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Abstract
Fine-tuning LLMs is both computationally and
memory-intensive. While parameter-efficient fine-
tuning methods, such as QLoRA and DoRA,
reduce the number of trainable parameters and
lower memory usage, they do not decrease com-
putational cost. In some cases, they may even
slow down fine-tuning. In this paper, we introduce
SparseLoRA, a method that accelerates LLM fine-
tuning through contextual sparsity. We propose
a lightweight, training-free SVD sparsity estima-
tor that dynamically selects a sparse subset of
weights for loss and gradient computation. Also,
we systematically analyze and address sensitivity
across layers, tokens, and training steps. Our ex-
perimental results show that SparseLoRA reduces
computational cost by up to 2.0× and a measured
speedup of up to 1.5× while maintaining accu-
racy across various downstream tasks, including
commonsense and arithmetic reasoning, code gen-
eration, and instruction following.

1. Introduction
Large language models (LLMs) are trained on vast, general-
domain datasets. They are often fine-tuned to improve their
performance in specific domains (Saab et al., 2024) or to
align their predictions with user preferences (Zhang et al.,
2024a). However, fine-tuning very large models can be pro-
hibitively expensive, both in terms of memory requirements
and computational costs.

Extensive efforts have been made in parameter-efficient fine-
tuning (PEFT) to reduce memory consumption of LLM fine-
tuning. LoRA (Hu et al., 2022) represents weight updates
using low-rank approximations. Building upon this, many
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SparseLoRA achieves a 1.4x speedup on Arithmetic Reasoning
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SparseLoRA accelerates fine-tuning by 1.5x on Instruction Following tasks

Figure 1: Many recent parameter-efficient fine-tuning meth-
ods, such as QLoRA and DoRA, do not reduce compute.
Our SparseLoRA accelerates LLM fine-tuning with minimal
accuracy loss across a range of downstream tasks, including
commonsense reasoning, math reasoning, code generation,
and instruction following. See Section 4 for more details.

follow-up methods (Dettmers et al., 2023; Liu et al., 2024b)
have been proposed to further reduce the number of trainable
parameters. While they are effective in reducing memory
usage, they do not reduce computation. In fact, they can
sometimes slow down fine-tuning due to the overhead they
introduce: DoRA is 20% slower than LoRA (see Figure 1).

In this paper, we present SparseLoRA to accelerate LLM
fine-tuning with contextual sparsity, making it both memory-
and computation-efficient. Contextual sparsity has already
been used in accelerating LLM inference (Liu et al., 2023b).
SparseLoRA shows for the first time that it can also play
a role in LLM fine-tuning, where (1) only a sparse subset
of weights is required for loss and gradient computation,
and (2) this sparse subset needs to be determined based on
the input sequence or tokens. To realize this, we propose
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Figure 2: Runtime breakdown of LLM fine-tuning under
different sequence lengths.

using an SVD sparsity estimator to identify which channels
should be activated based on samples within each batch. It
is very lightweight, adding less than 0.5% overhead to fine-
tuning. It is training-free, unlike the look-ahead predictor
proposed in Deja Vu (Liu et al., 2023b), which leads to
better generalization across datasets.

We have conducted systematic sensitivity analysis across
multiple dimensions. First, each layer responds differently
to sparsity, so we apply non-uniform sparsity based on layer
sensitivity analysis. Second, output tokens are much more
sensitive to pruning than context tokens, so we apply sparsity
only to context tokens. Finally, early iterations in fine-tuning
are more sensitive, so we run dense fine-tuning in the early
iterations and switch to sparse fine-tuning for the remainder.

Evaluated across a diverse set of benchmarks, SparseLoRA
achieves a computational cost reduction of up to 2.0× and a
wall-clock speedup of up to 1.5× while maintaining accu-
racy on various downstream tasks, including commonsense
and arithmetic reasoning, code-generation, and complex in-
struction following. To the best of our knowledge, this is the
first work to leverage contextual sparsity for accelerating
LLM fine-tuning. We believe that our work will inspire
future research into fine-tuning methods that optimize both
parameter and computational efficiency.

2. Related Work
Contextual Sparsity in LLMs. Sparsity has long been
employed to enhance the efficiency of neural networks (Han
et al., 2016b; 2015; 2016a; Frantar & Alistarh, 2023; Sun
et al., 2024). Recently, there has been research on a more dy-
namic approach: accelerating LLMs inference by leveraging
contextual sparsity (Liu et al., 2023b; Song et al., 2023; Xue
et al., 2024; Alizadeh et al., 2024; Lee et al., 2024; Akhauri
et al., 2024; Liu et al., 2024a) at test time. Unlike static
sparsity, contextual sparsity is a phenomenon where signifi-
cant portions of a model’s hidden states dynamically contain
zero-valued neurons based on the input context. This allows
for input-dependent sparse computation without compro-
mising outcomes. While such activation sparsity naturally
emerges in ReLU-based FFNs (Li et al., 2023b; Mirzadeh
et al., 2023; Liu et al., 2023b; Alizadeh et al., 2024), newer
architectures often employ non-ReLU activations (Team,

2023; 2024c;a;b) that create different sparsity patterns, ne-
cessitating alternative methods to reintroduce and exploit
sparsity.

