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Abstract

This work studies the problem of out-of-distribution fluid dynamics modeling. Pre-
vious works usually design effective neural operators to learn from mesh-based data
structures. However, in real-world applications, they would suffer from distribution
shifts from the variance of system parameters and temporal evolution of the dynam-
ical system. In this paper, we propose a novel approach named Prompt Evolution
with Graph ODE (PURE) for out-of-distribution fluid dynamics modeling. The
core of our PURE is to learn time-evolving prompts using a graph ODE to adapt
spatio-temporal forecasting models to different scenarios. In particular, our PURE
first learns from historical observations and system parameters in the frequency do-
main to explore multi-view context information, which could effectively initialize
prompt embeddings. More importantly, we incorporate the interpolation of obser-
vation sequences into a graph ODE, which can capture the temporal evolution of
prompt embeddings for model adaptation. These time-evolving prompt embeddings
are then incorporated into basic forecasting models to overcome temporal distribu-
tion shifts. We also minimize the mutual information between prompt embeddings
and observation embeddings to enhance the robustness of our model to different
distributions. Extensive experiments on various benchmark datasets validate the
superiority of the proposed PURE in comparison to various baselines. Our codes
are available at https://github.com/easylearningscores/PURE_main.

1 Introduction

Fluid dynamics [44, 89] is a critical area in the field of mechanics and computational fluid dynamics
has emerged as a powerful tool to understanding fluid flow [32, 58, 67, 45]. Recently, various
machine learning approaches have been widely adopted to solve the problem in a data-driven
manner [59, 46, 66, 65, 18, 7, 81], which can achieve high efficiency in comparison to previous
traditional numerical solvers. Moreover, they enjoy strong applicability when the underlying rules
are not explicit, such as real-world weather forecasting [4] and disease transmission [68].

In literature, existing data-driven fluid dynamics modeling approaches can be roughly divided
into grid-based approaches [12, 17] and geometry-based approaches [59, 66, 65, 20]. Grid-based
approaches construct regular meshes and then utilize neural operators to explore spatio-temporal
relationships. In contrast, geometry-based approaches focus on irregular point clouds and then utilize
graph neural networks (GNNs) [30, 70] to learn from the interaction between mesh points.
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Despite their great success, existing approaches [88, 25] generally assume that training and test
data share the same data distribution [59, 66, 65, 47], which could be not the case in real-world
applications. In particular, there are two typical types of distribution shifts in dynamical systems,
i.e., parameter-based shifts, and temporal distribution shifts. Firstly, different dynamical systems
could involve different parameters in underlying rules, such as coefficients in PDEs and pressures
in fluid systems [3, 65]. Secondly, during long-term auto-regressive forecasting, the input data
distribution could vary hugely during the temporal evolution [91]. As in previous works [22, 33],
machine learning approaches usually suffer from huge performance degradation when it comes to
distribution shifts. Therefore, in this paper, we focus on the problem of out-of-distribution fluid
dynamics modeling to enhance the performance under potential distribution shifts.

In this paper, we propose a new approach named Prompt Evolution with Graph ODE (PURE)
for out-of-distribution fluid dynamics modeling. The high-level idea of our proposed PURE is to
adapt well-trained forecasting approaches to different out-of-distribution scenarios by learning time-
evolving prompts [51, 84, 9]. To begin, we extract multi-view context signals from both historical
observations and system parameters in the frequency domain using the attention mechanism, which
can effectively initialize prompt embeddings under parameter-based shifts. More importantly, to
capture temporal distribution shifts, we combine the interpolation of observation sequences into a
graph ODE framework, which can utilize the interaction between prompt embeddings and observation
embeddings for high-quality time-evolving prompt embeddings. Then, we concatenate our prompt
embeddings and observation embeddings for model adaptation and enhance the robustness of our
PURE to distribution variance by minimizing their mutual information using adversarial learning.
Extensive experiments on a range of fluid dynamics datasets validate the superiority of the proposed
PURE in comparison to various state-of-the-art approaches.

In summary, the contribution of our paper can be summarized as follows: (1) Problem Connection.
We are the first to connect prompt learning with dynamical system modeling to solve the issue of
out-of-distribution shifts. (2) Novel Methodology. Our PURE first learns from historical observations
and system parameters to initialize prompt embeddings and then adopts a graph ODE with the
interpolation of observation sequences to capture their continuous evolution for model adaptation
under out-of-distribution shifts. (3) Superior Performance. Comprehensive experiments validate the
effectiveness of our PURE in different challenging settings.

2 Problem Setup

Given a fluid dynamical system, we haveN sensors within the domain Ω, with their locations denoted
as x1, · · · ,xN , where xi ∈ Rdl . The observations at time step t are represented as st1, · · · , stN ,
where sti ∈ Rdo and do indicates the number of observation channels. Dynamical systems are gov-
erned by underlying system rules, such as PDEs with coefficient ξ. Variations in system parameters
may lead to different environments, potentially resulting in distribution shifts [54, 80, 6, 27]. In
our study, we are provided with historical observation sequences {s1:T0

i }Ni=1 and physical parame-
ters ξ (e.g., coefficients in the PDEs). Our goal is to predict the future observations of each sensor
sT0+1:T0+T
i . In dynamical systems, the out-of-distribution problem examines model performance

when predicting under unseen parameter distributions or environments. Let ut = [st1, · · · , stN ], these
systems evolve according to du

dt = F (u, ξ), where u represents the observations and ξ denotes the sys-
tem parameters. When ξ ∼ P (ξ), the state trajectory u1:T0 follows the distribution P (u1:T0 |ξ). As-
sume we learn a learned mapping function f from u1:T0 to uT0+1:T0+T , i.e., uT0+1:T0+T = f(u1:T0)
and there could be different distributions across training and test datasets, i.e., Ptrain(ξ) ̸= Ptest(ξ),
which results in Ptrain

(
u1:T0

)
̸= Ptest

(
u1:T0

)
. Moreover, when conducting rollout prediction, we

are required to feed the output back to the model, i.e., uTstart:Tstart+T−1 = f(uTstart−T0:Tstart−1),
with P (u1:T0 |ξ) ̸= P (uTstart−T0:Tstart−1|ξ, Tstart).

