis, we add a detached constraint to these
two ranking losses similar to LRDC1

A (Equation 12). Consequently, these ranking losses will only
make the scores of higher-quality COTs larger than those of lower-quality ones, without explicitly
decreasing the scores of COTs with lower quality. Table 4 illustrates the final accuracy TAccucary of
different methods in the testing set, the assessment accuracy AAccuracy and average perplexity of
positive COTs PPL in the training set2. As is shown: 1) Without the constraint strategy, all three
ranking losses harm the model performance, leading to higher perplexity and lower final task accuracy
compared to VFT; 2) We observe that the task accuracy of PRO does not decline as significantly as

1We provide detailed analyses of previous ranking losses for alignment in Appendix F.
2For each question in the training set, we sample new COTs (three positive and three negative COTs,

respectively) that are different from training COTs for evaluation.
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METHODS
WITHOUT CONSTRAINT WITH CONSTRAINT (OURS)

TAccuracy AAccuracy PPL (↓) TAccuracy AAccuracy PPL (↓)

VFT 20.82±0.71 68.72±1.48 1.60±0.01 20.82±0.71 68.72±1.48 1.60±0.01

RRHF 7.51±0.56 87.44±1.28 1.80±0.01 25.53±0.27 79.89±0.60 1.35±0.01
PRO 18.73±0.31 86.58±1.09 2.34±0.02 25.82±0.48 80.34±0.97 1.45±0.01
AFT (LRBC

A ) 7.03±0.98 88.89±0.78 7.81±0.03 26.08±1.05 81.36±0.78 1.37±0.01

Table 4: Task accuracy (TAccuracy) and assessment accuracy (AAccuracy) on GSM8K for LLama-
7B, which is fine-tuned by different methods (with or without constraint) on GSM8K-Rank. PPL (↓,
lower is better) denotes the average perplexity of all positive COTs.
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Figure 2: Variation of accuracy with (a) different quality of negative examples; (b): different number
of sampling COTs for alignment training; (c) different boundary constraint hyper-parameter; (d)
different number of voting paths of self-consistency.

RRHF and AFT. We find the reason is that PRO employs a dynamic temperature that reduces the
negative score in a more reasonable manner (Please refer to Appendix F.3 for details); 3) By adding
the constraint, all ranking losses can not only improve two accuracies but also decrease the perplexity.
These results show the importance of constraint for other alignment ranking losses. 3

6.2 THE INFLUENCE OF NEGATIVE EXAMPLE QUALITY FOR RANKING LOSSES

In this paper, we attribute the model degradation to the over-punishment of negative examples with
good quality. To demonstrate this, we delve deeper into this issue by examining the influence of
negative example quality on model performance. To this end, we construct low-quality negative
examples by replacing α proportion characters in the original example with nonsensical characters ‘.’
(Please refer to Appendix E for details). We evaluate the performance of three methods, VFT, AFT
(without constraint), and RRHF (without constraint), using negative examples across a range of α
values from 0 to 1. As shown in Figure 2(a): 1) compared with VFT, two unconstrained ranking
losses with high-quality negative examples (α = 0) significantly harm the model performance. 2)
when the quality of negative examples is low (α > 0), the ranking loss generally improves the model
performance. These results support our claim that the model’s degradation stems from excessively
penalizing non-optimal but still good negative examples, and also demonstrate the necessity of
constraint in the ranking loss.

6.3 EFFECTIVENESS OF THE NUMBER OF CANDIDATE COTS

As described in Section 4.1, AFT samples k candidate generation results to align LLMs. In this
section, we explore the influence of k. We sampled 0, 8, 16, 32, and 64 results from the VFT-LLama-
7B, and then de-duplicated these sampling results. We train LLama-7B on the de-duplicated datasets.
As shown in Figure 2(b), we can see that AFT can consistently improve the model performance with
k improvement, which is a promising result. We think the reason is that with large k, the AFT will
have more data to help the LLM perceive the quality of different COT paths, which enhances the
final performance. This growing accuracy shows the effectiveness and the potential of AFT.

