
Under review as a conference paper at ICLR 2024

GETMUSIC: GENERATING MUSIC TRACKS WITH A
UNIFIED REPRESENTATION AND DIFFUSION FRAME-
WORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic music generation aims to create musical notes, which can help users
compose music, such as generating target instrument tracks based on provided
source tracks. In practical scenarios where there’s a predefined ensemble of tracks
and various composition needs, an efficient and effective generative model that
can generate any target tracks based on the other tracks becomes crucial. However,
previous efforts have fallen short in addressing this necessity due to limitations in
their music representations and models. In this paper, we introduce a framework
known as GETMusic, with “GET” standing for “GEnerate music Tracks.” This
framework encompasses a novel music representation “GETScore” and a diffusion
model “GETDiff.” GETScore represents musical notes as tokens and organizes
tokens in a 2D structure, with tracks stacked vertically and progressing horizontally
over time. At a training step, each track of a music piece is randomly selected as
either the target or source. The training involves two processes: In the forward
process, target tracks are corrupted by masking their tokens, while source tracks
remain as the ground truth; in the denoising process, GETDiff is trained to pre-
dict the masked target tokens conditioning on the source tracks. Our proposed
representation, coupled with the non-autoregressive generative model, empowers
GETMusic to generate music with any arbitrary source-target track combinations.
Our experiments demonstrate that the versatile GETMusic outperforms prior works
proposed for certain specific composition tasks. Our music demos are available at
https://getmusicdemo.github.io/. Our code is in the supplementary
materials and will be open.
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Figure 1: The overview of GETMusic, involving a novel music representation “GETScore” and a
discrete diffusion model “GETDiff.” Given a predefined ensemble of instrument tracks, GETDiff
takes GETScores as inputs and can generate any desired target tracks conditioning on any source
tracks ( 1⃝, 2⃝, and 3⃝). This flexibility extends beyond track-wise generation, as it can perform
zero-shot generation for any masked parts ( 4⃝).
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1 INTRODUCTION

Symbolic music generation aims to create musical notes, which can help users in music composition.
Due to the practical need for flexible and diverse music composition, the need for an efficient and
unified approach capable of generating arbitrary tracks based on the others is high1. However,
current research falls short of meeting this demand due to inherent limitations imposed by their
representations and models. Consequently, these approaches are confined to specific source-target
combinations, such as generating piano accompaniments based on melodies.

Current research can be categorized into two primary approaches based on music representation:
sequence-based and image-based. On one hand, sequence-based works (Huang & Yang, 2020; Zeng
et al., 2021; Christopher, 2011) represent music as a sequence of discrete tokens, where a musical
note requires multiple tokens to describe attributes such as onset, pitch, duration, and instrument.
These tokens are arranged chronologically, resulting in the interleaving of notes from different tracks,
and are usually predicted by autoregressive models sequentially. The interleaving of tracks poses a
challenge of precise target generation because the autoregressive model implicitly determines when
to output a target-track token and avoids generating tokens from other tracks. It also complicates the
specification of source and target tracks. Therefore, the existing methods (Dong et al., 2023; Ren
et al., 2020; Yu et al., 2022) typically focus on either one specific source-target track combination or
the continuation of tracks.

On the other hand, image-based research represents music as 2D images, with pianorolls2 being
a popular choice. Pianorolls represent musical notes as horizontal lines, with the vertical position
denoting pitch and the length signifying duration. A pianoroll explicitly separates tracks but it has to
incorporate the entire pitch range of instruments, resulting in large and sparse images. Due to the
challenges of generating sparse and high-resolution images, most research has focused on conditional
composition involving only a single source or target track (Dong et al., 2017; Yang et al., 2017; Shuyu
& Sung, 2023) or unconditional generation (Mittal et al., 2021).

To support the generation across flexible and diverse source-target track combinations, we propose a
unified representation and diffusion framework called GETMusic (“GET” stands for GEnerate music
Tracks), which comprises a representation named GETScore, and a discrete diffusion model (Austin
et al., 2021) named GETDiff. GETScore represents the music as a 2D structure, where tracks are
stacked vertically and progress horizontally over time. Within each track, we efficiently represent
musical notes with the same onset by a single pitch token and a single duration token, and position
them based on the onset time. At a training step, each track in a training sample is randomly selected
as either the target or the source. The training consists of two processes: In the forward process, the
target tracks are corrupted by masking tokens, while the source tracks are preserved as ground truth;
in the denoising process, GETDiff learns to predict the masked target tokens based on the provided
source. Our co-designed representation and diffusion model in GETMusic offer several advantages
compared to prior works:

• With separate and temporally aligned tracks in GETScore, coupled with a non-autoregressive
generative model, GETMusic adeptly compose music across various source-target combinations.

