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Abstract

Step-by-step reasoning is crucial for solving001
complex visual tasks, yet existing approaches002
lack a comprehensive framework for evaluat-003
ing this capability and do not emphasize step-004
wise problem-solving. To this end, we pro-005
pose a comprehensive framework for advancing006
multi-step visual reasoning in large multimodal007
models (LMMs) through three key contribu-008
tions. First, we introduce a Visual Reasoning009
Chain Benchmark (VRC-Bench), a comprehen-010
sive benchmark for multi-step visual reasoning,011
covering eight diverse categories and over 4k012
verified reasoning steps to rigorously evaluate013
LLMs’ ability to reason accurately and inter-014
pretably across multiple steps. Second, we pro-015
pose a fine-grained visual reasoning metric that016
evaluates correctness and logical coherence at017
each step, providing deeper insights beyond tra-018
ditional accuracy metrics. Third, we introduce019
LlamaV-o1, a state-of-the-art multimodal step-020
by-step reasoning model trained using a multi-021
step curriculum learning approach. LlamaV-o1022
is optimized for structured step-by-step reason-023
ing Our LlamaV-o1 obtains a significant gain024
of around 9% averaged across six benchmarks025
compared to the baseline, thereby demonstrat-026
ing the impact of introducing the proposed step-027
by-step visual reasoning. Further, it outper-028
forms the recent Llava-CoT with an absolute029
gain of 3.8% averaged across six benchmarks,030
while being 5× faster during inference scaling.031
On the VRC-Bench, LlamaV-o1 achieves the032
best performance among all open-source rea-033
soning LMMs in terms of both final accuracy034
and steps. Our benchmark, model, and code035
will be publicly released.036

1 Introduction037

Large Language Models (LLMs) are designed to038

understand and generate text, enabling them to han-039

dle a wide range of tasks such as translation (Brown040

et al., 2020; Zhang et al., 2022; Chowdhery et al.,041

2023; Chen et al., 2025; Touvron et al., 2023a;042

Lu et al., 2024d), summarization (Goyal et al., 043

2022; Zhang et al., 2024b; Wang et al., 2023b), and 044

question-answering (Touvron et al., 2023a; Le Scao 045

et al., 2023; Touvron et al., 2023b). The integration 046

of visual data through Large Multimodal Models 047

(LMMs) extends capabilities further by combining 048

text, images, or videos, allowing for more com- 049

plex multimodal tasks like image captioning, vi- 050

sual question answering, and video analysis. To 051

effectively solve these tasks, visual reasoning is 052

essential for LMMs to process and connect diverse 053

information, ensuring logical coherence and se- 054

quential problem-solving. The ability to reason 055

across multiple modalities is crucial to addressing 056

complex real-world problems. 057

Step-by-step reasoning helps LLMs break down 058

complex tasks into manageable steps, improving 059

accuracy and interpretability by ensuring logical 060

consistency. This approach mirrors human cogni- 061

tion, enabling models to track their thought pro- 062

cesses effectively. Prior works have shown that 063

prompting or fine-tuning LLMs to generate step- 064

wise rationales enhances reasoning performance 065

(Lampinen et al., 2022; Wei et al., 2022; Wang 066

et al., 2023a). However, existing methods strug- 067

gle with multimodal step-by-step reasoning (see 068

Fig. 1). Current visual reasoning benchmarks fo- 069

cus mainly on final-task accuracy, overlooking the 070

quality of intermediate reasoning steps. Moreover, 071

the absence of standardized evaluation further lim- 072

its model comparisons in a fair setting. 073

To address these issues, we introduce Visual 074

Reasoning-Chain (VRC-Bench), a comprehensive 075

benchmark for multi-step visual reasoning. It cov- 076

ers eight diverse categories, including Visual Rea- 077

soning, Math & Logic, Social & Cultural Context, 078

Medical Imaging, Charts & Diagrams, OCR & 079

Documents, Complex Perception, and Scientific 080

Reasoning. With over 1,000 curated samples and 081

4,173 manually verified reasoning steps, our VRC- 082

Bench strives for accurate and reliable step-by-step 083
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Which one picture follows the same 
pattern or rule established by the previous 
pictures? 
choices : 
A) Picture A , 
B) Picture B , 
C) Picture C , 
D) Picture D