Recent work has explored various techniques, including con-
tinued pretraining (Song et al., 2023; Zheng et al., 2024a;
Zhang et al., 2024c; Song et al., 2024a;b; Xue et al., 2024)
and magnitude pruning with specific metrics (Lee et al.,
2024; Akhauri et al., 2024; Liu et al., 2024a), to leverage
sparsity in LLMs. These approaches aim to reduce memory
usage and computation time, with some work deploying
small neural networks to predict non-zero activations (Liu
et al., 2023b; Alizadeh et al., 2024; Akhauri et al., 2024;
Song et al., 2023; Xue et al., 2024). In this work, we pro-
pose a novel approach to extend the benefits of contextual
sparsity to the fine-tuning process for the first time, which
addresses the associated challenges and accelerates fine-
tuning without compromising performance.

Memory-Efficient Fine-tuning. As language models
grow larger, memory-efficient fine-tuning methods have be-
come crucial. Parameter-efficient fine-tuning (PEFT) tech-
niques address this challenge by updating only a small sub-
set of parameters. LoRA (Hu et al., 2022) employs low-rank
matrices to adjust pretrained model weights, sparking a rich
line of research with numerous works proposing improve-
ments and variations (Dettmers et al., 2023; Shi et al., 2023;
Qiu et al., 2023; Chen et al., 2024; Kopiczko et al., 2024;
Liu et al., 2024b; Meng et al., 2024; Hayou et al., 2024;
Wang et al., 2024; Wang & Liang, 2024; Yang et al., 2024;
Liu et al., 2024c). Among these, DoRA (Liu et al., 2024b)
reparameterizes weight matrices to achieve more effective
optimization. QLoRA (Dettmers et al., 2023) combines
quantization with low-rank adapters, enabling fine-tuning
of large models on a single GPU.

Recent research has also focused on exploiting the low-
rank structure of weight gradients. GaLore (Zhao et al.,
2024) and its weight-quantized variant (Zhang et al., 2024b)
leverage this property to reduce optimizer state memory,
while WeLore (Jaiswal et al., 2024) investigates how low-
rank weights emerge from low-rank gradients during train-
ing. While these advancements make LLM adaptation more
memory-efficient and accessible, they primarily focus on
reducing memory usage, sometimes even at the cost of in-
creased computation time. Our approach addresses this
missing piece by focusing on compute efficiency, com-
plementing existing memory-efficient techniques to enable
truly resource-efficient fine-tuning.

Computation-Efficient Training. Prior work has ex-
plored sparsity to accelerate LLM training through var-
ious approaches (Thangarasa et al., 2023; Chen et al.,
2024; Mozaffari et al., 2024). LongLoRA (Chen et al.,
2024) enables efficient context window extension via shifted
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Figure 3: SparseLoRA accelerates LLM fine-tuning with contextual sparsity. It first performs an offline SVD decomposition
of the pre-trained weights to construct the SVD sparsity estimator. During fine-tuning, it relies on the SVD sparsity estimator
to identify which weight channels are needed for the given input sequence. It then sparsely computes by slicing the weights
on the fly. Note that sparsity is applied only to the main branch, as the LoRA branch is typically very fast.

sparse attention during fine-tuning while retaining stan-
dard attention for inference, reducing quadratic computa-
tion costs. General sparse training techniques have demon-
strated promising FLOPs reduction through combinations
of sparse pre-training and further fine-tuning - for instance,
SPDF (Thangarasa et al., 2023) achieves 75% FLOPs re-
duction through this approach, while SLoPe (Mozaffari
et al., 2024) leverages N:M sparsity with late-stage low-
rank adapters. Other methods employ dynamic sparsity
patterns through gradient-based selection (Zhou et al., 2021;
Li et al., 2022; Ma et al., 2024). However, these approaches
either primarily target long-context scenarios where atten-
tion is the computational bottleneck, or employ unstructured
sparsity patterns where achieving speedups proportional to
the theoretical computation reduction remains challenging
on conventional GPUs. Our work introduces structured
contextual sparsity with training-free dynamic selection for
practical acceleration.

3. Method
In this section, we present the design of our SparseLoRA.
As shown in Figure 2, linear layers dominate LoRA fine-
tuning runtime in conventional settings. Therefore, we ap-
ply dynamic channel sparsity to the main branch of LoRA
fine-tuning while keeping the LoRA branch dense. This ap-
proach selectively activates only the most important neurons
in FFN and attention layers. Since the main branch accounts
for the vast majority of computation, and the sparsity in-
troduced is structural and hardware-friendly, we achieve
significant efficiency improvements without altering which
parameters are updated. By sparsifying only the base model
while keeping LoRA intact, SparseLoRA maintains both
memory- and computation-efficient fine-tuning with no im-

pact on inference performance.

3.1. Sparse Neuron Selection Criteria

To achieve compute-efficient fine-tuning while maintaining
effectiveness, we require dynamic rather than static sparsity
patterns that adapt to each input. Prior research has ex-
plored contextual activation sparsity in LLM inference (Liu
et al., 2023b; Alizadeh et al., 2024; Akhauri et al., 2024;
Liu et al., 2024a). However, these inference methods target
single-token computations in auto-regressive generation and
do not directly translate to fine-tuning, which has distinct
workloads that consist of multiple sequences of tokens in a
batch. To bridge this gap, we first define “oracle” criteria
for fine-tuning neuron selection using intermediate activa-
tions, establishing an ideal but computationally infeasible
metric. This oracle then guides the practical development
of efficient approximations that enable on-the-fly channel
selection for sparse computation. We categorize the linear
layers in LLMs into three types - FFN, VO projections, and
QK projections - and propose two oracle criteria tailored to
their properties as follows.