• GETScore is a compact multi-track music representation while effectively preserving interde-
pendencies among simultaneous notes both within and across tracks, fostering harmonious music
generation.

• Beyond track-wise generation, the mask and denoising mechanism of GETDiff enable the zero-shot
generation (i.e., denoising masked tokens at any arbitrary locations in GETScore), further enhancing
the versatility and creativity.

In this paper, our experiments consider six instruments: bass, drum, guitar, piano, string, and
melody, resulting in 665 source-target combinations (Details in appendix A). We demonstrate that our
proposed versatile GETMusic surpasses approaches proposed for specific tasks such as conditional
accompaniment or melody generation, as well as generation from scratch.

1A music typically consists of multiple instrument tracks. In this paper, given a predefined track ensemble,
we refer to the tracks to be generated as “target tracks” and those acting as conditions as “source tracks.” We
refer to such an orchestration of tracks as a “source-target combination.”

2https://en.wikipedia.org/wiki/Piano_roll
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Time Unit      Pitch tokens    Duration tokens    Paddings

(c) Pianoroll

(b) Sequence Representation

Piano

Melody

Drum

Bar0, TS4/4, Position0, BPM120, Trackpiano, PitchA3, ↲ 
Duration2, Velocity62, PitchC4, Duration2, Velocity62, PitchF4, ↲

Duration2, Velocity62, Bar0, TS4/4, Position0, BPM120, ↲

Trackdrum, Pitchcymbal_2, Velocity62, Pitchbass_drum, Velocity62, ↲

Bar0, TS4/4, Position2, BPM120, Trackpiano, PitchF3, ↲ 
Duration2, Velocity62, Bar0, TS4/4, Position2, Trackmelody, PitchF3, ↲

Duration8, Velocity62, Bar0, TS4/4, Position2, Trackdrum, ↲ 
Pitchcymbal_1, Velocity62, Bar0, TS4/4, Position4, BPM120, ↲ 
Trackpiano, PitchA3, Duration2, Velocity62, PitchC4, ↲ 
Duration2, Velocity62, PitchF4, Duration2, Velocity62, ······

88
Pixels

Melody

Figure 2: Different representations for the same piece of music. Figure (a) is the music score. Figure
(b) illustrates the sequence-based representation in REMI (Huang & Yang, 2020) style, and due to the
length of the sequence, we only show the portion enclosed by the dashed box in Figure (a). Figure
(c) shows a sparse pianoroll that represents notes by lines. In Figure (d), GETScore separates and
aligns tracks, forming the basis for unifying generation across various source-target combinations. It
also preserves the interdependencies among simultaneous notes, thereby fostering harmony in music
generation. Numbers in (d) denote token indices which are for demonstration only.

2 BACKGROUND

2.1 SYMBOLIC MUSIC GENERATION

Symbolic music generation aims to generate musical notes, whether from scratch (Mittal et al., 2021;
Yu et al., 2022) or based on given conditions such as chords, tracks (Shuyu & Sung, 2023; Huang &
Yang, 2020; Dong et al., 2017), lyrics (Lv et al., 2022; Ju et al., 2021; Sheng et al., 2020), or other
musical properties (Zhang et al., 2022), which can assist users in composing music. In practical
music composition, a common user need is to create instrumental tracks from scratch or conditioning
on existing ones. Given a predefined ensemble of tracks and considering flexible composition needs
in practice, a generative model capable of handling arbitrary source-target combination is crucial.
However, neither of the existing approaches can integrate generation across multiple source-target
combinations, primarily due to inherent limitations in their representations and models.

