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Abstract

Since its debut in 2016, ResNet has become ar-
guably the most favorable architecture in deep
neural network (DNN) design. It effectively ad-
dresses the gradient vanishing/exploding issue in
DNN training, allowing engineers to fully unleash
DNN’s potential in tackling challenging problems
in various domains. Despite its practical success,
an essential theoretical question remains largely
open: how well/best can ResNet approximate
functions? In this paper, we answer this question
for several important function classes, including
polynomials and smooth functions. In particu-
lar, we show that ResNet with constant width can
approximate Lipschitz continuous function with
a Lipschitz constant µ using O(c(d)(ε/µ)−d/2)
tunable weights, where c(d) is a constant depend-
ing on the input dimension d and ϵ > 0 is the tar-
get approximation error. Further, we extend such
a result to Lebesgue-integrable functions with the
upper bound characterized by the modulus of con-
tinuity. These results indicate a factor of d reduc-
tion in the number of tunable weights compared
with the classical results for ReLU networks. Our
results are also order-optimal in ε, thus achiev-
ing optimal approximation rate, as they match
a generalized lower bound derived in this paper.
This work adds to the theoretical justifications for
ResNet’s stellar practical performance.

1. Introduction
One trend in deep learning in the past decade is the use
of larger and deeper neural networks to process higher-
dimensional data. However, for deep neural networks, train-
ing is notoriously difficult, due to gradient vanishing (Glorot
& Bengio, 2010). In 2016, the emergence of ResNet (He
et al., 2016) addresses the issue of gradient vanishing or
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exploding encountered during neural network training and
has achieved outstanding performance in applications.

The practical success of ResNet naturally leads to an essen-
tial theoretical question: how well can ResNet approximate
functions? Along this line, a milestone result in (Lin &
Jegelka, 2018) shows the universal approximation capability
of ResNet (even with one neuron per layer): it can approxi-
mate any Lebesgue-integrable function arbitrarily well as
the number of tunable weights goes to infinity. This result
gives theoretical justification to using ResNet to approxi-
mate general functions and spurs a number of follow-up
studies. For example, the authors in (Oono & Suzuki, 2019)
explore the approximation capabilities of ResNet-type con-
volutional neural networks, establishing that they can ap-
proximate smooth functions with a comparable quantity of
tunable weights as their feed-forward ReLU network coun-
terparts. However, the question of whether this represents
the optimal use of ResNet’s resources remains unanswered.
We delve deeper into this and other related research in Sec-
tion 1.1. Despite of these exciting results, it remains largely
open today to fully characterize the universal approximation
capability of ResNet. That is, how many tunable weights are
needed for ResNet with optimized structures to approximate
a function up to an error ε?

In this paper, we seek answers to the above question, by
developing upper-/lower- bounds on tunable weights for
ResNet with constant width to approximate popular classes
of functions. We summarize our contributions as follows:

� In Sec. 3, we explicitly establish the relationship between
ResNet and feedforward networks (FNNs) (see Proposition
1). We show that ResNet can be viewed as an FNN and thus
derive lower bounds on the number of tunable parameters
for ResNet to approximate various classes of functions.

� In Sec. 4, we show that ResNet with constant width,
by leveraging specific tunable weights, can approxi-
mate functions in various function classes. These in-
clude monomials with degree p, requiring the number of
weights O(p log p/ε), polynomials of degree p, needing
O(p#terms log p/ε)1, and smooth functions differentiable

1The notation ’#’ is an abbreviation of number and ’#terms’
refers to the number of terms in the polynomial.
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Table 1. A summary of existing and our results on approximation rate of ResNet structure. In the table, the upper bound refers to the
number of parameters needed using the network architecture to approximate any function in the target function space to ε.

Paper Function Space ∗ Network Architecture Upper Bound Optimality

(Lin & Jegelka, 2018) Lipschitz Continuous ResNet with one neuron Od(ε
−d) Suboptimal‡

Functions over [0, 1]d per layer

(Oono & Suzuki, 2019) Lipschitz Continuous ResNet CNN with O(1) channels Od(ε
−d) Suboptimal‡

Functions over [0, 1]d

Ours(Theorem 7) Lipschitz Continuous ResNet with constant(= 4) width Od(ε
− d

2 ) † Optimal
Functions over [0, 1]d

∗ Note that (Lin & Jegelka, 2018) and our Theorem 7 consider approximating Lebesgue-integrable functions and (Oono & Suzuki,
2019) consider Hölder class. All of them include Lipschitz functions that are used for comparison.
‡ The bound is optimal in terms of the entropy limitation. One could refer to Theorem 3 (Yarotsky, 2017) or (Yarotsky &
Zhevnerchuk, 2020). However, the upper bound is not optimal in terms of Vapnik-Chervonenkis (VC) dimension (Shen et al.,
2022b; Siegel, 2023).
† Our rate derived is explicit for all input-related parameters such as d.

up to degree r, needing Od,r(ε
−d/r log 1/ε)2. In addi-

tion, we show that ResNet with one neuron per hidden
layer can generate any continuous piece-wise linear func-
tion. Last but not least, we derive a tight upper bound of
the number of tunable parameters of ResNet for approx-
imating Lebesgue-integrable functions over [0, 1]d which
is Od

(
ω−1
f (ε)

−d/2
)

where ωf (t) := sup{|f(x)− f(y)| :
∥x− y∥2 ≤ t} is the modulus of continuity and ω−1

f (r) :=
sup{t : ωf (t) ≤ r}. Moreover, if f is Lipschitz continu-
ous with Lipschitz constant µ, the upper bound becomes
O(c(d)(ε/µ)−d/2). Besides, Our bounds are explicit for all
related parameters including the input dimension, the target
function space, and the desired accuracy.

� We highlight our results in Theorem 7, which achieves
the optimal upper bound of the number of parameters of
ResNet for approximating Lebesgue-integrable functions
even by ResNet with constant width. This is a non-trivial
extension of the work (Lin & Jegelka, 2018), which shows
that for Lebesgue-integrable function f over [0, 1]d, there
exists a ResNet R with one neuron per layer and not more
than O(ω−1

f (ε)
−d

) parameters such that ∥f −R∥ ≤ ε. Our
results further establish that ResNet with constant width
can approximate any Lebesgue-integrable function over
[0, 1]d to an error ε with an ε-order optimal upper bound
O(ω−1

f (ε)
−d/2

) of the number of parameters needed. We
summarize the comparison in Table 1.

These findings add to the theoretical justifications for
ResNet’s outstanding practical performance, and shed light
on analysis for further research on NN design optimization.

2The notation a(ε) = O(g(ε)) means a(ε) ≤ Cg(ε) for suffi-
ciently small ε where C is a constant independent of ε. Importantly,
throughout this paper, we employ the notation Od(·) to underscore
the hidden constant C depending on d.

1.1. Related Work

In recent years, the expressive capabilities of various neural
network architectures have garnered increased attention,
spurred by their remarkable and noteworthy successes. In
this subsection, we will discuss previous research on the
topic through the lens of approximation theory.

Universality. The universality, i.e., universal approxima-
tion property, of a function family implies that this family
is dense in the space of continuous functions, meaning it
can approximate any continuous function to an arbitrary
precision. In the earlier years, (Cybenko, 1989; Hornik,
1991; Leshno et al., 1993; Pinkus, 1999) made a ground-
breaking argument by demonstrating that shallow neural
networks equipped with suitable activation functions such
as sigmoid, non-polynomial functions, possess universal
approximation properties. In recent years, the universal-
ity of narrow deep networks has also attracted consider-
able attention. (Hanin & Sellke, 2017) determined that a
deep ReLU neural network must have a minimum width
of d+ 1 to ensure universality, where d is the input dimen-
sion. (Kidger & Lyons, 2020; Park et al., 2020; Cai, 2022)
later showed that deep narrow networks with reasonable
activation functions can achieve universality, providing the
minimum width of neural networks for achieving the uni-
versal approximation property. Over the past decades, a
variety of network architectures have been developed to
cater to diverse tasks and objectives, extending beyond feed-
forward ReLU networks. The universal approximation the-
orem has been shown for multiple network architectures,
including standard ReLU convolutional neural networks
(CNNs) (Zhou, 2018; 2020), 2D ReLU CNNs with classi-
cal structures (He et al., 2022), continuous-time recurrent
neural network (RNN) (Li et al., 2020; 2022b), ResNet (Lin
& Jegelka, 2018; Li et al., 2022a), and Transformers (Yun
et al., 2019).
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Approximation Capabilities. There has been substantial
progress in enhancing our theoretical understanding of neu-
ral networks. Some studies have focused on comparing the
expressive power of both shallow and deep neural networks,
examining their respective capabilities (e.g., (Arora et al.,
2016; Eldan & Shamir, 2016; Liang & Srikant, 2016; Tel-
garsky, 2016; Yarotsky, 2017; Poggio et al., 2017)). Some
others have quantified the number of linear regions within
deep neural networks, casting light on their complexity
(e.g., (Montufar et al., 2014; Serra et al., 2018; Arora et al.,
2016)). Besides, constructive methods have been utilized to
probe the approximation capabilities across different func-
tion classes. Notably, researchers have delved into the op-
timal approximation of continuous functions (e.g., (Shen
et al., 2022b; Yarotsky, 2018)), the optimal approximation
of smooth functions (e.g., (Yarotsky, 2017; Lu et al., 2021;
Montanelli & Du, 2019)), and the approximation of ana-
lytic functions (e.g., (Wang et al., 2018; Schwab & Zech,
2021)). Recently, there is some interesting work on the
special network architecture like parameters sharing (Zhang
et al., 2023) and nested network (Zhang et al., 2022). These
diverse investigations collectively deepen our understand-
ing of the potential and constraints of neural networks in
approximating various functions.

Perspectives on the Curse of Dimensionality. The ’curse
of dimensionality’ coined by (Bellman, 1957) refers to a
phenomenon that a model class will suffer an exponential
increase in its complexity as the input dimension increases.
Importantly, the curse of dimensionality, not limited to
FNNs, is also a challenge for almost all classes of function
approximators due to the entropy limitation (Kolmogorov
& Tikhomirov, 1959). More specifically, any continuous
function approximator (refer to Ssec. 2.2 for detailed ex-
planations) will suffer the curse of dimension in the Hölder
space Cr([0, 1]d) (DeVore et al., 1989) because the metric
entropy in Cr([0, 1]d) with respect to the uniform topol-
ogy is Θ(ε−d/r). The property is applied to ReLU neural
networks in Thm. 3 (Yarotsky, 2017).

In an attempt to mitigate the curse of dimensionality, initial
strategies involved the consideration of smaller function
classes whose metric entropy is expected to reduce such as
analytical functions (Wang et al., 2018), bandlimited func-
tions (Montanelli et al., 2019), Korobove space (Montanelli
& Du, 2019), a space derived by Kolmogorov Superposi-
tion Theorem(KST) (Lai & Shen, 2021; He, 2023). More
recently, researchers have shifted their focus toward the
structure of neural networks, suggesting a potential solution
to circumvent the curse of dimensionality. Simultaneously,
a more recent trend aims to serve neural networks as discon-
tinuous function approximators, thereby examining neural
networks with novel activation functions (e.g. (Shen et al.,
2020; Jiao et al., 2023; Shen et al., 2021; 2022a)). However,
the failure of these model classes in practice is due to the

discontinuity of the function approximators, wherein even
minor perturbations in the training data can lead to chaotic
changes in the input-output relationship. Consequently, to
circumvent the curse of dimensionality, it is imperative to
make appropriate choices within the unstable model class
and the restricted objective function space.

ResNet Architecture. Since ResNet’s first appearance, it
has made a big success in practice and has become a core
component of popular structures like Transformer (Vaswani
et al., 2017), inspiring much research for theoretical under-
standing. (Hardt & Ma, 2016) show that ResNet can repre-
sent any classifier on any finite sample perfectly, i.e., it can
represent any discrete function. Later, (Lin & Jegelka, 2018)
extended this discrete setting to continuous, which shows
that ResNet with one neuron per layer can approximate
any Lebesgue-integrable function. The authors in (Oono
& Suzuki, 2019) derive approximation and estimation er-
ror rates for ResNet-type CNN using O(1) channels. They
show a block-sparse FNN can be realized by a ResNet-type
CNN and then study the approximation capabilities of block-
sparse FNNs. Our paper differs in this regard. We show that
ResNet can be implemented by ReLU FNNs (Prop. 1), and
we utilize this relationship to set the lower bounds on the ap-
proximation capability of ResNets. We establish the upper
bounds by directly constructing ResNet to approximate dif-
ferent function classes. Since CNNs and FNNs are different
structures, the results in (Oono & Suzuki, 2019) can not be
translated to ours. Notably, while they show ResNet-type
CNNs with not more than O(ε−d) parameters can achieve
approximation for Lipschitz functions to an error ε, our
Theorem 7 shows O(ε−d/2) parameters are adequate using
ResNet with constant width. We summarize the comparison
of the results in Table 1. Recently, (He et al., 2022) study the
approximation properties of CNNs and show the universal
approximation property of shallow ResNet-type CNN with
a large number of channels.

2. Mathematical Modeling of ResNet and
Proof Ideas

2.1. Mathematical modeling of ResNet

ResNet’s original proposal (He et al., 2016) includes com-
plex structures such as convolutional layers. In this paper,
we focus on ResNet-type FNNs as it is a fundamental struc-
ture and enough to achieve a strong approximation capabil-
ity and unless otherwise specified, we will refer to ResNet
as ResNet-type FNNs. ResNet consists of residual blocks
and identity shortcut connections. Specifically, with the
basic notations of addition (f + g)(x) = f(x) + g(x) and
composition f ◦g(x) = f(g(x)) of mappings f, g, a ResNet
is a function R(x) from Rd to R given by

R(x) = L ◦ (T [L] + Id) ◦ · · · (T [1] + Id) ◦ AQ(x), (1)
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Figure 1. An example of a ResNet from R2 to R belonging to RN (Q = 3, N = 2, L = 3). Every residual block is composed of an
activation layer followed by a linear layer. The activation layer neurons are colored yellow, while the linear layer neurons are grey. The
maximum number of neurons in each activation layer is 2, each linear layer has 3 neurons, and it has 3 blocks.

where AQ : Rd → RQ and L : RQ → R are affine
transformations, Id : z 7→ z is the identity mapping, and
T [i](i = 0, 1, ..., L) are basic residual blocks. Each block
T [i] : RQ → RQ further consists of two layers:

• an activation layer RQ → Rni : z 7→ σ(Wiz + bi)
with ni neurons, and

• a linear layer Rni → RQ : σ(Wiz+bi) 7→ Viσ(Wiz+
bi) with Q neurons,

where parameters Wi ∈ Rni×Q, Vi ∈ RQ×ni , bi ∈ Rni

(i = 1, 2, · · · , L), and σ(·) is the generalized ReLU activa-
tion function for vector output, i.e., σ(x1, x2, · · · , xn) =
(max 0, x1, · · · ,max 0, xn) for x1, x2, · · · , xn ∈ R. To
this end, we write T [i](z) = Viσ(Wiz + bi).

We use L to denote ResNet’s depth defined as the num-
ber of residual blocks3, and its width N is defined as
the maximum number of activation layer neurons, i.e.,
max{n1, n2, · · · , nL}. For conciseness of notation, we de-
note by RN (Q,N,L) the set of ResNet functions from Rd

to R, with width N , depth L, and Q neurons in each linear
layer. To keep our study interesting, we always assume
that Q ≥ d where d is the input dimension. Otherwise, the
universality of the ResNet does not hold4. For our later
discussion, we define a ResNet as ResNet with bottleneck
blocks (b-ResNet) if its width is an absolute constant, i.e.,
it belongs to RN (Q,N = C,L) where C is an absolute
constant (independent of input dimension d). We have an

3Note that we define the depth as the number of residual blocks
because the activation and linear layers are always coupled together
within each block. It is important to note that this definition differs
from the one commonly used in applications, where the depth of
a ResNet refers to the number of layers excluding the shortcuts.
However, this difference does not affect the presentation of our
results.

