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Abstract

Traditional pruning methods are known to be001
challenging to work in Large Language Models002
for Generative AI because of their unafford-003
able training process and large computational004
demands. For the first time, we introduce the in-005
formation entropy of hidden state features into006
a pruning metric design, namely E-Sparse, to007
improve the accuracy of N:M sparsity on LLMs.008
E-Sparse employs the information richness to009
leverage the channel importance, and further010
incorporates several novel techniques to put it011
into effect: (1) it introduces information en-012
tropy to enhance the significance of parameter013
weights and input feature norms as a novel prun-014
ing metric, and performs N:M sparsity without015
modifying the remaining weights. (2) it designs016
global naive shuffle and local block shuffle to017
quickly optimize the information distribution018
and adequately cope with the impact of N:M019
sparsity on LLMs’ accuracy. E-Sparse is im-020
plemented as a Sparse-GEMM on FasterTrans-021
former and runs on NVIDIA Ampere GPUs.022
Extensive experiments on the LLaMA family023
and OPT models show that E-Sparse can sig-024
nificantly speed up the model inference over025
the dense model (up to 1.53×) and obtain sig-026
nificant memory saving (up to 43.52%), with027
acceptable accuracy loss.028

1 Introduction029

Large language models (LLMs), such as GPT-030

3(Brown et al., 2020), LLaMA(Touvron et al.,031

2023), Bloom(Scao et al., 2022), and others, have032

recently exhibited outstanding performance across033

a wide range of tasks, including but not limited034

to social systems, intelligent conversation, content035

generation, code creation, etc. However, deploy-036

ing LLMs poses significant challenges due to their037

substantial computational demands and high mem-038

ory requirements. For instance, the most powerful039

variant, the Bloom model with 176 billion parame-040

ters, necessitates a minimum of 350 GB of storage041
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(b) The entropy-based sparsity metric of E-Sparse.

Figure 1: Overview of the proposed E-Sparse. It first
introduces entropy to quantify the information richness
within each channel ( intra-channel ) of the input fea-
tures, and adopts it to enhance the feature norms ( cross-
channel ) as a metric to evaluate parameter importance.
Furthermore, it proposes Channel Shuffle to reorder the
information distribution in LLMs to obtain N:M Spar-
sity with less information loss.

in half-precision (FP16) format. When configured 042

with a batch size of 1 and a sequence length of 128, 043

Bloom-176B inference demands a formidable en- 044

semble of 16 NVIDIA A10 GPUs, each equipped 045

with 24GB memory. Consequently, optimizing 046

these models through compression and pruning has 047

emerged as a critical strategy to reduce parameter 048

counts, thereby decreasing computational overhead 049

and conserving memory resources. 050

In order to harness the acceleration and mem- 051

ory reduction potential offered by sparse neural 052

networks, GPU manufacturers have introduced 053
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architectural enhancements. Specifically, the in-054