Current approaches can be broadly categorized into two main categories with respect to adopted
representation: sequence-based and image-based. In sequence-based methods (Huang & Yang, 2020;
Hsiao et al., 2021; Zeng et al., 2021; Ren et al., 2020), music is represented as a sequence of discrete
tokens. A token corresponds to a specific attribute of a musical note, such as onset (the beginning
time of a note), pitch (note frequency), duration, and instrument, and tokens are usually arranged
chronologically. Consequently, notes that represent different tracks usually interleave, as shown in
Figure 2(b) where the tracks are differentiated by colors. Typically, an autoregressive model is applied
to processes the sequence, predicting tokens one by one. The interwove tracks and the autoregressive
generation force the model to implicitly determine when to output tokens of desired target tracks
and avoid incorporating tokens belonging to other tracks, which poses a challenge to the precise
generation of the desired tracks; the sequential representation and modeling do not explicitly preserve
the interdependencies among simultaneous notes, which impact the harmony of the generated music;
furthermore, the model is required to be highly capable of learning long-term dependencies (Bengio
et al., 1994) given the lengthy sequences. Some unconventional methods (Ens & Pasquier, 2020)
organize tokens according to the track order in order to eliminate track interleaving. However, it
comes with a trade-off, as it results in weaker dependencies both in the long term and across tracks.
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Image-based methods mainly employ pianoroll representations which depict notes as horizontal lines
in 2D images, with the vertical position denoting pitch and the length signifying duration. However,
pianorolls need to include the entire pitch range of the instrument, resulting in images that are both
large and sparse. For instance, Figure 2(c) illustrates a pianoroll representation of a three-track music
piece, which spans a width of hundreds of pixels, yet only the bold lines within it carry musical
information. Most works focus on conditional composition involving only a single source/target
track (Dong et al., 2017; Yang et al., 2017; Shuyu & Sung, 2023) or unconditional generation (Mittal
et al., 2021) because generating a sparse and high-resolution image is challenging.

Our proposed GETMusic addresses above limitations with a co-designed representation and a discrete
diffusion model which together provide an effective solution to versatile track generation.

2.2 DIFFUSION MODELS

Diffusion models, initially proposed by (Sohl-Dickstein et al., 2015) and further improved by
subsequent research (Ho et al., 2020; Song et al., 2021; Ho & Salimans, 2021; Dhariwal & Nichol,
2021), have demonstrated impressive capabilities in modeling complex distributions. These models
consist of two key processes: a forward (diffusion) process and a reverse (denoising) process. The

forward process q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) introduces noise to the original data x0 iteratively

for T steps, corrupting it towards a prior distribution p(xT ) that is independent of x0. The goal of
diffusion models is to learn a reverse process pθ(xt−1|xt) that gradually denoises xT to the data
distribution. The model is trained by optimizing the variational lower bound (VLB) (Ho et al., 2020):

Lvlb = Eq[− log pθ(x0|x1)] +

T∑
t=2

DKL [q(xt−1|xt, x0)||pθ(xt−1|xt))] +DKL[q(xT |x0)||p(xT )]]. (1)

Diffusion models can be categorized into continuous and discrete versions. As our proposed
GETScore represents music as a 2D arrangement of discrete tokens, we employ the discrete diffusion
framework in our method. Discrete diffusion models in (Sohl-Dickstein et al., 2015) were developed
for binary sequence learning. Hoogeboom et al. (2021) extended these models to handle categorical
random variables, while Austin et al. (2021) introduced a more structured categorical forward process:
the forward process is a Markov chain defined by transition matrices, which transitions a token at time
t− 1 to another at time t by probability. For our diffusion model GETDiff, we adopt their forward
process as the basis. We also adopt a crucial technique known as x0-parameterization (Austin et al.,
2021), where instead of directly predicting xt−1 at time step t, the model learns to fit the noiseless
original data x0 and corrupts the predicted x̃0 to obtain xt−1. Consequently, an auxiliary term scaled
by a hyper-parameter λ is added to the VLB:

Lλ = Lvlb + λEq

[
T∑

t=2

− log pθ(x0|xt)

]
(2)

3 GETMUSIC

In this section, we introduce two key components in GETMusic: the representation GETScore and
the diffusion model GETDiff. We first provide an overview of each component, and then highlight
their advantages in supporting the flexible and diverse generation of any tracks.

3.1 GETSCORE

Our goal is to design an efficient and effective representation for modeling multi-track music, which
allows for flexible specification of source and target tracks and thereby laying the foundation of the
diverse track generation tasks. Our novel representation GETScore involves two core ideas: (1) the
2D track arrangement and (2) the musical note tokenization.

Track Arrangement We derive inspiration from music scores to arrange tracks vertically, with each
track progressing horizontally over time. The horizontal axis is divided into fine-grained temporal
units, with each unit equivalent to the duration of a 16th note. This level of temporal detail is sufficient
to the majority of our training data. This arrangement of tracks brings several benefits:
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• It prevents content of different tracks from interleaving, which simplifies the specification of
source and target tracks, and facilitates the precise generation of desired tracks.

• Because tracks are temporally aligned like music scores, their interdependencies are well preserved.