4If Q < d, the ResNet with one neuron per activation layer
belongs to the set of narrow networks with widths smaller than or
equal to d (Prop. 1). Therefore, the ResNet may lose the universal-
ity since narrow-width (smaller than d+1) ReLU networks cannot
approximate all Rd continuous functions (Hanin & Sellke, 2017).

example of a ResNet structure in Fig. 1.

2.2. Problem statement

In this paper, we care about the number of parameters of a
ResNet needed for approximating a given function, which
characterizes ResNet’s approximation capabilities. Specifi-
cally, we give the following problem statement.

Given f⋆ : [0, 1]d → R belong to some function space F
and fix d ∈ N+ and the ResNet model H = RN (Q,N,L),
we are interested in the following two questions specifically.

� Lower bound. What is the minimum number of weights
of ResNet required to approximate any f⋆ ∈ F to an error
ε?

� Upper bound. What is the number of weights of a
ResNet architecture sufficient to approximate any f⋆ ∈ F
to an error ε? Or does there exists Q,N,L such that
inf f̃∈H

∥∥∥f̃ − f⋆
∥∥∥ ≤ ε holds with relatively smaller number

of tunable parameters?

Here tunable parameters refer to non-zero parameters in
a ResNet. Note the answer to the two questions usu-
ally depends on the desired error ε, the input dimen-
sion d, and the function space F . Usually we will
consider continuous function space C([0, 1]d) under uni-
form norm ∥f∥∞ = maxx∈[0,1]d |f(x)| and Lp-integrable
function space Lp([0, 1]d) under norm ∥f∥Lp([0,1]d) =∫
[0,1]d

|f(x)| dx where we always assume p ∈ [1,∞) with-
out any specification. Our main results show that b-ResNet,
i.e. ResNet in RN (Q,N,L) with Q = d + c1, N = c2
(c1, c2 are absolute constants) and proper L, can achieve
powerful approximation capability in various function
classes. It can approximate specific functions with fewer
tunable functions than that of FNNs. Besides, b-ResNet
can achieve optimal approximation for Lebesgue-integrable
functions.

Remarks on continuous/discontinuous approximators.
While the difference between continuous and discontinuous
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will play an important role in the lower bounds, we provide
explanations about it here to make readers understand it
readily. In approximation theory, we aim to approximate all
functions in a space F using a model class as an approxi-
mator (e.g., neural networks). We achieve this by choosing
different parameters for different functions, meaning the
parameters θ ∈ Θ can be seen as a mapping of the target
functions, i.e., θ = h(f) where h : F → Θ. If this map-
ping h is continuous, we refer to the approximator as a
continuous approximator. Conversely, “discontinuous deep
networks” are characterized by a discontinuous mapping
h. In this paper, the term “arbitrary/unconstrained deep
networks” refers to discontinuous approximators, and “con-
struction in a continuous (discontinuous) phase” means the
constructed neural networks are continuous (discontinuous)
approximators. Significantly, the bound of approximation
power for continuous approximators is limited by metric
entropy, while for discontinuous approximators, it is lim-
ited by Vapnik-Chervonenkis (VC) dimension (Goldberg &
Jerrum, 1993).

2.3. Proof Ideas and Novelty

Lower Bound. We establish that ResNet can be conceptu-
alized as a sparse FNN (Prop. 1), implying that the lower
bound of ResNet must exceed that of FNN. We then derive
the generalized lower bounds of ResNet on the approxima-
tion of various function classes from the lower bounds of
FNNs.

Upper Bounds for Approximation of Polynomials and
Smooth Functions. Drawing inspiration from the work
of (Yarotsky, 2017), where DNNs are constructed to ap-
proximate the function x2 and xy, we construct ResNet
to approximate these fundamental functions. Unlike the
work (Yarotsky, 2017) which computes the product func-
tion using xy = ((x + y)2 − x2 − y2)/2, we select
xy = ((x + y)/2)2 − ((x − y)/2)2 as utilized in some
previous work, e.g., (Suh et al., 2022). The selection is
more efficient for construction and leads to fewer parame-
ters. Next, we note that any polynomial can be expressed
as a composition of the product function xy, and polyno-
mials can approximate smooth functions due to the local
Taylor expansion property. By constructing ResNet to ap-
proximate these functions, we can derive upper bounds on
the approximation of polynomials and smooth functions.
These constructions are in a continuous phase, which leads
to the result Proposition 3 and Theorem 4 and 5. Our results
show that b-ResNet is enough to approximate these smooth
functions and has fewer tunable weights than that of FNN.

Optimal Approximation for Lebesgue-Integrable Func-
tions. Building upon the constructive techniques from (Shen
et al., 2019; 2022b) on ReLU FNNs, we show how b-ResNet
can achieve optimal approximation for Lebesgue-integrable

Table 2. High-level steps of constructing b-ResNet to achieve opti-
mal approximation where the framework of constructive methods
is from (Shen et al., 2019; 2022b). Details are in Appendix F.

Step 1: Space Partitions [0, 1]d\Ω = ∪β∈{0,1,··· ,⌊L2/d⌋−1}dQβ.

• Qβ: small hypercubes with side length O(L−2/d)
• xβ: a representative for a cube Qβ

• Ω: a small enough region
• f : the target (Lipschitz) function from [0, 1]d to R

Step 2: Constructing a b-ResNet Φ such that Φ(x) = β.
• b-ResNet Φ: depth O(L)

Step 3: Constructing a b-ResNet ϕ such that ϕ(β) ≈ f(xβ).
• b-ResNet ϕ: depth O(L)

Step 4: Error Estimation.
• Constructed b-ResNet R(x) = ϕ ◦ Φ(x) ≈ f(xβ) ≈ f(x)
• |f(xβ)− f(x)| = O(L−2/d), |R(x)− f(xβ)| = O(L−2/d)

functions (refer to Table 2 for high-level steps). The basic
idea is to construct a ResNet with depth O(L) to generate
a step function with much more steps to achieve a higher
approximation rate. In our construction, we utilize linear
layers for value storage and activation layers for interme-
diate computation. In each block, we designate a constant
number of neurons within in the activation layer for the
computation in relation to one of the corresponding neu-
rons in the linear layer, with the outcomes refreshed via
identity mappings in the next block. In distinct blocks, acti-
vation layer neurons perform computations associated with
different neurons from the linear layer. This procedure is
replicated for each residual block, which is then sequentially
combined to form a b-ResNet which will exhibit a large ex-
pressive power with fewer parameters than that of FNNs.
More details can be found in Appendix F. It is important to
note that the FNN results in (Shen et al., 2022b) cannot be
directly extended to ResNet.

Our novelty lies in the construction and analysis of b-
ResNet, as well as in the approximation power analysis
of ResNet in general. Our proof utilizes a new construc-
tion of ResNet blocks for function approximation. Our
work is the first to show ResNet even with constant width,
can achieve optimal approximation for Lebesgue-integrable
functions. Furthermore, the role of identity mappings is
greatly leveraged in the construction. We uncover the ex-
tensive expressive power of b-ResNet, providing theoretical
guarantees and insights into the successful performance of
ResNet.

3. Lower Bounds on ResNet’s Function
Approximation Capability

In this section, we build the explicit relation between ResNet
and FNNs to establish the lower bound on the complexity
of ResNet to approximate polynomials and other function
classes such as smooth function class. The lower bounds
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help us to analytically show our upper bounds are optimal in
terms of ε in Sec. 4. The proof in this section is postponed
to Appendix B.

First, we propose a key argument that a ResNet can be
regarded as a special sparse ReLU network.

Proposition 1. For any ResNet R(x) ∈ RN (Q,N,L) of
the input x ∈ [0, 1]d with W number of tunable parameters,
there exists an equivalent ReLU FNN Φ(x) : [0, 1]d → R
with width N +Q, depth 2L, W + 2QL number of tunable
parameters, such that R(x) = Φ(x), ∀x ∈ [0, 1]d.

This proposition implies that if a ResNet can approximate
a function up to an error ε, then an FNN with a larger size
can also approximate the same function up to ε. Thus one
can bound ResNet’s universal approximation capability by
studying that of a larger-size FNN (might have an increase
in tunable parameters by a factor of d). That said, the lower
bound of the complexity of ResNet must be larger than or
equal to that of FNN in terms of ε when approximating the
same function.

Thus, building on the above discussion, lower bounds
for FNNs in the existing literature can be applied to
ResNets in terms of ε. We discuss in the following. Re-
garding the smooth space Cr([0, 1]d), (Yarotsky, 2017)
established lower bounds of Θr(ϵ

−d/r)5 for continuous
ReLU network approximators and Θr,d(ϵ

−d/2r) for un-
constrained deep ReLU networks. Later, (Yarotsky,
2018) demonstrated optimal error approximation rates of
Od(ωf (W

−1/d)) for continuous ReLU network approxima-
tors, and Od(ωf (W

−2/d)) for unconstrained deep ReLU
networks, where W represents the number of tunable
weights. Suppose f is Lipschitz continuous, the optimal
upper bound for the ReLU FNN is Od(ε

−d) for continuous
weight selection, and Od(ε

−d/2) for unconstrained deep
networks.6 We will return to these discussions in the next
section. In the end of this section, we will focus on the lower
bound for polynomial function space (a smaller space com-
pared to continuous and smooth functions). However, the
aforementioned lower bound is not applicable and it is not
available in the existing literature. Below we give the lower
bound of the complexity of ResNet on the approximation
of polynomials. The result will be used to show the upper
bound in Thm. 4 is ε-order optimal in the next section.

We begin with some notations. Let x ∈ Rd and
α = (α1, α2, · · · , αd) where αi ∈ N. Define xα =
xα1
1 xα2

2 · · ·xαd

d and this is called a monomial. The degree

5Here f(ε) = Θd(g(ε)) means f(ε) ∼ Cg(ε) for sufficient
small ε where C is a constant which does not depend on ε but can
depend on d. The subscript d on Θ emphasizes that the constant
C may depend on d.

6As pointed out in Sec. 2.2, the bound of approximation power
for continuous approximators is limited by metric entropy, while
for discontinuous approximators, it is limited by VC dimension.

of the monomial is |α| := α1 + α2 + · · · + αd. Then a
multivariate polynomial is a sum of several monomials and
its degree is the highest degree among these monomials. We
then give the theorem as below.
Theorem 2. Let x = [x1, x2, . . . , xd] ∈ [0, 1]d and
P(d, p)(p ≥ d) be the set of d dimension polynomial func-
tions with degree p. If a ReLU FNN Ψ(x) : [0, 1]d → Rd

with width N , depth L and T = NL neurons can approxi-
mate any f ∈ P(d, p) to an error ε, i.e.

|Ψ(x)− f(x)| < ε,∀x ∈ [0, 1]d,

then we have T ≥ Θd(log 1/ε). Note this lower bound can
also be applied to ResNet.

When we compare Theorem 2 with prior findings, we ob-
serve that the lower bound for the polynomial function space,
in terms of ε, is notably smaller than the lower bounds
Θr(ϵ

−d/r) established for smooth functions Cr([0, 1]d).
This is because polynomial functions constitute a substan-
tially smaller subset of the smooth function space. Conse-
quently, they exhibit a reduced complexity in approximation
scenarios, reflecting the inherent simplicity of their struc-
tural characteristics.

4. Upper Bounds on ResNet’s Function
Approximation Capability

In this section, we characterize ResNet’s approximation
capability by establishing its upper bounds for important
function classes. Moreover, our results show that b-ResNet
can approximate polynomials and smooth functions with
fewer tunable parameters than those of FNNs. The organi-
zation of this section is in the following. Subsection 4.1
presents the upper bounds of the complexity of ResNet on
approximating monomials. Subsequently in subsection 4.2,
we extend the results to polynomials, and smooth functions
in Sobolev space following the work of (Yarotsky, 2017).
In Subsection 4.3, the properties of ResNet on approxi-
mating continuous piecewise linear functions are discussed.
Last but not least, Subsection 4.4 shows that b-ResNet can
achieve the optimal approximation for Lebesgue-integrable
functions.

4.1. Approximating Monomials

Our first key result shows that b-ResNet RN (Q = d +
O(1), N = C,L) can approximate any monomials where
L depends on d and the desired error ε, and C is an absolute
constant independent of d. Importantly, this result explains
why b-ResNet can approximate polynomials and smooth
functions with fewer tunable parameters. The proof in this
section can be found in Appendix C.
Proposition 3. Let x = [x1, x2, · · · , xd] ∈ [−M,M ]d and
α ∈ Nd, where M ≥ 1 and xα be any given monomial with
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degree p, i.e., |α| = p. Then there exists a b-ResNet

R ∈ RN
(
d+ 3, 4,O(p log(p/ε) + p2 logM)

)
such that

∥R− xα∥C([−M,M ]d) < ε,

while having O
(
p log (p/ε) + p2 logM

)
tunable weights.

Note that the number of total weights of R is
O(dp log(p/ε)) when M = 1. However, our construc-
tive proof shows that each residual block only contains a
constant number of non-zero weights. Therefore, it suffices
to adjust O(p log(p/ε)) weights. This analysis also holds
when M > 1. Furthermore, it is important to note that
the upper bound in the above theorem is independent of
d. In fact, the dimension d is incorporated into p because
any monomial with degree p can always be interpreted as a
product function of dimension p. For instance, x21x2x

2
3 =

π(x1, x1, x2, x3, x3) where π(x1, · · · , xd) = x1x2 · · ·xd
is the product function.

Next, we highlight several key observations and discussions
from the analysis and results in the following.

ResNet vs FNNs. We show that ResNet is capable of ap-
proximating any monomial with degree p on [0, 1]d with
O (p log(p/ε)) number of tunable weights, a reduction by
a factor d as compared to that of ReLU FNNs. Accord-
ing to (DeVore et al., 2021), a ReLU network with width
O(d) and depth O (p log(p/ε)) can approximate any mono-
mial with degree p, resulting in a total weight count of
O
(
d2p log(p/ε)

)
. According to their construction, there

are O (dp log(p/ε)) tunable weights. Thus, our result has
a reduction by a factor d. As a closed remark, while we
compare the upper bounds, it is an open and interesting
direction to obtain the lower bound of the size of neural
networks with respect to input dimension d.

Root of reduction. Note that each identity mapping can be
realized by 2d ReLU units (x = [x]+ − [−x]+) but it only
may lead to an “additive” reduction of d tunable weights
compared with an FNN. In our study, however, this addi-
tive reduction of d tunable weights, as seen in our b-ResNet
model, does translate into a multiplicative reduction by a fac-
tor of d. We establish this result by constructively proving
that a b-ResNet with a constant number of tunable weights
per residual block can approximate functions with the same
accuracy as a ReLU FNN requiring O(d) tunable weights
in each layer. The high-level ideas are in the following.
First, one can construct an FNN with width d+O(1) that
can approximate a function, and in each layer, there are d
neurons for storing the value of the input. Hence if we have
an identity mapping, then we can move the d neurons in
each layer and the role of identity mapping is to forward
the input value (or input-related value). Then it will have a
factor d reduction.

Deep vs Shallow. The author in (Shapira, 2023) provides
a lower bound on the complexity of shallow FNNs to ap-
proximate any non-normalized monomial over [−M,M ]d

which scales exponentially with d (refer to Thm. 3 (Shapira,
2023)). By proposition 1, this lower bound also applies to
shallow ResNet. Conversely, Theorem 3 gives a mild upper
bound for deep ResNet which scales polynomially with d.
This underscores the benefits of deep networks.

