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Abstract

Efficient and inexpensive energy storage is essential for accelerating the adoption
of renewable energy and ensuring a stable supply, despite fluctuations in sources
such as wind and solar. Electrocatalysts play a key role in hydrogen energy storage
(HES), allowing the energy to be stored as hydrogen. However, the development of
affordable and high-performance catalysts for this process remains a significant
challenge. We introduce Catalyst GFlowNet, a generative model that leverages
machine learning-based predictors of formation and adsorption energy to design
crystal surfaces that act as efficient catalysts. We demonstrate the performance
of the model through a proof-of-concept application to the hydrogen evolution
reaction, a key reaction in HES, for which we successfully identified platinum as
the most efficient known catalyst. In future work, we aim to extend this approach
to the oxygen evolution reaction, where current optimal catalysts are expensive
metal oxides, and open the search space to discover new materials. This generative
modeling framework offers a promising pathway for accelerating the search for
novel and efficient catalysts.

1 Introduction

As society moves away from fossil fuels and towards renewable energy sources, technological
advances such as renewable energy storage and efficient energy production become key drivers in this
transition [42, 16]. Since peak energy usage hours differ from energy production hours [32], known
as the “duck” curve, energy storage can ensure that cities obtain the energy they need at the right
time. However, methods suitable for large-scale storage, such as hydrogen energy storage (HES) [2],
require effective catalyst materials both for energy storage (via electrolysis) and for energy retrieval
(via fuel cells) [42, 31]. Most catalysts that are currently relied upon to accelerate both energy storage
and retrieval are expensive to manufacture [25]. For this reason, the search for efficient, cheap, and
durable catalysts is vital to increasing the adoption of renewable energy.

Machine learning, growing in its applications and reaching state-of-the-art performance in image
generation [10], language modelling [39], and scientific discovery [41], has been applied to predict
catalyst properties and generate new catalysts [33, 13, 8, 37]. Graph neural networks such as
FAENet [13, 35, 17] are able to predict adsorption energies, which are a key predictor of catalytic
efficiency [29, 27]. Methods such as Crystal-GFN [1] are capable of generating molecules and crystal
structures within specified symmetry constraints, which meet certain desirable properties. These
machine learning methods can be broadly divided into two categories, predictive models (used for
catalyst evaluation) [43, 12], and generative models (used for catalyst design) [33, 28].
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Figure 1: Overview of the Catalyst GFlowNet framework. The leftmost section, Catalyst GFlowNet,
samples the catalyst surface. The middle section determines atom positions, relaxes the structure, and
converts to a graph. The rightmost section obtains the adsorption energy from a predictive model and
the reward function to train the GFlowNet.

Here, we introduce Catalyst GFlowNet (Figure 1), a novel catalyst discovery method building on
Crystal-GFN [1], designed to generate a diverse set of efficient catalyst materials. Generative flow
networks (GFlowNets or GFNs) are generative models that are able to sample sequentially constructed
objects from a desired distribution. This property allows our framework to propose a variety of
catalyst materials rather than a single optimal material. Subsequent real-world experiments have a
greater chance of discovering a truly high-quality catalyst material when they are able to test multiple
proposed materials. Our approach for catalyst design builds on crystal generation by constructing
a periodic crystal and then cutting a surface that acts as the catalyst. Additionally, we integrate
ML-based structure relaxations into our framework to ensure that the final samples are relaxed
(stable). As a signal on the quality of the catalyst material, we use a Graph Neural Network (GNN)
based on FAENet [13] to estimate the adsorption energy for a given adsorbate molecule in a reaction
of interest. A tailored reward function ensures that we generate realistic crystals that can then serve
as the basis for efficient catalysts. In our case study, we verify that Catalyst GFlowNet is able to
rediscover the best-known catalysts, demonstrating its promising value for catalyst design.

2 Methodology

In this section, we introduce the general architecture and workflow of the Catalyst GFlowNet
(Section 2.1) and the experimental setup for the hydrogen evolution reaction (HER) case study
(Section 2.2). Generally, a GFlowNet learns to sample objects proportionally to their reward;
we leverage this property while imposing constraints on the way that samples are constructed.
Background material on GFlowNets and catalysts for HER is covered in the appendix, Section A.