3.1.1. SELECTION WITH L2 NORM

Motivated by the extreme sparsity in input activations for
certain linear layers, such as the SiLU-induced sparsity in
the down projection of FFNs (Alizadeh et al., 2024; Lee
et al., 2024; Song et al., 2023) as shown in Figure 4, we
introduce an L2 Norm metric to identify and retain the most
significant neurons as the first oracle criterion. Importantly,
this approach allows us to naturally extend the sparsity pat-
tern to the preceding linear layers - specifically using FFN
as an example, the channel indices selected for the down
projection can be applied to both up and gate projections, as
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Figure 4: Activation value distributions across all tokens of a sequence for layer 20 of LLaMA2-7B. Each column shows
inputs to: Wgate,up, Wdown of FFNs, and WQ,K,V , WO of attention projections. The inputs to Wdown and WO follow
Laplace distributions, enabling higher sparsity when using the L2 norm metric. Wgate,up is pruned alongside corresponding
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Figure 5: An illustration of how sparsity is applied to FFNs.

illustrated in Figure 5.

While prior work has applied similar magnitude-based met-
rics for inference with single-token (Liu et al., 2023b; Lee
et al., 2024; Akhauri et al., 2024; Liu et al., 2024a), we
extend this to fine-tuning by considering cumulative activa-
tions across all samples and tokens in a batch. Despite recent
exploration of incorporating gradient and weight informa-
tion (Akhauri et al., 2024; Sun et al., 2024), we find the L2
norm of activations alone provides a simple yet effective
criterion, as activations generally contain more influential
outliers than weights (Xiao et al., 2023). We apply this
metric to both FFNs and the outer channels of value and
output (VO) projections in attention, where input activations
to output projections show similar sparsity characteristics
as demonstrated in Figure 4.

3.1.2. SELECTION WITH QK NORM

For attention blocks, we aim to sparsify the linear layers as
well: query, key, value, and output projections. While the
L2 Norm metric works well for VO projections, it proves im-
practical for QK projections due to their lower input activa-
tion sparsity as shown in Figure 4. Previous approaches ex-
ploring contextual sparsity during inference have proposed
identifying and pruning unimportant attention heads (Liu
et al., 2023b; Akhauri et al., 2024). However, this head-level
pruning strategy proves problematic for fine-tuning scenar-
ios that process multiple tokens simultaneously. Unlike
FFNs where we can selectively choose from 11,384 chan-
nels in LLaMA2-7B, pruning entire attention heads (e.g.,
removing 1 out of 32) significantly constrains our pruning
granularity and risks losing critical information. We empiri-
cally verify in § 4.3 that this coarse-grained approach leads
to degraded performance. Additionally, a detailed analysis
of attention head activation patterns during fine-tuning is
provided in Appendix A.1.

To address this challenge, we introduce an oracle criterion
for sparsifying QK projections based on attention scores,
targeting channels with minimal contributions. Specifically,
we define a proxy metric that quantifies each channel’s
importance and sparsify those with the lowest values. Given
query and key projections Q,K ∈ R(B×L)×D, where B is
the batch size, L is the sequence length, and D is the hidden
dimension, we compute their L2 norms across the flattened
batch and sequence dimensions:

q = ∥Q∥2, k = ∥K∥2.

The element-wise product of these normalized scores serves
as our importance metric:

s = q⊙ k.
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We retain the top n channels based on s, where n is deter-
mined by the desired sparsity ratio.

This approach ensures that only the projection channels
contributing most significantly to the attention scores are
retained. Compared to the L2 norm criterion from FFNs,
this method better preserves the original computational out-
comes. As demonstrated in Figure 6, our proposed oracle
criterion maintains an attention map much more similar
to the original dense QK computation compared to those
derived by L2 norm or random pruning.

3.2. SVD Sparsity Estimator

The oracle criteria demonstrate that adaptively sparsifying
the backbone weights during fine-tuning can significantly
reduce computation while maintaining model quality. How-
ever, computing these oracle patterns requires partial dense
computation such as the gate and up projections for FFN
intermediate activations and QK projections for QK norms,
making it impractical and negating potential speedup ben-
efits. To address this challenge, we introduce an efficient
SVD-based low-rank sparsity estimator that dynamically se-
lects channels with minimal overhead. Our method directly
approximates the oracle criterion using top-k singular value
decomposition (SVD) of the model weights, in contrast
to prior approaches that employ learned low-rank predic-
tors (Liu et al., 2023b; Alizadeh et al., 2024; Akhauri et al.,
2024), which raise concerns about generalization across
different datasets and tasks.