vention of Sparse Tensor Core (a10, 2020; h10,055

2023; Yao et al., 2019; Cao et al., 2019) technology056

has been pivotal in capitalizing on weight spar-057

sity within Deep Neural Network (DNN) models.058

This innovation employs a fine-grained structural059

pruning technique, involving a 2-out-of-4 prun-060

ing approach within each partitioned sub-vector.061

This method effectively balances the computational062

workload while maximizing parallelism within the063

dot-product unit.064

While there has been substantial research on065

compressing LLMs using low-precision quantiza-066

tion(Xiao et al., 2023; Dettmers et al., 2022; Fran-067

tar et al., 2022), relatively little effort has been068

dedicated to fully exploiting Sparse Tensor Core069

technology for accelerating LLMs. Some prior070

work, exemplified by Wanda(Sun et al., 2023), has071

proposed the application of a 2-out-of-4 pruning072

pattern for LLMs. This approach determines chan-073

nel importance by evaluating input feature norms074

and weights them against standard parameter mag-075

nitudes as pruning metrics. In this studyhe, we076

introduce an Entropy-based pruning algorithm that077

builds upon these principles. Our research show-078

cases a remarkable 1.32 LLaMA perplexity im-079

provement over state-of-the-art techniques and de-080

livers a 19.6%-34.8% speedup on an A100 GPU,081

demonstrating the effective and efficient utilization082

of Sparse Tensor Core hardware.083

Our work is grounded in two crucial observa-084

tions. Firstly, we note that the richness of infor-085

mation among channels exhibits significant vari-086

ation. Even within the same batch of tokens, the087

entropy of elements within each channel differs088

considerably, despite some sharing the same input089

feature norm. Secondly, we observe that chan-090

nels with close entropy values tend to exhibit091

relatively concentrated distributions. These ob-092

servations naturally inspire us to leverage channel-093

specific information in order to enhance LLMs in-094

ference using N : M sparsity.095

Our proposal We propose entropy-based spar-096

sity (E-Sparse), a novel method to prune LLMs097

without modifying the remaining weights. Figure 1098

shows the key idea of one-shot E-Sparse.099

Firstly, inspired by Observation 1, we introduce100

a novel metric to assess the importance of weights.101

This metric employs information entropy to quan-102

tify the amount of information within each channel103

of the hidden state features in LLMs. We enhance104

the significance of parameter weights and input fea-105

ture norms by incorporating information entropy 106

as a metric for evaluating parameter importance. 107

Secondly, we implement a channel shuffling 108

mechanism to ensure a more equitable distribution 109

of information among the channels in the hidden 110

features ( Figure 3 ). As Observation 2 reveals, the 111

information distribution across channels tends to 112

be highly concentrated, which can impede the accu- 113

racy of N : M sparsity due to the need to remove 114

N elements from adjacent M elements. Channel 115

shuffling is instrumental in preserving a greater 116

number of elements within information-rich chan- 117

nels, thereby mitigating the impact of parameter 118

pruning on LLMs accuracy. 119

Lastly, with the robust support of NVIDIA’s cuS- 120

PARSE(cuS, 2023a) and cuSPARSELt(cuS, 2023b) 121

libraries, we have crafted an efficient E-Sparse 122

GEMM designed explicitly for LLMs inference 123

and integrated it into FasterTransformer. 124

E-Sparse enables the N:M sparsity of weights 125

for all the matrix multiplications in LLMs, in- 126

cluding the LLaMA family, and OPT. The results 127

show that E-Sparse outperforms the performance 128

of the state-of-the-art training-free sparsity meth- 129

ods (Frantar and Alistarh, 2023; Sun et al., 2023) 130

for LLMs. It has also been demonstrated that 131

E-Sparse can achieve a 1.24–1.53× speedup and 132

a 42.64%–43.52% memory saving for LLMs with 133

negligible loss in accuracy. 134

2 Inspiration from Observations 135

It has been found that a small subset of hidden 136

state features (named “outlier") in LLMs are excep- 137

tionally large in magnitude (Dettmers et al., 2022; 138

Xiao et al., 2023), and these features are important 139

for LLMs compression (Sun et al., 2023). Then, 140

we visualize the input activations of linear layers 141

in LLMs and find several key observations about 142

these activations that motivate our method: 143

• The information richness between channels 144

varies greatly. A recent work (Sun et al., 2023) 145

found that the norm of activation in LLMs can be 146

used to measure channel importance. In addition to 147

the same finding, we also observed that the informa- 148

tion entropy between channels also varies greatly. 149

To facilitate observation, we first sort the channels 150

according to the norm value and then compare the 151

entropy of each channel feature according to the 152

same index sorted by the norm in Figure 2a and 153

Figure 2b. We find that the entropy of different 154

channels differ considerably, despite some shar- 155
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The sorted Norm value for each input channel

The entropy value for the input channel with the same index of norm

(b) Layers.20.mlp.down_proj(a) Layers.10.mlp.down_proj
The entropy value for the input channel with the same index of norm

The sorted Norm value for each input channel

The entropy value for each input channel

The entropy value for each input channel

(c) Layers.37.self_attn.o_proj

(d) Layers.24.self_attn.o_proj
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Figure 2: The visualization of the hidden activations in LLMs. The data for each subfigure comes from the activation
of the corresponding layer of LLaMA-13B. For clarity, we only capture the norm and entropy values for the 100
channels after norm sorting in (a) and (b). We show the entropy values of all channels in (c) and (d).

