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ABSTRACT

Recent work has shown that equivariant policy networks can achieve strong perfor-
mance on robot manipulation tasks with limited human demonstrations. However,
existing equivariant methods typically require structured inputs, such as 3D point
clouds or top-down camera views, which prevents their use in low-cost setups or
dynamic environments. In this work, we propose the first SE(3)-equivariant policy
learning framework that operates with only RGB image observations. The key
insight is to treat image-based data as collections of rays that, unlike 2D pixels,
transform under 3D roto-translations. Extensive experiments in both simulation
with diverse robot configurations and real-world settings demonstrate that our
method consistently surpasses strong baselines in both performance and efficiency.

1 INTRODUCTION

Learning effective visuomotor policies for robotic manipulation remains a fundamental challenge,
particularly in settings that demand strong generalization from limited data. Recent advances in
diffusion-based policy learning (Chi et al., 2023; Wang et al., 2024; Ze et al., 2024) and large-scale
behavior cloning pipelines (Barreiros et al., 2025; Black et al., 2024), have demonstrated remarkable
performance across diverse scenes and viewpoints. However, these methods typically require large
amounts of training data to be robust to sensor or scene variations, which limits their practicality in
settings where data collection is expensive or the environment is unstructured.

A promising direction to improve generalization and sample efficiency is through equivariance, which
explicitly encodes symmetries into networks (Cohen & Welling, 2016). By ensuring that policies
respond consistently under spatial transformations of the input, equivariant models generalize more
effectively across variations in object pose and scene layout. However, existing equivariant methods
impose strict requirements on input modalities, typically assuming access to structured geometric
data such as point clouds or bird’s-eye view RGB-D images with known alignment (Yang et al., 2024;
Wang et al., 2024). Unfortunately, these assumptions are violated in many popular robot learning
setups, where raw image observations from arbitrarily placed cameras (as in UMI (Chi et al., 2024),
ALOHA (Zhao et al., 2023), Mobile-ALOHA (Fu et al., 2024)) are the norm.

Our method, RAy-based equiVariant ENcoder or RAVEN, is the first end-to-end SE(3) equivariant
policy learning method that works with image-based observations. Our key insight is to express
images in terms of rays projected into 3D space using camera parameters. In particular, each small
patch of pixels in the image is encoded as a feature vector with a corresponding ray originating at
the camera aperture and passing through the patch. Unlike raw pixels that exist only in the camera
frame and therefore only support 2D transformations, rays are naturally defined in 3D and can be
transformed by SE(3) rotations and translations. This gives us a representation of the input images
that is compatible with SE(3)-equivariant neural network layers and therefore enables us to create an
end-to-end SE(3)-equivariant model using only RGB input while remaining agnostic to the number
and placement of cameras in the robot learning setup.

RAVEN utilizes a novel ray-based observation encoder that transforms multi-view images into SE(3)-
equivariant geometric tokens. To decode these tokens into actions, we introduce a lightweight and
flexible policy head that supports both world-frame (absolute) and end-effector-frame (relative) action
representations, allowing compatibility with a wide range of robotic systems and control interfaces.
Unlike prior equivariant methods that often suffer from slow training due to heavy architectures,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

our method achieves SE(3)-equivariance with a training speed that is even faster than a baseline
Diffusion Policy, but with significantly improved performance.

This paper makes the following contributions:

• We introduce an encoder that expresses an image (RGB or otherwise) as a set of SE(3)-equivariant
geometric tokens. Tokens from different, arbitrarily placed cameras can be seamlessly combined
to produce a single, consistent representation of the world.

• Based on this encoder, we propose RAVEN, the first end-to-end SE(3)-equivariant robotic policy
learning framework that can operate directly on RGB image inputs.

• We characterize our method both in simulation and on a physical robot. It outperforms the
strongest baseline by 12% over 12 MimicGen tasks, 17% over 6 DexMimicGen tasks, and 35%
over 4 real-world tasks. Finally, whereas prior equivariant models are often slow to train, our
method trains approximately 1.6× faster than the previous equivariant diffusion method.

2 RELATED WORK

Equivariant Networks for Image Processing Equivariant models for 2D image processing (Cohen
& Welling, 2016; Dieleman et al., 2016; Worrall et al., 2017; Chidester et al., 2018; Weiler &
Cesa, 2019; Maron et al., 2020; He et al., 2021; Rahman & Yeh, 2023; Li et al., 2024; 2025)
achieve equivariance to planar transformation groups, including SO(2), SE(2), and more general
affine groups, which improves generalization and sample efficiency in vision tasks involving spatial
symmetries. Extending beyond such planar symmetry, recent efforts (Esteves et al., 2019; Park et al.,
2022; Klee et al., 2023a;b; Howell et al., 2023; Lee & Cho, 2024) seek to learn SO(3)- or SE(3)-
equivariant representations directly from 2D images for 3D vision tasks, such as 6D pose estimation
and object understanding. These methods attempt to bridge the gap between 2D observation and 3D
geometric reasoning by encoding 3D symmetries into the learned features. More recently, ray-based
formulations have emerged as a promising direction for incorporating 3D geometry into image-
based equivariant models. By interpreting each pixel as a 3D ray originating from the camera,
these approaches anchor features along these rays in 3D space while maintaining equivariance (Xu
et al., 2023; Brehmer et al., 2024; Xu et al., 2024). Our work builds on GTA (Miyato et al., 2023),
which introduces an efficient attention mechanism with camera pose and pixel coordinate geometric
representations. In contrast, we represent image patches as ray-based SE(3) representations, which
better encode the spread of rays in the scene and allow processing with non-image data.

Equivariant Robotic Manipulation Symmetry has been widely explored in robotic manipulation
to improve generalization and sample efficiency (Huang et al., 2022; 2024; Wang et al., 2022;
Nguyen et al., 2023; Zhu et al., 2022; Hu et al., 2024a; Jia et al., 2022; Ryu et al., 2022; 2024;
Gao et al., 2024; Mittal et al., 2024; Eisner et al., 2024). Recent works have transitioned from
open-loop to closed-loop control by adopting generative policies such as diffusion models (Chi
et al., 2023) and flow matching approaches (Hu et al., 2024b; Chisari et al., 2024). Within this
framework, incorporating symmetry further improves performance. Wang et al. (2024) introduces
an SO(2)-equivariant diffusion policy, but assumes fixed camera placement. EquiBot (Yang et al.,
2024) achieves SIM(3)-equivariance using object-centric point clouds, but relies on accurate object
segmentation, which limits generalization to diverse sensor configurations and open-world setups.
More recently, Hu et al. (2025) proposes an SO(3)-equivariant policy using only RGB inputs from
a single wrist-mounted camera. Wang et al. (2025) further highlights the benefits of pretrained
vision encoders and relative action spaces in diffusion-based policies. In contrast, RAVEN is the first,
as far as we know, SE(3)-equivariant manipulation framework that operates directly on raw RGB
images without relying on object segmentation or assumptions about the number and placement of
cameras. Additionally, our model achieves equivariance through canonicalization and is trained via
flow-matching, so our model is less computationally heavy than existing equivariant methods.

3 BACKGROUND

Equivariance and Canonicalization A function f is equivariant to a symmetry group G if
ρ′gf(x) = f(ρgx) for all g ∈ G, x ∈ X where ρ and ρ′ denote group actions on the input and
output spaces, respectively. Equivariance is desirable in deep learning because it allows models to
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generalize across transformations of the data. Equivariant networks can be constructed through group
convolution (Cohen & Welling, 2016; Esteves et al., 2019) or by imposing constraints on the weights
of each layer, as shown by (Geiger & Smidt, 2022; Cesa et al., 2022; Brehmer et al., 2024).