3 The Proposed PURE

3.1 Motivation and Framework Overview

This paper addresses the challenge of out-of-distribution fluid system modeling, which is complicated
by parameter-based and temporal distribution shifts. Specifically, our function f(·) can suffer from
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Figure 1: Overview of the PURE framework.

a serious distribution shift result from different ξ and Tstart, i.e., P (uinput|ξ, Tstart). To reduce
the impact of distribution shift, we aim to learn invariant observation embeddings µt to different
environments, i.e., ξ and Tstart for better generalization and utilize prompt embeddings zt to indicate
the current environment for final prediction. In formulation, we have:

zt ⊥ µt, uoutput = ϕ([µt, zt]). (1)

The first term ensures the invariance of observation embeddings by decoupling observation embed-
dings and prompt embeddings. The second term aims to combine both two embeddings to generate
the future predictions. Therefore, we propose a novel approach named PURE as:

µt = BasicModel(uinput), z0 = ContextMining(uinput), zt = GraphODE(z0, t). (2)

where a basic model is adopted to generate observation, and we adopt context mining and graph
ODE to learn time-varying prompt embeddings. Given a basic forecasting model (Eqn. 2), our PURE
contains three key modules: (1) Multi-view Context Exploration, which explores spatio-temporal data
using both the attention mechanism and the frequency domain to initialize prompt embeddings (Eqn.
2). (2) Time-evolving Prompt Learning, which incorporates the interpolation of observation sequences
into a graph ODE to learn the evolution of prompt embeddings (Eqn. 2). (3) Model Adaptation with
Prompt Embeddings, which leverages the time-evolving prompts to mitigate the temporal distribution
shifts in fluid dynamics models (Eqn. 1). More details are in Figure 1.

3.2 Multi-view Context Exploration from Spatio-temporal Data

The main idea of our PURE is to utilize prompt learning to solve the issue of out-of-distribution
shifts [54, 80, 6, 27] in fluid dynamical systems. Prompt learning [51, 84, 9] is an effective man-
ner to adapt language models to various downstream tasks. In our scenarios, we aim to learn from
both historical spatio-temporal information and system parameters to initialize our prompt embed-
dings, which can effectively solve the parameter-based distribution shifts. Here, we first follow the
attention mechanism [69, 86, 10, 50] to reconstruct the field value and then adopt the Fourier neural
operator [45] to integrate multi-view context information.

In particular, given each location, we map each location xi and each initial observation s0i into a
position embedding pi and an observation embedding qi using two feed-forwarding networks (FFNs)
ϕPE(·) and ϕOE(·), and then aggregate pi and qi using the Hadamard product followed by stacking
L self-attention blocks for representation learning. In formulation,

ei = pi ⊙ qi,E
l+1 = ϕSA,(l)(El), (3)
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where ⊙ denotes the Hadamard product, E0 is constructed by stacking {ei}Ni=1, and ϕSA,(l) is the
self-attention block at the layer l. Afterward, we adopt the attention mechanism [69] to retrieve the
representations for each query position xq as:

uq = softmax

(
[WQϕPE(xq)]T · [WKEL]√

d

)
·W V EL, (4)

where W ∗ is a learnable weight matrix for feature transformation and d is the hidden dimension.
By retrieving the representations at each regular grid, we generate the 3D representation tensor U .
Each tensor would be concatenated with the parameter embedding up = ϕPA(ξ) for multi-view
information integration, which results in the final tensor Ũ . Then, we utilize the frequency domain
for representation enhancement to generate a prompt tensor H . Here, we first transfer the tensor into
the frequency domain using a Fast Fourier Transformer (FFT) operator [45] and then adopt an FFN
for feature transformation. Lastly, an inverse Fast Fourier Transformer (iFFT) operator is adopted to
convert the features back to the spatial domain. Formally,

H = iFFT(FFN(FFT(Ũ))), (5)

where FFT(·) and iFFT(·) denote the FFT and iFFT operators, respectively. Since the input of
spatio-temporal models would be irregular, we flatten the tensor H , and retrieve prompts for each
sensor from the prompt tensor using:

z0
i = softmax

(
[WQ′

ϕPE(xi)]
T · [WK′

flatten(H)]√
d

)
·W V ′

flatten(H), (6)

where flatten(·) is a flattening operator to transform 3D tensors to 2D matrices. Through the frame
reconstruction, we can extract important spatio-temporal signals from the frequency domain, which
is effective in initializing the prompt embedding for each sensor.

3.3 Time-evolving Prompt Learning with Graph ODE

To capture temporal distribution shifts within one system, static prompt embeddings [51] from context
exploration are far from satisfactory. Our solution is to obtain continuous time-evolving prompts
at any timestamp. To achieve this, we view the output of Eqn. 6 as the initial prompt embeddings
and then incorporate the attention mechanism into a continuous graph ODE, which combines the
interpolations of observations with the graph structure to learn the evolution of prompt embeddings.

In particular, given the initial prompt embeddings, we introduce two functions ψa(·) and ψr(·) for
relation mining and feature aggregation. ψr(·) calculates the interaction between the centroid node
and each of its neighboring nodes and ψa(·) aggregates all the neighborhood interactions to determine
the evolution. Therefore, a graph ODE can be formulated by the following formulation:

dzt
i

dt
= ψa(

∑
j∈St(i)

ψr([z
t
i , z

t
j ])), (7)

where St(i) collects the sensors from the neighbours of i at timestamp t. However, Eqn. 7 neglects
observations themselves during evolution, which are directly related to temporal distribution shifts in
dynamical systems. Thus, it could generate suboptimal prompt embeddings. To tackle the issue, we
conduct the interpolations of observation sequence s1:T0

i , which results in sti at any timestamp. Then,
we incorporate them into our graph ODE using the attention mechanism by rewriting Eqn. 7 into:

dzt
i

dt
= ψa(

∑
j∈St(i)

softmax

(
[W̃Qzt

i ]
T · [W̃Kstj ]√
d

)
· ψr([z

t
i , z

t
j ])). (8)

where W̃Q and W̃K are two matrices to generate the query and key, respectively. Here, we utilize
the prompt embeddings and interpolated observations to serve as the query and the key. In this way,
we effectively model their interaction to adjust the derivative in the graph ODE, which can help
generate proper prompt embeddings for our model adaptation under temporal distribution shifts.
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3.4 Model Adaptation with Prompt Embeddings

Finally, we incorporate our prompt embedding into our basic spatio-temporal forecasting model, and
then introduce the optimization objective for the end-to-end training.

Basic Forecasting Model. Our time-evolving prompt embeddings can be easily incorporated into
any spatio-temporal forecasting model. To make the best of our efficacy, we utilize a simple yet
powerful basic model as our default model and also explore the performance of our PURE on more
existing forecasting models. The input of our model is the observations of sensors from between the
interval [1, T0] and output the predictions in [T0 + 1, T0 + T ], i.e., S1:T0 → ST0,T0+T where S∗ is
stacked by s∗i . In particular, our basic model first generates the embeddings of different observations,
and then reconstructs the irregular observations into frames on grids using the reconstruction modules
in Sec. 3.2. More importantly, we introduce two parallel modules, i.e., a Fourier neural operator [45]
and a ViT-based convolution [19] and extract complementary feature maps [81], which would be
fused to generate the predicted frames in the future. More details of our basis forecasting model can
be found in Appendix B. Additionally, we also use other basic models.