ing the same input feature norm. The observation156

above motivates us to enhance evaluation metrics157

through information richness.158

• The entropy values of adjacent channels are159

relatively close. As shown in Figure 2c and Fig-160

ure 2d, channels with close entropy tend to ex-161

hibit relatively concentrated distributions. How-162

ever, N:M sparsity forces the model to prune N163

values out of M consecutive values in the chan-164

nel dimension, which makes us inevitably need165

to prune in M consecutive informative channels166

and damage the accuracy of LLMs. This observa-167

tion straightforwardly motivates us to shuffle the168

channels to preserve a greater number of elements169

within information-rich channels, thereby mitigat-170

ing the impact of N:M sparsity on accuracy.171

3 Method172

3.1 Method Overview173

E-Sparse proposes a new entropy-based metric to174

evaluate the parameter importance in LLMs, and175

introduces channel shuffling to minimize the in-176

formation loss brought by N:M sparsity. The key177

advantages of E-Sparse include: 1) Sparse the178

LLMs without modifying the remaining weights.179

In contrast to channel-by-channel parameter sparse180

and update (Frantar and Alistarh, 2023), E-Sparse181

augments the parameter weights with the informa-182

tion richness and the amplitude of the feature as an183

evaluation metric, and then adopts it to sparse the184

weights of a layer at once. 2) More fine-grained185

importance evaluation of hidden state channels.186

Apart from the global information (channel am-187

plitude), E-Sparse introduces entropy to measure 188

the local information of channels (information rich- 189

ness), thereby comprehensively measuring the im- 190

portance of channels. 3) More flexible sparse mode. 191

Traditional N:M sparsity forces pruning of N out of 192

M consecutive values, E-Sparse introduces chan- 193

nel shuffle mechanism, which is more adaptable to 194

the feature information distribution of LLMs and 195

reduces accuracy loss. 196

3.2 Information Richness - Entropy 197

The observation in Section 2 motivates us to en- 198

hance the evaluation metrics of LLMs pruning 199

through information richness. Entropy (Shannon, 200

1948) is a key indicator in the field of information 201

theory to measure the amount of information and 202

uncertainty. The larger the entropy, the higher the 203

information richness. Therefore, we introduce en- 204

tropy to evaluate the channel information of activa- 205

tion for augmenting the standard weight magnitude 206

and channel norm as a novel pruning metric. 207

Let X ∈ Ro×C denote the hidden feature of 208

a fully connected layer in LLMs, where C is the 209

number of channels, and o is the dimension of 210

each channel. To compute the entropy, we first 211

divide it into K different bins and then calculate the 212

probability of an element in the channel falling into 213

each bin. Then, the information richness (entropy) 214

of channel c can be formulated as: 215

IRc = −
K∑
k=1

pcklog (p
c
k) (1) 216

in which, pck is the probability of bin k in channel 217
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c, and IRc ∈ [0,+∞). We set K to 100 empiri-218

cally, which can achieve good results. Information219

entropy can be used as a good fine-grained metric220

to evaluate information richness. The larger IRc221

value means higher information richness.222

Next, regarding coarse-grained evaluation, we223

follow (Sun et al., 2023) and adopt the input feature224

norm to measure the amplitude:225

AMc = ∥Xc∥2 (2)226

where ∥Xc∥2 represents the L2 norm of the channel227

Xc.228

Finally, to comprehensively evaluate the im-229

portance of channels and obtain more reasonable230

weight evaluation metric, we integrated the fine-231

grained indicator and the coarse-grained indicator232

above to get the following evaluation metric for233

pruning redundant weights in LLMs:234

ξcj = |wcj | · (IRc + α · AMc) (3)235

in which, wcj is the j-th element in channel c of236

the fully connected layer in LLMs, and ξcj is the237

final important score of wcj in the sparsity metric.238

The larger ξcj value means higher importance of239

the element in this layer.240

3.3 Information Reorder - Channel Shuffle241

Inspired by the observation in Section 2, E-Sparse242

implements a channel shuffling mechanism to en-243

sure a more equitable distribution of information244

among the channels in the hidden features. By245

reordering the channel index of the hidden state246

feature and the layer parameter, E-Sparse aims to247

make the channels with higher information rich-248

ness distributed more evenly, thus minimizing the249

information loss caused by N:M sparsity.250

First, the N:M sparsity can be formulated as a251

constrained optimization problem:252

O = min
θ

1

2

∥∥∥Y −W θ
N :M ·X

∥∥∥2
F

(4)253

in which, X and Y are the input and original out-254

put of a fully connected layer, respectively. θ is the255

index order of channels, and W θ
N :M is the weight256

after performing N:M sparsity on W under the cur-257

rent index order. We are committed to finding an258

optimal channel order θ, which can minimize the259

output loss caused by M:N sparsity. However, di-260

rectly optimizing the above problems in LLMs will261

bring a large computational overhead. Considering262

𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟏𝟓 𝑪𝟏𝟔

Global Naive 
Shuffle

Channels with 
Descending Mean

(a) Global Naive Shuffle.

𝒃𝒍𝒐𝒄𝒌𝒊"𝟏 𝒃𝒍𝒐𝒄𝒌𝒊 𝒃𝒍𝒐𝒄𝒌𝒊$𝟏
Activations after

Naive Shuffle

Activations after
Block shuffle

Weights after
Naive Shuffle

Weights after
Block shuffle

(b) Local Block Shuffle.