3We also conduct a case study in Appendix G to intuitively show the effectiveness of constrained alignment
and the model degradation caused by the unconstrained alignment.
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METHODS GSM8K AQUA ECQA MMLU AVERAGE (∆)

VFT 35.72±0.95 32.95±0.98 69.25±0.74 37.52±1.03 43.86 ( – )

AFT (LDC
A ) 40.24±0.63 33.72±0.92 71.38±0.64 39.25±0.35 46.15 (↑ 2.29)

AFT (LBC
A ) 40.00±0.69 33.45±0.56 71.48±0.89 38.89±0.70 45.96 (↑ 2.10)

Table 5: Comparison of VFT- and AFT-LLama-7B with training data “GSM8K+AQUA+ECQA” on
three in-domain benchmarks and an out-of-domain benchmark MMLU.

6.4 ABLATION ON THE BOUNDARY VALUE

The boundary constraint term of AFT requires a hyper-parameter β to regulate the boundary. In this
section, we conduct an ablation study to demonstrate the impact of varying β values. As depicted in
Figure 2(c), the performance initially increases and subsequently decreases as β ranges from -0.8
to 0.8. These findings align with expectations, as a small β cannot effectively widen the score gap
between high-quality and low-quality COTs, while an overly large β may result in over-punishment
of non-optimal COTs, thereby compromising the model’s generative abilities. In conclusion, the
results emphasize the importance of the boundary constraint term and indicate that the value of β can
significantly affect model performance. Therefore, it is essential to carefully adjust this value when
using our boundary-constrained alignment loss.

6.5 EFFECTIVENESS OF AFT WITH SELF-CONSISTENCY

Self-consistency (Wang et al., 2023c) is a highly effective strategy for improving LLM’s reasoning
performance. This method involves sampling multiple COTs and utilizing a voting process to
determine the final answer during inference. In contrast, AFT samples COTs for training to develop
better LLMs. Both methods utilize COTs to enhance the model’s reasoning ability, while are
utilized at different stages. In this section, we explore the combination of AFT and Self-consistency.
As illustrated in Figure 2(d), as the number of paths increases, the improvement of AFT is more
significant than VFT, demonstrating that AFT effectively enhances self-consistency. We believe the
reason is that AFT helps models learn to assess the quality of different COTs by encouraging larger
scores for high-quality COTs compared to low-quality ones. This means that high-quality COTs are
more likely to be sampled, and thus, AFT can enhance self-consistency.

6.6 EFFECTIVENESS OF AFT ON THE MULTI-TASK AND OUT-OF-DOMAIN SITUATIONS

To further demonstrate the effectiveness and versatility of AFT, we investigate its performance in
multi-task scenarios. We combine the training sets of three datasets and use both AFT and VFT
to train the LLama-7B model. As depicted in Table 5, AFT is able to simultaneously enhance the
performance of all corresponding test sets. Additionally, we evaluate both AFT and VFT on the
MMLU (zero-shot), an out-of-distribution benchmark, and AFT also outperforms VFT. These results
indicate that AFT not only improves the performance of in-distribution tasks but also enhances the
model’s transfer ability, leading to significantly better out-of-distribution performance.

7 CONCLUSION AND LIMITATIONS

In this paper, we find that the vanilla fine-tuned (VFT) LLMs with chain-of-thought (COT) reasoning
process suffer from an assessment misalignment problem, i.e, they fail to access the quality of different
COTs of the learned questions, which hinders the reasoning ability of LLMs. To this end, we propose
an alignment fine-tuning (AFT) paradigm. Our AFT consists of a novel constrained alignment loss
that can align the model assessment behaviors without harming the model performance. Extensive
experiments on four reasoning benchmarks with both binary and ranking feedback demonstrate
the effectiveness of AFT. In addition, AFT also performs well in multi-task and out-of-distribution
situations. Furthermore, we also delve deeply into recent widely used ranking losses for alignment and
find that the constraint, which these approaches have overlooked, is also crucial for their performance.
Besides the advantages of our work, we also discuss some limitations of our paper. Please refer to
Appendix H for details.
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I want you to act as a grade school math teacher, and evaluate the quality of the answer
provided by an AI assistant to the math Question displayed below.
You will be given a reference answer and the assistant’s answer, and Your evaluation should
consider the correctness of the assistant’s answer.
Begin your evaluation by comparing the assistant’s answer with the reference answer step-by-
step. Identify and correct any mistakes.
The answer is scored out of 10 points, with one point deducted for each wrong step. Be as
objective as possible.
Your need first provide your Evaluation Evidence and then rate the response on a scale of 1 to
10.
[Question]:
{question}
[The Start of Reference Answer]
{reference}
[The End of Reference Answer]
[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]
You MUST output with two lines:
Evaluation Evidence: <Explanation>
Rating: <ONLY a single digit>

Table 6: The evaluation template that prompts ChatGPT to score each candidate COT.