4.2. Approximating Polynomials and Smooth Functions

Polynomials are the summation of monomials and a smooth
function can be approximated by a polynomial as per the
local Taylor expansion. In this subsection, we display the
upper bounds on the approximation of polynomials (Thm.
4) and smooth functions (Thm. 5). The proof of the two
theorems can be found in Appendix C and D.

Theorem 4. Let x = [x1, x2, · · · , xd] ∈ [0, 1]d. For a
multivariate polynomial P (x) with degree p, i.e., P (x) =∑

α∈E cαx
α where E = {α ∈ Nd : |α| ≤ p}, there exists

a ResNet

R ∈ RN (d+ 4, 4,O (p|E| log (p/ε)))

such that

|R(x)− P (x)| < ε ·
∑

|α|∈E

|cα|, ∀x ∈ [0, 1]d.

Additionally, the ResNet has O(p|E| log(p/ε)) tunable
weights.

Note |E| ≤
(
p+d
p

)
which exponentially increase in d when

p or d is very large. Nonetheless, we can see this upper
bound is optimal in terms of ε according to Thm. 2.

The Sobolev space W r,∞([0, 1]d) is the set of functions be-
longing to Cr−1([0, 1]d) whose (r− 1)-th order derivatives
are Lipschitz continuous. Further definitions can be found
in Appendix D. We then give the upper bounds of ResNet’s
complexity in the following theorem.

Theorem 5. Fix r, d ∈ N+. There is a ResNet R(x) ∈
RN (d+ 4, N = 4, L) that can approximate any func-
tion from the unit ball of W r,∞([0, 1]d) to ε where L =
Od,r(ε

−d/r log 1/ε).

The number of tunable parameters is still less than that
of FNN by a factor d based on the polynomial approxi-
mation methods. However, the hidden constant c(d, r) in
Od,r(ε

−d/r log 1/ε) is very large in d where an estimation

is given as ( 2
d+1
r d
r )d < c(d, r) < ( 2

d+1
r d
r )ddr+2(d + r)r.

As we discussed before, (Yarotsky, 2017) established the
lower bound Θr(ε

−d/r) of the tunable weights for contin-
uous ReLU network approximators on the approximation
of the Sobolev space W r,∞([0, 1]d). Based on Prop. 1, the
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lower bound can also apply to ResNet. Thus, we can see the
upper bound in Theorem 5 is nearly tight up to a log factor
for ResNet. Besides, it is noteworthy that recent results
(Yang & Zhou, 2024) show that shallow ReLU neural net-
works can also reach this upper bound when r < (d+ 3)/2.

4.3. Representing Continuous Piecewise Linear
Functions

Piecewise linear interpolation holds a significant position
in approximation theory, as it is a basic method of approxi-
mating functions. Therefore, studying the expressive power
of neural networks for piecewise linear functions becomes
particularly important. In this section, we show that ResNet
even with one neuron per activation layer can generate any
continuous piecewise linear function (CPwL), as shown in
the theorem below where the proof is in Appendix E.

Theorem 6. For any CPwL function f : Rd → R, there ex-
ists a ResNet R(x) ∈ RN (d+ 1, 1, L) with L = O(Md)
that can exactly represent f where M is an f -dependent
number.

Note that M is implicit which is an f -dependent number.
It depends on the property of the input CPwL function
f including the number of pieces and linear components.
More details about the representation of CPwL functions
can be found in (Tarela & Martinez, 1999; Wang & Sun,
2005). Moreover, a recent work (Chen et al., 2022) derived
a dimension-independent bound for ReLU networks if the
number of pieces and linear components of the target CPwL
function is known. Their constructions are also possible
for ResNet. It should be importantly noted that Theorem 6
provides another approach to demonstrating the universal
property as the CPwL functions are dense in continuous
function space under uniform norms. While (Lin & Jegelka,
2018) shows that ResNet with one neuron per activation
layer can approximate any step function, the construction of
Theorem 6 is much easier.

4.4. Optimal Approximation for Lebesgue-Integrable
Functions

In this subsection, we show that even b-ResNet can achieve
optimal approximation for Lp-integrable functions. It is
well-known that C([0, 1]d) space is dense in Lp([0, 1]d)
where p ∈ [1,∞) under Lp norm. Thus, we just need to
consider the approximation for C([0, 1]d) as shown in the
following theorem. The proof can be found in Appendix F.

Theorem 7. Let d ∈ N+, d ≥ 5 and p ∈ [1,∞). For any
given continuous function f ∈ C([0, 1]d), there exists a
ResNet R ∈ RN (d+ 1, 4, 24L+ 9d+ 4) such that

∥f −R∥Lp([0,1]d) ≤ 7
√
dωf (L

−2/d).

As a direct corollary, the number of parameters needed is

Od

(
ω−1
f (ε)

−d/2
)

for a ResNet to approximate the func-
tion f to an error ε.

To discuss about the theorem, we have the following con-
cluding remarks.

Optimality. As discussed in Sec. 3, the lower bound of
the size of deep ReLU networks for approximating continu-
ous functions over [0, 1]d under uniform norm is O(ε−d/2).
Moreover, this lower bound also holds for the approximation
under Lp norm which comes from a recent result (Siegel,
2023). Hence, it follows from Proposition 1 that this lower
bound can also apply to ResNet which shows our upper
bound in Theorem 7 is ε-order optimal.

Extension to Uniform Approximation. The optimal bound
in Theorem 7 is extendable to the case under the uniform
norm, as facilitated by Lemma 3.4 (Lu et al., 2021). This
extension, however, necessitates an increased width of the
ResNet architecture. As such, it is non-trivial to demonstrate
that bottleneck ResNets (b-ResNets) can maintain this op-
timal rate when approximating continuous functions under
the uniform norm.

Extension to Entired Domain Rd. Note that for any func-
tion f belonging to Lp(Rd), and given an arbitrary error
margin ϵ > 0, there exists a compact set H upon which h
is defined and outside of which it is zero (i.e., h(x) = 0 for
x ∈ Rd \ H) (Walter, 1987). If we take H to be contained
within the hypercube [−H,H]d, we can define a new func-
tion g(x) = h

(
x+H
2H

)
mapped onto the unit cube [0, 1]d.

Function g is continuous by construction and adheres to the
assumptions of Theorem 7.

Non-trivial Bound Extension. In this part, we clarify that
our results are non-trivial and can not be derived from the
work (Yarotsky, 2018). It is important to note that his con-
struction allows ReLU FNNs with a width of 2d + 10 to
attain the approximation rate in our Theorem 7. However,
within Yarotsky’s framework, d neurons per layer can be
adapted to form an identity mapping. If one were to at-
tempt to extend these bounds to ResNets in a straightfor-
ward manner, the conclusion would be that a ResNet with
width d + O(1) could achieve the mentioned rate. Our
Theorem 7, on the other hand, demonstrates that a ResNet
with a constant width—completely independent of d—is
capable of achieving the same rate of approximation. This
finding is interesting as it implies a reduction in the number
of parameters by a factor of d when compared to FNNs,
underscoring the non-trivial nature of our extension.

Trade-off between Depth and Width. As a closing remark,
this paper concentrates on b-ResNet, that is, ResNet with a
constant width. Besides, for the set of ResNets denoted as
RN (Q,N,L), it is an interesting future direction to explore
the trade-off between Q,N and L.
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Table 3. A summary of upper bounds of the size of FNN and ResNet on the approximation of two representative types of functions:
polynomials and Lipschitz functions. Note the relevant papers primarily focus on approximating functions such as Hölder functions,
Sobolev functions, continuous functions, and Lebesgue-integrable functions. However, they all encompass Lipschitz functions, so we use
Lipschitz functions for our comparison.

Network
Functions Polynomial of Degree p Lipschitz Functions

with |E| Terms with Lip. Constant 1

Shallow ReLU FNNs O
(
|E|p3/2ε−1 log(1/ε)

)
,[1] O

(
c1(d)

†ε−d
)
,[3]

Deep ReLU FNNs O (|E|pd log(p/ε)),[2] O
(
c2(d)

†ε−d/2
)

,[4,5]

ResNet with Constant Width O (|E|p log(p/ε)) O
(
c3(d)

†ε−d/2
)

†: c1(d) implicitly depends on d, c2(d) > (3dd2)d, and c3(d) = (7
√
d)d/2.

The related references are: [1] (Blanchard & Bennouna, 2021),[2] (DeVore et al., 2021),[3] (Yang & Zhou, 2024),[4]
(Yarotsky & Zhevnerchuk, 2020) and [5] (Yarotsky, 2018).

Table 4. Comparison of MSE loss.

NN structure d = 100 d = 200 d = 300

NN (d+ 1, d/10) 0.0139 0.0216 0.0472
RN (d+ 1, 10, d/10) 0.0102 0.0131 0.0225
RN (d+ 1, 20, d/10) 0.0093 0.0127 0.0228
RN (d+ 1, 40, d/10) 0.0091 0.0131 0.0230

Figure 2. Comparison of testing MSE loss for FNN and b-RestNet
to approximate high dimensional functions defined in Equation (2).
More experiment results can be found in Appendix G.

5. Experiments
In this section, we provide function approximation results
to numerically validate the theoretical results presented in
Sec. 4. To emphasize the approximation error, we involve
a sufficiently complex target function for the experiment.
Specifically, we utilize the following set of functions (where
ai, bi are parameters) to test the universal approximation
capability of b-ResNet.

f(x) =

m∑
i=1

[ai
∏
j∈S1

i

xj + bi sin(
∏
k∈S2

i

xk)]. (2)

The parameter settings in Equation (2) are included in Ap-
pendix G. We then compare b-ResNet with fully connected
NN for approximating the function in Equation (2) with
different dimensions. The results are shown in Figure 2 and
Table 4.

From the experiments, it is evident that under the same
dimensionality, the b-ResNet has a reduced number of pa-
rameters compared to a classical FNN. However, it achieves
a lower MSE. This, in some sense, demonstrates the remark-
able function approximation capability of the b-ResNet.
Moreover, we take into account that the function approxima-
tion task is of high dimensionality, which in turn reflects the
capacity of ResNets to learn high-dimensional functions.

In conclusion, the experiment results demonstrate (i) the
exceptional approximation capability of b-ResNet for learn-
ing complex functions, (ii) efficient structure design which
highly reduces training parameters, and (iii) strong scalabil-
ity for approximating high-dimension functions.

6. Conclusion
In this study, we provide a substantial theoretical contribu-
tion to the understanding of ResNet’s capabilities in function
approximation. We show that ResNet with constant width
possesses the remarkable ability to approximate various im-
portant functions including polynomials, smooth functions,
and piecewise linear functions. Importantly, we show that
even ResNet with constant width can achieve optimal ap-
proximation for Lebesgue-integrable functions which are
frequently encountered in practical applications. Moreover,
we obtain some improvement compared with FNN. To make
more explicit comparisons between rates of approximation
by ResNet and FNN, we have Table 3 showing a summary.
While ResNet has significant optimization advantages over
FNNs during training, our results indicate that ResNets can
achieve strong approximation capabilities with even fewer
parameters than FNNs. These findings add to the theoretical
justifications for ResNet’s stellar practical performance.
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A. Preliminaries
In this section, we introduce some basic notations for use in subsequent proofs.

A.1. Feedforward neural networks (FNNs)

As is known to all, FNN is a function Φ : Rd :→ R which is formed as the alternating compositions of ReLU function σ,
and affine transformations A[i](y) = Uiy + vi with Ui ∈ Rdi×di−1 , vi ∈ Rdi , d0 = d for i = 1, 2, · · · , L. Specifically,

Φ (x) = L ◦ σ ◦ A[L] ◦ σ ◦ A[L−1] ◦ · · · ◦ σ ◦ A[1] (x)

where L is a final affine transformation. Here L denotes the number of layers of the FNN, and the width of the FNN is
conventionally defined by max{d1, d2, · · · , dL} := K. The ReLU activation function is defined by:

σ(x) := ReLU(x) = max (x, 0) = (x)+ , x ∈ R

and for x ∈ Rd, σ(x) := (σ(x1), · · · , σ(xd)). Typically, it is presumed that the number of neurons in each layer of an FNN
is the same, which is equal to the width K, as any neuron deficits in a layer can be dealt with by adding K − dj neurons
whose biases are zero in layer j. The weights between these extra neurons are consequently assigned to zero.

A.2. ResNet

Let d,Q ∈ N+. ResNet R(x) : Rd → R is a combination of an initial affine layer, multiple basic residual blocks with
identity mapping, and a final affine output layer:

R(x) = L ◦ (T [L] + Id) ◦ (T [L−1] + Id) ◦ · · · ◦ (T [1] + Id) ◦ AQ(x), (3)

where AQ : Rd → RQ and L : RQ → R are affine transformations. Besides, T [i](i = 0, 1, ..., L) are basic residual blocks,
i.e., T [i](z) = Viσ (Wiz + bi) where Wi ∈ Rni×Q, Vi ∈ RQ×ni , bi ∈ Rni .

Concretely, we denote the output of the i-th block by z[i]. Then the outputs of each block can be formulated as follows:

z[0] = AQ (x) =W0x+ b0,

T [i](z) = Viσ (Wiz + bi) ,

z[i] = T [i]
(
z[i−1]

)
+ z[i−1], i = 1, 2, · · · , L,

R(x) = L
(
z[L]
)
= Bz[L],

(4)

where W0 ∈ RQ×d, b0 ∈ RQ,Wi ∈ Rni×Q, Vi ∈ RQ×ni , bi ∈ Rni , B ∈ R1×Q and x ∈ Rd.

The ResNet’s depth, denoted by L, is defined as the number of residual blocks. The ResNet’s width is the maximum number
of neurons in the activation layer, that is max{n1, n2, ..., nL}. The subscript Q of AQ refers to the number of neurons in the
linear layer. We denote by RN (Q,N,L) the set of ResNet functions width N , depth L and Q neurons in each linear layer.

Additionally, we define

ζ [i] = T [i]
1 (z[i−1]) = σ(Wiz + bi),

γ[i] = T [i]
(
z[i−1]

)
= T [i]

2

(
ζ [i]
)
= Viζ

[i] = ViT [i]
1

(
z[i−1]

)
and

z[i] = z[i−1] + γ[i]

(5)

for i = 1, 2, · · · , L. See Fig. 3 for an illustration.

A.3. Notations

We summarize the notations we will use in this paper in the following.
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x1

x2

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU y

+Id +Id +Id

z[0] z[1]

= γ[1] + z[0]

ζ [1] γ[1]

z[2]

= γ[2] + z[1]

ζ [2] γ[2]

z[3]

= γ[3] + z[2]

ζ [3] γ[3]

Figure 3. An illustration figure for the ResNet notation. The yellow neurons are in the activation layer and the grey neurons are in the
linear layer.

• Let column vectors ai ∈ Rmi , where i = 1, 2, · · · , n and mi ∈ N+ := {1, 2, · · · }. To represent these vectors
concisely, we use (a1, a2, · · · , an) to denote

[
aT1 , a

T
2 , · · · , aTn

]T ∈ Rm1+m2+···+mn . Here, aT denotes the transpose
of a. Let a ∈ Rm. If we write a vector as (Rl, a) ∈ Rm+l, this implies that the value of the vector in the position
represented by ’Rl’ does not matter. If l = 1, we always use ’-’ to substitute ’R’, i.e., (−, a) ∈ Rm+1 implies the value
of the position represented by ’-’ does not matter. For a vector v in Rm, vi is the i-th entry of v for i = 1, 2, · · · ,m.

• Denote by µ(T ) the Lebesgue measure of a measurable set T .

• Let 1S be the characteristic function on a set S, i.e., 1S = 1 on set S and 0 otherwise.

• For two sets A,B, A\B := {x : x ∈ A, x /∈ B}.