Figure 3: Channel Shuffle of E-Sparse. Take 2:4 spar-
sity as an example. E-Sparse first sorts the channels
globally according to the channel mean of the spar-
sity metric, and then divides the channels with close
mean into different groups, which is coarse-grained
but faster. Then, E-Sparse splits the channel into mul-
tiple blocks and performs channel shuffle within the
blocks, which is slightly slower than the global shuf-
fling but more accurate.

that the importance metric in (3) contains the infor- 263

mation from both weights and activation, we sim- 264

plify the above problem to minimizing the sparse 265

loss of ξcj : 266

Ó = max
θ

C∑
c=1

(ξcj)
θ
N :M (5) 267

in which, (ξcj)
θ
N :M is the evaluation metric af- 268

ter N:M sparsity under the channel permutation 269

θ. Compared to (4), there is no need to repeat- 270

edly perform matrix multiplication to calculate the 271

feature map Y and the sparse feature map. 272

Although the optimization problem above has 273

been greatly simplified, performing channel shuffle 274

in LLMs is non-trivial. The large channel size of 275

LLMs results in a big search space, which in turn 276

brings huge computational and time overhead. For 277

a fully connected layer with C channels, there are 278

C! different orderings of channels. For instance, a 279

layer with 1024 channels has a channel ordering of 280

102640. In LLMs, the maximum number of chan- 281

nels can reach more than 10,000, which brings huge 282

resistance to obtaining the optimal permutation. 283

To deal with the issue above, E-Sparse intro- 284

duced the channel shuffle, which consists of two 285

steps: global naive shuffle and local block shuffle. 286
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Global Naive Shuffle. To reduce the complexity287