Adaptation and Optimization. Note that we generate observation embeddings in our basic module,
i.e., µt

i = ϕenc(sti). To adapt our model under distribution shifts, we concatenate the observation
embeddings and prompt embeddings into updated embeddings µ̃t

i as follows:

µ̃t
i = [µt

i, z
t
i ], (9)

which will be fed into the subsequent modules in the basic model. To optimize the whole framework,
we first minimize the mean squared error (MSE) between the predicted observation and the ground
truth as follows:

LMSE =

T0+T∑
t=T0+1

||Ŝt − St||, (10)

where Ŝt denotes our predicted observation for every node and St denotes the ground truth observa-
tions. Moreover, to enhance the invariance of our model to different scenarios, we turn to invariant
learning [72, 42, 77] to decouple various prompt embeddings and observation embeddings, which
promotes the observation embeddings to be less sensible to different distributions. To achieve this, we
minimize the mutual information between observation embeddings and observation embeddings, i.e.,
I(µt

i; z
t
i). In our work, we adopt a Jensen-Shannon mutual information estimator [40, 53] Tγ(·, ·)

where γ denotes the parameters to estimate their mutual information. Then, we collect all the corre-
sponding pairs of (µt

i, z
t
i) using P and all the possible pairs of (µt

i, z
t
j) using N . The adversarial

learning objective can be written as:

LMI = maxγ′{ 1

|P|
∑

(µt
i,z

t
i)∈P

sp(−Tγ′(µt
i, z

t
i)) +

1

|N ||P|
∑

(µt
i,z

t
j)/∈P

−sp(−Tγ′(µt
i, z

t
j))}, (11)

in which sp(x) = log(1 + ex) represents the softplus function. In summary, the overall objective
can be written as:

L = LMSE + λLMI , (12)
where λ is a coefficient to balance two loss objectives. The algorithm is summarized in Appendix D.

3.5 Theoretical Analysis

In this part, we provide a theoretical analysis to demonstrate how PURE works. Our focus is primarily
on theoretically showing the necessity of incorporating the observations themselves during evolution.
For simplicity of analysis, we assume that Eqn. 7 can be rewritten as:

dzt
i

dt
=

1

#(St(i))

∑
j∈St(i)

(M1z
t
i +M2z

t
j) =M1z

t
i +

1

#(St(i))

∑
j∈St(i)

M2z
t
j , (13)

where #(·) calucates the size of the set. For the sake of simplicity in the proof, we assume that zt
i is

one-dimensional and consider only the ODE above for i (not the entire system of ODEs). Then, Eqn.
13 can be rewritten as:

dzti
dt

=
1

#(St(i))

∑
j∈St(i)

(M1z
t
i +M2z

t
j) =M1z

t
i + b(t), (14)
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where b(t) is a function. To characterize temporal distribution shifts, we assume that a portion of the
corresponding true ztj has a constant shift. With the potential environmental change, Eqn. 13 can be
rewritten as:

dzti
dt

=
1

#(St(i))

∑
j∈St(i)

(M1z
t
i +M2z

t
j) =M1z

t
i + b′(t), (15)

where |b(t)− b′(t)| ≥ c0, suggesting the constant shift c0.

Theorem 3.1. Given the following ODEs in R,

ẋ =M1x+ b(t), x(0) = x0,
ẏ =M1y + b′(t), y(0) = x0,

(16)

where |b(t)− b′(t)| ≥ c0, there exists a positive constant c1 such that

|x(t)− y(t)| ≥ c1(e
M1t − 1), for all t > 0. (17)

The proof of Theorem 3.1 can be found in Appendix A. Theorem 3.1 suggests that even with the
simplest one-dimensional linear ODE, significant differences in the solutions will arise if temporal
distribution shifts are neglected. Next, we will focus on how Eqn. 8 addresses this issue. In this case,
we assume that

ψr([z
t
i , z

t
j ]) =M1z

t
i +M2z

t
j . (18)

Then, Eqn. 7 can be written as:

dzti
dt

= ψα

 ∑
j∈St(i)

(M1z
t
i +M2z

t
j)

 = ψα

M1z
t
i +

1

#(St(i))

∑
j∈St(i)

M2z
t
j

 = ψα

(
M1z

t
i + b(t)

)
,

(19)
where

b(t) =
1

#(St(i))

∑
j∈St(i)

M2z
t
j . (20)

Similarly, Eqn. 8 can be written as:

dzti
dt

= ψα

(
M1z

t
i + b′(t)

)
, (21)

where

b′(t) =
∑

j∈St(i)

softmax

(
[W̃Qzt

i ]
T · [W̃Kstj ]√
d

)
·M2z

t
j . (22)

For simplicity of notation, we omit the superscript i. Write F (z, t) = ψα

(
M1z + b(t)

)
andG(z, t) =

ψα

(
M1z

t + b′(t)
)
. Then, we have the following theorem with the proof in Appendix A.

Theorem 3.2. Assume that the attention mechanism satisfies that |b′(t) − b(t)| ≤ ϵ, for all t > 0,
and the function ϕα is L-Lipschitz. Given the following ODEs in R,

ẋ = ψα(M1x+ b(t)) = F (x, t), x(0) = x0,
ẏ = ψα(M1y + b′(t)) = G(y, t), y(0) = x0,

(23)

there exists two constants c2 and c3 such that

|x(t)− y(t)| ≤ ϵc2(e
c3t − 1), for all t > 0. (24)

Thoerem 3.2 shows that as long as the attention mechanism is sufficiently good, we can approximate
the true ODE with arbitrary precision using Eqn. 8, even in the presence of environmental change.
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Table 1: We compare our study’s performance with 10 baselines. We magnify the MSE of 3D-
Reaction-Diffusion by 100 times. Green Yellow Red mean best, second, worst MSE.

MODEL

BENCHMARKS

PROMETHEUS NAVIER–STOKES SPHERICAL-SWE 3D REACTION–DIFF ERA5

w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD

U-NET [64] 0.0931 0.1067 0.1982 0.2243 0.0083 0.0087 0.0148 0.0183 0.0843 0.0932
RESNET [21] 0.0674 0.0696 0.1823 0.2301 0.0081 0.0192 0.0151 0.0186 0.0921 0.0977
VIT [10] 0.0632 0.0691 0.2342 0.2621 0.0065 0.0072 0.0157 0.0192 0.0762 0.0786
SWINT [49] 0.0652 0.0729 0.2248 0.2554 0.0062 0.0068 0.0155 0.0190 0.0782 0.0832

FNO [45] 0.0447 0.0506 0.1556 0.1712 0.0038 0.0045 0.0132 0.0179 0.7233 0.9821
UNO [1] 0.0532 0.0643 0.1764 0.1984 0.0034 0.0041 0.0121 0.0164 0.6652 0.7621
CNO [63] 0.0542 0.0655 0.1473 0.1522 0.0037 0.0038 0.0145 0.0182 0.5243 0.7821
NMO [82] 0.0397 0.0483 0.1021 0.1032 0.0026 0.0031 0.0129 0.0168 0.0432 0.0563

CGODE [26] 0.0761 0.0843 0.2035 0.2243 0.0873 0.0987 0.8371 0.9261 0.8721 0.9872
DGODE [80] 0.0344 0.0359 0.0805 0.0925 0.0022 0.0028 0.0122 0.0156 0.0543 0.0635

OURS + PURE 0.0323 0.0328 0.0752 0.0763 0.0022 0.0024 0.0119 0.0127 0.0398 0.0401
PROMOTION 6.10% 8.63% 6.58% 26.07% 0.00% 16.67% 1.65% 22.56% 7.87% 28.77%

Table 2: This table shows the performance of the PURE framework across different benchmarks.