An alternative approach is to enforce equivariance with canonicalization: first, transform each input
into a standardized, or canonical, reference frame that is consistent across samples, and then map the
output back to the original frame. Canonicalization avoids the computational overhead of equivariant
convolutions, but assumes access to a useful canonicalizer. In practice, such canonicalization functions
can be defined analytically (e.g., aligning to principal axes), estimated (e.g., via PCA), or learned
from data (Esteves et al., 2017; Du et al., 2022; Kaba et al., 2023). Formally, let G act on the input
space X via ρ : G × X → X , and let C : X → G be a canonicalization function satisfying the
right-compensation property:

C(ρgx) = C(x)g−1, ∀ g ∈ G, x ∈ X. (1)

We denote the canonicalized input by ρC(x)x. Using (1), we have: ρC(ρgx)(ρgx) = ρC(x)x, so
x 7→ f(ρC(x)x) is G-invariant. To recover equivariance, we decanonicalize in the output space with
action ρ′: F (x) = ρ′C(x)−1 f(ρC(x)x) which implies F (ρgx) = ρ′g F (x).

Images and Rays An image is typically represented as a discretized 2D signal, that is, a mapping
from pixel coordinates to RGB values, I : Z2 7→ R3. Alternatively, an image can be thought of as
a collection of rays moving from the camera’s optical center out into the world. This ray-based
representation better conveys 3D spatial information of the world. The ray associated with a 2D pixel
coordinate is determined by the camera intrinsics K ∈ R3×3 and extrinsics M = [R|t] ∈ SE(3),
where R ∈ SO(3) and t ∈ R3 denote the camera orientation and position in the world frame. Given a
pixel coordinate u ∈ Z2 expressed in homogeneous coordinates, we can compute the corresponding
ray r as:

r = (t, RK−1u) (2)

where r = (ro, rd) is a tuple describing the origin ro ∈ R3 and direction rd ∈ S2. This follows
from the standard camera projection equation, which maps a 3D point x ∈ R3 to a pixel coordinate
u ∈ Z2: u = K[RT | −RT t]x. This analysis is based on a pinhole camera model; for other models,
such as fisheye cameras, we refer the reader to Grossberg & Nayar (2001); Kannala & Brandt (2006).

Geometric Transform Attention Geometric Transform Attention (GTA) is a recently proposed
attention mechanism designed for spatial data (Miyato et al., 2023) to achieve equivariance. Specifi-
cally, each token xi is associated with a group element gi ∈ G that encodes its geometric context (in
the simplest case, an image, the context is the 2D pixel location; but the idea extends to SE(3) poses
of cameras, etc.). Given some representation ρ : G→ GLd(R) that maps group elements to linear
operators, the output of geometric transform attention between the i-th query, Qi, and the j-th key
and value, Kj , Vj , is:

Oi = ρ(gi)
exp

(
(ρ(gi)

⊤Qi)
⊤(ρ(gj)

−1Kj)
)∑n

j′=1 exp
(
(ρ(gi)⊤Qi)⊤(ρ(g

−1
j′ )Kj′)

) (ρ(gj)−1Vj). (3)

This construction ensures that attention scores are only affected by the relative transformation ρ⊤giρgj
between tokens. Thus, if all tokens undergo the same global transformation (gi 7→ hgi for some
h ∈ G), the internal similarity remains unchanged and the output transforms consistently by ρ(h),
yielding equivariance. As noted by the authors, dot-product similarity violates equivariance when
G = SE(3), so they propose a variation on Equation 3 that uses negative Euclidean distance as a
similarity metric to achieve exact SE(3) equivariance.

Policy Learning with Flow Matching Flow-based generative modeling provides an alternative to
diffusion for capturing multimodal action distributions in policy learning. Unlike DDPM (Ho et al.,
2020), which predicts noise in a discrete denoising process, flow matching (Lipman et al., 2022; Liu
et al., 2022) directly learns a continuous-time vector field that transports a prior distribution to the
expert action distribution. Concretely, the policy is represented as an ordinary differential equation
(ODE): da(t)/dt = vθ(o,a(t), t) where a(0) ∼ N (0, I) and the terminal state a(1) follows the
expert action distribution. During training, a(t) is approximated by interpolating between a noise
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Figure 1: The RAVEN Architecture: image observations are converted to geometric tokens by
preprocessing with ResNet and assigning pose based on rays. The SE(3) Geometric Transformer
efficiently processes the tokens with feedforward and geometric transform attention layers. Finally,
an action decoder network refines relative end-effector motions with flow matching.

sample a0 ∼ p0 and an expert action a1 ∼ p1, and the model vθ is supervised with the flow matching
objective:

LFM = Et,a0∼p0,a1∼p1

[
∥vθ

(
(1− t)a0 + ta1, t

)
− (a1 − a0)∥2

]
(4)

which trains vθ to approximate the transport field that maps the prior p0 to the expert distribution
p1. Intuitively, vθ(a, t) tells each point how to move over time, and this direct supervision enables
more efficient sampling and more stable training compared to diffusion-based policies. As shown in
similar works on diffusion policy (Wang et al., 2024; Yang et al., 2024), flow matching can be made
SE(3) equivariant if the velocity field is SO(3) equivariant and the observations are centered Chisari
et al. (2024).

4 METHOD

Our method, RAVEN, is a policy learning framework for image-based observations that is equivariant
to SE(3) transformations of the scene (e.g. robots, objects, and sensors). Unlike existing equiv-
ariant methods, RAVEN does not require spatial data like point clouds and can be used with any
number of stationary or moving RGB cameras. In this section, we first describe a novel equivariant
encoder network that digests images and proprioceptive information to produce a dense, equivariant
representation of the scene. Second, we introduce an action decoder network that operates on this
observation encoding to produce action trajectories. Finally, we analyze the equivariance properties
of the method.

4.1 RAY-BASED EQUIVARIANT ENCODER

We propose an SE(3) equivariant encoder network that efficiently processes multi-image and pro-
prioceptive observations. First, we map 2D image data to 3D ray features, which better convey
spatial information about the scene. Next, we express all input data in a unified representation, called
geometric tokens, in which the features are canonicalized by their pose in the scene. Finally, we
process these tokens with GTA-style transformer layers, composed of feedforward operations in local
frames and attention operations in the global frame.

Ray-based SE(3) Features from Images It is difficult to integrate image inputs into 3D equivariant
methods, since the 3D roto-translation action on the data is unclear. Inspired by recent works (Brehmer
et al., 2024; Xu et al., 2024), we instead consider each pixel to represent a 3D ray, according to the
known camera extrinsics and intrinsics. In this way, an SE(3) transformation acts on the extrinsics
(camera pose), which transforms the rays even though the image data is unchanged.

In practice, processing 3D data like rays is expensive, so we propose first pre-processing the images
with a pretrained ResNet (He et al., 2016). This is useful for two reasons: (1) pretrained image models
are fast and effective at extracting useful information, (2) the resulting feature map is downsampled,
which reduces the burden of subsequent operations on 3D data. However, after downsampling, each
grid cell in the feature map represents a local patch of pixels and a corresponding local patch of rays.
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While a single ray is symmetric about the camera’s roll axis, a local patch of rays has a well-defined
orientation. In this way, each grid cell in the feature map is associated with an element of SE(3),
describing its origin and orientation (direction is z-axis, and image plane axes are x, y-axes). The
following subsections explain how to use these features and their poses for fast and equivariant
processing.

Figure 2: A pixel con-
veys a ray direction (left),
an image patch conveys
an orientation (right).