A DATASETS

We conduct our experiments on three widely used reasoning datasets with human-annotated chain-
of-thoughts, including math reasoning tasks GSM8K (Cobbe et al., 2021), AQUA-RAT (Ling et al.,
2017), commonsense reasoning task ECQA (Aggarwal et al., 2021). Furthermore, we create GSM8K-
RANK to evaluate the effectiveness of our AFT in the ranking situation:

GSM8K GSM8K is a widely used mathematical reasoning dataset, which comprises 8.5K varied
math word problems for grade school, developed by human authors. It is partitioned into 7.5K
training problems and 1K testing problems. We sample 400 problems from the testing set to form the
validation set, and thus we have 7, 473, 400, and 919 examples in training, validation, and testing
sets, respectively.

AQUA-RAT AQUA-RAT comprises approximately 100, 000 algebra-based word problems, each
accompanied by a natural language rationale. Each example in the dataset consists of four components:
1) question, which statement is written in natural language, 2) options, a set of five potential answers
with one being correct, 3) rationale, a natural language explanation of the problem’s solution, and 4)
correct, the right answer choice. For efficiency, we randomly sample 5, 000, 400, and 1, 254 examples
as the training, validation, and test set, respectively.

ECQA ECQA is derived from CommonsenseQA (CQA) (Saha et al., 2018) by generating a free-flow
explanation for each QA pair in CQA. CQA is a comprehensive dataset for commonsense reasoning,
containing QA pairs with five choices and a single correct answer. ECQA comprises 11K QA pairs in
total and has 7, 598, 1, 090, and 2, 194 examples in the training, validation, and test sets, respectively.

GSM8K-RANK To evaluate the effectiveness of our AFT in the ranking situation, we randomly
select 1,000 examples from GSM8K’s training set and generate 8 candidate COTs for each question.
We then prompt ChatGPT to rate these candidates by providing the question, reference answer, and
the COT to be assessed and thus we can achieve a quality ranking sequence for different generated
COTs. We randomly sampled 20 examples and found that ChatGPT’s scoring results align well
with human assessment. ChatGPT is instructed to assign a score between 1 and 10, indicating the
quality of each COT. To ensure the reliability of the ratings, following (Wang et al., 2023b), we
require ChatGPT to present evaluation evidence before assigning a score, and simple 3 scores for
each example. We take the average score as the final score for each COT.
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Models GSM8K AQUA ECQA GSM8K-RANK

LLama-7B 0.15 0.15 0.15 0.05
LLama2-7B 0.15 0.40 0.35 0.15
LLama-13B 0.15 0.15 0.15 0.15
LLama2-13B 0.15 0.15 0.20 0.15

Table 7: The value of hyper-parameter β for boundary Constrained Alignment.

A.1 WHY WE CHOSE GSM8K, AQUA-RAT AND ECQA AS OUR EVALUATION DATASETS.

In this paper, our objective is to explore the influence of VFT on the reasoning capabilities of LLMs.
Currently, mathematics and commonsense reasoning serve as two exemplar tasks for reasoning. As
such, we selected our evaluation datasets from these two reasoning task categories. Additionally,
we aim to uncover the potential drawback of VFT, which necessitates a chain-of-thought reasoning
process for every example in the training set.

The most widely used datasets with chain-of-thought reasoning processes are GSM8K and AQUA-
RAT for mathematics and ECQA for commonsense reasoning. Consequently, we opted to use these
three datasets as benchmarks for our study. Our research also extends to examining the efficacy of our
proposed AFT under ranking circumstances. Due to the absence of appropriate datasets that provide
ranking feedback, we developed the GSM8K-RANK dataset.

While there are alternative datasets available, we believe that these three widely used datasets,
complemented by our self-constructed GSM8K-RANK, sufficiently demonstrate both the presence of
assessment misalignment issues in VFT and the viability of our proposed AFT.