MODEL

BENCHMARKS

PROMETHEUS NAVIER–STOKES SPHERICAL-SWE 3D REACTION–DIFF ERA5

ORI +PURE ORI +PURE ORI +PURE ORI +PURE ORI +PURE

RESNET [21] 0.0674 0.0542 0.1823 0.1492 0.0081 0.0067 0.0151 0.0141 0.0921 0.0896
NMO [10] 0.0397 0.0281 0.1021 0.0876 0.0026 0.0012 0.0129 0.0123 0.0432 0.0389
DGODE [49] 0.0344 0.0201 0.0805 0.0792 0.0022 0.0020 0.0122 0.0110 0.0543 0.0462

4 Experiment

4.1 Experimental Settings

Benchmarks. We study Benchmarks from three domains, as shown in Table 5. ▷ Computational
Fluid Dynamics. We use Prometheus [80] and follow the original setup for environment segmentation.
▷ Real-world Data. We employ the ERA5 [23], using different combinations of variables as the
environment. In detail, we use ERA5 data with variables such as surface pressure (Sp), sea surface
temperature (SST), sea surface height (SSH), and two-meter temperature (T2m) to predict temperature.
▷ Partial Differential Equations. The 2D Navier-Stokes equations [45] describe fluid motion, with
the primary variable being the viscosity coefficient ν, which quantifies internal friction in the fluid,
simulating vorticity values under ten different viscosity coefficients. The spherical shallow water
equations [14] simulate large-scale atmospheric and oceanic fluid motion on Earth’s surface, also
with viscosity coefficient ν as the main variable, involving tangential vorticity (w) and fluid thickness
(h) on a spherical surface. The 3D reaction-diffusion equations describe the diffusion and reaction of
chemicals in space [62], with the primary variable being the diffusion coefficient D, representing the
rate of chemical diffusion in space, including u, v velocity components. More details see Appendix E.

Baselines. We select representative models from three domains as baselines. ▷ Visual Backbone
Networks. We include ResNet [21], U-Net [64], Vision Transformer(ViT) [10], and Swin Trans-
former(SWINT) [49]. ▷ Neural Operator Architectures. We cover FNO [45], UNO [1], CNO [63],
and NMO [82]. ▷ Graph-ODE Architectures. We feature CG-ODE [26], and DGODE [80].

Tasks. We evaluate model performance for various prediction tasks through the following scenarios
and use MSE as metrics. The specific tasks are as follows:

▷ Generalization Experiments: • Out-of-Distribution Generalization: We train the model In-
Domain environment and test it in Adaptation environment to verify its generalization ability. •
Spatial Generalization & Temporal Generalization: In the Prometheus, we train the model at 75%
sparsity and test it at s ∈ {5%, 25%, 50%, 75%} sparsity. The experiment evaluates performance
with equal input and output lengths ( Int) and with output 10 times the input length (Outt).

▷ Zero-shot Experiments. Specifically, we follow the setup from [45] and conduct two experiments.
In the Prometheus, we train the model In-Domain environments b1, b2, . . . , b20 and evaluate its
generalization ability in new environments b11, b12, using MSE as the evaluation metric. In the
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Table 3: Comparison of Spatial & Temporal Generalization in the Prometheus benchmark.
SPARSITY TEST→ sTS = 5% sTS = 25% sTS = 50% sTS = 75%

TRAIN ↓ IN-T OUT-T IN-T OUT-T IN-T OUT-T IN-T OUT-T

sTR = 75%

U-NET 0.1847 0.2103 0.2345 0.2877 0.2654 0.3018 0.2273 0.3391
+ PURE 0.1622 0.1854 0.2079 0.2581 0.2365 0.2710 0.1998 0.3024

FNO 0.0659 0.0872 0.0921 0.1232 0.1109 0.1821 0.2109 0.2455
+ PURE 0.0504 0.0654 0.0689 0.0946 0.0805 0.1417 0.1582 0.1883

75%
Sparse Input

Ground Truth

Ours+PURE Error

DGODE Error

FNO Error

U-Net Error

Temperature Field Smoke Field

Figure 2: The top row shows the sparse input data used for predictions. The second row displays the
true data for both fields. Red boxes highlight areas of significant error.

Navier-Stokes equations, we train the model on a 64× 64× 20 dataset and evaluate it on a higher
resolution 512× 512× 20 dataset, focusing on the fluid dynamics details in the last five time steps
and the handling of complex flow patterns and boundary layers.

4.2 Generalization Experiment Results
In this section, we focus on the issue of generalization. Based on our experimental findings, we
make the following observations. Out-of-Distribution Generalization. The results as shown in
Table 1. On the Prometheus dataset, PURE outperforms all benchmark models with an MSE of
0.0323 in-distribution and 0.0328 OOD. It improves over the second-best model, DGODE (MSE
0.0344 in-distribution, 0.0359 OOD), by 6.10% and 8.63%, respectively. On the Navier-Stokes
dataset, PURE achieves the best performance with an MSE of 0.0752 in-distribution and 0.0763
OOD, improving by 6.58% and 26.07% over the second-best model. On the Spherical-SWE dataset,
PURE has an MSE of 0.0022 both in-distribution and OOD, which is 41.46% better than the second-
best model. Additionally, in Table 2, the performance of various benchmark models significantly
improves when using PURE, in summary, the PURE framework performs excellently in handling
OOD fluid dynamics modeling.

Spatial & Temporal Generalization. Table 3 shows that PURE excels in the Prometheus benchmark,
notably reducing errors with sparse data. For instance, in the 75% sparsity test, U-Net’s MSE drops
from 0.2273 to 0.1998, and FNO from 0.2109 to 0.1582. Figure 2 highlights PURE’s lower errors in
temperature and smoke fields compared to DGODE, FNO, and U-Net, especially in red-boxed areas,
showcasing its advantage in capturing complex dynamics. Additionally, PURE performs consistently
across different prediction lengths; for example, U-Net’s MSE decreases from 0.1847 to 0.1622 for
in-time prediction (In-t) and from 0.2103 to 0.1854 for out-of-time prediction (Out-t). Overall, PURE
excels with sparse and out-of-distribution data and enhances performance across prediction lengths,
demonstrating strong spatial and temporal generalization.