Algorithm 1 SVD Sparsity Estimator

# Assume input tensor x of shape (B, S, D1)
# Weight W of shape (B, D1, D2), SVD rank of k

- # Compute activations with oracle
- out = torch.bmm(x, W)

+ # Compute low-rank SVD weights (saved offline)
+ U, S, V = torch.linalg.svd(W, full_matrices=False)
+ W_A = U[:, :k] @ torch.diag(S[:k]).sqrt()
+ W_B = torch.diag(S[:k]).sqrt() @ V[:k, :]

+ # Compute activations with loaded SVD estimator
+ out = torch.bmm(torch.bmm(x, W_A), W_B)

# Obtain channel indices with corresponding metric
indices = metric(out)

The core idea is straightforward: instead of training a pre-
dictor to map inputs to sparsity masks, we project inputs
onto a low-rank SVD decomposition of the original weights
and compute the oracle metric from these projected acti-
vations, as detailed in Algorithm 1. This approach pro-
duces sparsity masks that closely match those obtained from
the full model while maintaining efficiency. The SVD de-

composed components are computed offline and loaded at
the start of fine-tuning alongside the model weights. No-
tably, while low-rank module overheads can be significant
in inference-time sparsity methods due to memory-bound
execution (Akhauri et al., 2024; Liu et al., 2023b), our ap-
proach introduces minimal overhead (less than 1%) since
the lightweight SVD projections are negligible compared
to the matrix multiplications in the compute-bound LLM
fine-tuning. This enables us to achieve dynamic sparsity
with negligible computational overhead, preserving both
fine-tuning efficiency and model performance.

3.3. Sensitivity Analysis

Layer Sensitivity: Adaptive Sparsity Configuration
The inherent contextual sparsity across layers in LLMs often
varies significantly (Liu et al., 2023b; 2024a). Moreover,
the importance of individual layers and their contributions
to fine-tuning can differ substantially (Gromov et al., 2024;
Zheng et al., 2024a), necessitating layer-specific sparsity
configurations for optimal performance. To determine these
configurations, we conduct a systematic layer sensitivity
analysis using a subset of the Commonsense Reasoning
task proposed by Hu et al. (2023) as a proxy. Our analysis
evaluates how different sparsity ratios affect each layer’s per-
formance independently – starting with a densely fine-tuned
model, we progressively increase the sparsity ratio for each
layer while keeping others dense, measuring performance
each time to generate layer-specific sensitivity curves.

The results for LLaMA2-7B, shown in Figure 7, reveal
that deeper layers contain more redundant information and
are more amenable to sparsification than shallower layers,
aligning with inference-time observations from Gromov
et al. (2024). These sensitivity metrics enable us to apply
aggressive sparsity to deeper, resilient layers while main-
taining shallower ones dense, optimizing the performance-
efficiency trade-off during fine-tuning.

Token Sensitivity: Context-Output Aware Sparsity The
effectiveness of sparsity varies not only across layers but
also across tokens within a sequence. In LLM fine-tuning,
input sequences typically consist of a context (the prefix to-
kens provided as input) and output tokens (the target tokens
used for loss computation). We find that applying uniform
sparsity across all tokens degrades performance, as output
tokens play a more critical role in optimization.

To address this, we propose a context-output aware spar-
sity strategy, selectively preserving dense computation for
output tokens while applying sparsity to the context. This
ensures that fine-tuning retains full expressiveness where it
matters most while still benefiting from reduced computa-
tion. Unlike heuristic-based token importance sampling, our
approach exploits a natural structural distinction—context
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Figure 7: Sensitivity analysis on layer-wise sparsity of
LLaMA2-7B.

tokens are inherently less sensitive to precise weight updates
than output tokens, as illustrated in Figure 8. This strategy
significantly mitigates the reconstruction errors between
sparse and dense training, particularly in early fine-tuning
steps where maintaining gradient signal is crucial. This
simple yet effective approach improves computational effi-
ciency while preserving fine-tuning performance.

Step Sensitivity: Progressive Sparse Fine-tuning To
balance efficiency and model quality, we incorporate a hy-
brid approach in our fine-tuning process. Recent studies
suggest that when doing incorporating sparsity in training,
maintaining dense computations for a small portion of steps
can significantly enhance final convergence (Lu et al., 2023;
Thangarasa et al., 2023; Bambhaniya et al., 2024) with mini-
mal impact on overall speed-up. In our SparseLoRA design,
we allow the initial steps, up to a maximum of 10% of the
fine-tuning process, to remain dense. This approach en-
sures the model establishes a strong foundation early on
while still benefiting from sparse training’s efficiency in
later stages. A detailed analysis of this hybrid approach’s
impact on performance and efficiency can be found in § 4.3.

Context: Joy can read 
8 pages of a book in 
20 minutes.  How 
many hours will it 
take her to read 120 
pages?

Output: In one hour, 
there are 3 sets of 20 
minutes…
120/24=5>>5 hours to 
read 120 pages.

Sparse 
Computation

Dense 
Computation

x y

Figure 8: A small portion of the output tokens are randomly
selected to go through the dense computation in our context-
output aware sparsity strategy. The final outputs are gathered
from both sparse and dense results.

4. Experiments
4.1. Setup

Benchmarks. We conduct experiments on five down-
stream tasks. The first set focuses on commonsense reason-
ing (referred to as CSR170K) and includes eight datasets:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC-Easy and ARC-
Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov
et al., 2018). The second set focuses on arithmetic reasoning
(referred to as Math10K) and includes three benchmarks:
GSM8K (Cobbe et al., 2021), MAWPS (Koncel-Kedziorski
et al., 2016), and SVAMP (Patel et al., 2021)*. Following
the practices established by Hu et al. (2023) and Liu et al.
(2024b), we fine-tune our models on the combined train-
ing sets of all sub-tasks within each respective benchmark.
We run each experiment five times, discard the highest and
lowest performing runs, and report the average accuracy of

*We exclude AQuA (Ling et al., 2017) since none of the meth-
ods in Hu et al. (2023) achieve better-than-random performance
(i.e., significantly above 20% for a 5-choice multiple-choice task).
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#FLOPs Speedup Average BoolQ PIQA SIQA HellaS WinoG ARC-e ARC-c OBQA