Reasoning Steps: 
Step 1: Analyze the pattern in the first group 
of images. Action 1: The first row contains 
images that have a circular shape with 
additional features inside, such as a sun 
pattern, a geometric star shape, and a smiley 
face.', 'Step 2: Determine what feature is 
consistent across all the images in the first 
group. Action 2: Each image maintains a 
central circular shape with symmetrical, 
repeated internal designs or symbols.', 'Step 
3: Determine the rule across the shapes 
Action 3: The second sequence is using the 
shapes of the first sequence and adding one 
shape. ', 'Step 4: Compare the options in the 
second group to the established pattern. 
Action 4: The last shape in the first sequence 
is two smiley faces, and Option D is showing 
three smiley faces.’
Final Answer:
D) Picture D follows the same pattern or rule 
established by the previous pictures.

LlamaV-o1 (Ours)

Reasoning Steps: 
Let me solve this step by step.
Step 1: Analyze the first row of images. 
Action 1: In the first box, there are three 
symbols:
Step 2: Analyze the second row (incomplete 
pattern). Action 2: There are two symbols 
followed by a question mark:
Step 3: Identify the pattern from the first row 
to the second row. Action 3: Looking at how 
the first row transitions to the second row:
Step 4: Evaluate each option against the 
pattern Action 4: Looking at options A 
through D:
Step 5: Compare pattern requirements with 
options.  Action 5: The answer should: 
Maintain a star or similar geometric theme.
Final Answer:
None of the given options A, B, C, or D 
follows the established pattern of 
transitioning from complex sun-like shapes 
to simpler star-based designs.

Claude-3.5-sonnet

Reasoning Steps: 
Step 1: Analyze the first row. Action 1: The 
first row shows a progression of shapes. It 
starts with a sun-like shape, then an octagon-
like shape. 
Step 2: Analyze the second row. Action 2: 
The second row starts with a smaller version 
of the sun-like shape from the first row. Next 
to it is a bigger version of that same sun-like 
shape. This suggests a size progression. The 
last shape is a star, taking the concept of 
points than the previous two. 
Step 3: Determine the next shape in the 
pattern. Action 3: Following the logic of the 
first row, after a pointed shape (the star) 
should come a larger version of it, 
maintaining the pattern from the second row. 
Step 4: Examine the options. Action 4: None 
of the provided options (A, B, C, or D) depict 
a star. 
Final Answer:
None of the provided choices matched.

Gemini-1.5-FlashQuestion

Figure 1: Comparison of step-by-step reasoning capabilities of our LlamaV-o1 with closed-source Gemini-1.5-Flash
and Claude-3.5-Sonnet on a pattern recognition task from VRC-Bench. Claude-3.5-Sonnet incorrectly concludes
"none of the options," with reasoning misalignments (in red). Gemini-1.5-Flash lacks logical coherence (in red).
Our LlamaV-o1 provides systematic and accurate reasoning, correctly identifying option D as following the pattern.
Additional results are presented in Appendix Fig. 5.