Geometric Tokens A geometric token is a piece of geometric infor-
mation stored in a reference frame. Specifically, a geometric token is a
tuple, x = (zx, gx), composed of a feature vector, zx ∈ Rd, and a pose,
gx ∈ SE(3), such that the feature vector is canonicalized by the pose, e.g.,
it conveys local information. The idea is similar to positional embeddings
in ViT’s, where each token has features describing a local patch which
may be combined with the coordinate of the patch via a positional em-
bedding. The idea was described in its most general form by Miyato et al.
(2023), where each token has features and a group element. In contrast,
our geometric tokens only contain SE(3) group elements, providing a
unified representation across different input modalities.

A geometric token’s pose is used to convert the features into a global
frame: ρ(gx)zx. The feature vector, zx, is a combination of scalar, zsx,
vector, zvx, and point, zpx features so that:

ρ(gx)zx = (ρs(gx)z
s
x, ρ

v(gx)z
v
x, ρ

p(gx)z
p
x) (5)

where ρs(gx) is the identity (scalar features are invariant to geometric transforms), ρv(gx) applies
3D rotation and ρp(gx) applies 3D rotation and translation. We illustrate this idea in Figure 3. A
helpful way to think of geometric tokens is through the lens of canonicalization. The features are
canonicalized by default, and the pose is used to de-canonicalize them using a hardcoded SE(3)
group action. This ability to process information in canonical or decanonical frames is key to our
method’s SE(3) equivariance and computational efficiency.

Figure 3: A geometric token encodes scalar,
vector, and point features in the sensor’s local
frame (left), which can be transformed to the
global frame with the token’s pose (right).

A core assumption here is that all observations can
be converted to geometric tokens. For image obser-
vations, we discussed how we use a ResNet to gen-
erate a feature map where each grid cell is assigned
a pose based on the camera projection. We apply
a 1x1 convolution to the feature map to obtain the
desired feature dimensionality (split among scalar,
vector, and point features). For the proprioceptive
information, e.g., end-effector pose and state (gripper
opening or finger joint angles), we construct one ge-
ometric token per robot. The features are generated
with a linear mapping on the gripper state, and the
pose is defined as the end-effector pose. We discuss
tokenization schemes for other observation modali-
ties in Appendix C.

SE(3) Geometric Transformer Once all observations are converted into geometric tokens, we
process them with several transformer blocks (Vaswani et al., 2017) using geometric transform
attention (GTA) (Miyato et al., 2023). The feedforward layers, a two-layer MLP, operate directly
on the geometric tokens’ features, leaving their poses unchanged. As stated above, the features are
canonicalized (e.g., expressed in the local frame determined by the token’s pose) so the feedforward
layers do not break SE(3) equivariance. The attention layers in our transformer use GTA, which mod-
ulates the similarity scores based on the relative transformation between tokens, using each token’s
SE(3) pose to compute the relative transformation. We use a combination of dot product similarity
(on the scalar and vector components) and negative Euclidean distance (on point components) to
compute similarity. The dot product is, in our experience, more stable during training, but violates
equivariance when used with point features. Since our model is used in the low data regime, we use
negative Euclidean distance as needed to ensure exact SE(3) equivariance out-of-the-box.
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4.2 GEOMETRIC TOKEN ACTION DECODER

The output of our encoder network is a set of geometric tokens that form a 3D representation of the
observed scene. To solve robotic manipulation tasks, we feed this representation to a decoder network
that is trained with flow-matching to generate trajectories of SE(3) gripper poses and states. We now
describe a novel SE(3) equivariant decoder network designed to output gripper actions in the relative
frame. (We also describe how to produce actions in the absolute frame in Appendix F.)

With geometric tokens, the features remain canonicalized in some known reference frame throughout
processing. This property can be used to our advantage to output end-effector trajectories in arbitrary
reference frames. To predict actions relative to the end-effector frame, we create action geometric
tokens where the pose is set to be the end-effector’s pose at the current timestep. When these tokens
are processed by a SE(3) geometric transformer, the action geometric features are naturally suited to
express the robot trajectory in the global frame while still having the precision of being described in
the local frame.

In practice, we train an SE(3) geometric transformer with a flow-matching loss to output the velocity
field. The action geometric tokens for each timestep in the trajectory are initialized with the features
sampled from a Normal distribution, and the poses are all set to the current gripper pose. The model is
trained using the loss from Equation 4 applied to the predicted action token features only. We modify
the SE(3) geometric transformer architecture from our encoder to roughly match the transformer
decoder from DiffPo. Each transformer block is composed of causal self-attention between action
tokens, then cross-attention with the geometric tokens from the encoder, and finally a feedforward
layer. We use four transformer blocks in total, and a final projection layer to convert he action
geometric tokens into velocities. A diagram of the relative action decoder is shown on the right of
Figure 1.

4.3 EQUIVARIANCE PROPERTIES

Our method is end-to-end equivariant with respect to global SE(3) transformations of the robots,
sensors, and objects. To simplify the analysis, let us consider a setup with two cameras and one
gripper. The observation is composed of images, I1, I2, camera intrinsics, K1,K2, camera extrinsics,
M1,M2, gripper pose, P , and gripper state, λ. The action of a global transformation, g ∈ SE(3), on
the inputs is: I1, I2,K1,K2,M1,M2, P, λ 7→ I1, I2,K1,K2, gM1, gM2, gP, λ. In other words, the
transformation only acts on the camera poses, M1,M2, and gripper pose, P . Our encoder network,
call it ψ, outputs geometric tokens: Z,G = ψ(I,K,M,P, λ), so the effect of a g ∈ SE(3) is:

Z, gG = ψ(I1, I2,K1,K2, gM1, gM2, gP, λ), (6)

meaning the output is transformed by an SE(3) action on the geometric tokens’ poses, with the
tokens’ features remaining unchanged. It is important to note that the equivariance does not capture
independent camera transformations (we test generalization to this empirically in Section 5.1).

The equivariance of our method is slightly different from prior equivariant robot learning methods
that operate on structure or spatial inputs (Wang et al., 2022; Yang et al., 2024) Those methods
claim equivariance with respect to transformations of the robots and objects independent of the
sensors, which results in stronger generalization. Equivariant methods that operate on RGB images,
like RAVEN, cannot achieve this equivariance outside of a few edge cases (see longer discussion in
Appendix 6).

5 EXPERIMENTS

We systematically evaluate RAVEN in both simulation and real-world settings. Our experiments
are designed to address the following research questions: (1) Does our method outperform existing
approaches on general manipulation tasks? (2) Can it maintain strong performance under different
camera numbers and bimanual configurations? (3) Does it generalize to novel viewpoints at inference
time? (4) Is its training speed faster than previous equivariant-based methods? (5) Is it applicable to
real-world robotic manipulation tasks?

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Representative tasks from MimicGen (left three images) and DexMimicGen (right three images).

(b) Viewpoint generalization evaluation.
Figure 4: Visualization of tasks from the MimicGen and DexMimicGen benchmarks and the viewpoint
generalization setting. Subfigure (a) shows representative tasks, while (b) illustrates viewpoint
variation: in each task, the leftmost image is the original view and the two on the right are sampled
perturbed views. The complete set of tasks is provided in Appendix D.

5.1 SIMULATION

Experiment Setting To address the first four questions, we conduct simulation experiments on the
MimicGen (Mandlekar et al., 2023) and DexMimicGen (Jiang et al., 2024) benchmarks. First, we
evaluate RAVEN on twelve single-arm manipulation tasks from MimicGen, a widely used suite for
closed-loop policy learning (Wang et al., 2024; Hu et al., 2025), using agent-view and eye-in-hand
RGB observations. Each model is trained with 100 demos. Second, to study multi-camera and
bimanual settings, we evaluate RAVEN on six bimanual tasks from DexMimicGen, consisting of
three gripper-based and three dexterous-hand tasks. This setting uses two eye-in-hand cameras and
one agent-view, and involves controlling two arms with moving cameras, making the tasks more
challenging. Models are trained with both 50 and 100 demos. Both MimicGen and DexMimicGen
tasks are evaluated with 50 rollouts per task and 3 random seeds. Figure 4 (a) illustrates representative
tasks from the two benchmarks. Third, to study viewpoint generalization, we modify the MimicGen
tasks by randomly perturbing the agent-view camera at the start of each episode (and demonstration),
as shown in Figure 4 (b). The camera is sampled within ±20◦ pitch and ±40◦ yaw relative to
the original viewpoint, ensuring unique but distributionally consistent perspectives across demos
and rollouts. Fourth, we compare the training speed of RAVEN with baselines to demonstrate its
efficiency. Dataset configurations, visualizations of all subtasks, and training details are provided in
Appendices D and E.