LLaMA2-7B – – 31.4 51.0 49.5 32.4 25.0 20.4 23.7 22.1 26.6

+ LoRA 100% 1.0× 82.3 70.7 84.8 81.4 90.0 85.8 87.6 74.3 84.7
+ QLoRA 100% 0.9× 82.5 69.2 84.7 81.9 90.5 85.8 87.9 74.2 85.4
+ DoRA 132% 0.7× 81.7 71.4 84.7 81.1 90.0 85.2 87.3 72.8 84.2
+ SparseLoRA 65% 1.3× 81.8 69.7 84.3 80.8 88.4 86.0 86.7 73.4 84.0

LLaMA2-13B – – 35.0 61.9 49.8 31.8 25.6 17.2 33.3 30.5 29.6

+ LoRA 100% 1.0× 84.7 72.0 86.7 82.2 91.0 89.0 90.9 80.5 85.6
+ SparseLoRA 61% 1.3× 85.0 74.1 87.1 82.4 92.3 88.3 89.8 78.7 86.9

LLaMA3-8B – – 62.5 66.1 75.4 53.8 54.8 42.1 80.7 67.3 59.8

+ LoRA 100% 1.0× 87.1 74.6 89.4 82.7 95.4 89.1 92.8 83.4 89.3
+ QLoRA 100% 0.9× 87.1 74.3 89.3 83.1 95.3 88.7 92.9 83.8 89.4
+ DoRA 132% 0.8× 87.1 74.5 89.4 83.0 95.4 88.8 93.2 84.0 88.9
+ SparseLoRA 65% 1.3× 86.9 75.0 89.6 82.8 94.9 88.7 92.7 82.9 88.3

Table 1: SparseLoRA delivers up to 1.3× speedup and reduces fine-tuning FLOPs by up to 39%, while maintaining
performance comparable to existing methods such as LoRA, QLoRA and DoRA on commonsense reasoning benchmarks.

#FL. Spd. Avg. GSM8K SVAMP MAWPS

LLaMA2-7B – – 2.6 2.7 3.1 2.1

+ LoRA 100% 1.0× 54.6 38.6 47.5 77.5
+ QLoRA 100% 0.9× 55.0 36.2 49.7 79.1
+ DoRA 132% 0.7× 54.5 38.4 48.4 77.5
+ SparseLoRA 73% 1.2× 53.7 37.6 46.4 77.9

LLaMA2-13B – – 13.4 4.9 18.8 16.4

+ LoRA 100% 1.0× 63.5 50.2 59.1 81.0
+ SparseLoRA 70% 1.3× 62.7 49.5 57.1 81.5

LLaMA3-8B – – 33.5 25.0 38.4 37.0

+ LoRA 100% 1.0× 81.0 71.8 80.3 90.9
+ QLoRA 100% 0.9× 80.6 71.8 80.2 89.6
+ DoRA 132% 0.8× 81.0 72.5 79.3 91.0
+ SparseLoRA 60% 1.4× 81.1 73.3 80.1 90.3

Table 2: SparseLoRA offers up to 1.4× speedup and reduces
fine-tuning FLOPs by up to 40% on arithmetic reasoning
tasks with accuracy comparable to existing methods.

the remaining three. We further assess the generality of our
method on three additional tasks: sequence classification
using the GLUE benchmark (Wang et al., 2018); instruction
following, where we train on WizardLM (Xu et al., 2024)
and evaluate on MT-Bench (Zheng et al., 2023); and code
generation, where we train on CodeFeedback (Chen et al.,
2021) and test on HumanEval / HumanEval+ (Zheng et al.,
2024b; Liu et al., 2023a).

Models. We use LLaMA2-7B/13B and LLaMA3-8B (In-
struct) as our base models for fine-tuning. For instruction

following and code generation benchmarks, we additionally
use LLaMA3.1-8B.

Baselines. We compare our method with two PEFT meth-
ods, LoRA (Hu et al., 2022) and DoRA (Liu et al., 2024b).
While SparseLoRA is built on top of LoRA, it can, in prin-
ciple, be applied to any other PEFT method. We include
model training details in Table 11. All PeFT methods only
fine-tune the QKVO projections using a rank of 32, a scal-
ing factor α of 64, and no dropout. Efficiency metrics are
derived from an NVIDIA A6000 GPU.

4.2. Main Results

Table 1 demonstrates results on the CSR170K benchmarks,
demonstrating that SparseLoRA significantly reduces com-
putational requirements while maintaining accuracy compa-
rable to LoRA. For instance, on LLaMA2-7B, SparseLoRA
achieves an average accuracy of 82.2, closely matching
LoRA’s 82.5, while requiring only 71% of its training cost
and 76% of its training time. This trend holds for LLaMA2-
13B and LLaMA3-8B, where SparseLoRA consistently re-
duces compute load while preserving competitive accuracy
across tasks such as BoolQ, PIQA, SIQA, HellaSwag, Wino-
Grande, ARC, and OBQA.