• For any ξ ∈ R, let ⌊ξ⌋ := max{i : i ≤ ξ, i ∈ Z} and ⌈ξ⌉ := min{i : i ≥ ξ, i ∈ Z}.

B. Proof of Proposition 1 and Theorem 2
In this appendix, we provide the proofs of conclusions in Sec. 3.

B.1. Proof of Proposition 1

For a ResNet in RN (Q,N,L) from [0, 1]d to R defined by the formula 3, 4 and 5, we now construct a special network
with depth L and width N +Q having the same output. We first suppose the input of the network is y[0] = AQ(x) = z[0]

and denote the output of the i-th layer by y[i]. What’s more, we assume in each layer the bottom Q neurons of each layer are
ReLU-free, i.e., the activation function of them is identity mapping σ(x) = x. The activation of the rest of neurons are
ReLU. Then by assigning some weights to the first layer, we can have y[1] = (ζ [1], z[0]). In the next layer, we can easily
compute z[1] = V1ζ

[1] + z[0]. Then we have y[2] = (RN , z[1]). Now assume y[2i] = (RN , z[i]). Then in the first N neurons
of the next layer, we compute T [i+1]

1 (z[i]) = ReLU(Wi+1z
[i] + bi). In the bottom Q ReLU-free neurons, we copy z[i].

Then y[i+1] =
(
ζ [i+1], z[i]

)
. Then in the next layer, we can compute

z[i+1] = Vi+1ζ
[i+1] + z[i]

i.e., y[2(i+1)] = (RN , z[i+1]). By induction, we have found a special 2L deep network with top N ReLU neurons and
bottom Q ReLU-free neurons having the same output as the ResNet. This process can be seen in Figure 4.

Next, we construct a real ReLU network Φ that has the same size and output as the special Network. Because the domain
[0, 1]d is compact, there exists Ci ∈ RQ such that z[i] + Ci > 0 for all i = 0, 1, 2, · · · , L. Now, we suppose the first layer
of Φ is u[0] = ReLU(AQ(x) + C0) = ReLU(z[0] + C0). Denote the j-th layer of Φ is u[j−1]. In each subsequent layer of

14



Characterizing ResNet’s Universal Approximation Capability

...

ReLU

...

ReLU

...

· · · ζ [i]γ[i] · · · γ[L−1]

a residul block

ReLU

...

ReLU

...
y

Wi, bi

+Id

+Id

+Id

z[0]

ζ [1] γ[1]

z[1]

= γ[1] + z[0]

W1, b1 V1

z[i−1] z[i]

= γ[i] + z[i−1]
z[L−1]

ζ [L] γ[L]

z[L]

= γ[L] + z[L−1]

ResNet

z[0]

ζ [1]

z[0] z[1]

· · ·

ζ [i]

z[i−1] z[i]

· · ·

z[L−1]

ζ [L]

z[L]

y

W1, b1
V1

Id

Wi, bi

Vi

Id

WL, bL

VL

Id

Special
FNN

Figure 4. ResNet (top) can be generated by a special FNN (bottom). All grey neurons are ReLU-free and all yellow neurons are with
ReLU activation. Moreover, for ResNet, the yellow neurons are in the activation layer and the grey neurons are in the linear layer.

Φ, the width is N +Q. We denote u[i] = (u
[i]
(N), u

[i]
(Q)) where u[i](N) is the value of top N neurons and u[i](Q) is the value of

bottom Q neurons in the layer i+ 1. Then note T [1]
1 (z[0]) = ReLU(W1z

[0] + b1). We can compute

u
[1]
(N) = ReLU

(
W1(u

[0] − C0) + b1

)
= ReLU(W1z

[0] + b1) = ζ [1]

and u[1](Q) = u[0] = ReLU(z[0] + C0). Note z[i] = ReLU(z[i] − Ci) + Ci. We can compute

u
[2]
(Q) = ReLU

(
V1u

[1]
(N) + u

[1]
(Q) − C0 + C1

)
= ReLU

(
V1ζ

[1] + z[0] + C1

)
= ReLU(z[1] + C1).

Now, we suppose u[2j] = (RN ,ReLU(z[j] + Cj)). Then we can compute

u
[2j+1]
(N) = ReLU

(
Wj+1(u

[2j] − Cj) + bj+1

)
= ReLU(Wj+1z

[j] + bj+1) = T [j+1]
1 (z[j]) = ζ [j+1]

and u[j+1]
(Q) = ReLU(u

[j]
(Q)) = ReLU(z[0] + C0). Then in the next layer,

u
[2j+2]
(Q) = ReLU

(
Vj+1u

[2j+1]
(N) + u

[2j+1]
(Q) − Cj + Cj+1

)
= ReLU

(
Vj+1T [j+1]

1 (z[j]) + z[j] + Cj+1

)
= ReLU(z[j+1] + Cj+1).

By induction, we can output z[L] in the last layer, i.e., u[2L] = (RN ,ReLU(z[L] + CL)). Then output z[L] by some affine
transformation A(u[2L]) = ReLU(z[L] + CL)− CL = z[L].

From the construction of the ReLU network, we can see the FNN has W + 2kL non-zero training weights.

B.2. Proof of Theorem 2

Because the product function f(x) = x1x2 · · ·xd belongs to P(d, p), it suffices to show the lower bound of the complexity
of an FNN on the approximation of f is Θd(log 1/ε). Let x ∈ [0, 1]. Define Ψ̃(x) = Ψ(x, x, · · · , x) and f̃(x) =
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f(x, x, · · · , x) = xd. Then by the assumption, we have∣∣∣Ψ̃(x)− f̃(x)
∣∣∣ < ε, x ∈ [

1

2
, 1].

In the interval [1/2, 1], f̃ is strictly convex because

f̃ ′′(x) = d(d− 1)xd ≥ d(d− 1)(
1

2
)d := c1 > 0.

By lemma 2.1 in (Telgarsky, 2015), Ψ̃ is a CPwL function over [0, 1] with at most (2N)L linear pieces, i.e. [1/2, 1] is
partitioned into at most (2N)L intervals for which Ψ̃ is linear. Now, we divide [1/2, 1] into (2N)L intervals. Thus, there
exists an interval [a, b] ⊂ [1/2, 1] with b− a ≥ 1

2(2N)L
over which Ψ̃ is linear. Then define

G(x) = f̃(x)− Ψ̃, x ∈ [a, b].

Then |G(x)| < ε and G′′(x) ≥ c1 > 0 for any x ∈ [a, b] due to the linearity of f̃ . Then we consider x ∈ [a, b] and local
taylor expansion at (a+ b)/2:

G(x) = G(
a+ b

2
) +G′(

a+ b

2
)(x− a+ b

2
) +

G′′

2
(ξ)(x− a+ b

2
)2 whereξ ∈ [a, b].

Then let x = a and x = b, we have

G(a) = G(
a+ b

2
)−G′(

a+ b

2
)(
b− a

2
) +

G′′

2
(ξ)(

b− a

2
)2, ξ ∈ [a,

a+ b

2
] and

G(b) = G(
a+ b

2
) +G′(

a+ b

2
)(
b− a

2
) +

G′′

2
(η)(

b− a

2
)2, η ∈ [

a+ b

2
, b].

It follows that
max{G(a), G(b)} ≥ G(

a+ b

2
) +

c1
2
(
b− a

2
)2.

Thus, by noting b− a ≥ 1
2(2N)L

we have

2ε > max{G(a), G(b)} −G(
a+ b

2
) ≥ c1

2
(
b− a

2
)2 ≥ c1

2

(
1

4(2N)L

)2

.

Then
(2N)2L ≥ c

ε

where c is a constant depending on d. It follows from the number of neurons T = NL that

log
2T

L
≥ 1

2L
log

c

ε

⇐⇒ 4T ≥ u

log u
log

c

ε
≥ log

c

ε
where u =

2T

L
.

Therefore, the number of neurons must be at least the order log 1/ε.

C. Proof of Proposition 3 and Theorem 4
Our ideas in this appendix are from (DeVore et al., 2021). It should be noted that while (DeVore et al., 2021) inspired
our approach to polynomial approximation, there are big differences in the construction details. Significantly, our main
contribution is the successful demonstration of ResNet’s construction proof.

The discussion in Subsection C.1 commences with a consideration of the fundamental functions, ranging from x2 to xy,
which we use to construct our approximation using ResNet. Subsequently, in Subsection C.2, we begin by establishing
Proposition 3 for the case [0, 1]d. This is then extended to the case [−M,M ]d for M > 1 in Subsection C.3.
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C.1. prelininaries

We recall that the so-called hat function h is defined by

h(x) = 2(x)+ − 4

(
x− 1

2

)
+

+ 2(x− 1)+. (6)

Let hm(x) be the m-fold composition of the function h, i.e. hm = h ◦ h ◦ · · · ◦ h︸ ︷︷ ︸
m times

which is the so-called sawtooth function.

Then
x2 = x−

∑
m≥1

4−mhm(x), x ∈ [0, 1].

Next, we define

S(x) := x2 and Sn(x) := x−
n∑

m=1

4−mhm(x), n ≥ 1, x ∈ [0, 1].

We then have

|S(x)− Sn(x)| ≤
∞∑

i=n+1

4−i ≤ 1

3
· 4−n, x ∈ [0, 1]. (7)

Sn(x) is a piecewise linear interpolation of S on [0, 1], using 2n + 1 uniformly distributed breakpoints, as indicated in
(Yarotsky, 2017) (see Proposition 1). Using equation 7, we can generate Sn and approximate x2.

Proposition 8. There exists a ResNet R(x) ∈ RN (2, 4, L) with L = O(log 1/ε) such that∣∣R(x)− x2
∣∣ < ε, x ∈ [0, 1]

while having O(log 1/ε) neurons. Especially, R(x) ∈ RN (4, 2, n) generate Sn exactly.

Proof. It suffices to construct a ResNet required to represent Sn. Then we let the right-hand side of (7) equal to ε, i.e.,
1
34

−n = ε. We then have n = O(log 1/ε). Next, we construct a ResNet R(x) ∈ RN (4, 2, n) generating Sn(x) exactly.

x

x

0

[x]+

[x− 1
2 ]+

[x− 1]+

x(= [x]+)

−x− h(x)
4 (+x)

= −h(x)
4

x− h(x)
4 (+0)

= S1(x)

+Id

z
[m]
1 =

−4mhm(x)

z
[m]
2 =
Sm(x)

[hm(x)]+

[hm(x)− 1
2 ]+

[hm(x)− 1]+

z
[m]
1

−z[m]
1 − hm+1(x)

4m+1

(+z
[m]
1 ) = −hm+1(x)

4m+1

−hm+1(x)
4m+1 (+Sm(x))
= Sm+1(x)

+Id

Figure 5. Illustration for the constructive first block (left) and the m-th block (right). Grey represents the linear layer and yellow represents
the activation layer.

Let z[0] = A2(x) = (x, 0). Then by equation (6), we can use three ReLU units to store (x)+, (x− 1/2)+ and (x− 1)+ and
hence compute h(x). At the same layer, use one ReLU unit to copy x. Then in the first residual block, we can compute

γ[1] = T [1](z[0]) = (−x− h(x)/4, x− h(x)/4)

so that
z[1] = γ[1] + z[0] = (−x− h(x)/4, x− h(x)/4) + (x, 0) = (−h(x)/4, S1(x)).

See Figure 5 (left) for illustration.
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Now we assume the output of the m-th block is z[m] = (−4mhm(x), Sm(x)). Also by (6) and assigning appropriate
weights, we can use three units to compute h(hm(x)) = hm+1(x) and use one unit to copy −4mhm(x) by a = −(−a)+.
Thus, we can output

γ[m+1] = T [m+1](z[m]) = (−4m+1hm+1(x)− 4mhm(x),−4m+1hm+1(x))

in the next block so that

z[m+1] = (−4m+1hm+1(x)− 4mhm(x),−4m+1hm+1(x)) + z[m] = (−4m+1hm+1(x), Sm+1(x)).

See Figure 5 (right) for illustration. By induction, we complete our proof. Concretely, z[n] = (−4nhn(x), Sn(x)) and
R(x) = L(z[n]) = Sn(x) by letting L(x1, x2) = x2.

Let x, y ∈ [0, 1]. We can approximate the product function xy by using the equality xy = ( |x+y|
2 )2 − ( |x−y|

2 )2. Define

πn(x, y) = Sn(
|x+ y|

2
)− Sn(

|x− y|
2

). (8)

It then follows from equation (7),
|πn(x, y)− xy| ≤ 4−n, ∀x, y ∈ [0, 1]. (9)

For the later rigorous derivation, we also need to prove the following lemma:

Lemma 9.
πn(x, y) ∈ [0, 1], ∀x, y ∈ [0, 1]. (10)

Proof. According to the definition of Sn, we have

x2 ≤ Sn(x) ≤ x, for x ∈ [0, 1].

Then

πn(x, y) = Sn(
x+ y

2
)− Sn(

|x− y|
2

)

≤ x+ y

2
− (x− y)2

4

=
1

4
(x(2− x) + y(2− y) + 2xy)

≤ 1

4
(1 + 1 + 2) = 1.

Next, we show πn(x, y) ≥ 0. We start from

πn(x, y) = Sn(
x+ y

2
)− Sn(

|x− y|
2

)

=
x+ y

2
−

n∑
i=1

4−ihi(
x+ y

2
)− |x− y|

2
+

n∑
i=1

4−ihi(
|x− y|

2
)

= min{x, y}+
n∑

i=1

4−i

(
hi(

|x− y|
2

)− hi(
x+ y

2
)

)
.

(11)

Now we introduce the function
ζ(x) := 2min{|x− s| : s ∈ Z}, x ∈ R.

Then for x ∈ [0, 1] we have
h(x) = ζ(x) and hm(x) = ζ(2m−1x),m ≥ 2.
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Since ζ is subadditive, i.e. ζ (t+ t′) ≤ ζ(t) + ζ (t′), we have

hi(
x+ y

2
) = hi(

|x− y|
2

+ min{x, y})

= ζ(2i−1(
|x− y|

2
+ min{x, y}))

≤ ζ(2i−1 |x− y|
2

) + ζ(2i−1 min{x, y})

= hi(
|x− y|

2
) + hi(min{x, y}).

(12)

Namely,

hi(
|x− y|

2
)− hi(

x+ y

2
) ≥ −hi(min{x, y}).

From (11), we then have

πn(x, y) ≥ min{x, y} −
n∑

i=1

4−i (min{x, y}) = Sn(min{x, y}) ≥ min{x, y}2 ≥ 0.

For x, y ∈ [−M,M ], we can approximate xy by the following remark.

Remark 10. If x, y ∈ [−M,M ], we can approximate xy by using the equality xy =M2
[
( |x+y|

2M )2 − ( |x−y|
2M )2

]
. Because

the domain of Sn is [0, 1], we define

π̂n(x, y) =M2πn(
x

M
,
y

M
) =M2

[
Sn(

|x+ y|
2M

)− Sn(
|x− y|
2M

)

]
. (13)

We have
|π̂n(x, y)− xy| ≤M24−n,∀x, y ∈ [−M,M ]. (14)

Now we show ResNet can approximate the product function xy.
Proposition 11. Let x, y ∈ [−M,M ]. There exists a ResNet

R ∈ RN (3, (4, L))

from [−M,M ] to R with L = O(logM/ε) such that

|R(x, y)− xy| < ε, x, y ∈ [−M,M ]

while having O(logM/ε) neurons and tunable weights. Especially, the ResNet R(x, y) with width 4 and depth 2n can
generate πn(x, y) exactly.

Proof. It suffices to construct a ResNet required to output πn(x, y). Let the right-hand side of (14) equal ε. We can get
n = O(logM/ε). Now, we construct a ResNet with width 4 and depth 2n to represent πn(x, y).