Baselines We compare against four strong baselines: (1) DiffPo (Chi et al., 2023): A diffusion-
based policy without equivariance, trained from scratch, serving as the primary reference. (2) DiffPo
(Pre): The same as (1) but with a pretrained ResNet encoder to match the visual backbone used
in RAVEN. This ensures a fair comparison when both methods leverage pretrained perception. (3)
EquiDiffPo (Wang et al., 2024): An SO(2)-equivariant image-based diffusion model that incorporates
both an equivariant image encoder and an equivariant temporal U-Net. (4) ACT (Zhao et al., 2023):
A transformer-based behavior cloning method designed for closed-loop control. Additionally, we
conduct experiments on each task to compare relative and absolute action prediction with RAVEN.
Due to space constraints, the full results are provided in Appendix F.

MimicGen Table 1 reports the success rates across all methods and configurations. Compared
to the strongest baseline result for each task, RAVEN achieves the highest performance on 11 out
of 12 tasks, with the remaining task only 4% behind. These results demonstrate the robustness of
our approach under different action representations. RAVEN exceeds the best-performing baseline
by 12% on average. While both RAVEN and DiffPo (Pre) use a pretrained image encoder, RAVEN
consistently outperforms it by 14%, indicating that our architectural design provides additional
advantages beyond pretraining. Interestingly, DiffPo (Pre) performs on par with, or slightly worse
than, EquiDiffPo on individual tasks, with an average gap of 2%, suggesting the positive effect of
pretraining on model robustness. Nevertheless, all baselines still fall short by a substantial margin
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Table 1: MimicGen tasks with agent-view and eye-in-hand cameras using 100 demos. Results are
reported as the best success rate (%) across 30 evaluation checkpoints during training, each based
on the same set of 50 rollouts. The final score is averaged over the best checkpoint from each of
3 random seeds (some baselines from Wang et al. (2024)). Numbers in parentheses indicate the
difference between RAVEN and the best baseline (improvements shown in blue, drops in red).

Method Average Stack D1 Stack Three D1 Square D2 Threading D2 Coffee D2 3P Assembly D2

RAVEN 66 (+12) 100 (+3) 81 (+26) 50 (+25) 28 (+6) 61 (+1) 27 (+12)
EquiDiffPo 54 93 55 25 22 60 15
DiffPo (Pre) 52 97 53 22 21 53 14
DiffPo 42 76 38 8 17 44 4
ACT 21 35 6 6 10 19 0

H. Cleanup D1 M. Cleanup D1 Kitchen D1 N. Assembly D0 Pick Place D0 Coffee Prep. D1

RAVEN 73 (+8) 53 (+4) 85 (+5) 74 (=) 73 (+27) 73 (-4)
EquiDiffPo 65 49 67 74 42 77
DiffPo (Pre) 54 47 80 71 46 65
DiffPo 52 43 67 55 35 65
ACT 38 23 37 42 7 32

Table 2: Maximum success rate (%) on DexMimicGen tasks with 50 demos. Results are reported
using the same evaluation protocol as in Table 1.

Method Average Threading 3P Assembly Transport B. Cleanup D. Cleanup Tray Lift

RAVEN 82 (+17) 63 (+34) 69 (+19) 76 (-5) 98 (+13) 97(+1) 90 (+34)
EquiDiffPo 62 29 45 63 85 94 56
DiffPo (Pre) 65 25 50 81 85 96 55
DiffPo 60 20 43 78 84 91 43

compared to RAVEN. Complete results, including standard deviations across three random seeds, are
provided in Appendix G.

DexMimicGen Table 2 reports results on DexMimicGen with 50 demos. Complete results with
100 demos and variance across seeds are provided in Appendix H. At the time of writing, only
tasks with the D0 initial state distribution are publicly available, so there is minimal variation in
object placement. Since generalization to spatial transformations is less useful in this benchmark, we
expect the performance boost of equivariance to be less significant. Despite this, RAVEN consistently
outperforms all baselines by a substantial margin. Notably, as shown in Table H, RAVEN trained
with only 50 demos performs comparably to or even outperforms baselines trained with 100 demos,
highlighting the superior data efficiency of our method. We believe our performance in this setting is
driven by the GTA layers in the encoder, which allow information from all three cameras to be fused
into a better understanding of the scene. In comparison, DiffPo and EquiDiffPo simply concatenate
feature vectors from each image without reasoning over their geometric relationships, limiting the
integration of 3D information.

Viewpoint Generalization A key advantage of our observation encoder is its ability to form 3D
representations, rather than relying solely on 2D image features. This inductive bias makes our
method naturally more robust to variations in camera viewpoints compared to purely image-based
approaches. This property is particularly useful in real-world deployment, where demos are often
collected across a fleet of robots with varied sensors (Zhao et al., 2024). The results (Table 3) show
that RAVEN is more robust to viewpoint perturbations than the baselines. Averaged across four tasks,
RAVEN achieves 23% improvements over the strongest baseline. As expected, overall performance
drops compared to Table 1 due to distribution shifts from unseen camera poses. It is worth noting
that our method is equivariant to transformations of the entire scene, including robots, objects, and
cameras, but this task perturbs only a single camera, which breaks global equivariance. Nonetheless,
our geometry-aware feature representations enable significantly better generalization to novel views
than all baselines.

We also performed an experiment to test RAVEN’s generalization to noisy camera calibration (see
Appendix B.1). We find that RAVEN is sensitive to noise in the camera calibration, especially when
introduced at test time. However, by adding data augmentation to the camera parameters during
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Table 3: MimicGen experiments with randomly perturbed agent-view cameras. A subset of tasks is
selected for evaluation. The same experimental protocol as in Table 1 is followed.

Average Stack Stack Three Coffee Hammer Cleanup

RAVEN 71 (+23) 99 (+21) 68 (+26) 53 (+2) 65 (+13)
EquiDiffPo 48 65 25 51 52
DiffPo (Pre) 44 78 42 21 36

Table 4: Ablation Study of RAVEN on MimicGen tasks, success rate (%) averaged over three seeds.

Average Stack Stack Three Coffee Hammer Cleanup

RAVEN 76 100 81 50 73
w/o SE(3) ray encoding 72 100 74 44 69
w/o Equi. Decoder 72 99 86 38 65
w/o Equi. Encoder & Decoder 58 90 56 27 60

testing, RAVEN is robust to calibration errors, dropping only 1% in success rate averaged across a
subset of MimicGen tasks.

Ablation Study We perform an ablation study to determine the impact of RAVEN’s equivariant
layers and geometric structure have on performance. We consider three variations of our method.
First, we remove the SE(3) ray encoding scheme and instead encode ray patches as elements of
ray-space, R3 × S2 (e.g. each ray patch has a direction vector instead of an orientation). Second,
we remove the equivariant layers in the decoder network by replacing all GTA layers with standard
dot-product attention. We still provide the network with the pose of all tokens via an absolute position
embedding. Third, we remove the equivariant layers in the decoder and encoder in the same manner.