Table 2 presents results on the Math10K benchmarks, fur-
ther reinforcing SparseLoRA’s compute–accuracy advan-
tage. On LLaMA2-13B, SparseLoRA reduces training costs
to 59% of LoRA’s while maintaining strong performance on
GSM8K and slightly surpassing LoRA on MAWPS. These
findings demonstrate that structured contextual sparsity can
significantly reduce computational overhead in parameter-
efficient fine-tuning without sacrificing performance in com-
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#FLOPs Speedup Average COLA STS-B MRPC RTE SST2 QNLI

LLaMA3-8B + LoRA 100% 1.0× 86.2 65.8 88.8 87.7 82.8 96.4 95.7
LLaMA3-8B + SparseLoRA 61% 1.3× 86.7 66.3 89.3 88.6 82.9 96.6 96.6

Table 3: SparseLoRA accelerates fine-tuning for sequence classification on the GLUE benchmark by 1.3 times.

#FLOPs Speedup Average Coding Extraction Humanities Math Reasoning Roleplay STEM Writing

LLaMA3.1-8B – – 4.08 2.15 2.88 4.50 2.05 2.60 5.72 7.90 4.80

+ LoRA 100% 1.0× 6.03 5.10 5.50 8.00 2.25 5.30 7.35 7.78 7.00
+ SparseLoRA 53% 1.5× 6.06 5.30 5.45 8.10 2.20 5.35 7.35 7.70 7.05

Table 4: SparseLoRA delivers strong performance on instruction-following tasks in MT-Bench, achieving a 1.5× speedup
while matching or exceeding LoRA across all categories.

monsense and mathematical reasoning tasks.

Natural Language Understanding. We evaluate
SparseLoRA using LLaMA3-8B on sequence classification
with a subset of GLUE benchmark (Wang et al., 2018).
Table 3 shows that SparseLoRA maintains competitive
performance to the dense baseline with a 1.3× speedup.

Instruction Following. We evaluate SparseLoRA using
LLaMA3.1-8B on the task of instruction following by fine-
tuning on a subset of the WizardLM dataset (Xu et al., 2024)
and reporting scores across eight tasks in the MT-Bench
dataset (Zheng et al., 2023). We use GPT-4 to assess the
quality of model responses. Table 4 shows that SparseLoRA
maintains competitive performance to the dense baseline
while achieving up to a 1.5× speedup.

Code Generation. We evaluate SparseLoRA using
LLaMA2-7B and LLaMA3.1-8B on code generation by
fine-tuning on a subset of the CodeFeedback dataset (Chen
et al., 2021) and testing on the HumanEval bench-
marks (Zheng et al., 2024b; Liu et al., 2023a). Table 5
shows that SparseLoRA maintains competitive performance
to the dense baseline while achieving up to a 1.3× speedup.

#FLOPs Speedup HumanEval HumanEval+

LLaMA2-7B – – 3.6 3.0

+ LoRA 100% 1.0× 13.0 10.2
+ SparseLoRA 73% 1.2× 12.8 11.0

LLaMA3.1-8B – – 30.9 27.9

+ LoRA 100% 1.0× 43.1 36.2
+ SparseLoRA 66% 1.3× 43.9 37.0

Table 5: SparseLoRA accelerates fine-tuning for code gen-
eration by up to 1.3× while maintaining performance on
HumanEval and HumanEval+ benchmarks.

CSR170K Math10K

#FL. Spd. Acc. #FL. Spd. Acc.

LLaMA3-8B – – 62.5 – – 33.5

+ QLoRA 100% 1.0× 87.1 100% 1.0× 80.6
+ SparseQLoRA 65% 1.2× 86.9 60% 1.3× 80.8

Table 6: SparseLoRA can be combined with existing PeFT
approaches, such as QLoRA, to accelerate fine-tuning while
maintaining memory savings.

Compatibility with PEFT Methods. Techniques
such as gradient checkpointing and quantization (e.g.,
QLoRA (Dettmers et al., 2023), LoftQ (Li et al., 2023a))
primarily aim to reduce memory usage but often increase
runtime, as shown in Figure 1. These methods are therefore
orthogonal and complementary to our approach. As in
Table 6, SparseLoRA can be combined with QLoRA to
achieve both lower memory consumption and improved
runtime efficiency.

4.3. Analysis

#FLOPs Runtime Memory Accuracy

Oracle – – – 81.4
SVD 0.05% 0.8% 30MB 81.1

Table 7: SVD sparsity estimator delivers near-oracle accu-
racy while introducing negligible computation and memory
overheads, enabling SparseLoRA to outperform LoRA in
efficiency while matching its performance.

SVD Sparsity Estimator. The SVD sparsity estimator
is key to SparseLoRA ’s ability to apply contextual spar-
sity with minimal impact on performance. As shown in
Table 7, our estimator achieves performance comparable to
the Oracle method on the Math10K dataset, demonstrating
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its effectiveness. Using a rank 8 singular value decomposi-
tion of the base model weights, the SVD sparsity estimator
is lightweight and training-free, adding only 0.8% overhead
to the end-to-end runtime.

Effect of Output Token Splitting. We investigate the ef-
fectiveness of our context-output splitting strategy, which
optimizes computational efficiency by preserving dense
computation for output tokens while sparsifying the con-
text tokens. To evaluate the impact of this design choice,
we compare three configurations: (1) the baseline, which
does not employ output token splitting, (2) our proposed
approach with output token splitting, and (3) a control con-
figuration, where a random subset of tokens is selected for
dense computation, matching the number of output tokens
in our approach. The results are presented in Table 8, which
demonstrate that selectively preserving dense computation
for output tokens consistently outperforms both the random
selection and the baseline, highlighting the efficacy of our
proposed method in improving computational efficiency
without sacrificing performance.

CSR170K Math10K

Sparsity #FL. Spd. Acc. #FL. Spd. Acc.