Note Tokenization To represent musical notes, we focus on two attributes: pitch and duration,
which are directly associated with composition. Some dynamic factors like velocity and tempo
variation fall outside the scope of our study. We use two distinct tokens to denote a note’s pitch and
duration, respectively. These paired pitch-duration tokens are placed in accordance with the onset
time and track within GETScore. Some positions within GETScore may remain unoccupied by any
tokens; in such instances, we employ padding tokens to fill them, as illustrated by the blank blocks in
Figure 2(d). Each track has its own pitch token vocabulary but shares a common duration vocabulary,
considering pitch characteristics are instrument-dependent, whereas duration is a universal feature
across all tracks. To broaden the applicability of GETScore, we need to address two more problems:

(1) How to use single pitch and duration tokens to represent a group of notes played simultaneously
within a track? We propose merging pitch tokens of a group of simultaneous notes into a single
compound pitch token. Furthermore, we identify the most frequently occurring duration token within
the group as the final duration token. This simplification of duration representation is supported by
our observation from the entire training data, where notes in more than 97% groups share the same
duration. In only 0.5% groups, the maximum duration difference among notes exceeds a temporal
unit. These findings suggest that this simplification has minimal impact on the expressive quality of
GETScore. Figure 2(d) illustrates the compound token: in the piano track, we merge the first three
notes “A”, “C”, and “F” into a single token indexed as “147.”

(2) How to represent percussive instruments, such as drums, which do not involve the concepts of
”pitch” and ”duration?” We treat individual drum actions (e.g., kick, snare, hats, toms, and cymbals)
as pitch tokens and align them with a special duration token. The drum track in Figure 2(d) illustrates
our approach.

In conclusion, besides the benefits from track arrangement, GETScore also gains advantages through
this note tokenization:

• Each track requires only two rows to accommodate the pitch and duration tokens, significantly
enhancing the efficiency of GETScore.

• The compound token preserves the interdependecies within a track. When it is generated, harmony
is inherently guaranteed because the corresponding note group is derived from real-world data.

3.2 GETDIFF

In this section, we first introduce the forward and the denoising process of GETDiff during training,
respectively. Next, we introduce the inference procedure and outline GETDiff’s benefits in addressing
the diverse needs for track generation.

The Forward Process Since GETMusic operates on GETScore, which consists of discrete tokens,
we employ a discrete diffusion model. We introduce a special token [MASK] into the vocabulary
as the absorbing state of the forward process. At time t− 1, a normal token remains in its current
state with a probability of αt and transitions to [MASK] (i.e., corrupts to noise) with a probability
of γt = 1− αt. As GETScore includes a fixed number of tracks that GETMusic supports, and the
composition does not always involve all tracks, we fill the uninvolved tracks with another special
token [EMPTY]. [EMPTY] never transitions to other tokens, nor can it be transitioned to from any
other tokens. This design prevents any interference from uninvolved tracks in certain compositions.
Formally, a transition matrix [Qt]mn = q(xt = m|xt−1 = n) ∈ RK×K defines the transition
probability from the n-th token at time t− 1 to the m-th token at time t:

Qt =



αt 0 0 . . . 0 0
0 αt 0 . . . 0 0
0 0 αt . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
γt γt γt . . . 0 1

 , (3)
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Figure 3: An overview of training the GETDiff using a 3-track GETScore. Note that GETScore is
capable of accommodating any number of tracks, with this example serving as a toy example. During
this training step, GETMusic randomly selects the piano track as the source and the drum track as
the target, while ignoring the melody track. Thus, xt consists of the ground truth piano track, an
emptied melody track, and a corrupted drum track. GETDiff generates all tokens simultaneously in a
non-autoregressive manner which may modify tokens in its output. Therefore, when xt−1 is obtained,
the sources are recovered with the ground truth while ignored tracks are emptied again.

where K is the total vocabulary size, including two special tokens. The last two columns of the
matrix correspond to q (xt|xt−1 = [EMPTY]) and q (xt|xt−1 = [MASK]), respectively. Denoting
v(x) as a one-hot column vector indicating the category of x and considering the Markovian nature of
the forward process, we can express the marginal at time t, and the posterior at time t− 1 as follows:

q(xt|x0) = v⊤(xt)Qtv(x0), with Qt = Qt . . . Q1. (4)

q(xt−1|xt, x0) =
q(xt|xt−1, x0)q(xt−1|x0)

q(xt|x0)
=

(
v⊤(xt)Qtv(xt−1)

) (
v⊤(xt−1)Qt−1v(x0)

)
v⊤(xt)Qtv(x0)

. (5)

With the tractable posterior, we can optimize GETDiff with Eq.2.