For each variation, we evaluate its performance on a subset of MimicGen tasks and report success
rates in Table 4. Without SE(3) ray encoding, the performance drops by 4% on average. While
this drop is small, it highlights the benefits of the additional geometric structure provided by the ray
patches orientation. The method’s performance drops an average 4% with a non-equivariant decoder
and 18% with a non-equivariant encoder and decoder. This supports the importance of equivariant
layers in our method while keeping the added geometric structure of encoding images as rays. These
tasks are all table-top tasks, with minimal out-of-plane motions and we expect the impact of SE(3)
equivariant layers to be greater in less structured manipulation settings.

Policy Efficiency Analysis Training and deploying policies efficiently is critical in robotics appli-
cations. In this context, training time is an important evaluation metric. Prior equivariant methods
often suffer from longer training durations (Wang et al., 2024; Hu et al., 2025). To evaluate training
efficiency, we measure the training time on the MimicGen Threading D2 task under identical hard-
ware and configurations. DiffPo completes the pipeline (training plus policy rollout in simulation)
in 3.3 hours, while EquiDiffPo requires 7.3 hours. In contrast, RAVEN finishes in just 2.8 hours.
This corresponds to a 1.6× speedup over EquiDiffPo with a superior performance, highlighting our
method’s advantages in both effectiveness and training efficiency.

5.2 REAL WORLD

Physical Setup Our real-world experiments are conducted using a Universal Robot UR5 equipped
with a Robotiq-85 Gripper and custom-designed soft fingers. We use one side-mounted RealSense
D455i for agent-view observations and a wrist-mounted GoPro for eye-in-hand views. Demos are
collected via the Gello teleoperation interface (Wu et al., 2024), with RGB observations and actions
recorded at 5 Hz. Figure 5 shows the four manipulation tasks. Banana Picking, Beans Scooping, and
Coffee Cleanup require precise 3D control to meet complex goal conditions, presenting challenges in
spatial reasoning. The final task, Box Cleanup, uses only half the demos compared to other tasks. It
emphasizes learning under limited data and involves transparent objects that require policies to adapt
to low-data regimes while interpreting challenging visual cues from RGB observations. We compare
RAVEN against the pretrained Diffusion Policy (Chi et al., 2023). Further details, including hardware
setup, task specifications, and success rate definition, are provided in Appendix I.
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(a) Banana Picking (b) Beans Scooping (c) Coffee Cleanup (d) Box Cleanup

Figure 5: Visualization of 4 Real-World tasks shown at the beginning (left) and end (right) of the
episode.

Table 5: Real-world task performance over 20 trials, reported
as average progress (%) and, in parentheses, success rate (%).

B-Picking B-Scooping C-Cleanup B-Cleanup

# Demos 75 75 75 40

RAVEN 100 (100) 70 (45) 75 (45) 77 (60)
DiffPo (Pre) 53 (50) 30 (0) 56 (15) 43 (30)

Results We report the results of
four real-world tasks in Table 5.
Numbers represent the average com-
pletion progress of each task, with
overall task success rate shown in
parentheses. Progress evaluation of-
fers a more comprehensive measure
of policy performance, particularly
for tasks where baselines fail entirely (e.g., 0% in Beans Scooping). Across all tasks, our method con-
sistently outperforms the pretrained DiffPo. Specifically, RAVEN achieves 81% in average progress
and 63% in overall completion success rate. By contrast, DiffPo (Pre) reaches only 46% and 24%.
These results highlight the strong effectiveness of our method, particularly its data efficiency, and
demonstrate its practicality for real-world deployment. Progress definitions and full results with our
additional absolute action variant are provided in Appendix I.

6 CONCLUSION

In the space of Imitation Learning methods for robotic manipulation, the RAVEN framework is
an exciting new piece of technology that combines the advantages of standard imitation learning
methods (like baseline Diffusion Policy) with the advantages of an equivariant model. Unlike previous
equivariant models like EquiDiffPo (Wang et al., 2024) or EquiBot (Yang et al., 2024), which require
depth or point cloud data in order to be SE(2)- or SE(3)-equivariant, RAVEN is an end-to-end
SE(3)-equivariant method that can function with RGB input alone. Moreover, RAVEN can benefit
from standard pretrained image encoders, just like non-equivariant models do. Most importantly,
compared to a baseline pretrained Diffusion Policy, RAVEN outperforms significantly and has faster
training times.

Limitations RAVEN has some limitations. Although a RAVEN policy can generalize well to novel
camera viewpoints, it requires all cameras to be well calibrated with respect to a world coordinate
frame. Also, we have so far only explored this idea in the context of RGB inputs. In principle, the
RAVEN encoder is compatible with a variety of input modalities, including depth and point cloud
data, and integrating with this type of information is something we would like to explore in the future.
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REPRODUCIBILITY STATEMENT

Comprehensive experimental setups and training details are provided in the Appendix. Upon accep-
tance, we will release our implementation publicly via a GitHub repository.

ETHICS STATEMENT

This research makes use of both publicly available datasets, released under appropriate licensing
agreements, and additional data collected by the authors. All newly collected data involve only robotic
systems and physical objects, without any human participants or personally identifiable information.
No sensitive or harmful content is present. Data collection and usage were conducted solely for
scholarly research purposes and in accordance with established ethical standards. Our work conforms,
in every respect, with the ICLR Code of Ethics.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used exclusively for improving language quality, such as grammar correction and
refinement. The core method development in this research does not involve LLMs as any important,
original, or non-standard components.
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A EXTENDED EQUIVARIANCE DISCUSSION

In this section, we continue the discussion from Section 4.3 about how the equivariance of RAVEN dif-
fers from the traditionally accepted definition in equivariant robot learning. To restate the distinction,
our method’s equivariance is with respect to joint transformations of the robots, objects and sensors
whereas traditionally it is with respect to joint transformations of the robots and objects (not the
sensors). We will refer to these two definitions of equivariance as robot-object-sensor equivariance
and robot-object equivariance, respectively. It is clear to see that the robot-object-sensor equivariance
of our method is less powerful than robot-object equivariance, since there is only generalization if
the sensors move with the robots and objects. The reason our method cannot achieve robot-object
equivariance comes down to the input data. With RGB images, there is not an obvious mapping on
the input space that captures a transformation of scene independent of the camera. (In fact, there is an
entire field of novel view synthesis that trains large networks to find such a mapping). In contrast, for
spatial inputs like point clouds, we can apply 4× 4 transformation matrix to all points to approximate
how the transformed scene would appear independent of camera pose. In practice, the gap between
our method’s equivariance and robot-object equivariance is not always obvious or even present, as we
show in the special cases below.

SE(2) Equivariance with a Single RGB Camera: With a single camera, 2D roto-translations of
the image correspond to 2D roto-translations of the scene (i.e. robots and objects) about the cameras
roll axis, independent of the camera pose. This is the setting explored by (Wang et al., 2022; 2024).
RAVEN can match the robot-object equivariance of these methods here, so long as an 2D equivariant
convolutional encoder network is used.

Discretized SO(2) Equivariance with a Structured RGB Camera Layout If cameras are ar-
ranged uniformly around the scene’s z-axis, then the group action takes the form of permuting the
images between cameras. For instance, if four cameras are arranged 90 degrees apart, then cycling
the images between cameras corresponds to rotations of the scene (robots and objects) by 90-degree
increments. In this setting, RAVEN would be robot-object equivariant to a discrete subgroup of SO(2)
(or subgroups of SO(3) using camera layout shown in (Esteves et al., 2019)).

SE(3) Equivariance with Partial Point Clouds When only a few depth sensors are used, the point
cloud will often have some gaps due to occlusion. To be precise, applying 3D roto-translations to
the points corresponds to joint transformations of the robots, objects and sensors (since the occluded
regions also transform). In this case, methods can only achieve robot-object-sensor equivariance.
This happens to be the case in several equivariant point cloud works Yang et al. (2024); Ryu et al.
(2022; 2024), although they do not discuss the nuance of their equivariance claims. So unless many
depth sensors are used, our method will have the same equivariance guarantees. In practice, point
cloud networks seem to generalize well on partial point clouds and this distinction is worth exploring
more in the future.