Visualization and Analysis. Figure 3 compares the performance of different methods in fluid dy-
namics modeling, including the Prometheus dataset, Navier-Stokes equations, and the 3D Reaction-
Diffusion Equation. In the Prometheus dataset, using PURE significantly reduces DGODE’s pre-
diction error, especially in complex dynamic regions. For the Navier-Stokes and Spherical Shallow
Water equations, FNO and NMO models combined with PURE excel in capturing complex flow
features. In the 3D Reaction-Diffusion Equation, DGODE with PURE significantly reduces predic-
tion errors. Overall, PURE greatly enhances the prediction accuracy of models in fluid dynamics,
allowing for better capture of complex dynamic evolution.

4.3 Zero-shot Super-resolution and Environment Generalization

As shown in Figure 4, the PURE framework performs excellently in zero-shot super-resolution and
environmental generalization experiments. In the Prometheus benchmark, the FNO model using
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Figure 3: The Figure compares the performance of various methods in fluid dynamics modeling,
including Prometheus, Navier-Stokes equations, and 3D reaction-diffusion equations. Models with
PURE significantly reduce prediction errors in fluid dynamics, capturing complex dynamic evolutions.
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Figure 4: Left. Zero-shot super-resolution and environment generalization experiments on Prometheus.
Right. Zero-shot super-resolution experiments on the Navier-Stokes equations.

PURE significantly reduces prediction errors at different resolutions, with an MSE of 0.0471655
at a 256× 512 resolution. For the Navier-Stokes equations, the FNO model combined with PURE
significantly reduces prediction errors on high-resolution datasets and performs better in handling
complex flow patterns and boundary layers, especially in capturing details in the last five time steps.
Overall, PURE significantly improves model prediction accuracy and generalization ability in zero-
shot super-resolution and environmental generalization tasks.

4.4 Qualitative Analysis & Ablation Study

In this section, we evaluate the effectiveness of the PURE method and the importance of its compo-
nents through qualitative analysis and ablation studies.

Qualitative Analysis. The Figure 5 uses t-SNE to perform clustering analysis on FNO prediction
results. (a) represents the ground truth, (b) shows the predictions of the original FNO, and (c) shows
the predictions of FNO combined with PURE. It is evident that the FNO combined with PURE
is closer to the labels in clustering effect, with a more tightly distributed data point cluster. This
demonstrates that PURE significantly improves the prediction accuracy of the FNO model.

Ablation Study. To evaluate the contribution and importance of each component in the proposed
PURE, we design ablation experiments based on the default backbone model in this paper, and we
use Relative L2 error as metric. Our model variants are as follows: (1) PURE w/o Graph ODE, we

(a) (b) (c)

Figure 5: t-SNE clustering. (a) Ground truth, (b) FNO
predictions, (c) FNO +PURE predictions.

Table 4: Ablation Studies on S-SWE.

VARIANTS S-SWE

PURE W/O GRAPH ODE 0.1882
PURE W/O INTERPOLATION 0.1696
PURE W/O MI 0.1588
PURE W/O FFT 0.1602
PURE 0.1357
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remove the Graph ODE module and use static prompt embeddings. (2) PURE w/o Interpolation,
we remove interpolation and use only Eqn. 7. (3) PURE w/o MI, we remove the mutual information
minimization. (4) PURE w/o FFT, we remove the frequency domain enhancement (FFT). Table 4
shows the results of our ablation study. Removing Graph ODE, interpolation, mutual information
minimization, and FFT results in Relative L2 errors of 0.1882, 0.1696, 0.1588, and 0.1602, respec-
tively. The complete PURE method has an error of 0.1357. The results of the ablation experiments
show that removing any component results in a decrease in predictive performance, further proving
the critical role of these components in the PURE method. More results in Appendix H.

5 Conclusion

In this paper, we study a practical problem of out-of-distribution fluid dynamics modeling and
propose a novel approach named PURE for this problem. The high-level idea of our PURE is to learn
time-evolving prompts using graph ODEs, which can effectively adapt spatio-temporal forecasting
models to different scenarios. Our PURE first initializes prompt embeddings by exploring multi-view
context information from spatio-temporal data and system parameters. Then, PURE incorporates the
interpolation of observation sequences into the graph ODE, which helps capture the temporal evolution
of prompt embeddings to mitigate temporal distribution shifts. In future works, we will extend our
PURE to more real-world scenarios such as rigid dynamics modeling and traffic flow forecasting.
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A Proofs of Theorem 3.1 and Theorem 3.2

Proof of Theorem 3.1. We first introduce a lemma as follows.

Lemma A.1. Suppose that ẋ =M1x+ b(t), x(0) = x0. Then, the solution can be written as

x(t) = x0e
M1t +

∫ t

0

b(s)eM1(t−s)ds. (25)

The proof of Lemma A.1 is from Method of Variation of Parameters [37]. With Lemma A.1, we can
prove Theorem 3.1.

By Lemma A.1, we have

x(t) = x0e
M1t +

∫ t

0

b(s)eM1(t−s)ds, (26)

and

y(t) = x0e
M1t +

∫ t

0

b′(s)eM1(t−s)ds. (27)

It follows that

x(t)− y(t) =

∫ t

0

(b(s)− b′(s))eM1(t−s)ds. (28)

By the Mean Value Theorem for Integrals, we have

x(t)− y(t) = (b(s′)− b′(s′))

∫ t

0

eM1(t−s)ds. (29)

Thus, we obtain that
|x(t)− y(t)| ≥ c0(e

M1t − 1)/M1, (30)

which we complete the proof.

Proof of Theorem 3.2. To prove the theorem, we need the following lemma, which can be found in
[5].