The Denoising Process Figure 3 provides an overview of GETMusic denoising a three-track train-
ing sample of a length of L time units. GETDiff has three main components: an embedding module,
Roformer (Su et al., 2021) layers, and a decoding module. Roformer is a transformer (Vaswani et al.,
2017) variant that incorporates relative position information into the attention matrix, which enhances
the model’s ability to length extrapolation during inference.

During training, GETMusic needs to cover the various source-target combinations for a music piece
with I tracks, represented as a GETScore with 2I rows. To achieve this, m tracks (resulting in
2m rows in GETScore) are randomly chosen as the source, while n tracks (resulting in 2n rows in
GETScore) are selected as the target, m ≥ 0, n > 0, and m+ n ≤ I .

At a randomly sampled time t, to obtain xt from the original GETScore x0, tokens in target tracks are
transitioned according to Qt, tokens in the source tracks remain as the ground truth, and uninvolved
tracks are emptied. GETDiff denoises xt in four steps, as shown in Figure 3: (1) All tokens in
GETScore are embedded into d-dimensional embeddings, forming an embedding matrix of size
2Id× L. (2) Learnable condition flags are added in the matrix to guide GETDiff which tokens can
be conditioned on, thereby enhancing inference performance. The effectiveness of condition flags is
analyzed in § 4.3. (3) The embedding matrix is resized to GETDiff’s input dimension dmodel using
an MLP, and then fed into the Roformer model. (4) The output matrix passes through a classification
head to obtain the token distribution over the vocabulary of size K and we obtain the final tokens
using the gumbel-softmax technique.

Inference During inference, users can specify any target and source tracks, and GETMusic con-
structs the corresponding GETScore representation, denoted as xT , which contains the ground truth
of source tracks, masked target tracks, and emptied tracks (if any). GETMusic then denoises xT
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step by step to obtain x0. As GETMusic generates all tokens simultaneously in a non-autoregressive
manner, potentially modifying source tokens in the output, we need to ensure the consistent guidance
from source tracks: when xt−1 is acquired, tokens in source tracks are recovered to their ground truth
values, while tokens in uninvolved tracks are once again emptied.

Considering the combined benefits of the representation and the diffusion model, GETMusic offers
two major advantages in addressing the diverse composition needs:

• Through a unified diffusion model, GETMusic has the capability to compose music across a range
of source-target combinations without requiring re-training.

• Beyond the track-wise generation, the mask and denoising mechanism of GETDiff enables the zero-
shot generation of any arbitrary masked locations in GETScore, which further enhances versatility
and creativity. An illustration of this can be found in case 4⃝ in Figure 1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Data and Preprocess We crawled 1,569,469 MIDI files from Musescore3. We followed Ren et al.
(2020) to pre-process the data, resulting in music including I = 6 instrumental tracks: bass, drum,
guitar, piano, string, melody and an extra chord progression track. After strict cleanse and filter, we
construct 137,812 GETScores (about 2,800 hours) with the maximum L as 512, out of which we
sampled 1,000 for validation, 100 for testing, and the remaining for training. We train all baselines
on the crawled data. The vocabulary size K is 11,883. More details on data and the pre-processing
are in appendix B.

Training Details We set diffusion timesteps T = 100 and the auxiliary loss scale λ = 0.001. For
the transition matrix Qt, we linearly increase γt (cumulative γt) from 0 to 1 and decrease αt from 1
to 0. GETDiff has 12 Roformer layers with d = 96 and dmodel = 768, where there are about 86M
trainable parameters. During training, we use AdamW optimizer with a learning rate of 1e− 4, β1 =
0.9, β2 = 0.999. The learning rate warmups first 1000 steps and then linearly decays. The training is
conducted on 8 × 32G Nvidia V100 GPUs and the batch size on each GPU is 3. We train the model
for 50 epochs and validate it every 1000 steps, which takes about 70 hours in total. We select model
parameters based on the validation loss.