of channel shuffle in LLMs as much as possible,288

E-Sparse first performs a fast global channel shuf-289

fle. For the sparsity metric ξ ∈ Ro×C , the mean290

value of each channel is calculated, and based on291

which the channels are shuffled in descending order.292

As shown in Figure 3a, according to the sparsity293

pattern (M ), E-Sparse shuffles the channels with294

close means into different sparse groups. Global295

naive shuffle can achieve fast coarse-grained infor-296

mation reordering.297

Local Block Shuffle. To further minimize the in-298

formation loss caused by N:M sparsity, E-Sparse299

introduces local block shuffle. First, E-Sparse di-300

vided the ξ after global naive shuffle into n blocks,301

and each block contains m channels (C = m · n),302

as shown in Figure 3b. We use m = 256 unless303

otherwise specified, thus the channel search space304

is reduced from C! to n · 256!, making the num-305

ber of unique permutations can be completed in306

an acceptable amount of time. Then, E-Sparse307

performs channel shuffling in each small block by308

adapting the classic greedy search algorithm (Ji309

et al., 2018; Pool and Yu, 2021).310

Combining global naive shuffle and local block311

shuffle, E-Sparse can realize a fast optimization312

for information distribution and well cope with the313

challenge of large channel dimensions in LLMs.314

4 Efficient Sparse-GEMM315

Implementation316

To deploy the proposed method in actual appli-317

cation scenarios, we implemented E-Sparse as a318

sparse engine for efficient LLMs inference. We319

choose FasterTransformer(Fas, 2023) as the back-320

end and implemented the sparse general matrix321

multiplication (Sparse-GEMM) of E-Sparse for322

LLMs inference. Taking 2:4 sparsity as an ex-323

ample, the sparse deployment of Sparse-GEMM324

mainly includes three steps. (1) E-Sparse first325

compresses the sparse weights W2:4 ∈ Ro×C into326

a compressed format, which includes the non-zero327

weights W2:4 ∈ Ro×C
2 and the indices of these non-328

zero data values. (2) With the support of NVIDIA’s329

cuSPARSE and cuSPARSELt, E-Sparse searches330

for the optimal matrix multiplication algorithm ac-331

cording to the shape of each sparse weights tensor332

in LLMs and saves them. (3) Integrates E-Sparse333

into FasterTransformer for LLMs inference. Based334

on the saved optimal matrix multiplication algo-335

rithm, LLMs can skip 50% of matrix multiplica-336

tion operations and perform faster inference. The 337

experiments in Section 5.4 have shown that such a 338

design can bring 19.6%–34.8% latency reduction 339

and 42.64%–43.52% memory saving. 340

5 Experiments 341

5.1 Experimental Environments 342

Setup. In our experimental framework, we 343

primarily target the LLaMA model family 344

(LLaMA-7B/13B/30B/65B) and OPT models 345

(OPT-6.7B/30B). To demonstrate the comprehen- 346

siveness of E-Sparse, we further extends it to the 347

OPT and BLOOM models. All models are from 348

the HuggingFace Transformers library (Wolf et al., 349

2019). We choose two SOTA methods as our base- 350

lines: SparseGPT and Wanda. Following the one- 351

shot sparsity setting of Wanda, we sample the same 352

128 sequences from C4 (Raffel et al., 2020) train- 353

ing data as calibration dataset. All our experiments 354

only need read right on the models without modify- 355

ing the remaining weights. In addition, we demon- 356

strate the real-world inference acceleration of 4:8 357

and 2:4 sparsity patterns on NVIDIA Ampere Ar- 358

chitecture (a10, 2020). 359

Datasets & Evaluation. As perplexity is a sta- 360

ble and robust metric to measure the capabilities 361

of LLMs. Importantly, lower perplexity values in- 362

dicate better model performance. We reported our 363

results on the WikiText (Merity et al., 2016) vali- 364

dation dataset, based on the perplexity metric. To 365

further demonstrate the efficiency of our method, 366

we also present the zero-shot performance of the 367

pruned networks. Notably, higher values are indica- 368

tive of superior model performance. Our evalua- 369

tion rely on the widely-acknowledged EleutherAI 370

LM Harness benchmark (Gao et al., 2021). The 371

zero-shot evaluation benchmark mainly includes 372

the following datasets: HellaSwag (Zellers et al., 373

2019), OpenbookQA (Mihaylov et al., 2018), PiQA 374

(Bisk et al., 2020), SciQ (Pedersen et al., 2020) and 375

LogiQA (Liu et al., 2020). 376

5.2 Pruning Results on LLMs 377

To demonstrate the pruning performance of 378

E-Sparse, we conduct a series of experiments to 379

evaluate its efficacy across various model sizes 380

within the LLaMA model family. Similar to Wanda 381

and SparseGPT, we evaluate the perplexity of Wiki- 382

Text validation on structured 4:8 and 2:4 sparsity. 383

As Table 1 shows, our E-Sparse achieves sig- 384

nificant improvements compared with the strong 385
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Table 1: E-Sparse’s perplexity performance on LLaMA model family. The results show that E-Sparse can
outperform state-of-the-art methods by a large margin without updating the remaining weights. As for the more
constrained and challenging 2:4 sparsity, E-Sparse can obtain an 8.26 perplexity for LLaMA-13B, which is 1.32
better than Wanda and 0.85 better than SparseGPT.

Methods N:M sparsity LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B

FP16 - 5.68 5.09 4.10 3.56

Magnitude

2:4

42.53 18.36 7.62 7.11
SparseGPT 11.00 9.11 7.16 6.28

Wanda 11.53 9.58 6.90 6.25
E-Sparse 10.56 8.26 6.56 5.69

Magnitude

4:8

16.83 13.86 9.11 6.35
SparseGPT 8.61 7.40 6.17 5.38

Wanda 8.56 7.40 5.97 5.30
E-Sparse 8.29 6.92 5.74 5.09

Table 2: Accuracy of LLaMA under 2:4 sparsity patterns on different Zero-Shot tasks. It shows that E-Sparse
consistently outperforms SparseGPT and Wanda, especially in terms of overall average accuracy across five tasks.

Params Method HellaSwag PiQA OpenBookQA SciQ LogiQA Avg.

7B

FP16 56.41 78.29 28.20 89.6 21.81 54.86

Magnitude 41.98 68.00 22.00 74.00 21.00 45.60
Sparse GPT 42.95 70.78 19.80 85.00 23.34 48.37

Wanda 41.82 70.13 21.60 83.90 21.96 47.68
E-Sparse 43.59 72.03 23.00 84.10 22.27 49.00

13B

FP16 59.08 78.89 30.60 93.40 26.57 59.77

Magnitude 45.06 71.27 23.20 82.80 25.80 57.71
Sparse GPT 47.34 74.48 24.00 88.00 21.35 51.03

Wanda 45.99 73.55 25.40 87.90 23.04 51.16
E-Sparse 49.40 75.24 24.80 87.80 19.81 51.41

30B

FP16 62.64 81.55 29.06 92.50 28.41 58.83

Magnitude 51.10 77.36 24.40 90.10 22.42 53.08
Sparse GPT 52.60 78.40 28.20 93.30 25.96 55.69

Wanda 53.74 77.96 27.40 92.90 27.80 56.00
E-Sparse 56.41 77.36 28.80 93.80 29.03 57.08

65B

FP16 62.64 81.55 29.60 92.50 28.41 58.94

Magnitude 57.07 77.36 30.00 90.10 23.65 55.64
Sparse GPT 55.23 78.40 27.60 93.30 24.42 55.79

Wanda 55.76 77.96 29.00 92.90 26.72 56.47
E-Sparse 58.46 78.56 31.60 93.80 23.04 57.09

Table 3: E-Sparse’s perplexity performance on OPT
models. The results reveal that E-Sparse achieves
higher performance than Magnitude and Wanda on both
2:4 and 4:8 patterns, which demonstrates the good gen-
eralization of E-Sparse.