Lemma A.2. Given the following ODEs in Rn,

ẋ = A(t)x+ F (x, t), x(0) = x0,
ẏ = A(t)y +G(y, t), y(0) = x0,

(31)

assume that F is globally Lipschitz continuous and "close to G. In other words, there exist L ≥ 0
and ϵ ≥ 0 such that

∥F (x, t)− F (y, t)∥ ≤ L : ∥x− y∥, for all x, y ∈ Rn and t ∈ [0, T ),
∥F (x, t)−G(x, t)∥ ≤ ϵ, for all x ∈ Rn and t ∈ [0, T ),

(32)

and assume that
∥Φ(t, s)∥i ≤ ceη(t−s), for all 0 ≤ s ≤ t < T, (33)

in which ∥ · ∥i denotes the induced matrix norm associated with vector norm ∥ · ∥,Φ(t, s) denotes the
transition matrix for A(t), and c ≥ 1. Then for all t ∈ [0, T ), if η + cL ̸= 0

∥x(t)− y(t)∥ ≤ ϵc

η + cL

(
e(η+cL)t − 1

)
. (34)

In this case, we set c = 1, η = 0. Then, Theorem 3.2 is clear from the Lemma A.2.
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B Our Basic Forecasting Mode Details

Our base forecasting model combines two parallel modules [81]: the Fourier Neural Operator
(FNO) [45] and a Vision Transformer (ViT)-based convolution [10]. The FNO processes the input
observation embeddings in the frequency domain with Fast Fourier Transform (FFT) and inverse
FFT (iFFT), capturing frequency features. The ViT module uses a multi-head attention mechanism
to process the spatial features of the input data. The PURE framework generates time-evolving
prompt embeddings using a Graph ODE, capturing dynamic changes in spatio-temporal features.
These embeddings, along with the features from the FNO and ViT modules, are integrated using
skip connections and a Multi-Layer Perceptron (MLP) to produce the final predictions. The model
optimizes by reducing the mean squared error (MSE) between predictions and the ground truth,
and by enhancing robustness through reducing mutual information between prompt and observation
embeddings. This approach ensures high accuracy in out-of-distribution fluid dynamics forecasting.

C Related work

Dynamical System Modeling. The field combining machine learning with dynamical systems
aims to use machine learning methods to model, predict, and control the behavior of dynamical
systems [45, 80, 59, 55, 2, 54, 81]. Key techniques include using neural networks to extract patterns
from spatiotemporal data, such as Convolutional Neural Networks (CNN) [63, 61], Graph Neural
Networks (GNN) [59, 43, 38], and Transformer models [79, 4, 36]. Additionally, Physics-Informed
Neural Networks (PINN) [34, 60] embed physical laws into neural networks to enhance the model’s
physical consistency. These methods apply to both short-term and long-term predictions of dynamical
systems and optimize control strategies in areas like robotics and autonomous driving [11, 57]. To
address the challenge of out-of-distribution data, researchers develop new datasets and benchmarks to
evaluate model performance under different data distributions [80]. This field finds wide applications
in aerospace, biomedical, and meteorological domains [93, 39]. In this work, we propose a framework
named PURE, which uses prompt learning and graph neural ODE to address complex distribution
shifts in fluid dynamics due to parameter and temporal changes.

Out-of-distribution Generalization Out-of-distribution (OOD) [71, 73, 83, 85, 27] generalization
means a model performs well on new, unseen data. The core goal in this field is to improve model
performance when training and test data come from different distributions. Models that excel in
OOD scenarios should be robust and adaptable. Researchers have proposed several methods, such
as data augmentation [74, 8], invariant feature learning [42, 77, 41, 72], adversarial training [75, 8],
and domain adaptation [35, 15]. These methods are widely used in areas like autonomous vehicles,
medical diagnosis, financial forecasting, and dynamical systems modeling [80, 13, 53]. In this work,
we propose PURE, which uses prompt learning and graph neural ODE to adapt spatio-temporal
forecasting models to address distribution shifts in fluid dynamics.

Prompt Learning. Prompt learning [48, 16, 24] has recently gained significant attention as a strategy
for adapting pre-trained models to various downstream tasks by leveraging the power of prompt-
based fine-tuning [9, 29, 94, 76, 52]. In the domain of large language models, prompt learning aims
to incorporate optimal tokens into the input sequence, which can effectively improve performance
without extensive retraining [28, 92, 90]. In the context of fluid dynamics modeling, prompt learning
means a supplementary hint to indicate the context, which is incorporated into the input (observation
embedding) for better generalization. Although it shares a similar meaning as prompt tuning in
language models, our prompt refers to the current environment, which determines the future evolution
with better generalization.

D The Proposed PURE Algorithm

The whole learning algorithm of PURE is summarized in Algorithm 1.

E Detailed description of datasets

We evaluate our proposed PURE on five physical benchmarks.
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Algorithm 1 PURE Framework

Require: Historical observations {s1:T0
i }Ni=1, physical parameters ξ

Ensure: Future observations {sT0+1:T0+T
i }Ni=1

1: Initialize prompt embeddings using Multi-view Context Exploration
2: for each sensor i do
3: Map location xi and initial observation s0i to embeddings pi and qi using FFNs ϕPE(·) and

ϕOE(·)
4: Aggregate embeddings: ei = pi ⊙ qi
5: end for
6: Stack initial embeddings E0 = {ei}Ni=1 and apply self-attention blocks ϕSA,(l)

7: Retrieve representations uq for each query position xq using attention mechanism
8: Generate 3D representation tensor U and integrate with parameter embedding up = ϕPA(ξ) to

obtain Ũ
9: Enhance representation in frequency domain: H = iFFT(FFN(FFT(Ũ)))

10: Flatten tensor H and retrieve initial prompt embeddings z0
i

11: Learn Time-evolving Prompts with Graph ODE
12: for each timestamp t do
13: Interpolate observations sti from historical sequences
14: Update prompt embeddings zt

i using continuous graph ODE
15: Incorporate interpolated observations into graph ODE with attention mechanism
16: end for
17: Model Adaptation with Prompt Embeddings
18: for each sensor i do
19: Concatenate observation embeddings µt

i and prompt embeddings zt
i to obtain µ̃t

i
20: end for
21: Incorporate µ̃t

i into spatio-temporal forecasting model
22: Optimize framework by minimizing MSE loss LMSE and mutual information loss LMI

23: return Predicted future observations {sT0+1:T0+T
i }Ni=1 =0

Prometheus [80] is a large-scale fluid dynamics dataset focused on studying out-of-distribution
(OOD) generalization. This dataset simulates tunnel and pool fire scenarios, generating 4.8TB of
raw data compressed to 340GB. The tunnel fire simulation takes place in a tunnel 100 meters long,
6 meters wide, and 6 meters high. It adjusts the heat release rate (HRR) and ventilation speed to
create 30 different environmental combinations. The pool fire simulation occurs in a 150x100 meter
area with tanks and buildings, creating 25 different environmental combinations by adjusting HRR
and ventilation speed. Each scenario includes a high-density sensor network to measure temperature
and gas concentration. The dataset integrates advanced engineering methods, focusing on precise
and efficient data analysis and inference on irregular grid structures. Prometheus provides rich data
resources and benchmarks for OOD generalization research in fluid dynamics.