B PARAMETER SETTING

We conduct experiments on four large language models, LLama-7B, LLama-13B, LLama2-7B, and
LLama2-13B. We do not conduct experiments on larger models due to resource limitations. We
sample k = 6 COTs from VFT-LLMs with a sampling temperature of 1. Our detached constrained
alignment loss does not introduce any hyper-parameters, and we search the hyper-parameter of
boundary constraint loss within the range (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) on
the validation set. The value of β of different models and datasets is provided in Table 7. On GSM8K,
AQUA, and ECQA, the models are trained for 3, 3, and 1 epochs, respectively. The learning rate is
set to 2e-5, featuring linear decay and a linear warmup for 3% of the total training steps. 7B and
13B models are trained on 8 and 32 V100 GPUs with 32GB memory, respectively. We employ a
maximum sequence length of 512 and utilize the DeepSpeed library and ZeRO optimizer during
training.

C BASELINES

We compare our AFT with the following baselines:

VFT the vanilla fine-tuning (VFT) method that simply trains LLMs with the reference COT using
the MLE loss, which is the most widely used training strategy.

RFT Rejective sampling fine-tuning (RFT) (Yuan et al., 2023a) selects the COTs with the correct
answer, adds these COTs to the origin training data, and uses the new augmented training data to
train LLMs, which is proven to be a very strong baseline.

RRHF Rank Responses to align Human Feedback (RRHF) (Yuan et al., 2023b), which takes
candidate ranking into account and distinguishes different candidates through a pair-wise ranking
loss.
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Methods LV FT +LRBC
A +LRDC1

A +LRDC2
A +LR

A

Accuracy 20.82±0.71 26.08±1.05 25.68±0.49 12.57±1.34 7.03±0.98

Table 8: Results of LLama-7B on GSM8K fin-tuned by different methods.

High-quality
(α = 0)

48 x 2 = << 48 ∗ 2 = 96 >> 96 clips were sold in April. 48 / 2 =
<< 48/2 = 24 >>24 clips were sold in May. So, Natalia sold a total of 96 +
24 = << 96 + 24 = 120 >>120 clips in April and May. [ANS] 120.

Low-quality
(α = 0.1)

48x.2 = . < 48 ∗ 2 = .6 >> 96 clips were sold in Apri.. 48/2 = . <
48/2 = 24 >> 24 clips were sold in May. So, Natalia sold a total of 96 + 24
= . < .96 + .4.1... > 120 .lips in April and May. [ANS] 120.

Table 9: High-quality and low-quality negative examples. We construct low-quality negative examples
by replacing α of the chars with nonsensical char ‘.’.

PRO Preference Ranking Optimization (PRO) (Song et al., 2023a), which takes candidate ranking
into account and distinguishes different candidates through a ranking loss with a dynamic temperature.

D DETACHED CONSTRAINED RANKING LOSS

Given a ranking sequence c1 ⪰ c2 ⪰ · · · ⪰ ck, besides extending LBC
A (Equation 8) to the ranking

loss LRBC
A (Equation 14), we also try to extend RDC

A to two types of detached constraint ranking
loss as follows:

LRDC1
A = log

1 + ∑
ci≻cj

exp(D(s
cj
θ )− sciθ )

 (12)

LRDC2
A = log

1 + ∑
ci≻cj ,cj /∈cmin

exp(s
cj
θ − sciθ ) +

∑
ci≻cj ,cj∈cmin

exp(D(s
cj
θ )− sciθ )

 (13)

where cmin is the set of all lowest-quality examples. Specifically, LRDC1
A detachs the score of c

when it serves as a negative example, while LRDC2
A only detach the score of lowest-quality examples.

We design LRDC2
A as we consider that in a ranking scenario, higher-quality examples are inherently

constrained by lower-quality ones. Consequently, we hypothesize that constraining only the lowest
examples could potentially prevent model degradation. We also consider a ranking baseline without
any constraint:

LR
A = log

1 + ∑
ci≻cj

exp(s
cj
θ − sciθ )

 (14)

Table 8 illustrates the results of LLama7B fine-tuned by different methods on GSM8K-RANK.
As is shown: 1): The method without setting any constraint LA only achieves 7.03% accuracy,
showing the importance of adding a constraint to the alignment loss. 2): LRDC2

A , which applies a
detached constraint solely to the lowest-quality examples, attains a marginally improved accuracy
of 12.57%. However, it also considerably impairs the model’s overall performance compared with
VFT, indicating that constraining only the lowest-quality examples is insufficient. 3): LRDC1

A is
much better than VFT, LRDC2

A and LA, we think the reason is that after detaching all negative scores,
LRDC1
A prevents the model degradation, however, it is worse than LRBC

A , we hypnosis that LRDC1
A

only tries to improve all scores, although with different extends, which is not good enough in the
ranking situation.
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E THE INFLUENCE OF NEGATIVE EXAMPLE QUALITY

We construct low-quality negative examples by replacing α proportion characters in the original
example with nonsensical characters ‘.’. Intuitively, the larger α, the lower the quality of negative
examples. Table 9 shows an example of α = 0 and α = 0.1.