2.1 Architecture

The Catalyst GFlowNet builds on the Crystal-GFN framework. The overall framework, depicted
in Figure 1, consists of three sequential steps: sample generation, sample preparation, and reward
computation. After the reward is computed, a GFlowNet objective, such as the trajectory balance
loss [26], can be used to train the GFlowNet to sample catalyst representations proportionally to the
reward function.

In the first phase, the catalyst surface is sequentially constructed by the GFlowNet. Here, we Crystal-
GFN to build catalyst surfaces given a crystal structure. In particular, this involves first selecting
the space group (integer between 1 and 230, possibly decomposed into lattice system and point
group); following this, selecting the composition (e.g. AxByCz); and finally, selecting the lattice
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parameters (lattice vectors a, b, c and angles between them α, β, γ). Conditioned on this crystal
representation, the Catalyst GFlowNet selects the Miller indices [40] (three integers ranging from
-2 to 2) representing the surface of the periodic crystal object that would act as the catalyst. For
example, the Miller indices (100) cut a plane that is parallel to the Y-Z plane created by the lattice
vectors1. Following this, the offset for the surface plane is selected (continuous value between 0
and 1), which represents the location of the cut in the direction perpendicular to the Miller plane.
Finally, the network selects whether the top or bottom surface (represented by a boolean) is used. For
a single-element material, such as platinum, the offset and top/bottom surface boolean do not change
the resulting surface. However, for more complex materials, such as oxides, the offset and the surface
boolean can lead to surfaces with widely different properties.

In the second phase (middle part of Figure 1), we obtain atomic positions symmetrically compatible
with the crystal representation by using PyXtal’s structure generator [15]. After the structure is fully
determined, M3GNet [9] is used to relax the atoms and the unit cell. Then, a converter module creates
a surface object using the final structure and sampled Miller indices, top surface information, and
offset. Finally, this surface object is converted into a graph, where each node represents an atom. The
adsorbate is its own graph, disconnected from the surface [7].

In the final phase (right-most side of Figure 1), the atom graph is passed to the proxy model,
DepFAENet in our case, which is a GNN based on FAENet [13], equivariant to Euclidean symmetries,
trained to predict adsorption energies for different adsorbates. DepFAENet differs from the original
FAENet implementation in that the surface and adsorbate are disconnected graphs [7]. The model
predicts the adsorption energy directly without situating the adsorbate on the surface. Then, the
predicted adsorption energy is passed to the reward function (described in detail in Section 2.2). The
rewards obtained for the constructed samples are then used to compute the trajectory balance loss to
train the GFlowNet.

2.2 Case study: Hydrogen Evolution Reaction

For this case study, our aim is to generate stable catalysts for the hydrogen evolution reaction (HER)
that have the smallest possible overpotential. In catalysis, the overpotential (η) is the amount of
electric potential that needs to be applied on top of the theoretical reaction potential; it is a measure of
the efficiency of a chemical reaction and its catalyst. For HER, in acidic conditions, it can be predicted
directly from the adsorption free energy of hydrogen [29] (which is what our GNN proxy is trained
to predict) plus a small correction. Here, to obtain proposed catalysts (x) with low overpotentials, we
use the following reward function:

R(x) = exp(−bη2) where η = EH(x) + Ecorr (1)

We set b = 100 and the Gibbs correction Ecorr = −0.24. Although the reward only takes the
overpotential (η) into account, structure relaxation for each sample (middle component of Figure 1)
ensures that we generate reasonably stable structures. Additionally, at sampling time, structures that
have high formation energy among structures with the same composition are discarded.

As a proof of concept, we test our workflow on a highly restricted search space, where atomic
positions are fully determined given the space group and the number of atoms. In this search space,
we have an expectation of what materials should be sampled the most. With other methods, such as
those based on large language models [28], imposing constraints on crystal symmetry, space group,
and number of atoms would be much more difficult, if not impossible. The search space that we
consider matches closely the catalysts described in Nørskov et al. [29]. The full description of the
experimental setting can be found in Table 1 in the appendix. We consider 12 possible elements,
including platinum, the best known HER catalyst [29]. We consider the space of single-element
structures only, as per Nørskov et al. [29]. Taking the most common form of each structure as found
in the Materials Project [21], we note the space group of each structure and restrict the search space
to those space groups only. These are space groups Fm3m (225) and Im3m (229).