Navier-Stokes equations [45] depict the motion of a viscous, incompressible fluid. The equations are
as follows in vorticity form on the unit torus:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2
(35)

We solve these equations using the stream function formulation and a pseudo-spectral approach.
In particular, we first solve the Poisson equation in order to identify the velocity field. Afterward,
we differentiate vorticity, compute the nonlinear terms, and apply de-aliasing. We use the Crank-
Nicolson scheme for time-stepping, recording the solution at time intervals of t = 1 on a 256×256 grid
followed by downsampling. For the Bayesian inverse problem, the timestep during data generation
is 1e-4, and in MCMC, it is 2e-2. We simulate the Navier-Stokes equations with varying viscosity
coefficients, adjusting ν to study its impact on fluid flow and vorticity distribution.
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Spherical Shallow Water Equations (Spherical-SWE) [14] describe the large-scale atmospheric and
oceanic fluid motion on Earth’s surface. The equations are:

∂th+∇ · (hu) = 0

∂tu+ (u · ∇)u+ fk× u = −g∇h+ ν∆u
(36)

Here, h represents fluid thickness, u is the fluid velocity vector, f represents the Coriolis parameter,
k represents the unit vertical vector, g represents the gravitational acceleration, ν represents the
viscosity coefficient, and ∆ represents the Laplacian operator. The first equation (continuity equation)
represents mass conservation, describing changes in fluid thickness. The second equation (momentum
equation) represents momentum conservation, including advection, Coriolis force, pressure gradient
force, and viscous diffusion. We simulate the Spherical Shallow Water Equations with different
viscosity coefficients ν, adjusting ν to study its effects on fluid motion.

3D Reaction-Diffusion Equations [62] describe the diffusion and reaction of chemical substances in
space. The general form of these equations is:

∂tu = Du∆u+Ru(u, v)

∂tv = Dv∆v +Rv(u, v)
(37)

Here, u and v represent the concentrations of the chemical substances, Du and Dv represent the
diffusion coefficients for u and v, respectively, ∆ is the Laplacian operator, andRu(u, v) andRv(u, v)
denote the reaction terms that represent the reaction rates between u and v. Diffusion terms, i.e., ∆u
and ∆v denote the diffusion process of the chemicals in space. The diffusion coefficients Du and
Dv determine the rate of diffusion. Reaction terms, i.e., Ru(u, v) and Rv(u, v) describe the reaction
rates of the chemical substances. These terms depend on the concentrations of u and v, and can
include linear reactions, nonlinear reactions, and complex dynamic processes. We simulate the 3D
reaction-diffusion equations with different diffusion coefficients Du and Dv to study the effects of
diffusion rates on the distribution and reaction rates of the chemical substances.

ERA5 [23] is a global atmospheric reanalysis dataset produced by ECMWF, providing weather data
from 1979 to the present with high spatial (31 km) and temporal (hourly) resolution. It includes
variables like surface pressure, sea surface temperature, sea surface height, and two-meter temperature.
ERA5 data supports applications in weather forecasting, climate research, environmental monitoring,
energy management, and agriculture. Accessible via the Copernicus Climate Data Store, ERA5 is
crucial for analyzing and predicting meteorological and climate phenomena.

Table 5: The table presents the In-Domain and Adaptation environments for various benchmarks.
Training and testing in the In-Domain environment is called w/o OOD experiment, while training in
the In-Domain environment and testing in the Adaptation environment is called w/ OOD experiment.

BENCHMARKS IN-DOMAIN ENVIRONMENTS ADAPTATION ENVIRONMENTS

PROMETHEUS {a1, a2, ..., a25}, {b1, b2, ..., b20} {a26, a27, ..., a30}, {b21, b22, ..., b25}
2D NAVIER-STOKES EQUATION ν = {1e−1, 1e−2, ..., 1e−9, 1e−10} ν = {1e−11, 1e−12}

SPHERICAL SHALLOW WATER EQUATION ν = {1e−1, 1e−2, ..., 1e−9, 1e−10} νt = {1e−11, 1e−12}
3D REACTION–DIFFUSION EQUATIONS D = {2.1× 10−5, 1.6× 10−5, 6.1× 10−5} D = {2.03× 10−9, 1.96× 10−9}

ERA5 V = {Sp, SST, SSH, T2m} V = {SSR, SSS}

F Details of Compared Approaches

The compared approaches involved in this study is as follows:

• U-Net [64] is a convolutional neural network initially used for biomedical image segmentation. It
has a symmetric U-shaped structure and uses skip connections to link the encoder and decoder,
enabling efficient feature fusion.

• ResNet [21] introduces residual blocks to solve the degradation problem in deep networks. It allows
the network to be deeper and easier to train by using skip connections to directly pass information.

• ViT [10] applies the Transformer model to image recognition. It divides the image sample into
patches and uses self-attention mechanisms to process these patches, balancing computational
efficiency and performance.
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• SwinT [49] introduces a sliding window mechanism for effective local and global feature extraction.
It is suitable for various computer vision tasks.

• FNO [45] uses Fourier transforms for global feature extraction, suitable for processing continuous
field data and efficiently solving PDEs.

• UNO [1] combines the U-Net architecture with optimization methods to enhance feature extraction
and fusion capabilities, improving model performance.

• CNO [63] combines convolution operations with operator learning, focusing on high-dimensional
continuous data and modeling complex dynamic systems.

• NMO [82] enhances the modeling capability for multi-scale dynamic systems by combining neural
networks with manifold learning algorithms.

• CGODE [26] is a neural ODE model that aims to capture the dynamics of both nodes and edges
jointly.

• DGODE [80] addresses the challenge of out-of-distribution (OOD) generalization in fluid dynamics
modeling by learning disentangled representations using a temporal GNN and a frequency net-
work. It minimizes mutual information between node and environment representations to mitigate
distribution shifts and employs a coupled graph ODE framework for robust modeling.

G Metrics details

Mean Squared Error (MSE). Mean Squared Error measures the gap between the predicted and
ground truth. The formula is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (38)

in which yi denotes the actual value, ŷi denotes the predicted value, and n denotes the number of
data points.

Relative L2 Error. Relative L2 Error evaluates the relative accuracy of the model’s predictions. The
formula is:

Relative L2 Error =
∥y − ŷ∥2
∥y∥2

, (39)

where ∥ · ∥2 denotes the L2 norm, y is the vector of actual values, and ŷ is predicted values.

H More experiment results

▷ Sparse Reconstruction Experiments. The experimental setup includes sparse reconstruction
experiments on the Prometheus and ERA5 datasets. For the Prometheus dataset, the sparsity rates are
set to 25%, 50%, and 75%. For the ERA5 dataset, the sparsity rates are set to 5% and 25%. Each set
of experimental results includes the original data, sparse input data, results from our method, and
results from MMGNet [56]. The experiments evaluate the performance of each method by comparing
the reconstruction results at different sparsity rates.