F DELVE DEEPLY INTO PREVIOUS RANKING LOSSES FOR ALIGNMENT

In this section, we delve deeply into previous widely used ranking losses for alignment, DPO (Rafailov
et al., 2023), RRHF (Yuan et al., 2023b) and PRO (Song et al., 2023a), and point out that they all
suffer from lack of a constraint term.

Given a ranking sequence c1 ⪰ c2 ⪰ · · · ⪰ ck, all ranking losses are proposed to ensure the scores of
high-quality examples are larger than those of low-quality examples. Ranking losses usually use the
token-averaged log-likelihood to represent the score of an example c given by an LLM parameterized
by θ:

scθ =
1

|c|

|c|∑
j=1

logP (cj | c<j , q; θ), (15)

F.1 DPO

Direct Preference Optimization (DPO) (the ranking version) optimizes LLMs with the following
ranking loss:

LDPO = −
∑
ci

log
exp(βsciθ − βsciθref )

exp(βsciθ − βsciθref ) +
∑

cj≺ci
exp(βs

cj
θ − βs

cj
θref

)

=
∑
ci

log

1 + ∑
cj≺ci

exp(βs
cj
θ − βs

cj
θref

− βsciθ + βsciθref )

 (16)

where θ and θref are parameters of the training model and reference model, respectively. The training
model and reference model are usually initialized by the same LLM, and DPO freezes the reference
model during fine-tuning. β is a hyper-parameter of DPO.

To analyze the effectiveness of DPO, we compute the gradient with respect to the parameters θ:

∇θLDPO = −
∑
ci∑

cj≺ci
[β exp(βs

cj
θ − βs

cj
θref

− βsciθ + βsciθref )∇θs
ci
θ − β exp(βs

cj
θ − βs

cj
θref

− βsciθ + βsciθref )∇θs
cj
θ ]

1 +
∑

cj≺ci
exp(βs

cj
θ − βs

cj
θref

− βsciθ + βsciθref )

(17)

Based on ∇θLDPO, for each pair (ci, cj), LDPO will decrease the s
cj
θ with the gradient weight

β exp(βs
cj
θ −βs

cj
θref

−βs
ci
θ +βs

ci
θref

)

1+
∑

cj≺ci
exp(βs

cj
θ −βs

cj
θref

−βs
ci
θ +βs

ci
θref

)
, which may lead the model degradation.

In the original DPO paper (Rafailov et al., 2023), they observe this catastrophe and alleviate it by
setting a very small β (e.g., 0.1) to achieve a small gradient weight. Please refer to the original
paper for more details. However, based on Equation 17, the small β also hamper the improvement of
positive examples, which may also hinder the model’s performance. Furthermore, solely relying on
reducing gradient weights might not be sufficient to prevent model deterioration, as demonstrated
in the subsequent analysis of RRHF and PRO. In this paper, we do not replicate DPO since there is
no official public code available for ranking. In addition, compared with other ranking losses, DPO
needs an additional reference model, incurring higher memory costs.
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Scaling Factor β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy 18.75 18.01 15.05 13.20 11.79 11.79 9.83 8.78 8.62 7.51

Table 10: The influence of gradient weight scaling factor β for RRHF.

F.2 RRHF

Rank Responses to align Human Feedback (RRHF), which takes candidate ranking into account and
distinguishes different candidates through a pair-wise ranking loss:

LRRHF =
∑
ci≻cj

max(0, s
cj
θ − sciθ ) (18)

We compute the gradient of LRRHF with respect to θ:

∇θLRRHF = −
∑
ci≻cj

I(scjθ > sciθ )∇θs
ci
θ︸ ︷︷ ︸

increase s
ci
θ

− I(scjθ > sciθ )∇θs
cj
θ︸ ︷︷ ︸

decrease s
cj
θ

 (19)

Based on ∇θLRRHF , we can see that although RRHF implicitly introduces a constraint by setting the
loss to 0 when the positive score is larger than the negative score, it still has a drawback: Whenever
s
cj
θ > sciθ , LRRHF will decrease the s

cj
θ with the same gradient weight I(scjθ > sciθ ) = 1. This

weight might be too large, potentially harming the model’s performance.