Let A3(x) = (x+y
2M , x−y

2M , 0). Next, we can use the first block to output z[1] = ( |x+y|
2M , |x−y|

2M , 0) by the simple observation
|a| = (a)+ + (−a)+. See Figure 6 for illustration.

Then, it follows from the proof of 8 that we can use the first n layers and 4 units in each layer to output z[n+1] =

(−, |x−y|
2M , Sn(

|x+y|
2M )) while keeping the value of the second neuron in each linear layer unchanged. Next, by the same

operation, we use the next n blocks to output

z[2n+1] = (−,−, Sn(
x+ y

2
)− Sn(

|x− y|
2

)) = (−,−, πn(x, y)/M2).

Thus, R(x, y) = L(−,−, πn(x, y)/M2) = πn(x, y) by letting L(x1, x2, x3) =M2x3. See Figure 7 for illustration.
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x [−x]+ 2[−x]+(+x) = |x|
−1 2

+Id

Figure 6. Illustration for computing |x| by a residual block.

|x+y|
2

|x−y|
2

0

· · ·

-

|x−y|
2

Sn(
|x+y|

2 )

· · ·

-

-

Sn(
|x+y|

2
) − Sn(

|x−y|
2

)

πn(x, y)

+Id

+Id· · ·
+Id +Id

+Id· · ·

+Id

O(n) blocks O(n) blocksz[0]

output

Figure 7. Illustration for generating πn(x, y) by the constructive ResNet. Grey represents the linear layer and yellow represents the
activation layer.

Moreover, we can approximate the multiple product function x1x2 · · ·xd where x1, x2, · · · , xd ∈ [0, 1]. We can well-define
by (10) that

πm
n (x1, x2, · · · , xm) = πn

(
πm−1
n (x1, x2, · · · , xm−1) , xm

)
,m = 3, 4, · · · for x1, · · · , xd ∈ [0, 1] (15)

and π2
n(x1, x2) = πn(x1, x2). Then we have

Proposition 12.
|πm

n (x1, x2, · · · , xm)− x1x2 · · ·xm| ≤ em4−n, x1, x2, · · · , xm ∈ [0, 1] (16)

as long as n ≥ 1 + log2m.

Proof. First, It follows from the definition of Sn and S(x) = x2 that

S(x)− Sn(x) = −
∞∑

m=n+1

4−mhm(x).

Note hm has the Lipschitz norm 2m. We have

∥S′ − S′
n∥L∞([0,1]) ≤ |

∞∑
m=n+1

4−m| · ∥h′m(x)∥L∞([0,1])

≤ |
∞∑

m=n+1

4−m2m|

≤ 2−n, n ≥ 1.

S′(x) = 2x so we have
S′
n(x) = 2x+ δ where δ ≤ 2−n. (17)

Define π(x, y) := xy. We have

∂1πn (x, y) = S′
n

(
x+ y

2

)
− 1

2
· 1{x ≥ y}S′

n

(
x− y

2

)
+

1

2
· 1{x < y}S′

n

(
y − x

2

)
=

1

2
(x+ y + δ)− 1

2
· 1{x ≥ y} (x− y + δ1) +

1

2
· 1{x < y} (y − x+ δ2)

= y + δ − 1{x ≥ y}δ1 + 1{x < y}δ2
= ∂1π (x, y) + δ − 1{x ≥ y}δ1 + 1{x < y}δ2,

(18)
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where δ, δ1, δ2 ≤ 2−n. Moreover, it is the same when considering about ∂2πn(x, y). Thus, we have

∥∂iπ − ∂iπn∥L∞([0,1]2) ≤ 2−n+1, where ∂i := ∂xi
, i = 1, 2. (19)

Define πm(x1, x2, · · · , xm) = x1x2 · · ·xm. Now we assume

∥πj − πj
n∥C([0,1]j) ≤ cj4

−n (20)

holds for all j ≤ m− 1. Note, the inequality literally holds for j = 2 by letting c2 = 1. Then we have

∥πm − πm
n ∥C([0,1]m) ≤ ∥π

(
xm, π

m−1
)
− πn

(
xm, π

m−1
)
∥C([0,1]m) + ∥πn

(
xm, π

m−1
)
− πn

(
xm, π

m−1
n

)
∥C([0,1]m)

≤ 4−n + ∥∂2πn∥L∞([0,1]2)

∥∥πm−1 − πm−1
n

∥∥
C([0,1]m−1)

≤ 4−n +
(
1 + 2−n+1cm−1

)
4−n

= (1 + αncm−1) · 4−n.

By induction, we have proved
∥πm − πm

n ∥C([0,1]m) ≤ cm4−n

where cm satisfies the recurrence formula cm = 1 + αncm−1,m ≥ 3, with initial value C2 = 1. The solution is

cm =

m−2∑
j=0

αj
n ≤ (m− 1)αm−2

n .

If m ≤ 2n−1, we have

cm ≤ (m− 1)

(
1 +

1

2n−1

)m−2

< m

(
1 +

1

m

)m

< em.

Then we complete the proof and get
∥πm − πm

n ∥C([0,1]m) ≤ em4−n

for m = 3, 4, 5, · · · , as long as n ≥ 1 + log2m.

C.2. Proof of Proposition 3 over [0, 1]d

Now, we are ready to prove Proposition 3 over [0, 1]d. For the completeness, we show the following theorem.

Proposition 13 (Proposition 3). Let x = (x1, x2, · · · , xd) ∈ [0, 1]d, α ∈ Nd and xα be any given monomial with degree p.
Then

(1) there is a ResNet R1 ∈ RN (d+ 1, 4,O(d log(d/ε))) such that

∥R1 − x1x2 · · ·xd∥C([0,1]d) < ε

while having O(d log(d/ε)) tunable weights. Moreover, there is a ResNet belonging to R1 ∈ RN (d+ 1, 4,O(nd))
can generate πd

n(x1, x2, · · · , x3) exactly.

(2) there is a ResNet R2 ∈ RN (d+ 3, 4,O(p log(p/ε))) such that

∥R2 − xα∥C([0,1]d) < ε

while having O (p log (p/ε)) tunable weights.

Proof. We prove (1) first. Let the right-hand side of inequality 16 equal to ε and notem = d under the condition of (1). Then,
n is the order log d/ε. Now we construct a ResNet required with width 4 and depth O(nd) generating πd

n (x1, x2, · · · , xd).

Let Ad+1 = (x1, x2, · · · , xd, 0). It follows from the proof of proposition 11 that we can assign some weights for the first
2n blocks to output

z[2n] = (−,−, x3, x4, · · · , xd, πn(x1, x2))
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while only changing the value of the first, second, and last neurons in each activation layer. In the next block, we set the
value of the first and second neurons to zero by using identity mapping. In the next block, we then can output

z[2n+1] = (0, 0, x3, x4, · · · , xd, πn(x1, x2)).

The zero-value neuron in the activation layer is ready to store the results in the next phase. Then in the next 2n blocks we
can compute π3

n(x1, x2, x3). Concretely, by the proof of proposition 11, we can have

z[4n+1] = (0, π3
n(x1, x2, x3),−, x4, · · · , xd,−).

By repeatedly doing the operation above, we can use about (2n + 1)(d − 1) blocks totally with width 4 to approximate
πd
n(x1, x2, · · · , xd). Moreover, there are about 4d+ 4 weights in each building block. However, from the operation above,

we can see only a constant number of weights are non-zero. Therefore, this network has at most cdn tunable weights where
c is an absolute constant.

For (2), if p ≤ d, the case can be the same with (1). Let’s assume p > d. We just need to note xα1
1 xα2

2 · · ·xαd

d can be
approximated by

πd
n(π

α1
n (x1, · · · , x1), · · · , παd

n (xd, · · · , xd)) = πp
n(x1, · · · , x1︸ ︷︷ ︸

α1 times

, x2, · · · , x2︸ ︷︷ ︸
α2 times

, · · · , αd, · · · , αd︸ ︷︷ ︸
αd times

). (21)

Thus, we must store the value of x1, · · · , xd in each building block. However, in the proof of (1), if we complete the output
of πn(x1, x2), we will lose the value of x1 and x2 in the neurons. That’s why we need d+ 3 neurons in the linear layer in
this case. The two more neurons in the linear layer can help us preserve x1, · · · , xd in each linear layer. Here we briefly
show a constructive ResNet generating 21 exactly.

Let Ad+3 = (x, x1, x1, 0). By the proof of proposition 11, we can compute πn(x1, x1) using 2n blocks and get z[2n] =
(x,−,−, πn(x1, x1)) in the 2n-th block. In the next block, we compute z[2n+1] = (x, 0, x1, πn(x1, x1)). Then in the next
2n block, we compute π3

n(x1, x1, x1) = π2
n(x1, πn(x1, x1)) and hence get z[4n+1] = (x, π3

n(x1, x1, x1),−,−). Then by
doing it repeatedly, we can use O(pn) blocks to generate (21). Similarly by the inequality (16) where m = p, we can get the
depth is O(p log p

ε ) if the desired accuracy is ε. Moreover, note there is only a constant number of weights being non-zero
in each block. Thus, the total number of the non-zero weights (tunable weights) is O(p log p

ε ). We can see an illustration in
Figure 8.

x1

...

xd

x1

x2

0

· · ·

x1

...

xd

0

x3

πn(x1, x2)

· · ·

x1

...

xd

π3
n(x1, x2, x3)

x4

0

· · ·

x1

...

xd

-

-

πd
n(x) output

+Id

· · · +Id

+Id +Id

+Id· · ·
+Id +Id

+Id· · ·
+Id

O(n) blocks O(n) blocks O(nd) blocks

z[0]

Figure 8. Illustration for generating πd
n(x1, · · · , xd) by the constructive ResNet. The topmost d neurons are used for storing values. Grey

represents the linear layer and yellow represents the activation layer.

Following this theorem, we supplement some discussions about why are monomials important. Monomials are the
essential constituents of polynomials, which serve an integral role in both theory and applications. Additionally, monomials
possess a straightforward mathematical structure, which aids in analyzing and comparing the approximation capabilities of
neural networks. Numerous intriguing studies have been conducted in this field. Both deep (Yarotsky, 2017) and shallow
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(Blanchard & Bennouna, 2021) ReLU networks can efficiently approximate monomials over [0, 1]d with poly(d) neurons.
However, for monomials over [0,M ]d (M > 1), shallow ResLU networks will at least cost exp(d) neurons approximating
it to ε (Shapira, 2023). Further, the cost of shallow networks will be reduced to poly(d) if the monomial is normalized
over [0,M ]d (multiplied by some normalization constant M−p). More comprehensive discussion can be found in (Shapira,
2023).

C.3. Proof of Proposition 3

In this subsection, we extend Thm, 13 to [−M,M ]d where M > 1. First, we extend the lemma 9 to the [−1, 1].

Lemma 14. Let x, y ∈ [−1, 1]. Then πn(x, y) ∈ [−1, 1]

Proof. Since x, y ∈ [−1, 1], it suffices to show

|πn(x, y)| =
∣∣∣∣Sn(

|x+ y|
2

)− Sn(
|x− y|

2
)

∣∣∣∣ ≤ 1. (22)

First, we show that Sn(x) is monotone incresing over [0, 1]. For any 0 ≤ x ≤ y ≤ 1,

Sn(x)− Sn(y) = x− y +

n∑
i=1

4−i (hi(y)− hi(x)) .

Then by

hi(x) = hi(y + x− y) = ζ(2i−1(y + x− y)) ≤ ζ(2i−1y) + ζ(2i−1(x− y))) = hi(y) + hi(x− y)

we have

Sn(x)− Sn(y) = x− y +

n∑
i=1

4−i (hi(y)− hi(x)) ≥ x− y −
n∑

i=1

4−ihi(x− y) ≥ (x− y)2 ≥ 0.

Note |x+ y| ≥ |x− y| is equivalent to xy ≥ 0. So we only care about the following case to show 22:

• x, y ≤ 0.

πn(x, y) = Sn(
|x+ y|

2
)− Sn(

|x− y|
2

)

≤ |x|+ |y|
2

− (x− y)2

4

=
1

4
(|x|(2− |x|) + |y|(2− |y|) + 2xy)

≤ 1

4
(1 + 1 + 2) = 1.

• xy ≤ 0.

πn(x, y) = Sn(
|x− y|

2
)− Sn(

|x+ y|
2

)

≤ |x|+ |y|
2

− (x+ y)2

4

=
1

4
(|x|(2− |x|) + |y|(2− |y|)− 2xy)

≤ 1

4
(1 + 1 + 2) = 1.

23



Characterizing ResNet’s Universal Approximation Capability

Thus, πm
n can be well-defined over [−1, 1] (equation 15). Next, we show that Proposition 12 holds for x1, x2, · · · , xd ∈

[−1, 1], i.e.,

Proposition 15.
|πm

n (x1, x2, · · · , xm)− x1x2 · · ·xm| ≤ em4−n, x1, x2, · · · , xm ∈ [−1, 1] (23)

as long as n ≥ 1 + log2m.

Proof. For x, y ∈ [−1, 1], the only change of the proof is equation 18. We note

S′
n(

|x+ y|
2

) = 1{x+ y ≥ 0}1
2
(x+ y + ε1)− 1{x+ y < 0}1

2
(−x− y + ε2) =

1

2
(x+ y + ε)

where ε1, ε2, ε ≤ 2−n. Then we can still get

∥∂iπ − ∂iπn∥L∞([−1,1]2) ≤ 2−n+1, where ∂i := ∂xi
, i = 1, 2. (24)

Then we can show the result following the proof of C.1.

Then Thm. 3 can be easily showed by the following remark.

Remark 16 (Proposition 3). Let x1, x2, · · · , xm ∈ [−M,M ]. To approximate x1x2 · · ·xm, we consider a function defined
by π̂m

n (x1, . . . , xm) :=Mmπm
n (|x1|/M, . . . , |xm|/M) with the approximation accuracy

|x1x2 · · ·xm − π̂m
n (x1, · · · , xm)| ≤ emMm · 4−n, ∀x1, x2, · · · , xm ∈ [−M,M ] (25)

as long as n ≥ 1 + log2m. Moreover π̂m
n can be generated by a ResNet R(x) ∈ RN (m+ 1, 4,O(mn)) while having at

most O(mn) tunable weights.

Proof. The remark is the direct corollary from the proof of Proposition 13. By letting the right hand side of Equation 25
equal to ε where m = p and p is the degree of the monomial, we complete the proof of Proposition 3.

C.4. Proof of Theorem 4

Proof. By Proposition 3, for each xα : α ∈ E, we can use a ResNet with width 4, depth O(p log p/ε) and d+ 3 neurons in
each linear layer to output Rα(x) such that

|Rα(x)− xα| < ε, x ∈ [0, 1]d.

Thus,

|
∑
α∈E

cαRα(x)−
∑
α∈E

cαx
α| < ε ·

∑
|α|∈E

|cα|, x ∈ [0, 1]d.

Then Let Ad+4 = (x, x1, x1, 0, 0). To generate each Rα(x), we need 4 more computational units in each linear layer
and depth O(p log p/ε) while having O(p log p/ε) non-zero weights. Then store the value of Rα(x) in the last neuron
in each linear layer. Then we can output (x,−,−,−,

∑
α∈E cαRα(x)) finally with depth O(p|E| log(p/ε)) while having

O(p|E| log(p/ε)) non-zero weights totally.