Methods OPT-6.7b(2:4) OPT-30b(2:4) OPT-6.7b(4:8) OPT-30b(4:8)

FP16 10.86 9.56 10.86 9.56

Magnitude 264.14 1980.71 196.18 563.72
Wanda 15.89 13.42 13.56 10.87

E-Sparse 14.90 12.35 13.12 10.75

baselines. It is noteworthy that E-Sparse does386

not require weight updates, yet it outperforms the387

reconstruction-based SparseGPT across all vari-388

ants within the LLaMA model family. At the389

largest LLaMA-65B, the performance of E-Sparse390

is close to the FP16 baseline. For instance, 4:8 spar-391

sity achieves a perplexity loss of only 1.53 more392

than FP16. The results indicate that our entropy- 393

based metric and channel shuffle mechanism plays 394

a critical role in N:M sparsity. 395

To assess the generalization of our method, we 396

conduct experiments on OPT model family, which 397

is one of the most representative LLMs prior to the 398

release of the LLaMA. We choose two models of 399

varying sizes, specifically the OPT-6.7B and OPT- 400

30B, for our experiments. According to the result 401

in Table 3, it is evident that the implementation of 402

E-Sparse can lead to a substantial enhancement in 403

WikiText validation. For instance, E-Sparse can 404

achieve a perplexity score of 14.9 at 2:4 sparsity, 405

markedly outperforming Wanda baseline, which 406

registers at 15.89. 407

To provide further evidence of our method’s per- 408

formance, we also present results on several Ze- 409
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Table 4: Ablation study on the pruning metric and channel shuffle. Let Norm denote the input feature norm
(baseline). Entropy indicates the information entropy. GNS means the Global Naive Shuffle, and LBS is the
Local Block Shuffle. The results show that both the proposed entropy strategy and two shuffling methods can bring
noteworthy performance gains.

Techniques LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-65B
Norm Entropy GNS LBS

! % % % 11.53 9.58 6.90 6.25
! ! % % 11.42 8.82 6.80 6.05
! ! ! % 10.98 8.58 6.62 5.78
! ! ! ! 10.56 8.26 6.56 5.69

Table 5: GEMM Speedup of E-Sparse after 2:4 sparsity on LLMs. The inputs and weights are all in half-precision
(FP16) format, and the latency is evaluated on a single NVIDIA A100 40GB GPU.

Layer Input Weights Dense GEMM E-Sparse GEMM Latency Reduction

Context-stage

Q/K/V 16384× 14336 14336× 5376 8.452ms 5.815ms 31.2%
Att_Out 16384× 1792 1792× 14336 3.488ms 2.540ms 27.2%
FFN-1 16384× 14336 14336× 7168 11.487ms 8.073ms 29.7%
FFN-2 16384× 7168 7168× 14336 11.478ms 8.958ms 21.9%

Decoder

Q/K/V 16× 14336 14336× 5376 0.122ms 0.098ms 19.6%
Att_Out 16× 1792 1792× 14336 0.046ms 0.030ms 34.8%
FFN-1 16× 14336 14336× 7168 0.160ms 0.112ms 30.0%
FFN-2 16× 7168 7168× 14336 0.158ms 0.109ms 31.0%

Table 6: Memory saving of E-Sparse on LLaMA fam-
ily.

Models Dense (FP16) Sparse (FP16) Memory Saving

LLaMA-7B 9.85GB 5.65GB 42.64%
LLaMA-13B 19.11GB 10.89GB 43.01%
LLaMA-30B 47.99GB 27.17GB 43.38%
LLaMA-65B 96.50GB 54.50GB 43.52%