evaluation. Beyond end-task accuracy, we propose084

a new metric that assesses reasoning quality at each085

step, focusing on correctness and logical coher-086

ence. Lastly, we enhance model training by inte-087

grating Beam Search with Multi-Step Curriculum088

Learning, allowing models to gradually acquire089

skills—from basic summarization and question-090

driven captioning to complex multi-step reasoning.091

Our model, named LlamaV-o1, trained with this092

structured approach achieves state-of-the-art per-093

formance (see Fig. 1), surpassing existing open-094

source models across multiple evaluation metrics.095

In summary, our main contributions are as follows:096

• Step-by-Step Visual Reasoning Benchmark:097

We introduce VRC-Bench, a comprehensive098

benchmark for multimodal multi-step reason-099

ing. It spans eight diverse categories (e.g.,100

Visual Reasoning, Math & Logic, Medical101

Imaging, Scientific Reasoning) with 1k chal-102

lenging samples and 4k+ manually verified103

reasoning steps for robust evaluation.104

• Novel Evaluation Metric: We propose a met-105

ric that assesses the reasoning quality at the106

level of individual steps, emphasizing both107

correctness and logical coherence.108

• Combined Multi-Step Curriculum Learning109

and Beam Search Approach: We propose110

LlamaV-o1, a multimodal step-by-step rea-111

soning model that integrates curriculum learn-112

ing for structured skill acquisition with113

Beam Search for optimized reasoning paths.114

LlamaV-o1 outperforms the recent Llava-115

CoT (Xu et al., 2024a) with a 3.8% absolute116

gain across six benchmarks, while being 5× 117

faster in inference. 118

2 Visual Reasoning Chain Benchmark 119

To facilitate a thorough assessment of the reason- 120

ing capabilities in complex scenarios, we intro- 121

duce a step-by-step visual reasoning chain bench- 122

mark (VRC-Bench). VRC-Bench strives to assess 123

both the logical progression of reasoning chains 124

and the accuracy of the final outcomes generated 125

by LMMs. VRC-Bench includes a diverse range 126

of topics, such as science, mathematics, medical 127

knowledge, social sciences, and data interpretation, 128

ensuring that the proposed evaluation benchmark 129

captures diverse aspects of visual reasoning. 130

2.1 Benchmark Creation 131

Benchmark Domains: To ensure a comprehensive 132

assessment of reasoning capabilities, our step-by- 133

step visual reasoning benchmark (VRC-Bench) in- 134

corporates samples from different datasets across 135

various domains. Fig. 2 shows example questions 136

and answers included in our benchmark. The data 137

distribution is shown in Fig. 3. Based on diverse 138

data samples, we generate step-by-step visual rea- 139

soning steps using a semi-automated annotation 140

pipeline. Next, we outline the main domains cov- 141

ered in the benchmark and then present the annota- 142

tion process. 143

Mathematical and Logical Reasoning: This cat- 144

egory includes datasets focus on mathematical and 145

logical tasks. MathVista (Lu et al., 2024a) pro- 146

vides a variety of mathematical problems, while 147

DynaMath (Zou et al., 2024) offers dynamic mathe- 148

matical challenges. Additionally, ChartQA (Masry 149
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Question :
As shown in the figure, points A, O, and B are collinear, 
and DO is perpendicular to CO. If ∠BOC = 67°, what is 
∠AOD?
Reasoning: 
• Step 1: Use the fact that ∠AOC and ∠BOC form a 

linear pair.
• Action 1: ∠AOC + ∠COB = 180°
• Step 2: Calculate ∠COA using ∠BOC = 67°
• Action 2: ∠AOC = 180° - 67° = 113°
• Step 3: ∠COD = 90°Action 3: Use this to find ∠ AOD
• Step 4: Determine ∠AOD given ∠AOC = 113 °,∠ COD 

= 90 °
• Action 4: Since ∠AOD = ∠AOC - ∠DOC, calculate 
∠AOD = 113 °- 90 ° = 23 °

Final Answer:
23 °

Math and logic reasoning

Question :
Complete the statement.
Ethane is __. 
Choices: (A) an elementary substance 
(B) a compound
Reasoning: 
• Step 1: Identify the structure depicted in the image. 

Action 1: Count the different elements in molecular.
• Step 2: Determine if the substance is a compound or 

an elementary substance. Action 2: Recognize that 
ethane (C₂H₆) consists of two different types of atoms: 
carbon (C) and hydrogen (H).

• Step 3: Classify substance based on its atomic 
composition. Action 3: According to chemistry 
definitions, a compound is a substance made from 
two or more different elements that are chemically 
bonded together.

Final Answer:
B) a Compound

Scientific reasoning

Question :
What percentage of global non-renewable energy 
reserves did conventional natural gas account for in 
2018?

Reasoning: 
• Step 1: Identify the section related to conventional 

natural gas in the pie chart.
• Action 1: Locate the segment labeled "Conventional 

natural gas”.
• Step 2: Determine the percentage contribution of 

conventional natural gas
• Action 2: Read the percentage labeled alongside the 

"Conventional natural gas" segment.

Final Answer:
Conventional natural gas accounted for 17.8% of global 
non-renewable energy reserves in 2018.

Chart and Diagram Understanding

Question :
Which figure is a reflection of
the object?
Reasoning: 
• Step 1: Analyze the original object. Action 1: Observe 

the orientation and arrangement of the blocks in the 
original object. Notice which parts are protruding.

• Step 2: Determine the axis of reflection. Action 2: 
Visualize a vertical reflection over the left or right side 
of the image to understand how the shape transforms.

• Step 3: Compare each option with the reflected image. 
Action 3: Compare each of the options A, B, C, and D 
to see which one matches the reflection of the original 
shape.

• Step 4: Check the alignment and orientation of the 
blocks. Action 4: Focus on specific parts of the 
structure, such as the top and bottom blocks and how 
they align after reflection.