D. Proof of Theorem 5
In this section, we prove Theorem 5. Before that, we will give the definition supplement about Sobolev space in subsection
4.2.
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D.1. Definition supplement of Sobolev spaces

For α = (α1, . . . , αd) ∈ Nd and x = (x1, . . . , xd) ∈ [0, 1]d, define

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

where |α| = α1+ · · ·+αd. Let r ∈ N+. The Sobolev spaceW r,∞([0, 1]d) is the set of functions belonging to Cr−1([0, 1]d)
whose (r − 1)-th order derivatives are Lipschitz continuous with the norm

∥f∥W r
∞

:= max
α:|α|≤r

esssupx∈[0,1]d |Dαf(x)| <∞.

We denote by Ur([0, 1]d) the unit ball of W r,∞([0, 1]d), i.e. Ur([0, 1]d) = {f ∈W r,∞([0, 1]d) : ∥f∥W r
∞

≤ 1}. Note

ess sup f = inf{a ∈ R : µ({x : f(x) > a}) = 0}

where µ is Lebesgue measure.

D.2. Proof of Theorem 5

We follow the proof of theorem 1 in (Yarotsky, 2017). In our proof, we skip some details and focus on the constructions of
ResNet. The details can be found in theorem 1 of (Yarotsky, 2017). Now let f ∈ Ur([0, 1]d) and α ∈ Nd.

Let N be a positive integer to be determined and m = (m1, . . . ,md) ∈ {0, 1, . . . , N}d. The function ϕm is defined as the
product

ϕm(x) =

d∏
k=1

ψ
(
3N
(
xk − mk

N

))
where

ψ(x) =


1, |x| < 1,

0, 2 < |x|,
2− |x|, 1 ≤ |x| ≤ 2.

Let
f1(x) =

∑
m∈{0,...,N}d

∑
α:|α|<r

am,αϕm(x)
(
x− m

N

)α
where am,α are some specific coefficients when considering the locally Taylor expansion of f . Then by choosing

N =

⌈(
r!

2ddr
ε

2

)−1/r
⌉

(26)

where ⌈·⌉ is the celling function, we have
∥f − f1∥∞ ≤ ε

2
.

Now, we consider to approximate ϕm(x)
(
x− m

N

)α
by ResNet.

The following lemma follows directly from remark 16 that

Lemma 17. Let x ∈ [0, 1]d and g1(x1), · · · , g2(xd) ∈ [−1, 1]. Then∣∣πd
n (g1(x1), g2(x2), · · · , gd(xd))− g1(x1)g2(x2) · · · gd(xd)

∣∣ ≤ ed4−n, n ≥ 1 + log2 d

for all x1, x2, · · · , xd ∈ [−1, 1].

Moreover, we need the following lemma for the construction.

Lemma 18. There is a ResNet R(x) ∈ RN (Q = 1, N = 3, L = 4) such that R(x) = ψ(x) for any x ∈ R.
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Proof of lemma 18. (Lin & Jegelka, 2018) has shown that the following operations are realizable by a single basic residual
block of ResNet with one neuron: (a) Shifting by a constant: R+ = R+ c for any c ∈ R. (b) Min or Max with a constant:
R+ = min{R, c} orR+ = max{R, c} for any c ∈ R. (c) Min or Max with a linear transformation: R+ = min{R,αR+β}
(or max) for any α, β ∈ R.

For the ResNet, z[0] = x. In the first layer, we use one computational unit to compute ReLU(x + 2) and two units to
compute x = (x)+ − (−x)+. Then we output z[1] = ReLU((x + 2) − x + x = ReLU(x + 2) in the first layer. In the
remaining layers, we only need one neuron per layer. we can output z[2] = z[1] − 2(z[1] − 2), z[3] = min{z[2], 1} and
z[4] = max{z[3], 0} = ψ(x).

Then now we define

Rm,α(x) = π2d
n

(
ψ(3Nx1 − 3m1), · · · , ψ(3Nxd − 3md), π

α1
n (x1 −

m1

N
), · · · , παd

n (xd −
md

N
)
)

= πd+|α|
n

ψ(3Nx1 − 3m1), · · · , ψ(3Nxd − 3md), x1 −
m1

N
, · · · , x1 −

m1

N︸ ︷︷ ︸
α1times

, · · · , xd −
md

N
, · · · , xd −

md

N︸ ︷︷ ︸
αdtimes

 .

By lemma 17 and note

|ψ(3Nxi − 3mi)| ≤ 1 and |xi −
mi

N
| ≤ 1 for i = 1, 2, · · · , d

, we have
|Rm,α(x)− ϕm(x)

(
x− m

N

)α
| < e(r + d)4−n = ε0, x ∈ [0, 1]d, (27)

by letting n = O(log e(r+d)
ε0

). Then with similar proof of Proposition 3 and lemma 18, we have a ResNet with Q = d+ 3
to generate Rm,α(x) such (27) satisfies while having O(d(r + d) log e(r + d)/ε0) weights. It follows from the proof of
Theorem 4, we have a ResNet with Q = d+ 4 can generate

f̃(x) =
∑

m∈{0,...,N}d

∑
α:|α|<r

am,αRm,α (x)

while having

O
(
(N + 1)ddrd(d+ r) log

e(r + d)

ε0

)
(28)

weights. From the proof of theorem 1 in (Yarotsky, 2017) we then have

|f̃(x)− f1(x)| ≤ 2ddrε0.

Let ε0 = ε/(2d+1dr). We have ∥f̃ − f1∥∞ ≤ ε/2. Thus,

∥f − f̃∥∞ ≤ ∥f − f1∥∞ + ∥f1 − f̃∥∞ ≤ ε.

Now, substitute ε0 = ε/(2d+1dr) and N with equation 26 into (28), the upper bound on the total weights of the ResNet are

O

((
r!

2ddr
ε

2

)−d/r

dr+1(d+ r) log
e(r + d)2ddr

ε

)
= Od,r

(
ε−

d
r log

1

ε

)
.

By the well-known Stirling’s approximation
√
2πr

(r
e

)r
e

1
12r+1 < r! <

√
2πr

(r
e

)r
e

1
12r , (29)

the hidden constant c(d, r) in the Od,r notation can be bounded by

(
2

d+1
r d

r
)d < c(d, r) < (

2
d+1
r d

r
)ddr+2(d+ r)r (30)

where C is an absolute constant.
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E. Proof of Theorem 6
In this appendix, we give the proof of Theorem 6. The proof of Theorem 6 is mainly based on the following lemma.

Lemma 19. Fix the integer d ≥ 1 and let f : Rd → R be a CPwL function. Then there exist affine functions pα, qβ : Rd → R
such that f can be written as the difference of positive convex functions:

f = p− q, where p := max
1≤α≤A

pα, q := max
1≤β≤B

qβ

where A,B are some positive numbers.

Proof. For any CPwL function f : Rd → R, by theorem 1 in (Wang & Sun, 2005), there exists a finite set of affine linear
functions ℓ1, . . . , ℓk and a finite integer M such that

f =

M∑
j=1

σj

(
max
i∈Sj

ℓi

)
where Sj ⊆ {1, . . . , k}, |Sj | ≤ d+ 1 and σi ∈ {+1,−1} for all i = 1, 2, · · · ,M . We write

f =

M∑
j=1

σj

(
max
i∈Sj

ℓi

)
=
∑

j:σj=1

max
i∈Sj

ℓi −
∑

j:σj=−1

max
i∈Sj

ℓi = p− q.

The last equation holds by the fact that the sum of convex functions is convex and the sum of CPwL functions is also CPwL.
We can easily see A,B is bounded by Md. However, M is an implicit number that may depend on the property of the
CPwL function (e.g., the number of pieces, and the number of linear components). More details can be found in the proof
details in (Tarela & Martinez, 1999; Wang & Sun, 2005).

Now we are ready for the proof of Theorem 6.

Proof of Theorem 6. The proof is based on the observation

max{x, y} = y +ReLU(x− y)

Now we construct a single-neuron per hidden layer ResNet with k = d+ 1 to output f exactly. We use the same notation as
lemma 19. Let z[0] = Ad+1(x) = (x, p1(x)). In the next block, we compute ζ [1] = T [1]

1 (z[0]) = ReLU(p2(x)− p1(x)) in
the activation layer and γ[1]T [1]

2 (z[0]) = (0,ReLU(p2(x)− p1(x))) in the linear layer by choosing the appropriate weights.
Then we can output

z[1] = γ[1] + z[0] = (0,ReLU(p2(x)− p1(x)) + z[0] = (x,max{p1, p2}).

By repeatedly doing this, we can output z[A] = (x,max1≤α≤A{pα}) in the A-th block. In the next two block, we output
z[A+2] = (x, p(x)− q1(x)). Here we use two single-neuron blocks to compute q1(x) = (q1)+− (−q1)+. Then by the same
operation, we can get the result z[A+B+2] = (x, p− q) in the (A+B + 2)-th block. Then the ResNet outputs f = p− q
exactly.

F. Proof of Theorem 7
We first introduce some terms we will use. For a univariate continuous piecewise linear function f(x), x0 is called a
breakpoint of f if limx→x+

0
f ′(x) ̸= limx→x−

0
f ′(x). We will abbreviate ’continuous piecewise linear’ as ’CPwL’. For

a finite sample set A = {(xi, yi) : 1 ≤ i ≤ m} and let xi be increasing for i, we have a CPwL function f such that: i)
f(xi) = yi and ii) f is linear in each interval (−∞, x1], [x1, x2], · · · , [xm−1, xm], [xm,∞]. In this case, we say f is a
CPwL function defined by the sample set A. Note that the set of the breakpoints of f is a subset of {x1, · · · , xm}.

Next, we introduce some basic lemma we will use for the construction of ResNet later.
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Definition 20. A function g : Rd → Rv is a max-min string of length L ≥ 1 on d input variables and v output variables if
there exist affine functions ℓ1, . . . , ℓL : Rd → Rv such that

g = τL−1 (ℓL, τL−2 (ℓL−1, . . . , τ2 (ℓ3, τ1 (ℓ2, ℓ1)) · · · ) ,

where each τi is either a coordinate-wise max or a min.

Lemma 21. Suppose g : Rd → R is a max-min string of length L, i.e.

g = τL−1 (ℓL, τL−2 (ℓL−1, . . . , τ2 (ℓ3, τ1 (ℓ1, ℓ2)) · · · )

Then there is a ResNet R ∈ RN (d+ 1, 1, L) such that R(x) = (x, g(x)).

Proof. The proof is based on the observation

max{x, y} = y +ReLU(x− y) and min{x, y} = y − ReLU(y − x)

We may consider the case v = 1. Now we construct a single-neuron per hidden layer ResNet with k = d+ 1 to output f
exactly. Let z[0] = Ad+1(x) = (x, ℓ1(x)). Without loss of generality, we assume τ1 = max. In the next block, we compute
ζ [1] = T [1]

1 (z[0]) = ReLU(ℓ2(x) − ℓ1(x)) in the activation layer and γ[1]T [1]
2 (z[0]) = (0,ReLU(p2(x)− p1(x))) in the

linear layer by choosing the appropriate weights. Then we can output

z[1] = γ[1] + z[0] = (0,ReLU(ℓ2(x)− ℓ1(x)) + z[0] = (x,max{p1, p2}) = (x, τ1(ℓ1, ℓ2)).

If τ1 = min, we have a similar process. Now we can assume the output of the k − 1-th block is

z[k−1] = (x, τk−1 (ℓk, τk−2 (ℓk−1, · · · , τ1 (ℓ2, ℓ1)))) := (x, gk−1).

Without loss of generality, we assume τk = min. Then we can compute in the next residual block that

ζ [k] = ReLU(gk−1 − ℓk+1)

and

γ[k] = (0,−ReLU(gk−1 − ℓk+1(x))) .

Thus, the output of the next block is

z[k] = z[k−1] + γ[k] = (x, gk−1) + (0,−ReLU(gk−1 − ℓk+1)) = (x, τk(ℓk+1, τk−1 (ℓk, · · · , τ1 (ℓ2, ℓ1)))) .

By induction, we can output z[L] = (x, g) in the L-th block. Thus, we finish the proof.

There is a special CPwL function which can be represented by max-min string which is shown in the following lemma.

Lemma 22. Let L be an positive integer and ε be a sufficient small number. Assume a CPwL function is defined by the
sample set

{(k, k), (k + 1− ε, k) : k = 0, 1, · · · , L− 1}
⋃

{(L,L)}
⋃

{(L+ 1, 0)}
⋃

{(L+ 2, 0)}

with 2L breakpoints. Then there exists a ResNet R ∈ RN (d+ 1, 1, 2L+ 1) such that R(x) = (x, f(x)).

Proof. It is easy to show the CPwL function on the assumption can be exactly represented by a max-min string of length L
by induction. We have an illustration for the kind of step function f(x) as shown in the following when L = 4. Thus, the
result follows from Lemma 21 immediately.

f(x)

x0
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Lemma 23. Let S ⊆ Rd be a finite set. Then any function f : S → R can be computed exactly by a ResNet R(x) ∈
RN (d+ 1, 1, 2|S|).

Proof. As shown in Proposition 4 (Hanin & Sellke, 2017), f can be exactly generated by a min-max string of length 2|S|.
Then with Lemma 21, we directly have the result.

F.1. Proof of Theorem 7

We first given the definition of the small region Ω. Given K ∈ N+and δ ∈
(
0, 1

K

)
, define a trifling region Ω

(
[0, 1]d,K, δ

)
of [0, 1]d as

Ω
(
[0, 1]d,K, δ

)
:=

d⋃
i=1

{
x = (x1, x2, · · · , xd) ∈ [0, 1]d : xi ∈ ∪K−1

k=1

(
k

K
− δ,

k

K

)}
.

In particular, Ω
(
[0, 1]d,K, δ

)
= ∅ if K = 1.

Thus, given the following theorem, we can prove Theorem 7. The proof of Theorem 24 can be found in Sec. F.2.

Theorem 24. Let d ∈ N+ and d ≥ 5. Given f ∈ C
(
[0, 1]d

)
, for any L ∈ N+, there exists a ResNet

R : Rd → R ∈ RN (d+ 1, 4, 24L+ 9d+ 4)

such that ∥R∥L∞(Rd) ≤ |f(0)|+ ωf (
√
d) and

|f(x)−R(x)| ≤ 6
√
dωf

(
L−2/d

)
, for any x ∈ [0, 1]d\Ω

(
[0, 1]d,K, δ

)
,

where K =
⌊
L2/d

⌋
and δ is an arbitrary number in

(
0, 1

3K

⌋
.

Proof of Theorem 7. Without loss of generality, we assume f is not a constant function as it is a trivial case. Hence
ωf (r) > 0 for any r > 0. Moreover, it is obvious that |f(x) − f(0| < ωf (

√
d)) hence |f(x)| ≤ |f(0)| + ωf (

√
d) for

x ∈ [0, 1]d.

By Theorem 24, there exists a ResNet R ∈ RN (d+ 1, 4, 24L+ 9d+ 4) such that ∥R∥L∞(Rd) ≤ |f(0)|+ ωf (
√
d) and

|f(x)−R(x)| ≤ 6
√
dωf

(
L−2/d

)
, for any x ∈ [0, 1]d\Ω

(
[0, 1]d,K, δ

)
,

Now, we set K =
⌊
L2/d

⌋
and choose a small δ ∈

(
0, 1

3K

]
such that for x ∈ [0, 1]d

µ(Ω) · |f(x)−R(x)|p ≤ Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

=
⌊
L2/d

⌋
dδ
(
2|f(0)|+ 2ωf (

√
d)
)p

≤
(
ωf

(
L−2/d

))p
.

It follows that

∥f −R∥p
Lp([0,1]d)

=

∫
Ω([0,1]d,K,δ)

|f(x)−R(x)|p dx+

∫
[0,1]d\Ω([0,1]d,K,δ)

|f(x)−R(x)|p dx

≤ Kdδ
(
2|f(0)|+ 2ωf (

√
d)
)p

+
(
6
√
dωf

(
L−2/d

))p
≤
(
ωf

(
L−2/d

))p
+
(
6
√
dωf

(
L−2/d

))p
≤
(
7
√
dωf

(
L−2/d

))p
.