To illustrate this, we explore the performance of RRHF with a scaling factor β on its gradient
weight. As shown in Table 10, it is evident that as the weight increases (larger β), the model’s
performance declines, showing that: 1) The constraint of RRHF is not effective enough to prevent
model degradation; 2) We can alleviate the model degradation by making the gradient weight smaller
suggested by DPO (Rafailov et al., 2023); 3) Although we have tried a very small β = 0.1, RRHF
still harms the performance, which shows solely relying on reducing gradient weights might not be
sufficient to prevent model deterioration.

In fact, in the original RRHF paper (Yuan et al., 2023b), the authors have observed that a large
ranking weight, such as 10 or 100, significantly impairs model performance, leading them to try a
smaller weight (i.e., 1). However, they do not analyze the potential reason. In this paper, we highlight
that a key factor causing this discrepancy is the unwarranted reduction of the negative example score,
which necessitates imposing a constraint on the ranking loss. In addition, we discovered that a weight
of 1 can also substantially harm the model’s performance in the reasoning task. We believe that the
optimal weight of RRHF varies across tasks.

F.3 PRO

Preference Ranking Optimization (PRO), which takes candidate ranking into account and distin-
guishes different candidates through a ranking loss with a dynamic temperature:

LPRO = −
∑
ci

log
exp(τmax

i sciθ )

exp(τmax
i sciθ ) +

∑
cj≺ci

exp(τ j
i s

cj
θ )

=
∑
ci

log[1+
∑

cj≺ci

exp(τ j
i s

cj
θ −τmax

i sciθ )] (20)

τ ji = rci − rcj > 0, τmax
i = max

cj≺ci
τ ji (21)

where rc is the score of c given by a reward model. τ ji is the dynamic temperature for score s
cj
θ . We

compute the gradient with respect to the parameters θ:

∇θLPRO = −
∑
ci

∑
cj≺ci

[τmax
i exp(τ j

i s
cj
θ − τmax

i sciθ )∇θs
ci
θ − τ j

i exp(τ j
i s

cj
θ − τmax

i sciθ )∇θs
cj
θ ]

1 +
∑

cj≺ci
exp(τ j

i s
cj
θ − τmax

i sciθ )
(22)
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Methods PRO PRO (remove τ ) PRO + RDC1 PRO (remove τ ) + RDC1

Accuracy 18.73±0.31 7.18±0.78 25.84±0.48 25.43±0.98

Table 11: The importance of dynamic temperature of PRO. “remove τ” denotes remove the dynamic
temperature term, i.e., τ jj and τmax

i from PRO. “+RDC1” denotes add our ranking detach technical
(Equation 12).

Based on ∇θLPRO, we can see that for each pair (ci, cj), LPRO will decrease s
cj
θ with the dynamic

gradient weight:

DGWj
i =

τ j
i exp(τ j

i s
cj
θ − τmax

i sciθ )

1 +
∑

cj≺ci
exp(τ j

i s
cj
θ − τmax

i sciθ )
, (23)

which may harm the model’s performance. However, the dynamic gradient weight that is computed
based on the reward is more reasonable than the constant value of 1 used in RRHF, and thus PRO
outperforms RRHF. Specifically, when there is a substantial reward gap between higher-quality and
lower-quality, indicated by a large value τ ji . It is reasonable to increase the penalty for negative
example scores (large DGWj

i), and vice versa. To demonstrate this, we remove the dynamic
temperature term, i.e., τ jj and τmax

i , from PRO. As shown in Table 11, we can see that PRO
significantly outperforms PRO (remove τ ) when there is no constraint. However, the performance
gap shrinks when adding our detached constraint. These results indicate: 1) To a certain extent, the
dynamic temperature’s effectiveness stems from its ability to make PRO reduce the negative score in
a more reasonable manner. 2) The dynamic temperature is useful to prevent model degradation but is
not good enough.

F.4 SUMMARY

Our analysis reveals that previous ranking-based alignment works have some limitations:

1) Although their methods consist of some strategies to prevent model degradation (i.e., using a
scaling factor to reduce gradient weight for DPO, setting the loss to 0 for RRHF, and incorporating a
dynamic temperature for PRO), they do not recognize the importance of constraints for ranking-based
alignment methods in their papers.