1Miller indices hkl denote the 3D plane (and those parallel to it) that intersects the x-axis at 1/h, the y-axis
at 1/k, the z-axis at 1/l.
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Figure 2: Proportion of sampled structures (right) for the hydrogen evolution reaction case study.
Low overpotential (left) is a predictor for efficient catalysts and aligns with the higher sampling rates.
The values are detailed in Table 2 in the appendix. Pd(229) does not have experimental or DFT
overpotentials, corresponding values for Pd(225) are displayed with shaded colors for reference.

3 Results

In this section, we analyze the catalysts sampled by the Catalyst GFlowNet after being trained,
following the experimental setup for the hydrogen evolution reaction (HER). We sampled 1000
structures and performed a M3GNet-based relaxation on the crystal lattice. Then, we filter out all
structures that relax to a high formation energy. Specifically, we compute the minimal sampled
formation energy per composition, and keep only those relaxed structures that have a formation
energy within 0.05 eV of the minimum energy. We do this because in some cases the relaxation strays
too far from the true basin given the starting lattice parameters, and as such would not be a stable
structure. Then, for each composition, we keep only the space group that has the lowest minimum
energy, since the one with the higher energy is estimated to be unstable. Finally, we cut the surface
according to the parameters chosen by the Catalyst GFlowNet to construct the final catalyst surface.

The filtered set of relaxed structures contains 425 structures. Figure 2 details the percentage of
samples of each of the structures in the paper. As expected, the most frequently sampled structures
are those that have a low overpotential, as predicted by the proxy model and DFT values by Nørskov
et al. [29] (see Figure 2, left). Platinum (Pt) is known to be the best catalyst for HER, but rhodium
(Rh) also performs well, as evidenced by experimental, DFT, and proxy values. We find in fact that
rhodium and platinum are the most sampled structures. All generated structures except palladium with
space group 229 are found in Nørskov et al. [29] (and are experimentally observed [21]). Palladium
with space group 225, the one that is experimentally observed, was sampled, but filtered out because
its M3GNet-predicted formation energy was slightly higher than its 229 counterpart. Overall, this
experiment validates that the Catalyst GFlowNet framework can independently rediscover the best
known HER catalysts, and sample them proportionally to their performance.

4 Discussions and Conclusion

In this paper, we propose a novel catalyst discovery framework that generates complete and relaxed
crystal structure descriptions (including atomic positions) for the purpose of finding an inexpensive,
efficient catalyst for renewable energy storage. We show that the method can find the best currently
known catalyst for the hydrogen evolution reaction (i.e., platinum). We also show that our method
samples diverse structures, increasing the likelihood of finding suitable catalysts that withstand
real-world testing. Finally, we generate sample structures that our model considers to be good
catalysts for the hydrogen evolution reaction; further investigation could shed light on whether these
structures could perform well experimentally. This framework is the prototype of a novel method to
generate de novo stable catalysts for a variety of materials science tasks; integration with real-world
experiment and active learning approaches would surely have an impact in the search to reduce the
cost of renewable energy storage. In future work, we aim to extend our method in several ways. We
aim to test the framework on the oxygen evolution reaction, for which there is currently no efficient,
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inexpensive catalyst. Additionally, we aim to add functionality to the Catalyst GFlowNet in order to
sample atomic positions. We foresee the extension of this work by embedding the GFlowNet in a
multi-fidelity active learning loop [19].
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A Background

In this section, we describe Generative Flow Networks in detail (Section A.2), and we perform a
survey of related work that tackles the catalyst discovery problem (Section A.3).

A.1 Catalysts for hydrogen energy storage

Hydrogen Energy Storage (HES) is a scalable, sustainable option for storing excess energy for
later use. Although HES has a relatively low efficiency compared to alternatives such as pumped
storage hydroelectricity and battery storage [42, 31, 6], it is more scalable and transportable than
the alternatives. HES via water electrolysis (water-splitting) can be thought of as two half-cell
reactions: the hydrogen evolution reaction and the oxygen evolution reaction. Both HER and OER
are electrochemical reactions which occur in the catalyzer at different electrodes. While HER is a one-
step reaction, OER consists of four intermediate reactions which, under an applied voltage, produces
oxygen gas, protons and electrons under acidic conditions. HER, in this setting, brings electrons and
protons together to produce hydrogen gas. As the energy is used for water electrolysis, the hydrogen
gas can be collected and stored in tanks, or other storage containers. When the energy is in demand
again, fuel cells can extract the energy from the stored hydrogen at about 60% efficiency [14]. An
efficient catalyst, used in the fuel cell or in the electrocatalyzer, can significantly speed up the reaction
rate and improve the efficiency of the process [42].