Hence, ∥f −R∥Lp([0,1]d) ≤ 7
√
dωf

(
L−2/d

)
.
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F.2. Proof of Theorem 24

Given the following two propositions, we prove Theorem 24. The main steps are from (Shen et al., 2019; 2022b) and
we mainly focus on the construction of ResNet. The proof of Proposition 25 can be found in Sec. F.3 and the Proof of
Proposition 26 can be found in Sec. F.4.

Proposition 25. For any L, d ∈ N+ and δ ∈
(
0, 1

3K

]
with K =

⌊
L2/d

⌋
, there exists a ResNet R̂ : [0, 1] → R2, R̂(x) =

(x,R(x)) in RN (2, 1, 4L
1
d + 4) such that

R(x) = k, if x ∈
[
k

K
,
k + 1

K
− δ · 1{k≤K−2}

]
for k = 0, 1, · · · ,K − 1.

Proposition 26. Given any ε > 0 and arbitrary L, J ∈ N+ with J ≤ L2 and samples yj ≥ 0 for j = 0, 1, · · · , J − 1 with

|yj − yj−1| ≤ ε, for j = 1, 2, · · · , J − 1,

then there exists a ResNet R ∈ RN (6, 4, 13L+ 7) such that

(i) |R(j)− yj | ≤ ε for j = 0, 1, · · · , J − 1, and

(ii) 0 ≤ R(x) ≤ max {yj : j = 0, 1, · · · , J − 1} for any x ∈ R.

Proof of Theorem 24. Without loss of generality, we assume f is not a constant. By the definition of ωf (·), we have
|f(x)− f(0)| ≤ ωf (

√
d) for any x ∈ [0, 1]d. We can define f̃ = f − f(0) + ωf (

√
d), then 0 ≤ f̃(x) ≤ 2ωf (

√
d) for any

x ∈ [0, 1]d. Now set K =
⌊
L2/d

⌋
, and δ to an arbitrary number in

(
0, 1

3K

]
.

The details of the proof can be divided into the following four steps.

Step 1: Divide [0, 1]d into {Qβ}β∈{0,1,··· ,K−1}d and Ω
(
[0, 1]d,K, δ

)
. Define xβ is the vertex of Qβ with minimum ∥ · ∥1

norm, i.e., xβ := β/K and

Qβ :=

{
x = (x1, · · · , xd) ∈ [0, 1]d : xi ∈

[
βi
K
,
βi + 1

K
− δ · 1{βi≤K−2}

]
, i = 1, · · · , d

}
for each d-dimensional index β = (β1, · · · , βd) ∈ {0, 1, · · · ,K − 1}d. Clearly,

[0, 1]d =
(
∪β∈{0,1,··· ,K−1}dQβ

)
∪ Ω

(
[0, 1]d,K, δ

)
.

Step 2: Construct Φ mapping x ∈ Qβ to β. By Proposition 25, there exists a ResNet R̂1 = (x,R1(x)) ∈ RN (2, 1, 4L1/d+
3) such that

R1(x) = k, if x ∈
[
k

K
,
k + 1

K
− δ · 1{k≤K−2}

]
for k = 0, 1, · · · ,K − 1.

It follows that R1 (xi) = βi if x = (x1, x2, · · · , xd) ∈ Qβ for each β = (β1, β2, · · · , βd). Let

L0(x1, · · · , xd) = (x1, x2, · · · , xd, 0),
φi(x1, x2, · · · , xd, 0) = (x1, x2, · · · , xd, R1(xi)), for i = 1, 2, · · · , d,
Li(x1, · · · , xd, y) = (x1, · · · , xi−1, y, xi+1, · · · , xd, 0), for i = 1, 2, · · · , d,

Then define Φ(x1, · · · , xd) = Ld◦φd◦· · ·◦L1◦φ1◦L0(x1, · · · , xd). We have Φ is a ResNet in RN (d+1, 1, 4dL1/d+4d) ⊂
RN (d+ 1, 1, 4L+ 8d− 4) and

Φ(x) := (R1 (x1) , R1 (x2) , · · · , R1 (xd) , 0) , for any x = (x1, x2, · · · , xd) ∈ Rd

i.e., Φ(x) = (β, 0) if x ∈ Qβ for β ∈ {0, 1, · · · ,K − 1}d. The computation process is illustrated by Fig. 9. Note that
4dL1/d +4d ≤ 4L+8d− 4 comes form the inequality na1/n ≤ a+n− 1 for any non-negative real number a and positive
integer n.
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x1

x2

...

xd

0

· · ·

R1(x1)

x2

...

xd

0

· · ·

R1(x1)

R1(x2)

...

xd

0

· · ·

R1(x1)

R1(x2)

...

R1(xd)

0

+Id

· · · +Id

+Id +Id

+Id· · ·
+Id +Id

+Id· · ·
+Id

O(L1/d) blocks O(L1/d) blocks O(dL1/d) blocks

z[0]

Figure 9. Illustration of the computation of Φ(x) by ResNet. The last neuron in each layer is used for the intermediate computation and
will be cleared to zero by a linear mapping in each stage.

Step 3: Construct a ResNet ϕ mapping β approximately to f̃ (xβ). The construction of the sub-network generating ϕ
essentially relies on Proposition 26. We follow the work of (Shen et al., 2019; 2022b) in this step. To meet the requirements
of applying Proposition 26, one can define two auxiliary sets A1 and A2 as

A1 :=

{
i

Kd−1
+

k

2Kd
: i = 0, 1, · · · ,Kd−1 − 1 and k = 0, 1, · · · ,K − 1

}
and

A2 :=

{
i

Kd−1
+
K + k

2Kd
: i = 0, 1, · · · ,Kd−1 − 1 and k = 0, 1, · · · ,K − 1

}
.

Clearly, A1 ∪ A2 ∪ {1} =
{

j
2Kd : j = 0, 1, · · · , 2Kd

}
and A1 ∩ A2 = ∅.

Next, we further divide this step into three sub-steps.

Step 3.1: Construct ψ1 bijectively mapping {0, 1, · · · ,K − 1}d to A1. Define

ψ1(x) :=
xd
2Kd

+

d−1∑
i=1

xi
Ki

, for any x = (x1, x2, · · · , xd) ∈ Rd.

Then ψ1 is a linear function bijectively mapping the index set {0, 1, · · · ,K − 1}d to{
βd
2Kd

+

d−1∑
i=1

βi
Ki

: β ∈ {0, 1, · · · ,K − 1}d
}

=

{
i

Kd−1
+

k

2Kd
: i = 0, 1, · · · ,Kd−1 − 1 and k = 0, 1, · · · ,K − 1

}
= A1.

Step 3.2: Construct g to satisfy g◦ψ1(β) = f̃ (xβ) and to meet the requirements of Proposition 26. According to (Shen et al.,
2019), we have a CPwL function g : [0, 1] → R with a set of breakpoints

{
j

2Kd : j = 0, 1, · · · , 2Kd
}
= A1 ∪ A2 ∪ {1}

and the values of g at these breakpoints satisfy the following properties:

• The values of g at the breakpoints in A1 are set as

g (ψ1(β)) = f̃ (xβ) , for any β ∈ {0, 1, · · · ,K − 1}d;

• At the breakpoint 1 , let g(1) = f̃(1), where 1 = (1, 1, · · · , 1) ∈ Rd;

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g, which is a requirement of applying
Proposition 26. To achieve this, we can let g be linear on each interval

[
i

Kd−1 − K+1
2Kd ,

i
Kd−1

]
for i = 1, 2, · · · ,Kd−1.
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Then g satisfies the condition of Proposition 26:∣∣∣∣g( j

2Kd

)
− g

(
j − 1

2Kd

)∣∣∣∣ ≤ max

{
ωf

(
1

K

)
, ωf (

√
d)/K

}
≤ ωf

(√
d

K

)
, for j = 1, 2, · · · , 2Kd,

and

0 ≤ g

(
j

2Kd

)
≤ 2ωf (

√
d), for j = 0, 1, · · · , 2Kd

Step 3.3: Construct ψ2 approximating g well on A1 ∪ A2 ∪ {1}. Since 2Kd = 2
(⌊
L2/d

⌋)d ≤ 2 L2 ≤ L̃2, where L̃ = 3
2L,

by Proposition 26 (set yj = g
(

j
2K2

)
and ε = ωf

(√
d

K

)
> 0 therein), there exists a ResNet ψ̃2 ∈ RN (6, 4, 13L̃+ 7) such

that ∣∣∣∣ψ̃2(j)− g

(
j

2Kd

)∣∣∣∣ ≤ ωf

(√
d

K

)
, for j = 0, 1, · · · , 2Kd − 1,

and

0 ≤ ψ̃2(x) ≤ max

{
g

(
j

2Kd

)
: j = 0, 1, · · · , 2Kd − 1

}
≤ 2ωf (

√
d), for any x ∈ R. (31)

By defining ψ2(x) := ψ̃2

(
2Kdx

)
for any x ∈ R, we have ψ2 ∈ RN (6, 4, 20L + 7), 0 ≤ ψ2(x) = ψ̃2

(
2Kdx

)
≤

2ωf (
√
d), for any x ∈ R, and∣∣∣∣ψ2

(
j

2Kd

)
− g

(
j

2Kd

)∣∣∣∣ = ∣∣∣∣ψ̃2(j)− g

(
j

2Kd

)∣∣∣∣ ≤ ωf

(√
d

K

)
, for j = 0, 1, · · · , 2Kd − 1.

We then define the desired function ϕ as ϕ := ψ2 ◦ψ1. Note that ψ1 : Rd → R is a linear function and ψ2 ∈ RN (6, 4, 20L+
7). Thus, ϕ ∈ RN (6, 4, 20L+ 7). Then we have

∣∣∣ϕ(β)− f̃ (xβ)
∣∣∣ = |ψ2 (ψ1(β))− g (ψ1(β))| ≤ ωf

(√
d

K

)
, (32)

for any β ∈ {0, 1, · · · ,K − 1}d. Equation (31) and ϕ = ψ2 ◦ ψ1 implies

0 ≤ ϕ(x) ≤ 2ωf (
√
d), (33)

for any x ∈ Rd.

Step 4: Construct the final network to implement the desired function R. Define R := ϕ ◦ Φ + f(0)− ωf (
√
d) and the

specific ResNet structure is illustrated by Fig. 10. Since Φ ∈ RN (d+ 1, 4L+ 8d− 4) and ϕ ∈ RN (6, 4, 20L+ 7), R =
ϕ ◦ Φ+ f(0)− ωf (

√
d) is in

RN (d+ 1, 4, 24L+ 9d+ 4) if d ≥ 5

as shown in Fig. 10.

Now let us estimate the approximation error. Note that f = f̃ + f(0)− ωf (
√
d). By Equation (32), for any x ∈ Qβ and

β ∈ {0, 1, · · · ,K − 1}d, we have

|f(x)−R(x)| =
∣∣∣f̃(x)− ϕ (Φ(x))

∣∣∣ = ∣∣∣f̃(x)− ϕ(β)
∣∣∣

≤
∣∣∣f̃(x)− f̃ (xβ)

∣∣∣+ ∣∣∣f̃ (xβ)− ϕ(β)
∣∣∣

≤ ωf

(√
d

K

)
+ ωf

(√
d

K

)
≤ 2ωf

(
2
√
dL−2/d

)
,
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x1

x2

...

xd

0

R = ϕ ◦ Φ+
f(0)− ωf (

√
d)

· · ·

R1(x1)

R1(x2)

...

R1(xd)

0

ψ1(Φ(x))

R1(x1)

R1(x2)

...

R1(xd)

ψ1 ◦ Φ

0

0

...

0

ψ1 ◦ Φ

Output
· · ·

−

−

...

−

ψ2 ◦ ψ1 ◦ Φ
= ϕ ◦ Φ

d blocks
of width 2

+Id

· · · +Id

+Id
+Id

+Id

+Id· · ·
+Id

Φ : 4L+ 8d− 4 blocks ψ2 : 20L+ 7 blocks

z[0]

Figure 10. Illustration of implementing ResNet R = ϕ ◦ Φ+ f(0− ωf (
√
d)).

where the last inequality comes from the fact K =
⌊
L2/d

⌋
≥ L2/d

2 for any L ∈ N+. Recall that ωf (nr) ≤ nωf (r) for any
n ∈ N+and r ∈ [0,∞). Therefore, for any x ∈ ∪β∈{0,1,··· ,K−1}dQβ = [0, 1]d\Ω

(
[0, 1]d,K, δ

)
, we have

|f(x)−R(x)| ≤ 2ωf

(
2
√
dL−2/d

)
≤ 2⌈2

√
d⌉ωf

(
L−2/d

)
≤ 6

√
dωf

(
L−2/d

)
.

Last, by Equation (33) and R = ϕ ◦ Φ+ f(0)− ωf (
√
d), it follows that ∥R∥L∞(Rd) ≤ |f(0)|+ ωf (

√
d). Thus, we finish

the proof.

F.3. Proof of Propostion 25

proof of Prop. 25. Without loss of generality, assume K =
⌊
L2/d

⌋
= L̃2 where L̃ = L1/d. We first consider the sample set

{(1, L̃− 1), (2, 0)} ∪
{(

m

L̃
,m

)
: m = 0, 1, · · · , L̃− 1

}
∪
{(

m+ 1

L̃
− δ,m

)
: m = 0, 1, · · · , L̃− 2

}
.

Let R1(x) be a CPwL function by the sample set. It follows from Lemma 22 that there exists a ResNet R̂1 ∈ RN (2, 1, 2L̃+

1) such that R̂1(x) = (x,R1(x)) where R1(x) satisfy

• R1

(
L̃−1

L̃

)
= R1(1) = L̃− 1 and R1

(
m

L̃

)
= R1

(
m+1

L̃
− δ
)
= m for m = 0, 1, · · · , L̃− 2, and

• R1 is linear on
[
L̃−1

L̃
, 1
]

and each interval
[
m

L̃
, m+1

L̃
− δ
]

for m = 0, 1, · · · , L̃− 2.

Thus, we have

R1 (x) = ℓ, for x ∈
[
m

L̃
,
m+ 1

L̃
− δ · 1{ℓ≤L̃−2}

]
.

Next for the sample set{(
1

L̃
, L̃− 1

)
, (2, 0)

}
∪
{(

ℓ

L̃2
, ℓ

)
: ℓ = 0, 1, · · · , L̃− 1

}
∪
{(

ℓ+ 1

L̃2
− δ, ℓ

)
: ℓ = 0, 1, · · · , L̃− 2

}
.

with size 2L̃+ 1, similarly by Lemma 22, there exists a ResNet R̂2 ∈ RN (2, 1, 2L̃+ 1) such that R̂2 = (x,R2(x)) and

• R2

(
L̃−1

L̃2

)
= R2

(
1

L̃

)
= L̃− 1 and R2

(
ℓ

L̃2

)
= R2

(
ℓ+1

L̃2
− δ
)
= ℓ for ℓ = 0, 1, · · · , L̃− 2;

• R2 is linear on
[
L̃−1

L̃2
, 1

L̃

]
and each interval

[
ℓ

L̃2
, ℓ+1

L̃2
− δ
]

for ℓ = 0, 1, · · · , L̃− 2.
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It follows that, for m, ℓ = 0, 1, · · · , L̃− 1,

R2

(
x− m

L̃

)
= ℓ, for x ∈

[
mL̃+ ℓ

L̃2
,
mL̃+ ℓ+ 1

L̃2
− δ · 1{ℓ≤L̃−2}

]
.