Tasks and Baselines We consider three symbolic music generation tasks: (1) accompaniment
generation based on the melody, (2) melody generation based on the accompaniments, and (3)
generating tracks from scratch. For the first two tasks, we compare GETMusic with PopMAG (Ren
et al., 2020). PopMAG is an autoregressive transformer encoder-decoder model that processes a
sequence representation MuMIDI. Following Ren et al. (2020), an extra chord progression provides
more composition guidance and we treat the chord progression as another track in GETScore (Details
in appendix B). To be comparable, we restrict the generated music to a maximum length of 128 beats,
which is the longest composition length for PopMAG. For the third task, we compare GETMusic
with Museformer (Yu et al., 2022), one of the most competitive unconditional generation models. We
generate all 6 tracks of 100 songs from scratch, where each song also restricted to 128 beats.

Evaluation We introduce objective metrics that quantitatively evaluates the generation quality.
Following Ren et al. (2020), we evaluate the models from two aspects:

(1) Chord Accuracy: For Task 1 and 2, we measure the chord accuracy CA between generated target
tracks and their ground truth to evaluate the melodic coherence:

CA =
1

Ntracks ∗Nchords

Ntracks∑
i=1

Nchords∑
j=1

1(C
′
i,j = Ci,j). (6)

Here, Ntracks and Nchords represent the number of tracks and chords, respectively. C
′

i,j and Ci,j

denote the j-th chord in the i-th generated target track and the ground truth, respectively. Note that

3https://musescore.com/
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Table 1: We compare GETMusic with PopMAG and Museformer, through three representative tasks:
the accompaniment/melody generation as well as generating from scratch. In all human evaluations,
the κ values consistently exceed 0.6, indicating substantial agreement among the evaluators.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓ HR ↑
Accompaniment Generation

PopMAG 61.17 10.98 7.00 6.92 2.88
GETMusic 65.48 10.05 4.21 4.22 3.35

Lead Melody Generation

PopMAG 73.70 10.64 3.97 4.03 3.14
GETMusic 81.88 9.82 3.67 3.49 3.52

Generation from Scratch

Museformer - 8.19 3.34 5.71 3.05
GETMusic - 7.99 3.38 5.33 3.18

this metric is not suitable for the third task. Instead, melodic evaluation for the third task relies on
both the pitch distribution and human evaluation, which are discussed later.

(2) Feature Distribution Divergence: For the first two tasks, we assess the distributions of some
important musical features in generated and ground truth tracks: note pitch, duration (Dur) and
Inter-Onset Interval (IOI) that measures the temporal interval between two consecutive notes within a
bar. First, we quantize the note pitch, duration and IOI into 16 classes, then convert the histograms
into probability density functions (PDFs) using Gaussian kernel density estimation. Finally, we
compute the KL-divergence (Kullback & Leibler, 1951) KL{Pitch,Dur,IOI} between the PDFs of
generated target tracks and ground truth. For the third task, we compute KL{Pitch,Dur,IOI} between
the PDFs of generated target tracks and the corresponding distribution of training data.

(4) Human Evaluation: We recruited 10 evaluators with basic music knowledge. They were presented
with songs generated by GETMusic and baselines in a blind test. Evaluators provided a Human
Rating (HR), on a scale from 1 (Poor) to 5 (Excellent). The HR rating reflects the overall quality of
the generated songs, and the coherence between the target and source tracks (when applicable). More
details on human evaluation are in appendix C.

4.2 GENERATION RESULTS

Comparison with Previous Works Table 1 presents the results of three composition tasks. In
the first two tasks, GETMusic consistently outperforms PopMAG across all metrics, showcasing
its ability to create music with more harmonious melodies and rhythms that align well with the
provided source tracks. When we compare the first two tasks, an improvement in music quality
becomes evident as we involve more source tracks. In the second task, where all five accompaniment
instruments serve as source tracks, we achieve better scores in most metrics compared to the first
task which relies solely on the melody as the source track. In unconditional generation, GETMusic
outperforms the competitive baseline in most metrics. Subjective evaluations further confirm the
effectiveness of GETMusic. Readers are welcome to visit our demo page for generated samples.

Zero-shot Generation Although GETMusic is trained for track-wise generation, it can zero-shot
recover masked tokens at any arbitrary locations, due to its the mask and denoising mechanism. The
zero-shot generation is examplified in case 4⃝ in Figure 1. This capability enhances the versatility and
creativity of GETMusic. For example, we can insert mask tokens in the middle of two different songs
to connect them: GETMusic generates a harmonious bridge by iteratively denoising the masked
tokens while preserving the rest of the tokens unchanged. Despite the challenges in evaluation, the
8th and 9th demos on the demo page showcase our approach’s flexibility and creativity.