A.2 Generative Flow Networks

A generative flow network (GFlowNets, GFN) is an inference method introduced by [4] that allows
one to sequentially construct objects with probability proportional to a non-negative reward function.
They have been employed in tasks such as molecule generation, crystal generation, and for causal
discovery [22, 1, 3]. A desirable capability of GFlowNets is their ability to generate a diversity of
objects that all have high reward (relative to other possible candidates in the space). Within catalyst
discovery, this is key, as the reward function may not capture all the relevant predictors of whether a
material will be a good catalyst. For example, the reward function may capture a target adsorption
energy for the catalyst, but not its stability, which is an important trait (high stability) if the catalyst is
to be used in real-world applications. After generating a variety of high-reward catalyst materials, one
or more of these materials may also be found to be stable during experimental testing. Furthermore,
GFlowNets perform particularly well in cases where the search space is quite large, and outperform
methods such as MCMC and reinforcement learning in terms of mode mixing [5].

A key component of GFlownets is the proxy model, which is how the GFlowNet obtains information
on the reward landscape, and hence what “desirable”, high-reward samples are. Proxy models in
our context are predictive models (possibly machine learning models) that allow one to evaluate the
reward of a particular sampled object. In the case of molecule or crystal discovery, it may be that
the sampled molecule or crystal does not exist in any database, and as such, relevant properties of
the crystal must be computed in real time instead. Here, we note that for certain properties such
as the formation energy of a crystal, physics simulations such as density functional theory (DFT)
are traditionally performed. These simulations are computationally expensive and not scalable to
high batch sizes. Hence, a machine learning model that is able to replace the physics simulation
and compute the properties of interest is valuable; for crystals, there are many works that develop
machine learning-based approaches to compute properties such as formation energy and adsorption
energy [35, 36, 13, 9].

Crystal GFlowNet is a GFlowNet designed to discover new materials by sequentially sampling crystal
structures [1]. This work uses the GFlowNet paradigm to construct and sample crystal structures that
have a high reward. The authors test the method on a reward based upon formation energy, where a
high reward corresponds to a low formation energy, and a low reward corresponds to a high formation
energy. This allows the framework to be used to sample thermodynamically stable materials with
desirable properties. As mentioned earlier, the reward function may use any measurable (or predicted,
via a proxy model) characteristic of the material. Sequential crystal construction proceeds in three
steps. First, the space group (symmetry operations) of the crystal are selected. Then, the composition
(elements and their ratios), and finally, the lattice parameters, which determine the shape of the final
lattice. Atom positions are not sampled by the model.
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A.3 Machine learning for catalyst discovery

Since traditional catalyst design methods are time-consuming and involve trial and error experiments
within a very large search space [18], scientists are turning to machine learning approaches to
more efficiently explore the space of good catalysts. Recent work has leveraged both predictive
models (which evaluate the performance of catalysts based on their measurable attributes) and
generative models (which aim to construct catalyst representations with desirable properties) for
catalyst discovery.

One major thread of predictive machine learning for catalyst design are predictive models to replace
density functional theory (DFT) calculations of adsorption energies. The Open Catalyst Dataset
2020 [8] and 2022 [37] are datasets of 1.2 million and 62 thousand relaxations respectively. The
datasets span a wide variety of materials, surfaces and adsorbates, with the inclusion of oxides
in OC22. Machine learning models such as FAENet, Schnet, PaiNN, and Graphormer [13] are
neural networks (e.g. graph neural networks, transformers) that can be trained to perform the OC20
Initial Structure to Relaxed Energy (IS2RE) task, which involves predicting the relaxed energy of
an adsorbate-catalyst system from their initial atomic positions. Machine learning models have
also been used to predict formation energies, perform relaxations, predict forces [9]. Predictive
machine learning models have also been used to predict the thermodynamic stability of catalysts [44].
All of these predictive models have the potential to be included as proxy models within generative
approaches.