Figure 6 shows two sets of sparse reconstruction experiment results from the Prometheus and ERA5
datasets. The sparsity rates for Prometheus are 25%, 50%, and 75%, while for ERA5, they are 5%
and 25%. Each set displays the Ground Truth, Sparse Input, our reconstruction method (Ours), and
MMGNet’s results in order. As the sparsity rate increases, the quality of the reconstruction decreases.
At low sparsity rates, both our method and MMGNet effectively restore image details. At high
sparsity rates, our method performs better in preserving details and recovering overall structure.

▷ More Ablation Experiments. Table 6 show the ablation study outcomes on the Navier-Stokes
equations. We use MSE to assess the contribution of each component. We remove different com-
ponents from the PURE method and compare them with the original FNO model and the complete
FNO + PURE method. The complete FNO + PURE method achieves the lowest MSE of 0.0987,
while the original FNO model has an error of 0.1567. Removing Graph ODE, interpolation, mutual
information minimization, and FFT increases the error to 0.1282, 0.1097, 0.1182, and 0.1266, respec-
tively. These results clearly show that each component of the PURE method significantly improves
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Figure 6: The figure shows sparse reconstruction results using the Prometheus and ERA5 datasets at
various sparsity rates. Each group displays the ground truth, sparse input, our reconstruction method,
and MMGNet’s results. As the sparsity rate increases, the quality of the reconstruction decreases. U
and V represent velocity components, and T represents temperature.

Table 6: Ablation Studies on Navier-Stokes equations (with a viscosity coefficient of ν = {1e−3).
VARIANTS NAVIER-STOKES EQUATIONS

FNO + PURE W/O GRAPH ODE 0.1282
FNO + PURE W/O INTERPOLATION 0.1097
FNO + PURE W/O MI 0.1182
FNO + PURE W/O FFT 0.1266
FNO 0.1567
FNO + PURE 0.0987

the model’s predictive performance. Removing any component leads to performance degradation,
proving the importance of these components in enhancing prediction accuracy.

▷ Performance with respect to Different Difficulty Levels. Here, we demonstrate the performance
of our PURE with varying difficulty levels. In particular, we measure the difficulty levels based
on the distance between Ptrain(ξ) and Ptest(ξ) and generate three levels on the Prometheus dataset.
The compared results are shown in Table 7. From the results, we can observe that all the model
performs worse in hard scenarios and our method has consistently outperformed these baselines. The
potential reason is that (1) our model enhances model invariance across different distributions through
decoupling prompt embeddings and observation embeddings via mutual information which results in
high generalizationability to different environments; (2) our model utilizes multi-view context mining
and graph ODE to extract prompt embeddings, which capture environment information accurately.

Table 7: Performance comparison across varying levels of OOD generalization difficulty. The values
represent the Mean Squared Error (MSE) for each method.

METHOD U-NET RESNET VIT SWIN-T FNO CGODE PURE

EASY 0.0945 0.0682 0.0654 0.0676 0.0452 0.0772 0.0325
MID 0.1063 0.0922 0.0902 0.0912 0.0544 0.0863 0.0341
HARD 0.1432 0.1234 0.1076 0.1123 0.0623 0.0921 0.0354

▷ Robustness to Noisy Data. We have also experimented with noisy data to evaluate the robustness
of our method. The results are shown in Table 8. From the results, the performance of both ResNet
and NMO models degrades significantly when noise is introduced. However, the integration of our
PURE with these models substantially mitigates the impact of noise, leading to much lower MSE
values compared to their baselines.

▷ Expanded Evaluation of OOD Generalization in Dynamical Systems. To further validate
the effectiveness of our PURE, we include three additional models specifically designed for out-
of-distribution generalization in dynamical systems: LEADS [87], CODA [31], and NUWA [74].
Table 9 shows the performance of each method across different datasets in both in-distribution (ID)
and out-of-distribution (OOD) scenarios. The results indicate that our proposed method outperforms
these baselines on all datasets, especially in OOD scenarios.
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Table 8: Performance comparison under noisy data conditions. The values represent the Mean
Squared Error (MSE) for each method with and without noise.

Dataset ResNet/Noise ResNet+PURE/Noise NMO/Noise NMO+PURE/Noise

PROMETHEUS 0.0674 / 0.3422 0.0542 / 0.0586 0.0397 / 0.1287 0.0281 / 0.0309
NS 0.1823 / 0.6572 0.1492 / 0.1537 0.1021 / 0.2542 0.0876 / 0.0892

Table 9: Performance comparison of our method (PURE) against additional baselines on vari-
ous datasets. The values represent Mean Squared Error (MSE) in in-distribution (ID) and out-of-
distribution (OOD) scenarios.

Dataset Prometheus ERA5 SSWE
ID OOD ID OOD ID OOD

LEADS 0.0374 0.0403 0.2367 0.4233 0.0038 0.0047
CODA 0.0353 0.0372 0.1233 0.2367 0.0034 0.0043
NUWA 0.0359 0.0398 0.0645 0.0987 0.0032 0.0039
PURE (Ours) 0.0323 0.0328 0.0398 0.0401 0.0022 0.0024

I Limitations of This Study

Although the PURE method shows superiority on multiple benchmark datasets, it has some limitations.
First, we assume that training and test data are independent and identically distributed (IID). This may
be not true in some extreme physical scenarios due to environmental changes causing significant data
distribution shifts. Second, while the PURE method performs well in addressing distribution shifts, it
may still face challenges when dealing with high-dimensional and complex fluid dynamics systems.
Additionally, the PURE method has high computational complexity, requiring more computational
resources and time in practical applications. Future research can focus on optimizing the algorithm
to improve computational efficiency and extending it to more real-world scenarios such as rigid
dynamics modeling and traffic flow forecasting.

J Borader Impact

The PURE method significantly impacts out-of-distribution fluid dynamics modeling. It adapts to
different scenarios, improving the model’s performance in handling distribution changes. This is
helpful for climate prediction, epidemic spread, aerospace, and biomedical fields. In future works,
we will extend our PURE to more real-world scenarios such as rigid dynamics modeling and traffic
flow forecasting.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made clear claims about contributions and scopes in the abstract and
introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We have the seperated limitation section in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide detailed theoretical proofs in the main paper and appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of our model and training strategy in the paper for
reproduction.

Guidelines:

25



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We offer the implementation code to reproduce our work.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: we have introduced experiment settings and details, and even add more details
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[No]
Justification: We do not report specific error bars for the following reasons:
(a) In fluid dynamics modeling, using a fixed random seed shows consistent performance,

and the performance difference with different seeds is small [78, 45].
(b) Related work [45, 80, 55] in this field does not report error bars.
(c) To ensure fairness, we fix all random seeds and conduct experiments on the same

machine.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: we have discussed the information about computer resources.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The PURE method not only makes significant contributions to academic
research but also shows broad potential in practical applications. It helps address distribution
changes in complex dynamic systems.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or model that has high risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code package and dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide documentation with our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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