All tokens 100% 1.0× 86.7 100% 1.0× 47.1
Inputs only 102% 0.9× 86.9 129% 0.8× 81.1
Random 102% 0.9× 86.6 129% 0.8× 70.9

Table 8: Datasets with more output tokens (e.g., Math10K)
are highly sensitive to sparsity on those tokens, leading to
significant accuracy drops. Output-aware splitting preserves
accuracy while still achieving strong runtime improvements.

Uniform Sparsity without Sensitivity Analysis. We in-
vestigate the impact of applying sensitivity-guided layerwise
sparsity compared to uniform sparsity across all model lay-
ers. Our experiments, conducted at various speedup targets,
show that the sensitivity-aware approach—where sparsity
ratios are adapted to each layer’s sensitivity—consistently
outperforms the uniform sparsity baseline, as demonstrated
in Table 9. This result underscores the importance of tailor-
ing sparsification strategies to the unique sensitivity charac-
teristics of each layer, rather than adopting a one-size-fits-all
approach. Additionally, Figure 7 illustrates the varying sen-
sitivity of sparsity across different layers, further validating
the effectiveness of our layer-wise approach.

Pruning Criterion. We explore pruning criteria beyond
L2 norm, such as methods based on weights (Sun et al.,
2024). While these approaches show some promise, L2
norm remains the most effective method with simplicity.
We compare L2 norm pruning with Wanda (Sun et al., 2024)

#FLOPs Speedup Accuracy

Uniform sparsity 60% 1.1× 80.3
Nonuniform sparsity 60% 1.4× 81.1

Uniform sparsity 46% 1.5× 80.2
Nonuniform sparsity 46% 1.6× 81.1

Table 9: On LLaMA3-8B with Math10K, we demonstrate
the importance of layerwise sensitivity in sparsity alloca-
tion. At fixed FLOPs budgets, our non-uniform (sensitivity-
aware) approach consistently achieves higher speedup and
better accuracy compared to uniform sparsity. SparseLoRA
delivers lossless performance even at up to 1.6× speedup.

TopK Selection Per
Metric Accuracy

(Math10K)Channel Head

QK
Criterion

✓ ✗ Attention Norm 80.7
✗ ✓ Attention Norm 79.6
✓ ✗ L2 Norm 79.8
✓ ✗ Random 79.1

VO
Criterion

– – L2Norm 81.4
– – Random 79.6

FFN
Criterion

– – L2Norm 81.4
– – Wanda 81.3
– – Random 78.6

Table 10: Comparison of pruning criteria for QK, VO, and
FFN modules under 90% uniform sparsity with token split-
ting at a 5% step offset. All other components are computed
densely. For each module, the selected metric: attention
norm (channel-wise) for QK, and L2 norm for VO and FFN,
achieves the highest accuracy, validating our design choices.

and random pruning, all using the oracle setting for FFNs.
Additionally, we conduct an ablation study on attention
projections, pruning heads and channels (same or different
per head), as shown in Table 10. Our proposed attention
norm performs the best.

5. Conclusion
We introduced SparseLoRA to accelerate fine-tuning through
contextual sparsity using a lightweight, training-free SVD
sparsity estimator. By dynamically selecting sparse weights
for loss and gradient computation, SparseLoRA reduces
computational cost by up to 2.0× and achieves up to a 1.5×
speedup while maintaining accuracy across a wide range of
benchmarks.
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A. Appendix
A.1. Analysis of Pruning at Attention Head Level in Inference and Fine-tuning

Liu et al. (2023b) found that some attention heads show uniform attention scores across previous tokens during the auto-
regressive generation. As illustrated in Figure 9a, at test time the top head is a uniform “token mixing” head, while the
middle and bottom heads are “heavy hitter” heads. Since uniform heads don’t capture important interactions, keeping only
the heavy hitter heads preserves prediction quality. However, this behavior changes during fine-tuning: Figure 9b shows that
attention heads may exhibit different patterns depending on the token—what might be a token-mixing head for one token
could be critical for another.
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Figure 9: Attention scores from three different heads are visualized for the last 9 tokens of a sample. Figure 9a (left)
corresponds to the last row of Figure 9b (right), simulating the auto-regressive generation of the final token during inference.
Darker colors indicate higher attention scores.

A.2. Fine-Tuning Details

Table 11: Training Hyperparameters Across Datasets. All experiments use LoRA with dropout = 0, rank = 32, and α = 64.

Dataset Seq. Len Batch Size Epochs LR Scheduler Warmup Ratio

CSR170K 512 8 1 3e-4 cosine 0.04
Math10K 512 8 3 3e-4 cosine 0.04
GLUE (COLA, STS-B, RTE, SST2, QNLI) 128 8 3 5e-5 cosine 0.04
GLUE (MRPC) 128 8 5 5e-5 cosine 0.04
CodeFeedback 1024 6 1 2e-5 cosine 0.04
WizardLM 2048 2 1 2e-5 cosine 0.04

A.3. Detailed Sparsity Configuration

Table 12: Sparsity Configuration Across Models and Datasets

Model Dataset FFN QKVO Step #FLOPs Speedup

Layers Sparsity (%) Layers Sparsity (%)

LLaMA2-7B
CSR170K L13–L29 90 L17–L29 / L20, L24 50 5% 0.65 1.3×
Math10k L13–L29 / L20, L24 60 0.73 1.2×