Since K = L̃2, each k ∈ {0, 1, · · · ,K − 1} can be unique represented by k = mL̃+ ℓ for m, ℓ = 0, 1, · · · , L̃− 1. For any
x ∈

[
k
K ,

k
K − δ · 1{k≤K−2}

]
for k ∈ {0, 1, · · · ,K − 1}, R̂1(x) = (x,R(x)) = (x,m). Next, we define an affine mapping

R0 such that R0(x,m) =
(
m,x− m

L̃

)
. Finally, let R̂2(x) = (x,R2(x)). Then

R̂2

(
m,x− m

L̃

)
=

(
m,R2

(
x− m

L̃

))
= (m, ℓ).

With a final affine layer L(ℓ,m) = mL̃+ ℓ = k, we can output the desired value.

Thus, the desired ResNet R := L ◦ R̂2 ◦R0 ◦ R̂1 satisfy

R(x) = k, if x ∈
[
k

K
,
k

K
− δ · 1{k≤K−2}

]
for k ∈ {0, 1, · · · ,K − 1}.

Note that an affine function can be computed by a residul block. Hence R ∈ RN (2, 1, 4L̃+ 4).

F.4. Proof of Proposition 26

For θ ∈ [0, 1), suppose its base-q representation is θ =
∑∞

ℓ=1 θℓq
−ℓ with θℓ ∈ {0, 1, · · · , q − 1}. Then we use the notation

0.θ1θ2 · · · θL to denote the L-term base-q representation of θ, i.e., 0.θ1θ2 · · · θL :=
∑L

ℓ=1 θℓq
−ℓ. We first show some

fundamental lemmas which are the keys to the proof of Proposition 26.

Lemma 27. For any L ∈ N+, there exists a ResNet R in RN (5, 4, 7L) such that, for any θ1, θ2, · · · , θL ∈ {0, 1, 2}, we
have

R (0.θ1θ2 · · · θL, ℓ) =
ℓ∑

j=1

θj , for ℓ = 1, 2, · · · , L

Proof. Given θ1, θ2, · · · , θL ∈ {0, 1, 2}, define

ξj := 0.θjθj+1 · · · θL =

L∑
i=j

θi
3i−j+1

, for j = 1, 2, · · · , L

and T3(x) : [0, 3) → R as

T3(x) = k, if x ∈ [k, k + 1− ε] for k = 0, 1, 2,

where ε is a parameter to be determined later. Then we have

θj = ⌊3ξj⌋ for j = 1, 2, · · · , L,

and
ξj+1 = 3ξj − θj for j = 1, 2, · · · , L− 1.

Moreover, ⌊·⌋ can be approximated by the ReLU network T3(·). Note that if ε < 3−L, then ⌊3x⌋ = T3(3x) for any
x = 0.θ1θ2 · · · θl where l ≤ L. Thus, θj = T3(3ξj) for j = 1, 2, · · · , L. Now let

T (x) :=

{
1, x ≥ 0,
0, x < 0.
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If x ∈ Z, T (x) = T0(x) where T0(x) is defined by

T0(x) :=

 1, x ≥ 0,
x+ 1, 0 ≥ x ≥ −1,
−1, x < −1.

Now we have
ℓ∑

j=1

θj =

L∑
j=1

θjT (ℓ− j) =

L∑
j=1

θjT0(ℓ− j) :=

L∑
j=1

zℓ,j

for ℓ = 1, 2, · · · , L where zℓ,j = θjT0(ℓ− j) ≥ 0.

Here the multiplication of x ∈ {0, 1, 2} and y ∈ {0, 1} can be done by xy = σ(x+ y − 1)− σ(x− y − 1).

Now, we construct a ResNet R such that R (0.θ1θ2 · · · θL, ℓ) =
∑ℓ

j=1 θj for ℓ = 1, 2, · · · , L. Note that T3 is a linear
interpolation at the sample set

{(k, k) : k = 0, 1, 2} ∪ {(k + 1− ε, k) : k = 0, 1, 2} .

Then by Lemma 22, T3 can be generated by a ResNet Ĥ ∈ RN (2, 1, 6), i.e., Ĥ(x) = (x, T3(x)). Similarly, T0 can be
generated by a ResNet P̂ ∈ RN (2, 1, 2) where P̂ (x) = (x, T0(x)). Note that if A(x) is CPwL and satisfies the condition
of Lemma 22, so is A(ax+ b) for a, b ∈ R.

Then we have the following ResNet to output the desired value. Let input be (ξ1, ℓ)

z[0] = (ξ1, ℓ, 0, 0, 0).

According to the above discussion, after 6 residual blocks, we can compute

z[6] = (ξ1, ℓ, θ1, T0(ℓ− 1) := y1, 0).

In the next residual block, we can compute

ζ [7] = (θ1, y1, σ(θ1 + y1 − 1), σ(θ1 − y1 − 1))

and

γ[7] = (−3θ1, 0,−θ1,−y1, zℓ,1).

Hence,

z[7] = γ[7] + z[6] = (ξ2, ℓ, 0, 0, zℓ,1)

This computation process is shown in Fig. 11. Now, for some m ≥ 1 we may assume the output of 7(m− 1)-th block is

z[7(m−1)] = (ξm, ℓ, 0, 0,

m−1∑
j=1

zℓ,j).

As the same process, using 6 blocks, we can compute

z[7(m−1)+6] = (ξm, ℓ, θm, T0(ℓ−m) := ym, 0).

Similarly, in the next block, by choosing appropriate weights, we can compute

ζ [7(m−1)+7] = (θm, ym, σ(θm + ym − 1), σ(θm − ym − 1))

and

γ[7] = (−3θm, 0,−θm,−ym,
m∑
j=1

zℓ,j).
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ξ1

ℓ

ξ1

ℓ

0

0

0

ξ1

ℓ

θ1

T0(ℓ− 1) := y1

0

θ1

y1

(θ1 + y1 − 1)+

(θ1 − y1 − 1)+

−3θ1(+ξ1) = ξ2

0(+ℓ) = ℓ

−θ1(+θ1) = 0

−y1(+y1) = 0

zℓ,1

+Idz[0] z[6] z[7]

max-min string
implemented by ResNet

in RN (5, 2, 6)

Figure 11. Illustration for the computation of zℓ,1. The grey shape is in ReLU-free free and the yellow one is equipped with ReLU
activation function.

Hence we have

z[7m] = γ[7m] + z[7m−1] = (ξm+1, ℓ, 0, 0,

m∑
j=1

zℓ,j)

By induction, there is a ResNet R : R2 → R5 in RN (5, 4, 7L) such that

R(ξ1, ℓ) = (−, ℓ,−,−,
L∑

j=1

zℓ,L =

ℓ∑
j=1

θj).

Hence by choosing appropriate linear mapping L from R5 to R, we have L ◦R(ξ1 = 0.θ1θ2 · · · θL, ℓ) =
∑ℓ

j=1 θj .

Lemma 28. For any L ∈ N+, any θk,ℓ ∈ {0, 1, 2} for k, ℓ = 0, 1, · · · , L − 1, there exists a function R : R2 → R and
R ∈ RN (5, 4, 9L+ 2) such that

R(k, ℓ) =

ℓ∑
j=0

θk,j , for k, ℓ = 0, 1, · · · , L− 1.

Proof. Denote yk := 0.θk,0θk,1 · · · θk,L−1, for k = 0, 1, · · · , L− 1. Then for the sample set {(k, yk) : k = 0, 1, · · · , L},
whose size is L+ 1, it follows from Lemma 23 that there exists a ResNet R1 ∈ RN (2, 1, 2L+ 2) ⊂ RN (5, 4, 2L+ 1)
such that

R1(k) = yk, for k = 0, 1, · · · , L− 1.

By Lemma 27, there exists R2 ∈ RN (5, 4, 7L) such that, for any ξ1, ξ2, · · · , ξL ∈ {0, 1, 2}, we have

R2 (0.ξ1ξ2 · · · ξL, ℓ) =
ℓ∑

j=1

ξj , for ℓ = 1, 2, · · · , L.

It follows that, for any ξ0, ξ1, · · · , ξL−1 ∈ {0, 1, 2}, we have

R2 (0.ξ0ξ1 · · · ξL−1, ℓ+ 1) =

ℓ∑
j=0

ξj , for ℓ = 0, 1, · · · , L− 1.
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Thus, for k, ℓ = 0, 1, · · · , L− 1, we have a ResNet R such that

R(k, ℓ) = R2 (R1(k), ℓ+ 1) = R2 (yk, ℓ+ 1) = R2 (0.θk,0θk,1 · · · θk,L−1, ℓ+ 1) =

ℓ∑
j=0

θk,j .

Moreover, it is clear that R is a ResNet in RN (5, 4, 9L+ 2).

Lemma 29. For any ε > 0, L ∈ N+, and a sample set {yk,ℓ ≥ 0}k.ℓ with

|yk,ℓ − yk,ℓ−1| ≤ ε, for k, ℓ = 0, 1, · · · , L− 1,

there exists a ReLU netework ϕ ∈ RN (6, 4, 11L+ 5) such that

(i) |ϕ(k, ℓ)− yk,ℓ| ≤ ε, for k, ℓ = 0, 1, · · · , L− 1, and

(ii) 0 ≤ ϕ (x1, x2) ≤ maxk,ℓ=0,1,··· ,L−1 {yk,ℓ}, for any x1, x2 ∈ R.

Proof. First we define
ak,ℓ := ⌊yk,ℓ/ε⌋ , for k, ℓ = 0, 1, · · · , L− 1.

We will construct a ResNet R : R2 → R such that R(k, ℓ) = ak,ℓε for k, ℓ = 0, 1, · · · , L− 1.

We denote bk,0 := 0 and bk,ℓ := ak,ℓ − ak,ℓ−1 for k, ℓ = 0, 1, · · · , L− 1. It follows from |yk,ℓ − yk,ℓ−1| ≤ ε for all k and
ℓ that bk,ℓ ∈ {−1, 0, 1}. Thus, we have

ak,ℓ = ak,0 +

ℓ∑
j=1

(ak,j − ak,j−1) = ak,0 +

ℓ∑
j=1

bk,j = ak,0 +

ℓ∑
j=0

bk,j

for k, ℓ = 0, 1, · · · , L− 1. For the sample set {(k, ak,0) : k = 0, 1, · · · , L− 1} ∪ {(L, 0)}, whose size is L+ 1, it follows
from Lemma 23 that there exists a ResNet R̂1 ∈ RN (2, 1, 2L+ 2) such that

R̂1(k) = (k,R1(k) = ak,0) , for k = 0, 1, · · · , L− 1.

By Lemma 28, there exists a ResNet R2 ∈ RN (5, 4, 9L+ 2) such that

R2(k, ℓ) =

ℓ∑
j=0

bk,j =

ℓ∑
j=0

(bk,j + 1)− ℓ.

Here note that bk,j ∈ {0, 1, 2} which will satisfy the condition of Lemma 28.

Thus, we can compute ak,0 first by R̂1. Then use one neuron in each linear layer to preserve the value of ak,0 and compute∑ℓ
j=0 bk,j by R2. For the new ResNet denoted by R3, which is the composition of R1 and R2, we show how to construct it

below. We let input be (k, ℓ) and
z[0] = (k, ℓ, 0, 0, 0, 0).

We use R̂1 to compute

z[2L+2] = (k, ℓ, 0, 0, 0, ak,0).

Then view z[2L+2] as the input of R2. We can compute by Lemma 28

z[11L+4] = (−,−,−,−, R2(k, ℓ), ak,0).

By choosing appropriate affine mapping L(x) = ε(x5 + x6), we have R(k, ℓ) = εak,ℓ.

Moreover, let R0(x) = min{σ(x), ymax}. Then for x, y ∈ R, R(x, y) := R0 ◦ R3(x, y) ≤ ymax and R(k, ℓ) =
min{εak,ℓ, ymax} = ak,ℓ for k, ℓ = 0, 1, · · · , L.

Note min{a, b} = a− (a− b)+. Then R is a ResNet in RN (6, 4, 11L+ 5).
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Now, we are ready to prove Prop. 26.

Proof of Prop. 26. Without loss of generality, assume J = L2 since we can set yJ−1 = yJ = yJ+1 = · · · = yL2−1 if
J < L2. For the sample set

{(kL, k) : k = 0, 1, · · · , L} ∪ {(kL+ L− 1, k) : k = 0, 1, · · · , L− 1}

with size is 2L+ 1, there is a ResNet R̂1 ∈ RN (2, 1, 2L+ 1) by Lemma 22 such that

• R̂1(x) = (x,R1(x)),

• R1(L
2) = L and R1(kL) = R1(kL+ L− 1) = k for k = 0, 1, · · · , L− 1, and

• R1 is a CPwL function defined by the sample set

It follows that
R1(j) = k and j − L ·R1(j) = ℓ, where j = kL+ ℓ,

for k, ℓ ∈ {0, 1, · · · , L−1}. Since any number j in {0, 1, . . . , J−1} can be uniquely decomposed as the form j = kL+ℓ for
k, ℓ = 0, 1, · · · , L− 1, we denote yj = ykL+ℓ as yk,ℓ. Then by Lemma 29, there exists a ResNet R2 ∈ RN (6, 4, 11L+ 5)
such that

|R2(k, ℓ)− yk,ℓ| ≤ ε, for k = 0, 1, · · · , L− 1 and ℓ = 0, 1, · · · , L− 1,

and
0 ≤ R2 (x1, x2) ≤ ymax, for any x1, x2 ∈ R.

So for any j = kL+ ℓ ∈ {0, 1, · · · , J − 1}, we have an affine mapping L such that

L ◦ R̂1(j) = L(k, j) = (k, ℓ).

Let R = R2 ◦ L ◦R1. Moreover, note that an affine mapping can be computed by a residual block. Thus, we have R is a
ReLU network in RN (6, 4, 13L+ 7) and it satisfy

|R(j)− yj | ≤ ε.

Then we have finished the proof.

G. Experiments
In this appendix, we specify the experiment setting in Section 5. First, we assume that an appropriate algorithm can
effectively manage the optimization error (e.g., Adam optimizer (Kingma & Ba, 2014)). We then choose a sufficiently
complex target function to ensure that the approximation error is the dominant factor. To reduce the randomness and errors
in our experiments, we conduct function approximation experiments across a set of functions. Specifically, we utilize the
following set of functions to test the universal approximation capability of b-ResNet.

f(x) =

m∑
i=1

[ai
∏
j∈S1

i

xj + bi sin(
∏
k∈S2

i

xk)], (34)

where x ∈ [0, 1]d, S1
i and S1

j are the index sets randomly sampled from {1, ..., d} with replacement, ai and bi are coefficients,
and m is the total number of terms.

Specifically, for each case of d = 100, 200, 300, we randomly selected 30 functions from the set for function approximation
experiments. After removing some outliers, we took the average testing loss. For each d ∈ {100, 200, 300}, we set the
parameters as m = d/10, card(S1

i ) ≤
√
d, card(S2

i ) ≤
√
d, ai ∈ [0, 1], and bi ∈ [0, 0.1], where the index sets (e.g., S1

i )
and coefficients (e.g., ai) are randomly sampled.
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We then compare b-ResNet with fully-connected (FC) NN for approximating each sampled function, with network structure
as RN (d+ 1, n, d/10) for n ∈ {10, 20, 40}, and NN (d+ 1, d/10), respectively. Next for each approximated function,
we conduct uniform sampling with 1000 · d samples and use 90% for training and 10% for testing, and then take the average
loss. We optimize the network parameters using Adam (Kingma & Ba, 2014) with a learning rate of 10−3 and present the
test performance over iteration. The results include the mean square error (MSE) and the maximum absolute error (MAX)
on testing samples.

Figure 12. Comparison of MSE loss on testing samples when training with MSE loss.

Figure 13. Comparison of MAX loss on testing samples when training with MSE loss.
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