Final Answer:
B)

Complex Visual Perception

Question :
What kind of tissue does this
image depict? Choices: 
A) Cardiac muscle 
B) Skeletal muscle 
C) C) Cartilage
Reasoning: 
• Step 1: Identify the characteristics of tissue in image. 
• Action 1: Observe the striations, elongated fibers, and 

any presence of intercalated discs or nuclei alignment.
• Step 2: Compare these characteristics to the tissue 

types.
• Action 2: Cardiac muscle tissue typically has striations 

and intercalated discs. Skeletal muscle tissue has 
striations and multiple peripheral nuclei. Cartilage is 
not striated.

• Step 3: Match the observed characteristics with given 
options.

• Action 3: The image shows striations and elongated 
fibers typical of muscle tissue, specifically cardiac 
muscle, due to the presence of intercalated discs.

Final Answer:
A) Cardiac muscle

Medical Imaging (Basic Medical Science)

Question :
What sport is being played in the image?

Reasoning: 
• Step 1: Identify the key elements of the sport 

illustrated.
• Action 1: The image shows people playing in the mud, 

and a goal post resembles soccer.
• Step 2: Identify the sport being played.
• Action 2: The sport being played is known as Swamp 

football.

Final Answer:
The sport being played is known 
as Swamp football.

Social and Cultural Contexts

Question :
Who painted this subject matter from 
16th-17th Century?  Choices: 
A) Peter Paul Rubens 1675 
B) Caravaggio 1635 
C) Artemisia Gentileschi 1612-13 
D) Francisco de Zurbarán 1614
Reasoning: 
• Step 1: Identify the depiction in the image. 
• Action 1: This painting depicts "Judith Slaying 

Holofernes," a scene often represented by artists like 
Caravaggio and Artemisia Gentileschi.

• Step 2: Match the painting style and date to an artist. 
• Action 2: This specific depiction is known for its 

dramatic intensity and style that aligns with Artemisia 
Gentileschi's work from the Baroque period.

• Step 3: Verify the time period of each artist's work. 
• Action 3: Artemisia Gentileschi painted "Judith 

Slaying Holofernes" around 1612-13, which fits the 
style in the image.

Final Answer:
C) Artemisia Gentileschi

Visual reasoning

Question :
What is the name of the choco fills 
advertised?

Reasoning: 
• Step 1: Locate the advertisement for choco fills.
• Action 1: Examine the image to find the section where 

choco fills are advertised. Look for any visual or textual 
cues that indicate a choco fills product.

• Step 2: Identify the brand name in the advertisement.
• Action 2: Once the choco fills advertisement is located, 

read the text to find the brand name associated with 
the product. Look for prominent text that typically 
indicates the product name.

• Step 3: Confirm the product name.
• Action 3: Verify that the identified name is indeed the 

product name by checking for any additional context 
or branding elements that support this identification.

Final Answer:
Dark fantasy

OCR and Document Understanding

Figure 2: Our VRC-Bench covers diverse step-by-step visual reasoning tasks across multiple domains. It includes
math, science, visual perception, art, medical imaging, and document understanding. Examples include angle
calculation in geometry, molecular classification in chemistry, chart interpretation, artistic recognition, and medical
diagnosis. Each task emphasizes logical inference, ensuring a comprehensive evaluation of multimodal reasoning.