CodeFeedback L3–L30 99 L14–L19,L21–L23,L25-L29 25 5% 0.73 1.2×

LLaMA2-13B CSR170K L13–L36 97 L17–L36 20 10% 0.61
1.3×Math10k 25 5% 0.70

LLaMA3-8B
CSR170K L17–L30 97 L17–L19,L21–L23,L25-L29 20 5% 0.65 1.3×
Math10k L9–L29/L8,L30 97/50 25 0.60 1.4×
GLUE L17–L30/L31 95/50 L17–L29 75 5% 0.61 1.3×

LLaMA3.1-8B CodeFeedback L3–L30 99 L14–L19,L21–L23,L25-L29 40 5% 0.66 1.3×
WizardLM 0.53 1.5×
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A.4. GaLore vs. SparseLoRA

We compare GaLore and SparseLoRA on CSR170K and Math10K. GaLore training takes slightly more VRAM than LoRA
and requires A100 GPUs due to VRAM limitations of A6000 under Distributed Data Parallel (DDP). Runtime is normalized
to LoRA, as in our main submission. Result are shown in Table 13. GaLore achieves memory efficiency by projecting the
full gradient matrices into a low-rank subspace. This projection is periodically updated during training via an online Singular
Value Decomposition (SVD) of the gradients. While this online SVD allows GaLore to adapt the subspace and maintain
performance similar to LoRA, it incurs a significant 1.58× training overhead compared to LoRA. The amortized time for
GaLore, which accounts for these periodic projection updates via online SVD, substantially slows down the fine-tuning
process by 13.72×. Thus, while GaLore prioritizes memory-efficient fine-tuning by reducing optimizer states and gradient
memory, this comes at a considerable cost to computational efficiency due to the demanding SVD operations. In contrast,
SparseLoRA is designed to accelerate fine-tuning while delivering near-lossless performance.

CSR170K

Model Runtime Average BoolQ PIQA SIQA HellaSwag WinoG ARC-E ARC-C OBQA

LoRA 1.00 87.1 74.5 89.6 82.8 95.3 88.4 93.1 84.4 88.8
GaLore 1.58 [13.72] 84.1 71.2 87.1 79.6 92.0 85.0 89.4 80.5 87.8
SparseLoRA 0.78 87.0 74.7 89.5 82.8 95.3 88.8 92.9 83.6 88.3

Math10K

Model Runtime Average GSM8K SVAMP MAWPS

LoRA 1.00 80.0 71.1 79.5 89.5
GaLore 1.58 [13.72] 78.7 68.1 77.9 90.2
SparseLoRA 0.82 80.0 70.9 79.4 89.9

Table 13: LLaMA 3-8B on CSR170K and Math10K. GaLore’s amortised cost (including periodic online-SVD updates) is
shown in brackets.

A.5. Impacts of Learning Rates Sweep

We perform learning rate sweeps to eliminate selection bias from hyperparameter choices. Specifically, we evaluate both
LoRA and SparseLoRA variants using LLaMA3-8B on the Math10K and CSR170K datasets. Table 14 shows that the
performance gap between the best-performing LoRA and SparseLoRA is just 0.2% on Math10K and 0.3% on CSR170K,
validating the robustness of our approach.

Dataset Learning Rate LoRA SparseLoRA

Math10K

3.0× 10−5 78.3 78.8
5.0× 10−5 78.6 79.3
9.5× 10−5 79.6 79.8
3.0× 10−4 80.0 80.0
5.0× 10−4 80.2 79.6
9.5× 10−4 78.1 77.3

CSR170K

3.0× 10−5 85.7 85.6
5.0× 10−5 86.7 86.5
9.5× 10−5 87.7 87.4
3.0× 10−4 87.1 87.1

Table 14: Learning-rate sweep of LLaMA 3-8B on Math10K and CSR170K. Best accuracy per dataset is in bold.

A.6. LoRA on Different Projections

We primarily apply sparsity to accelerate the main branch of the model, while keeping the LoRA branches dense. To
assess generality, we also conduct additional experiments on Math10K, applying LoRA to the Q, K, V, up, and down
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projections—following the DoRA setup (Liu et al., 2024b)—beyond the configurations explored in the main paper. Results
in Table 15 indicate that the benefits of SparseLoRA extend beyond just QKVO, demonstrating its broader applicability.

Projection Set LoRA SparseLoRA ∆

QKVO 79.9 80.0 +0.1
QKVUD 80.3 80.9 +0.6
QKVOGUD 80.5 80.7 +0.2

Table 15: Mean accuracy of LoRA versus SparseLoRA on LLaMA 3-8B for different projection configurations.

A.7. Iso-FLOP Comparison

A practical question is how methods behave when constrained by a fixed FLOP budget, rather than a fixed number of training
steps. In production, practitioners often allocate a set amount of compute; a method that extracts more accuracy per FLOP is
therefore more valuable. To address this, we perform an Iso-FLOP study on LLaMA3-8B using Math10K and CSR170K.
One full epoch is treated as 100% of the available FLOPs, and we sweep down to 5%. Figure 10 shows consistent gains
across all tested budgets on both datasets. These results confirm that, for the same computational cost, SparseLoRA produces
better-performing models than standard LoRA.
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Figure 10: Iso-FLOPs comparison on LLaMA3-8B using Math10K and CSR170K. As the FLOPs budget decreases,
SparseLoRA is able to better retain task performance compared to the LoRA counterpart by a larger margin.
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