4.3 METHOD ANALYSIS

The Complementary Nature of GETScore and GETDiff To demonstrate this, we begin with an
ablation study in which we replace GETDiff with an autoregressive model. For the task of generating
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Table 2: Ablation study on generation paradigms: Autoregressive vs. Non-autoregressive.

Method CA(%) ↑ KLPitch ↓ KLDur ↓ KLIOI ↓ T ime ↓ HR ↑
PopMAG 61.17 10.98 7.00 6.92 23.32 2.88
GETMusic (AR) 46.25 11.91 7.08 6.49 17.13 2.37

GETMusic 65.48 10.05 4.21 4.22 4.80 3.35

Table 3: Ablation study on the effectiveness of condition flags.

Method CA ↑ KLPitch ↓ KLDur ↓ KLIOI ↓ Loss ↓
GETMusic (AG) 65.48 10.05 4.21 4.22 1.39
− condition flags 45.16 10.89 6.32 5.34 1.40

GETMusic (UN) - 7.99 3.38 5.33 1.63
− condition flags - 8.43 3.57 5.61 1.75

music from scratch, we train a transformer decoder equipped with 12 prediction heads. At each
decoding step, it predicts 12 tokens (6 pitch tokens and 6 duration tokens in a GETScore involving 6
tracks). The outcomes of this variant, denoted as GETMusic (AR), are detailed in Table 2, revealing
suboptimal results characterized by a tendency to produce repetitive melody. Additionally, we present
the average time required in seconds for composing each musical piece using an Nvidia A100 GPU,
highlighting that the non-autoregressive denoising process significantly outpaces autoregressive
decoding in terms of speed.

While it would be more informative to evaluate diffusion models trained with traditional sequence
representations, this approach is intractable. Firstly, due to the inherently higher computational
resource requirements of training a diffusion model compared to an autoregressive model, coupled
with the fact that traditional sequence representations are typically an order of magnitude longer than
GETScore when representing the same musical piece, the training cost becomes prohibitively high.
Furthermore, diffusion models require the specification of the generation length in advance. Yet,
the length of traditional sequences representing the same number of bars can vary in a wide range,
leading to uncontrollable variations in the generated music’s length and structure.

Based on above results and analyses, we believe that our proposed GETScore and GETDiff together
provide an efficient and effective solution for versatile and diverse symbolic music generation.

Effectiveness of Condition Flags In GETScore, since all normal tokens carry information, any
inaccuracies in the predicted normal tokens can lead to deviations in the denoising direction during
inference. To address this issue, we incorporate learnable condition flags into the embedded GETScore
to signify trustworthy tokens. To evaluate the effectiveness of the condition flags, we remove them
from the diffusion model. The results are shown in Table 3. Given the comparable loss, removing
the condition flags has minimal impact on training and convergence, but it leads to lower generation
quality in accompaniment generation (AG) while slightly affecting unconditional generation (UN).
This demonstrates the effectiveness of condition flags in guiding the model to generate high-quality
music, particularly in conditional generation scenarios.

5 CONCLUSION

We propose GETMusic, a unified representation and diffusion framework to effectively and efficiently
generate desired target tracks from scratch or based on user-provided source tracks, which can address
users’ diverse composition needs. GETMusic has two core components: a novel representation
GETScore and a diffusion model GETDiff. GETScore offers several advantages in representing
multi-track music, including efficiency, simple source-target specification, and explicit preservation of
simultaneous note interdependencies. Leveraging the power of GETScore and the non-autoregressive
nature of GETDiff, GETMusic can compose music across various source-target combinations and
perform zero-shot generation at arbitrary locations. In the future, we will continue to explore the
potential of GETMusic, such as incorporating lyrics as a track to enable lyric-to-melody generation.
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REPRODUCIBILITY

To ensure the reproducibility of our work, apart from providing a comprehensive description of
our proposed representation (§3.1) and model (§3.2), we have included detailed implementation
information in appendix B. This includes specifics on data cleansing, the incorporation of chord
progression as a condition, and the construction of the vocabulary. Additionally, we have made our
code available in the supplementary materials, and we are committed to open-sourcing our code,
preprocessing scripts, and model checkpoints.
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A THE NUMBER OF SOURCE-TARGET DIVSIONS

For a given k-track music input, GETMusic can select m tracks as the source and generate n target
tracks selected from the remaining k − m tracks. Considering that each track can be used as the
source, target, or left empty, there are 3k possible combinations. However, a specific scenario is
that m tracks are selected as the source and leaving the remaining k −m tracks empty, resulting in∑k

m=0 C
m
k = 2k illegal combinations. Therefore, the number of valid combinations is 3k − 2k.