et al., 2022) encompasses tasks related to chart150

and diagram comprehension, allowing evaluation151

of visual reasoning in logical contexts. Scientific152

Reasoning: For scientific reasoning, we collect153

samples from Science-QA (Lu et al., 2022) to test154

the model’s ability to answer questions based on155

scientific knowledge and reasoning. Furthermore,156

MMMU-Medical (Yue et al., 2024), focuses on157

medical imaging tasks assessing the model’s ca-158

pability in interpreting complex multimodal med-159

ical data. Cultural and Social Understanding: To160

assess the model’s ability to recognize and inter-161

pret diverse cultural scenarios, we include samples162

from ALM-Bench (Vayani et al., 2024), which is163

designed to assess understanding of the social and164

cultural context. Other Visual Reasoning Scenar-165

ios: We further include samples from other visual166

reasoning datasets. LogicVista (Xiao et al., 2024)167

and Blink-IQ (Fu et al., 2024) focus on complex168

visual perception, providing challenges that require169

the model to analyze and interpret intricate visual170

information. Doc-VQA (Mathew et al., 2020) tar-171

gets OCR and document understanding, evaluat-172

ing the model’s ability to extract information from173

text-based documents. Lastly, MMMU (Yue et al.,174

2024) and BLINK (Fu et al., 2024) (Art Split) con-175

tribute to visual reasoning tasks.176

Semi-Automatic Step-by-Step Reasoning Gen- 177

eration: We adopt a semi-automatic approach to 178

generate step-by-step visual reasoning responses. 179

We begin by using the GPT-4o model to create de- 180

tailed reasoning steps and answers for the various 181

questions in our dataset. This involves crafting 182

specific prompts to guide the model in producing 183

detailed logical reasoning. Additional details are 184

presented in Appendix (Section. D.1). 185

Manual Verification: Since the aforementioned 186

automated responses via GPT-4o are not always 187

reliable, we perform manual verification to ensure 188

that all reasoning steps are accurate and correct. In 189

this stage, a team of verifiers carefully reviewed 190

the generated reasoning chains and final answers, 191

making necessary adjustments to enhance clarity 192

and correctness. We ask the verifiers to add miss- 193

ing reasoning steps when necessary, and we drop 194

examples with less than three reasoning steps after 195

the verification except some samples from Math- 196

Vista as they can be addressed with 2 steps. Over 197

25% of the data was corrected during this manual 198

verification resulting in more than 1,000 samples 199

and carefully verified 4,173 reasoning steps. The 200

manual verification stage is essential for establish- 201

ing a trustworthy ground-truth for the benchmark. 202

Next, we discuss the evaluation framework. 203
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Figure 3: Overview of VRC-Bench and model performance comparison. Left: VRC-Bench spans multiple
domains including, math, logic, science, visual perception, medical imaging, cultural understanding, OCR, and
chart interpretation. It strives to evaluate LMMs on real-world multimodal reasoning scenarios. Right: A bar
chart compares state-of-the-art models (GPT-4o, Gemini-2.0-Flash, Claude-3.5-Sonnet, Llava-CoT) on final answer
accuracy and step-wise reasoning quality. Our LlamaV-o1 performs favorably against GPT-4o-mini, Gemini-1.5-
Flash, and Llava-CoT, demonstrating superior accuracy and logical coherence.