Recent generative approaches to catalyst discovery include reinforcement learning [23], large lan-
guage models [24], variational autoencoders [34], and generative adversarial networks [20] which
aim to generate catalysts de novo, by meeting criteria such as target adsorption energies and encoding
this in the reward or loss. AdsorbRL [23] employs Deep Q-learning to find compositions of catalysts
that have either minimal or maximal adsorption energy. They only model composition, omitting
space groups, crystal symmetries, surface selection, and atom positions. [34] addresses the problem
by employing a VAE to generate catalysts by sampling from the latent space, but we note that reliance
on the latent space makes controllable generation and systematic exploration of possible catalysts
difficult. [20] takes the approach of GANs to generate catalysts for the ammonia formation reaction,
but does not take catalyst stability into account during generation. LLM-based tools such as [24, 30]
have so far been mainly applied to help screen known catalysts and perform a literature search.
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B Effect of relaxation on lattice parameters

After the GFlowNet generates samples, we relax them using M3GNet PES [9], as detailed in
Section 2.1. Figure 3 demonstrates the change in lattice parameters of the cubic platinum lattice
before and after relaxation. We note that the lattice parameters relax to the minimum of the total
energy of the system.

Figure 3: For the HER case study, the platinum samples generated by the GFlownet relax to the
minimum energy every time. The green line represents the total energy of the system.

Table 1 details the search space for the Hydrogen evolution reaction case study (Section 2.2). We
note that in general, the Catalyst GFlowNet’s constraints and search space can be set to be much
larger than that used in the HER case study. In future work, we will consider a larger search space up
to 80-100 atoms, more elements and space group options, while enforcing a neutral charge constraint.

Table 1: Hydrogen evolution reaction catalyst search space.

Setting Value Units

Possible elements Pt, Ag, Au, Pd, Ir, Ni, W, Co, Cu, Mo, Rh, Nb
Min. # of different elements in unit cell 1
Max. # of different elements in unit cell 1
Min. atoms in unit cell 2
Max. atoms in unit cell 4
Min. atoms per element 2
Max. atoms per element 4
Enforce neutral charge? No
Possible space groups 225, 229
Min. lattice parameter length 2 Angstroms
Max. lattice parameter length 6 Angstroms
Min. angle between lattice vectors 60 Degrees
Max. angle between lattice vectors 140 Degrees
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C Table of hydrogen evolution reaction samples

Table 2: Proportions of sampled structures for the case study: hydrogen evolution reaction.

Overpotential (eV) Samples

Composition Space
Group

Experimental2 DFT Proxy
Model

Count Percentage

Pt 225 0.016 0.03 0.04 185 43.53
Rh 225 0.071∗ 0.06 0.03 144 33.88
Pd 229 0.036∗ 0.09∗ 0.12 54 12.71
Co 225 0.224∗ 0.25 0.16 24 5.65
Ir 225 0.015 0.08 0.14 10 2.35
Mo 229 0.394∗ 0.53 0.21 5 1.18
Cu 225 0.445 0.27 0.39 3 0.71
W 229 0.318∗ 0.59 0.30 0 0.00
Nb 229 0.488∗ 0.56 0.35 0 0.00
Ni 229 0.268 0.23 0.32 0 0.00
Au 225 0.337 0.63 0.51 0 0.00
Ag 225 0.403 0.58 0.62 0 0.00

Sum 425 100.00

Figure 4: A linear fit that maps log of exchange current density to experimental overpotential using
data from [38] and [11]. These values are used column 3 (from the left) of Table 2.

2When available, the experimental overpotential was added from [11]. For the remaining elements, marked
with an asterisk, the overpotentials were inferred using a linear fit between the log of experimental exchange
current density (from [38]) and the available experimental overpotentials (from [11]). Figure 4 shows the linear
fit and predictions.

12


	Introduction
	Methodology
	Architecture
	Case study: Hydrogen Evolution Reaction

	Results
	Discussions and Conclusion
	Background
	Catalysts for hydrogen energy storage
	Generative Flow Networks
	Machine learning for catalyst discovery

	Effect of relaxation on lattice parameters
	Table of hydrogen evolution reaction samples