2) Their strategies essentially involve diminishing the gradient weight’s magnitude, which is proven
to be insufficient (at least in the reasoning tasks).

Different from previous works, in this paper:

1) We point out an assessment misalignment problem of VFT for reasoning and highlight the
importance of constraint for alignment to prevent model degradation.

2) We introduce a novel constrained alignment loss. The constrained alignment loss with a boundary
constraint term not only alters the magnitude but also adjusts the direction of the gradient weight
depending on the condition, which is proven to be very effective in preventing model degradation and
enhancing the reasoning ability of LLMs.

G CASE STUDY

We also conducted a case study to intuitively show the importance of our constrained alignment. As
shown in Table 12, given the question, our AFT successfully gives the correct COT and answer, while
VFT gives the wrong COT at the second step (colored red), demonstrating the superiority of AFT.
More importantly, after removing the boundary constraint, the generative ability of LLM seems to
degrade, resulting in outputting many repeat and meaningless output tokens.

H LIMITATIONS

Our paper has some limitations, which should be discussed in future works: 1) Due to the resource
limit, we do not scale the AFT to larger LLMs such as 65B and 70B LLama models. However, we
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Question At the end of the school year, Kate asked her teacher if she could have the
3 boxes of 64 crayons since they were all worn down to small pieces. The
teacher agreed. Kate took the crayons home and decided to make crayon
muffins by melting 8 small pieces of crayons together in a muffin tin that she
placed in an oven for a few minutes. If she can sell her muffin crayons for
$1.50 each, how much money can Kate make?

Answer She was able to get 3 boxes of 64 crayons so she has 3*64 =
<<3*64=192>>192 crayons Each crayon muffin needs 8 crayons and she
has 192 crayons so she can make 192/8 = <<192/8=24>>24 crayon muffins
If she makes 24 crayon muffins and sells them for $1.50 apiece, she can make
24*1.5 = $<<24*1.5=36.00>>36.00 [ANS] 36.

VFT She has 3 boxes of crayons that are all worn down to small pieces so she
has 3*64 = <<3*64=192>>192 pieces of crayons She melts 8 pieces of
crayons together in a muffin tin so she has 8+192 = <<8+192=200>>200
crayon muffins She can sell her muffin crayons for $1.50 each so she can
make 200*1.5 = $<<200*1.5=300>>300 [ANS] 300.

AFT Kate has 3 boxes * 64 crayons = <<3*64=192>>192 crayons. She melts
192 crayons / 8 crayons per muffin = <<192/8=24>>24 muffins. She sells
the muffins for $1.50 each and has 24 muffins, so she makes 24 muffins *
$1.50/muffin = $<<24*1.5=36>>36. [ANS] 36.

AFT (remove
constraint)

She can make 8 pieces of crayons per muffin tin so 3 boxes * 8 pieces/tin = 8
* 8 = <<3*8=24>>24 pieces fit in 1 tin Each melted crayon is worth $1.50
because 24 pieces * 1.50/64 pieces = 1.50/1.50/24 pieces = 1.50/1.50 She can
make 4 tins of melted crayons because 24 pieces / 1.50 / 1.5 / 24 pieces / 1.50
/ 1.50 / 24 pieces / 1.50 / 1.50 / 24 pieces / 1.50 / 1.50 / 24 pieces / 1.50 / 1.50
/ 24 pieces / 1.50 / 1.50 / 24 pieces / 1.50 / 1.50 / 24 pieces / 1.50 / 1.50

Table 12: A case study to intuitively show the effectiveness of AFT with boundary constraint. the
right and wrong steps are colored by blue and red, respectively.
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believe that larger models still suffer from the assessment misalignment problem of VFT, and thus
AFT can improve the performance of these larger models; 2) Our boundary-constrained alignment
loss incorporates a hyper-parameter β that regulates the constraint strength, significantly impacting
the model’s performance. Finding the optimal hyper-parameter requires constructing a validation set
and a certain search overhead. Although our detached alignment loss can mitigate the assessment
misalignment problem without requiring any hyper-parameters, it sometimes falls short in comparison
to the boundary-constrained alignment loss, especially in ranking situations. Therefore, how to design
a dynamic boundary constraint without introducing the hyper-parameter is a meaningful question,
which leaves for further work.
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