In our setting, we have six instrumental tracks, resulting in 665 possible combinations. Notably, the
chord progression track is not considered as 7-th track in this calculation because we consistently
enable chord progression as a source track to enhance the quality of conditional generation.

B DATA PRE-PROCESSING

Cleanse Data Following the method proposed in (Ren et al., 2020), we perform a data cleansing
process by four steps. Firstly, we employ MIDI Miner (Guo et al., 2019) to identify the melody track.
Secondly, we condense the remaining tracks into five instrument types: bass, drum, guitar, piano, and
string. Thirdly, we apply filtering criteria to exclude data that contains a minimal number of notes,
has less than 2 tracks, exhibits multiple tempos, or lacks the melody track. Fourthly, for all the data,
we utilize the Viterbi algorithm implemented by Magenta (https://github.com/magenta/
magenta) to infer the corresponding chord progression, which serves as an additional composition
guide. Lastly, we segment the data into fragments of up to 32 bars and convert these fragments into
GETScore representation.

Chord Progression The configuration of the chord progression track is different from regular
instrumental tracks. Although certain commonly used chords may appear in specific instrumental
tracks and have been represented as pitch tokens, we do not reuse these tokens to ensure that the
chord progression track provides equitable guidance for each individual track.

GETMusic incorporates 12 chord roots: C, C#, D, D#, E, F, F#, G, G#, A, A#, B
and 8 chord qualities: major, minor, diminished, augmented, major7, minor7,
dominant, half-diminished. In the step four of the cleansing process above, we identify
one chord per bar in a music piece. In the chord progression track of GETScore, we allocate the
chord root in the first row and the quality in the second row. The chord track is entirely filled, without
any paddings. Figure 4 is an example of GETScore with the chord track.
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Figure 4: An example shows the GETScore with seven tracks used in our experiment, where the
numbers denote the token indices. The example is for display only and does not correspond to a
real-world music piece.

Vocabulary In the last step of the cleansing process mentioned above, the construction of the
vocabulary is essential before converting music fragments into GETScores. In GETMusic, each track
has its own pitch vocabulary, while the duration vocabulary is shared among all tracks.
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The maximum duration supported by the GETMusic is 16 time units, resulting in a total of 17
duration tokens ranging from 0 (the special duration token for drums) to 16 time units. To construct
the pitch vocabulary, the music is first normalized to either the C major or A minor key, which
significantly reduces the number of pitch token combinations. For each track, we identify the unique
(compound) pitch tokens and rank them based on their frequency. During inference, the input music is
also first normalized to C major or A minor and tokenized accordingly. GETMusic re-normalizes
the generated music to its original key.

The final vocabulary consists of 17 duration tokens, 20 chord tokens, a padding token, a [MASK]
token, an [EMPTY] token, and specific pitch tokens for each track: 128 for lead, 853 for bass, 4,369
for drums, 1,555 for piano, 3,568 for guitar, and 1,370 for strings. In total, the vocabulary consists of
11,883 tokens.

C HUMAN EVALUATION

We recruited a group of 10 evaluators who possessed a basic knowledge of music. They participated
in a blind test where they were presented with songs generated by GETMusic as well as baseline
models.

Before the blind test, we randomly selected five generated songs of each task and evaluated them
ourselves. These scores were used as references for the evaluators and were not considered in the final
results. What’s more, some instructions were provided to ensure accurate evaluations. To evaluate
the conditional generation, evaluators need to:

• Listen to the source tracks.

• Listen to the entire musical piece and evaluate its overall performance. How about the melodic and
rhythmic qualities? How about the regularity in the music score? How about the coherence?

• Turn off the source tracks and assess generated target tracks independently. Do generated tracks
remain melodic? Do they complement the source tracks effectively? Do you perceive a clear chord
progression?

For the unconditional generation, the evaluators only needed to follow the second instruction, that is,
listening to the entire musical piece. After completing the listening process, the evaluators rated the
generated results on a scale from 1 (Poor) to 5 (Excellent), reflecting their overall judgment of the
music.

To facilitate the evaluation process, the evaluators used Musescore (https://musescore.org/
en). This software supported the necessary functionality of turning off and lowering specific tracks
while providing music scores. Figure 5 shows the evaluation interface. All music files used for
evaluation are anonymized. An evaluators was paid at an hourly wage of $8, and the entire rating
process took approximately 10 hours to complete.

Figure 5: The Musescore interface.
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