B ADDITIONAL EXPERIMENTS

B.1 ROBUSTNESS TO CAMERA CALIBRATION ERROR

A key assumption of RAVEN is that the camera intrinsic and extrinsics are known during training
and deployment. Slight errors in camera parameters are typical in real robotic systems, due to
miscalibration or sensors being bumped. Since RAVEN uses the camera parameters to map features
on 2D image plane to SE(3) ray features, it is possible that these errors would harm RAVEN’s ability
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to form 3D representations of the scene and accurately predict actions. In this experiment, we directly
test the effect of noisy camera parameters on RAVEN’s performance.

We look at two cases of camera calibration error. In the first case, the model is trained with ground-
truth camera parameters but tested with noisy camera parameters. This case may arise in practice
when using a fleet of robots. While the demonstration data may be generated on a carefully calibrated
robot, other robots may fall out of calibration during deployment. In the second case, the model
is trained and tested with the same noisy parameters. This case represents a scenario where the
method is used on one robot, but the calibration is done quickly and, therefore, is inaccurate. For
these two cases, we evaluate the performance of RAVEN on a subset of MimicGen tasks, following
same protocol as in Table 1. The ground-truth camera parameters are provided by the simulation
environment. For noisy parameters, we sample some noise and add it as an offset to the ground-truth
parameters. Specifically, we apply a ±5 pixel (6.6%) shift to the principal point, a 2% variation in
focal length, a 0.5 to 1.5 cm perturbation to the camera translation, and a 6, -4, and 8 degree variation
to the camera roll, pitch and yaw angles. The results, shown in Table 6,

Lastly, we look at using data augmentation to improve robustness to camera calibration error. In the
final row of Table 6, we include a comparison of RAVEN that was trained with data augmentation
on the ground truth camera parameters (both intrinsic and extrinsic), and tested on noisy camera
parameters. With data augmentation, the impact of noisy camera parameters is minimal, lowering
performance by 3% on Coffee task and 0% on the other tasks. This experiment shows that RAVEN is
robust to reasonable camera calibration errors, so long as data augmentation is used.

Table 6: Effect of feature map grid resolution on RAVEN’s performance. Performance reported in
success rate (%) on subset of MimicGen tasks, averaged over three seeds.

Training Parameters Testing Parameters Stack Stack Three Coffee Hammer Cleanup

ground truth ground truth 100 81 50 73
noisy noisy 100 80 49 71
ground truth noisy 100 76 42 69
ground truth + data aug noisy 100 81 47 73

B.2 COMPARING GRID RESOLUTIONS FOR GENERATING RAYS

As stated in Section 4.1, we use a pretrained ResNet encoder to preprocess image observations into
feature maps. Each element in the feature map is then mapped to an SE(3) ray encoding. Since the
ResNet downsamples the image, we end up with much fewer ray tokens than image pixels, which
accelerates subsequent attention layers (which are quadratic in number of tokens). In this experiment,
we compare performance when using different feature map grid resolutions. Specifically, we test
with 3x3 feature maps, 5x5 feature maps (this is the default), and 7x7 feature maps. We vary the
resolution by removing maxpool layers or reducing convolutional stride in the ResNet; all other
model parameters are kept the same. We report the success rates on a subset of MimicGen tasks in
Table 7.

The results show that a 5x5 grid resolution performs best. There is a larger drop-off in performance
with a 3x3 grid than a 7x7 grid. We believe a higher grid resolution allows the model to construct
a denser 3D understanding of the scene. It is worth pointing out that downsampling in the image
encoder does not affect the SE(3) equivariance of our method, even though it does affect equivariance
to image shifts. This is because the SE(3) transformation acts on the camera extrinsincs, not the
image. In future work, it may be possible to achieve equivariance to image shifts (as in shift an image
to model the effect of translating the camera position). This could further increase robustness to
camera viewpoint changes.

B.3 FLOW MATCHING VS. DIFFUSION

In this experiment, we compare flow matching and diffusion for denoising action predictions. We
compare performance on a subset of MimicGen tasks in Table 8. We kept the model architecture the
same, and only changed the loss applied and the denoising scheme at inference. For flow-matching,
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Table 7: Effect of feature map grid resolution on RAVEN’s performance. Performance reported in
Success Rate (%) on subset of MimicGen tasks, averaged over three seeds.

Stack Stack Three Coffee Hammer Cleanup

RAVEN (3x3 grid) 99 73 37 67
RAVEN (5x5 grid) 100 81 50 73
RAVEN (7x7 grid) 100 79 46 74

we followed the procedure and parameters presented in this work. For diffusion, we used the approach
from Wang et al. (2024). The results show that there is a small performance boost for flow-matching,
although it varies by task. Based on our experience developing this work, diffusion can sometimes
perform better on tasks that require high precision. We did not focus any efforts on refining the
parameters for the denoising schemes, and it is possible that additional improvements to performance
and speed could be realized after fine tuning.

Table 8: Comparing performance of RAVEN using Flow-Matching and Diffusion for decoding actions.
Performance reported in Success Rate (%) on subset of MimicGen tasks, averaged over three seeds.

Stack Stack Three Coffee Hammer Cleanup

RAVEN (Flow Matching) 100 81 50 73
RAVEN (Diffusion) 100 84 43 70

C GEOMETRIC TOKENS FOR OTHER OBSERVATION MODALITIES

In this work, we focus on observations with multiple images and the end-effector state. We believe that
our method can be easily extended to robotic settings with other observation modalities. Integrating
other inputs comes down to converting the data into geometric tokens. In most cases, the token
features are generated with a linear layer or a traditional network encoder (ViT or PointNet). The
token poses may be less obvious, and we provide some suggestions here. We would like to empirically
test these ideas in the future.

Joint Data In some tasks, we may wish to encode the current joint positions of the robot, especially
for joint space action,s as in ALOHA (Zhao et al., 2024). One option is to convert the joint angles
to features with a linear layer and assign the pose to be the robot base frame. Another option is to
use forward kinematics to generate a point cloud that represents the positions or meshes of each link,
which exist in the robot base frame.

Torque/Force Data This data already has a geometric structure, so a hard-coded mapping to vector
and point features could be used. It would make sense to pose the data in the end-effector frame (for
wrist-mounted force sensor) or a joint frame for motor torques.

Point Cloud Data A point cloud cannot be canonicalized in the same way that an image or end
effector can. So, our recommendation is to patchify the point cloud using clustering, embed each
cluster into geometric features using PointNet, and assign the pose based on the cluster centroid and
principal axes.

D SIMULATION EXPERIMENT DETAILS

We visualize the manipulation tasks from MimicGen (Mandlekar et al., 2023), DexMimicGen (Jiang
et al., 2024), and the Viewpoint Generalization task in Figure 6, 7, and 8, respectively. Following
prior work (Chi et al., 2023; Wang et al., 2024; Hu et al., 2025), we set the resolution of the image
to 3 × 84 × 84 and adopt the same maximum episode length. In addition, we slightly modify the
original simulator so that the environments can provide intrinsic and extrinsic camera parameters
in real time. For the viewpoint generalization task, we select a subset of tasks whose scene content
is preserved under camera placement changes, ensuring that varying the viewpoint does not lead to
significant information loss in the observations.
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(a) Stack D1 (b) Stack Three D1 (c) Square D2 (d) Threading D2

(e) Coffee D2 (f) Three Pc. Assembly D2 (g) Hammer Cleanup D1 (h) Mug Cleanup D1

(i) Kitchen D1 (j) Nut Assembly D0 (k) Pick Place D0 (l) Coffee Preparation D1

Figure 6: The twelve simulation tasks from the MimicGen (Jiang et al., 2024) benchmark, each
shown in its initial configuration.