roShot tasks for LLaMA under 2:4 sparsity. The410

comprehensive results have been tabulated in Tab411

2. It can be observed that our E-Sparse consis-412

tently exhibits an edge, particularly evident from413

the superior average accuracy metrics amassed414

across the quintet of Zero-Shot tasks when com-415

pared with other established baseline methods.416

E-Sparse outperforms Wanda by a margin of 3%417

and exceeds SparseGPT by 1% on average accu-418

racy for LLaMA-7B. Despite the 2:4 pruning being419

the most constrained sparsity pattern, our method420

achieves enhanced performance for all model size421

on HellaSwag. Additionally, our approach either422

matches or surpasses the performance of Wanda423

and SparseGPT on the other four datasets.424

5.3 Ablation Study425

The good performance of E-Sparse is mainly at-426

tributed to the proposed entropy-based pruning met-427

ric and two channel shuffle strategies. To validate428

the effectiveness of these strategies, we conduct429

a series of ablation studies on LLaMA models in430

2:4 sparse pattern. We take the input feature norm 431

(Norm (Sun et al., 2023)) as the baseline strategy. 432

The results are shown in Table 4. Firstly, it 433

shows that simply introducing Entropy to build 434

the pruning metric can bring up to 0.76 perplexity 435

improvement, demonstrating the effectiveness of 436

information entropy on LLM pruning. Then, the in- 437

troduction of the global naive shuffle and the local 438

block shuffle successively brought the perplexity 439

gains of up to 0.44 and 0.42 respectively, which re- 440

veals that GNS and LBS are two complementary 441

channel shuffle strategies. The results above prove 442

that the three proposed new techniques are efficient 443

and effective. 444

5.4 Speedup and Memory Saving 445

In this section, we show the measured speedup 446

and memory saving of E-Sparse integrated into 447

FasterTransformer. 448

Speedup. With the E-Sparse integrated into 449

FasterTransformer, we measure the latency of 450

GEMM in the Context-stage and the Decoder for 451

a batch of 4 and a sequence length of 1024. Due 452

to the lack of support for 4:8 sparsity pattern in 453

NVIDIA Ampere architecture, we only measure 454

the latency of GEMM with 2:4 sparsity on a single 455

A100 40GB GPU. As shown in Table 5, E-Sparse 456

is consistently faster than the dense FP16 GEMM 457

baseline, delivering up to 34.8% latency reduction. 458
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It shows that E-Sparse can work well on both the459

context-stage and the decoder in LLMs.460

Memory Saving. In Table 6, we give the mem-461

ory saving brought by E-Sparse on LLaMA family.462

The results reveal that it can save 42.64%–43.52%463

memory usage on LLaMA models. We can also464

see a trend that the larger the model, the more sig-465

nificant the memory saving.466

6 Related Work467

Traditional Network Pruning. Network pruning468

was proposed to remove redundant parts of the469

DNN models, thereby reducing the computational470

and memory demands of neural networks with-471

out accuracy loss (Liu et al., 2018; Louizos et al.,472

2017; Han et al., 2016; Hassibi et al., 1993). Tradi-473

tional network pruning techniques usually fall into474

two primary categories: unstructured pruning (Has-475

sibi et al., 1993; Han et al., 2015, 2016) and struc-476

tured pruning (Li et al., 2017; Luo et al., 2017; Liu477

et al., 2017; Li et al., 2020, 2022; Ding et al., 2021;478

Li et al., 2021; Xia et al., 2022). Unstructured479

pruning methods (Han et al., 2016, 2015) aim to480

iteratively prune unimportant connections whose481

absolute weights are smaller than a given thresh-482

old, which achieves good performance on parame-483

ter compression. However, such kind of methods484

are implementation-unfriendly. Structured prun-485

ing methods (Li et al., 2017; Luo et al., 2017; Liu486

et al., 2019) prune or sparse entire parts of the net-487

work (e.g., channels, blocks) instead of individual488

weights, thus require less specialized libraries to489

achieve inference speedup. A common feature of490

the traditional pruning techniques mentioned above491

is that the pruned network usually needs to be re-492

trained to recover the accuracy loss, which hinders493

their application on LLMs that consume huge train-494

ing resources.495

N:M Sparsity. N:M sparsity (Mishra et al.,496

2021; Pool and Yu, 2021; Akiva-Hochman et al.,497

2022; Zhou et al., 2021) is a kind of special pruning498

technique that introduces an intermediate sparsity499

pattern between unstructured and structured prun-500

ing, called semi-structured sparsity. N:M sparsity501

aims to prune N out of every M consecutive pa-502

rameters, rather than pruning individual weights503

or entire channels/blocks. The appeal of N:M504

sparsity is its ability to reason for specific hard-505

ware architectures (such as NVIDIA Ampere(Pool,506

2020)), enabling efficient computation. (Akiva-507

Hochman et al., 2022) suggests a Neural Architec-508

ture Search (NAS) strategy to sparse both activa- 509

tions and weights throughout the network. (Zhou 510

et al., 2021) defines a metric, Sparse Architecture 511

Divergence (SAD) to learn N:M sparse neural net- 512

works. However, these are only designed for CNNs 513

or small models, and how to design efficient N:M 514

sparsity for LLMs has been rarely studied. 515

Pruning for LLMs. Due to the massive size 516

and computational costs of large language models, 517

training-based pruning methods (Ma et al., 2023; 518

Xia et al., 2023; Singh and Bhatele, 2023) will 519

bring a large overhead. So existing popular solu- 520

tions aim at post-training pruning strategy(Frantar 521

and Alistarh, 2023; Sun et al., 2023). Such meth- 522

ods only need a small number of calibration data 523

to prune the pre-trained LLMs models, which is 524

suitable for rapid deployment. SparseGPT(Frantar 525

and Alistarh, 2023) develops a layer-wise weight 526

update for LLMs via an approximate second- 527

order Hessian. This schema is iteratively exe- 528

cuted between weight pruning and weight update 529

at each layer, which is computationally expensive. 530

Wanda(Sun et al., 2023) presents to remove the 531

insignificant weights based on the magnitude and 532

norm of corresponding input activations, without 533

updating the remaining weights. Our work further 534

proposes a new metric based on the information 535

richness and designs an effective search strategy 536

for N:M sparsity. 537

7 Conclusion 538

In this paper, we propose a novel entropy-based 539

pruning method, called E-Sparse, to carry out 540

N:M sparsity on LLMs in a one-shot manner. The 541

design of our pruning metric is based on the obser- 542

vation of the information richness of hidden state 543

channels and relatively concentrated distributions 544

of information-rich channels. Extensive experi- 545

ments show the superior performance of our pro- 546

posal against existing LLMs pruning methods. 547

8 Limitations 548

Beyond NLP tasks, the applicability of E-Sparse 549

to other tasks (including computer vision or speech 550

recognition), remains to be tested. For fair com- 551

parison with other methods, we only conducted ex- 552

periments on public datasets with limited sentence 553

lengths. In addition, the combined optimization of 554

E-Sparse and other orthogonal methods (quantiza- 555

tion or distillation) has not yet been studied. 556
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman715
Castagné, Alexandra Sasha Luccioni, François Yvon,716

Matthias Gallé, et al. 2022. Bloom: A 176b- 717
parameter open-access multilingual language model. 718
arXiv preprint arXiv:2211.05100. 719

Claude Elwood Shannon. 1948. A mathematical theory 720
of communication. Bell system technical journal, 721
27(3):379–423. 722

Siddharth Singh and Abhinav Bhatele. 2023. Exploiting 723
sparsity in pruned neural networks to optimize large 724
model training. arXiv preprint arXiv:2302.05045. 725

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico 726
Kolter. 2023. A simple and effective pruning ap- 727
proach for large language models. arXiv preprint 728
arXiv:2306.11695. 729

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 730
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 731
Baptiste Rozière, Naman Goyal, Eric Hambro, 732
Faisal Azhar, et al. 2023. Llama: Open and effi- 733
cient foundation language models. arXiv preprint 734
arXiv:2302.13971. 735

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 736
Chaumond, Clement Delangue, Anthony Moi, Pier- 737
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 738
et al. 2019. Huggingface’s transformers: State-of- 739
the-art natural language processing. arXiv preprint 740
arXiv:1910.03771. 741

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 742
Chen. 2023. Sheared llama: Accelerating lan- 743
guage model pre-training via structured pruning. 744
arXiv:2310.06694. 745

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. 2022. 746
Structured pruning learns compact and accurate mod- 747
els. In Proceedings of the 60th Annual Meeting of the 748
Association for Computational Linguistics (Volume 749
1: Long Papers), pages 1513–1528. 750

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 751
Julien Demouth, and Song Han. 2023. Smoothquant: 752
Accurate and efficient post-training quantization for 753
large language models. In International Conference 754
on Machine Learning, pages 38087–38099. PMLR. 755

Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, 756
and Lanshun Nie. 2019. Balanced sparsity for effi- 757
cient dnn inference on gpu. In Proceedings of the 758
AAAI conference on artificial intelligence, volume 33, 759
pages 5676–5683. 760

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 761
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 762
machine really finish your sentence? arXiv preprint 763
arXiv:1905.07830. 764

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhi- 765
jie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng 766
Li. 2021. Learning n: m fine-grained structured 767
sparse neural networks from scratch. arXiv preprint 768
arXiv:2102.04010. 769

10


	Introduction
	Inspiration from Observations
	Method
	Method Overview
	Information Richness - Entropy
	Information Reorder - Channel Shuffle

	Efficient Sparse-GEMM Implementation 
	Experiments
	Experimental Environments
	Pruning Results on LLMs
	Ablation Study
	Speedup and Memory Saving

	Related Work
	Conclusion
	Limitations