E TRAINING DETAILS

To capture temporal context, we follow prior work (Chi et al., 2023; Wang et al., 2024) and use a
two-step history window on all observations as input to the policy. Images are encoded by a pretrained
ResNet-18 (He et al., 2016) which was modified by replacing batchnorm with groupnorm layers (as
done in DiffPo) and tweaking downsampling operations to produce a dense feature map (5× 5 grid
cells from 84× 84 simulation images; 7× 7 grid cells with real-world images). The feature vector
at each grid cell is mapped to the geometric token representation using a linear projection. For all
geometric tokens, we set the dimensionality of the scalar, vector, and point features to be 64 (so there
are 64 + 64 ∗ 3 + 64 ∗ 3 channels). The pose of each grid cell is calculated using camera projection
equations (Equation 2 shows the case for the z-direction, and we project the image plane axis as well
to get the x- and y-directions). Our SE(3) Geometric Transformer is composed of two transformer
blocks that use multi-headed attention (8 heads).

These geometric tokens produced by the encoder are fed to a decoder that either (i) uses EquiBot (Yang
et al., 2024) to predict an absolute trajectory or (ii) our GTA Transformer to predict a relative trajectory.
The decoder outputs a sequence of 16 action steps; all steps supervise training, while only the first 8
steps are executed at evaluation time. During training, we apply random cropping to a fixed resolution;
at evaluation, we use center cropping. In simulation, the observation size is 84× 84, whereas for real-
world experiments, we found this resolution insufficient for fine-grained manipulation and therefore
use 224× 224. We train with AdamW (Loshchilov & Hutter, 2017) and exponential moving average
(EMA). The hyperparameters for flow matching were based on Chisari et al. (2024): 10 integration
steps for training and testing, a position embedding scale of 20.0 (for time step encoding), a noise
scaling of 1.0, a linear flow schedule, an exponential scaling of 4.0, and a uniform SNR sampling
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(a) Threading (b) Piece Assembly (c) Transport

(d) Box cleanup (e) Drawer Cleanup (f) Tray Lift

Figure 7: The six simulation tasks from the DexMimicGen (Jiang et al., 2024) benchmark are shown,
with the top row ((a)-(c)) showing gripper-based tasks and the bottom row ((d)-(e)) illustrating
dexterous hand-based tasks.

(a) Coffee D2 (b) Stack Three D1

(c) Stack D1 (d) Hammer Cleanup D1

Figure 8: Viewpoint generalization experiments on four MimicGen tasks under perturbed camera
views.

scheme, and loss weights of 10 for end-effector rotation error, 10 for translation error, and 1 for
the gripper state error. For all baselines, we keep their original hyperparameters and only align the
number of training steps for a fair comparison. All runs use one GPU per experiment, executed on
compute clusters and workstations equipped with multiple high-performance consumer-grade GPUs.

F RAVEN WITH ABSOLUTE ACTION PREDICTION

In this section, we introduce a variation of RAVEN that employs a different action decoder to predict
actions in the absolute frame. We refer to this variant as RAVEN-abs. The action decoder in RAVEN-
abs follows the EquiBot (Yang et al., 2024) design: a 1D conditional UNet in which all linear layers
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Figure 9: Process of feeding geometric tokens from our encoder network to the Unet Decoder from
Equibot.

Table 9: Maximum success rates (%) on MimicGen Tasks with 100 demos.

Method Average Stack D1 Stack Three D1 Square D2 Threading D2 Coffee D2 3P Assembly D2

RAVEN 66 100 81 50 28 61 27
RAVEN-abs 65 100 77 47 31 63 41

H. Cleanup D1 M. Cleanup D1 Kitchen D1 N. Assembly D0 Pick Place D0 Coffee Prep. D1

RAVEN 73 53 85 74 73 73
RAVEN-abs 63 54 79 88 60 87

are made SO(3)-equivariant using Vector Neurons (Deng et al., 2021). Translational equivariance
is achieved through canonicalization, where a predicted offset vector is subtracted from the UNet
inputs and added back to the predicted action at the output. Adapting the encoder outputs of RAVEN,
a set of geometric tokens, to EquiBot’s UNet requires several preprocessing steps. First, each token
is decanonicalized by transforming it into the global frame, after which all tokens are pooled into a
single feature vector. The offset vector is then obtained by mean-pooling the point components of
this vector. The scalar components are used as scalar conditioning for the UNet, while the vector
components and the centered point components provide vector conditioning. This overall pipeline is
illustrated in Figure 9.

We conduct experiments comparing the absolute action decoding scheme with the originally proposed
relative decoding approach on MimicGen (Table 9) and DexMimicGen (Table 10) tasks, using
the same experimental settings as in the main paper. The results show that RAVEN-abs performs
comparably to RAVEN in single-arm manipulation tasks but underperforms in bimanual settings. This
gap is expected and can be attributed to the increased complexity of the bimanual action space. In
such settings, absolute trajectory representations may lead to larger discrepancies between actions.
For instance, when the two arms consistently move in opposite directions, their translation values
differ significantly. In contrast, relative trajectories remain more stable and consistent across arms,
potentially making them easier to model.

G FULL MIMICGEN RESULTS WITH STANDARD ERRORS

Table 11 shows the MimicGen benchmark results corresponding to Table 1, but with the standard
error included.

H FULL DEXMIMICGEN RESULTS WITH STANDARD ERRORS

Table 12 shows the DexMimicGen benchmark results corresponding to Table 2, but with the standard
error included.

I REAL WORLD EXPERIMENT DETAILS

Hardware Setup Figure 10 illustrates our real-world experimental setup. Two calibrated cameras
(one GoPro for the eye-in-hand view and one RealSense D455i for the agent-view) are used to capture
the scene, both aligned to a common global frame with their intrinsics and extrinsics recorded. Demos
are collected using the Gello teleoperation interface (Wu et al., 2024) within a 40cm × 40cm square
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Table 10: Maximum success rate (%) on DexMimicGen tasks with 50 demos.

Method Average Threading 3P Assembly Transport B. Cleanup D. Cleanup Tray Lift

RAVEN 82 63 69 76 98 97 90
RAVEN-abs 77 47 55 91 86 97 83

Table 11: We report maximum success rates (%) on MimicGen tasks with 100 demos, averaged over
three random seeds across different methods. Standard errors are indicated by ±.

Method Stack D1 Stack Three D1 Square D2 Threading D2 Coffee D2 Three Piece Assembly D2

RAVEN 100.0 ± 0.0 80.7 ± 1.2 50.0 ± 4.0 28.0 ± 2.0 60.7 ± 5.0 26.7 ± 4.2
RAVEN-abs 100.0 ± 0.0 76.7 ± 4.6 47.3 ± 6.1 31.3 ± 7.0 63.3 ± 3.1 40.7 ± 3.1
EquiDiffPo 93.3 ± 0.7 54.7 ± 5.2 25.3 ± 8.7 22.0 ± 1.2 60.0 ± 2.0 15.3 ± 1.8
DifPo(Pre) 96.7 ± 1.2 52.7 ± 3.1 22.0 ± 2.0 20.7 ± 1.2 52.7 ± 2.3 14.0 ± 5.3
DiffPo 76.0 ± 4.0 38.0 ± 0.0 8.0 ± 1.2 17.3 ± 1.8 44.0 ± 1.2 15.3 ± 1.8
ACT 34.7 ± 0.7 6.0 ± 2.3 6.0 ± 0.0 10.0 ± 1.2 19.3 ± 2.4 0.0 ± 0.0

Hammer Cleanup D1 Mug Cleanup D1 Kitchen D1 Nut Assembly D0 Pick Place D0 Coffee Preparation D1

RAVEN 72.7 ± 3.1 53.5 ± 2.3 84.7 ± 1.2 74.0 ± 5.3 73.0 ± 4.6 72.7 ± 4.2
RAVEN-abs 62.7 ± 1.2 54.0 ± 3.5 79.3 ± 4.2 87.7 ± 3.1 60.3 ± 3.1 87.3 ± 6.1
EquiDiffPo 65.3 ± 0.7 49.3 ± 0.7 67.3 ± 0.7 74.0 ± 1.2 41.7 ± 3.2 76.7 ± 0.7
DiffPo(Pre) 54.0 ± 2.0 46.7 ± 5.0 80.0 ± 2.0 71.0 ± 3.0 46.3 ± 4.7 65.3 ± 1.2
DiffPo 52.0 ± 1.2 42.7 ± 0.7 66.7 ± 2.4 54.7 ± 2.3 35.3 ± 2.2 65.3 ± 0.7
ACT 38.0 ± 4.2 23.3 ± 0.7 37.3 ± 3.5 42.3 ± 2.9 7.2 ± 0.9 32.0 ± 2.0

area, outlined in orange. At each timestep, we synchronously record visual observations together
with end-effector actions, including position, rotation, and gripper state.

Figure 10: The real-robot platform consists of a UR5 robot arm equipped with a GoPro for the
eye-in-hand view and an Intel RealSense D455i camera mounted on the left as the agent camera. The
Gello teleoperation interface is also shown on the left.

Task Specifications Figure 11 shows averaged visualizations across multiple initial state distribu-
tions for each task. In Banana Picking, the mug tree is translated randomly within the square area,
and its orientation is varied ±45◦ when the branch is aligned horizontally to the robot base square. In
Beans Scooping, the spoon is initialized with three discrete orientations, while the bean-filled bowl
and the pot are randomly placed within the square area. In Coffee Cleanup, the rag is hung on the mug
tree with the branch orientation randomized ±20◦. The coffee machine is randomly placed within
the square area, and its orientation is additionally perturbed by up to ±20◦ when positioned 45◦ off
perpendicular to the robot base square. In Box Cleanup, a screwdriver is randomly placed within the
square area, with its head pointing outward perpendicular to the robot base and perturbed by up to
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Table 12: We report maximum success rates (%) on DexMimicGen tasks with 50 and 100 demos,
averaged over three random seeds across different methods. Standard errors are indicated by ±.

Threading Piece Assembly Transport Avg (50 demos)
Method 50 100 50 100 50 100

RAVEN 63.3 ± 3.1 80.0 ± 2.0 69.3 ± 6.1 78.0 ± 7.2 76.0 ± 4.0 80.0 ± 6.0 82.2
RAVEN-abs 46.7 ± 1.2 75.3 ± 5.0 54.7 ± 2.3 76.0 ± 7.2 91.3 ± 3.1 82.0 ± 2.0 76.9
EquiDiffPo 28.7 ± 3.1 - 45.3 ± 4.6 - 62.6 ± 2.3 - 62.0
DiffPo (Pre) 25.3 ± 4.2 54.7 ± 3.1 50.0 ± 3.5 64.7 ± 8.3 80.7 ± 2.3 72.7 ± 9.9 65.3
DiffPo 20.0 ± 2.0 42.7 ± 4.2 42.7 ± 6.4 71.3 ± 6.4 78.0 ± 3.5 76.6 ± 3.1 59.8

Box Cleanup Drawer Cleanup Tray Lift Avg (100 demos)
Method 50 100 50 100 50 100

RAVEN 98.0 ± 0.0 96.7 ± 1.2 96.7 ± 1.2 99.3 ± 1.2 90.0 ± 6.9 91.3 ± 1.2 87.6
RAVEN-abs 88.0 ± 2.0 84.7 ± 1.2 97.3 ± 1.2 95.3 ± 2.3 83.3 ± 4.2 87.2 ± 2.3 83.4
EquiDiffPo 85.3 ± 4.2 - 94.0 ± 5.3 - 56.0 ± 7.2 - -
DiffPo (Pre) 85.3 ± 3.1 88.7 ± 5.8 96.0 ± 3.5 98.7 ± 1.2 54.7 ± 6.4 80.0 ± 7.2 76.6
DiffPo 84.0 ± 3.5 88.7 ± 3.1 91.3 ± 3.1 92.7 ± 2.3 42.7 ± 2.3 71.3 ± 6.1 73.9

(a) Banana Picking (b) Beans Scooping (c) Coffee Cleanup (d) Box Cleanup

Figure 11: Distributions of random initial states used in the four real-world tasks.

±60◦. We also visualize one episode for each task in Figure 12, where the subfigures illustrate the
key frames corresponding to critical action steps.

Progress and Subgoal Definitions In our evaluation, rather than using only a binary final outcome
(0 for failure and 1 for success), we also introduce a progress reward to better capture the policy’s
performance. Specifically, we define a sequence of key subgoals for each task, evenly distributing
weights across them such that the total sums to 1. The progress reward is then computed by
accumulating the weights of completed key subgoals:

• Banana Picking:

– Grasp and lift the banana
– Drop the banana into the transparent box

• Beans Scooping:

– Grasp the spoon
– Scoop the beans
– Transfer beans into the pot
– Place the spoon back into the bowl

• Coffee Cleanup:

– Grasp the rag from the mug tree
– Wipe the coffee machine
– Close the machine cover
– Press the handle to lock the cover

• Box Cleanup:
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– Remove the box cover
– Place the screwdriver into the box
– Put the cover back on

Full Real-world Results Table 13 reports the full results of the four real-world experiments with
the additional absolution action representation variant, including subgoal-level success rate (%),
average progress reward (%), and overall task completion rate (%).

Discussion of RAVEN’s Failure Modes In the beans scooping task, the most common failure was
the robot getting stuck repeating the same dropping action sequence (e.g. tilting scooper) even though
the beans were dropped already. In the coffee cleanup task, the failures were either getting stuck in the
wiping stage or inaccurately pressing the handle when closing the lid. The demonstrations included
three wiping motions in a row, so it makes sense that the robot would get stuck here since it has
limited observation history (two frames) and more history may be needed to contextualize itself. For
the box cleanup task, the robot would often make an unsuccessful grasp attempt on the screwdriver.
This is to be expected since it requires a precise grasp pose and there was a lot of variation in its
initial placement across environment resets.

Table 13: Subgoal-level success rate (%), average progress reward (%), and overall task completion
rate (%) across four real-world tasks.

Subgoal1 Subgoal2 Subgoal3 Subgoal4 Avg. Progress Reward Overall Completion

Banana Picking

DiffPo (Pre) 55 50 N/A N/A 53 50
RAVEN-abs 95 90 N/A N/A 93 90
RAVEN 100 100 N/A N/A 100 100

Beans Scooping

DiffPo (Pre) 85 15 0 20 30 0
RAVEN-abs 100 85 65 80 83 55
RAVEN 100 75 50 55 70 45

Coffee Cleanup

DiffPo (Pre) 100 90 20 15 56 15
RAVEN-abs 100 95 95 80 93 80
RAVEN 75 75 80 70 75 45

Box Cleanup

DiffPo (Pre) 65 35 30 N/A 43 30
RAVEN-abs 100 65 65 N/A 77 65
RAVEN 100 70 60 N/A 77 60
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(a) Banana Picking

(b) Beans Scooping
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(c) Coffee Cleanup

(d) Box Cleanup

Figure 12: Visualization of one episode for (a) Banana Picking, (b) Beans Scooping, (c) Coffee
Cleanup, and (d) Box Cleanup. Each subfigure illustrates the trajectory of key action steps.
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