2.2 Evaluation Framework204

Previous methods for evaluating reasoning chains205

(Golovneva et al., 2023; Prasad et al., 2023) use206

reference-free approaches, offering flexibility but207

leading to inaccuracies. A minor error can dis-208

rupt the reasoning chain while still receiving a high209

score, failing to reflect true reasoning quality. We210

address this by incorporating ground-truth refer-211

ences, ensuring accurate and reliable evaluation.212

Evaluation Metric: To improve reasoning evalu-213

ation, we use GPT-4o (, 2024) to compare model214

predictions against ground-truth. This allows us215

to evaluate reasoning quality using specific met-216

rics that focus on different aspects of alignment217

and accuracy. Our metric builds on ROSCOE218

(Golovneva et al., 2023), introducing a reference-219

based approach. We assess reasoning quality us-220

ing different measures (Appendix Table 5), includ-221

ing Faithfulness-Step (scoring alignment from 1 to222

10) and Informativeness-Step (ensuring all critical223

information is included). Attributes like Halluci-224

nation and Redundancy help detect irrelevant or225

repetitive reasoning. The final score averages these226

factors for a comprehensive evaluation. Additional227

details including, the scoring system prompt are228

presented in Appendix (Section D.2).229

3 Step-by-Step Reasoning LMM230

Our proposed approach, named LlamaV-o1, aims231

at multimodal step-by-step reasoning in LMMs by232

combining curriculum learning with efficient in-233

ference. We train models progressively starting 234

with simpler tasks like approach summarization 235

and question-based captioning before advancing 236

to detailed multi-step reasoning, thereby improv- 237

ing logical coherence and generalization. To opti- 238

mize inference, we employ a parallel Beam Search 239

strategy generating multiple reasoning paths and 240

selecting the best one. This ensures high-quality 241

outputs with lower computational costs, achieving 242

constant scaling for greater efficiency compared to 243

traditional methods. 244

3.1 Curriculum Learning for LMMs 245

LMMs excel at processing diverse data types like 246

text, images, and video but often struggle with 247

step-by-step reasoning. Curriculum learning ad- 248

dresses this challenge by training models progres- 249

sively, starting with simpler tasks before advanc- 250

ing to complex reasoning. Inspired by human 251

learning, this method has shown improvements 252

in multimodal tasks like Visual Question Answer- 253

ing (VQA) (Kembhavi et al., 2017) and captioning 254

(Johnson et al., 2016). 255

As discussed earlier, existing reasoning LMM 256

works such as, LLava-CoT (Xu et al., 2024b) does 257

not explicitly provide step-by-step reasoning out- 258

puts. Instead, it directly provides only the final an- 259

swer in a structured format to mimic the reasoning. 260

We note that directly introducing step-by-step rea- 261

soning into the LMM leads to inferior performance 262

likely due to lack of foundational reasoning compo- 263

nents (e.g., summary generation, image captioning 264
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relevant to the input question etc.). In order to ex-265

plicitly generate step-by-step reasoning in LMMs,266

we employ a curriculum learning-based strategy.267

To this end, we design a two-stage curriculum learn-268

ing framework. In Stage 1, the model learns the269

foundational components of reasoning—first gen-270

erating a summary of the approach to solve the271

problem, followed by an image caption relevant272

to the input question. These two steps in stage 1273

help the model build structured understanding be-274

fore engaging in complex reasoning. Since summa-275

rization and captioning are comparatively simpler276

tasks, this stage aid the model develop strong con-277

textual grounding before moving to reasoning. In278

Stage 2, the model progresses to multi-step reason-279

ing, where it performs all four interdependent steps:280

generate the summary, produce the image caption,281

construct reasoning steps using these components,282

and finally derive the correct answer. This stage283

reinforces logical coherence and reasoning consis-284

tency while emphasizing accurate predictions.285

3.2 Multi-Step Chain-of-Thought Reasoning286

As discussed above, our two-stage curriculum287

learning framework comprises multi-step (four)288

reasoning. Unlike single-step reasoning, multi-step289

chain-of-thought reasoning breaks problems into290

smaller manageable steps. This mirrors human291

problem-solving, where reasoning unfolds step by292

step (Kahneman, 2011; Prystawski et al., 2023).293

For instance, answering an image-related question294

likely involves identifying objects, understanding295

relationships, and synthesizing information. By296

integrating multi-step reasoning, we argue that297

LMMs become more interpretable and closer to298

human-like reasoning.299

Our multi-step chain-of-thought (CoT) reason-300

ing consists of the following steps. Task Under-301

standing: The model begins by understanding the302

question and the context. Task Summarization: The303

next step involves generating a summary of the vi-304

sual data to ensure the model has a holistic under-305

standing. This stage prepares the model to focus306

on relevant action items to be taken to get the final307

answer. Detailed Caption Generation: To narrow308

the scope further, the model generates a detailed309

caption, which identifies specific labels and their310

corresponding values in the input image. This step311

ensures that the model accurately interprets the vi-312

sual elements.Logical Reasoning: The model then313

formulates a logical reasoning process to locate314

and interpret the required data. This reasoning step315

breaks the task into sub-goals, ensuring a system- 316

atic approach. Final Answer Generation: Finally, 317

the model outputs the final answer based on the 318

reasoning process and the extracted context. 319

3.2.1 Data Preparation and Model Training 320

To implement our curriculum learning strategy ef- 321

fectively, we divide the model training process into 322

two stages, each designed to incrementally enhance 323

the model’s reasoning capabilities while ensuring 324

a robust understanding of multimodal inputs. This 325

structured approach allows the model to acquire 326

foundational reasoning skills in the first stage and 327

progressively refines its ability to provide detailed, 328

step-by-step answers in the second stage. 329

Training Stage 1: Summarization and Caption 330

Generation: In the first stage, the model learns two 331

key tasks: (1) summarizing the approach needed 332

to answer a question and (2) generating a detailed 333

caption highlighting relevant aspects of the input 334

(e.g., visual elements in an image). Training data 335

is derived from 18K Cap-QA samples from PixMo 336

(Deitke et al., 2024) and 57K Geo170K samples 337

from G-LLaVA (Gao et al., 2023), ensuring expo- 338

sure to grounded captions and reasoning steps. This 339

stage helps the model contextualize input data and 340

outline a structured reasoning plan before solving 341

multi-step tasks in the curriculum learning manner. 342

Training Stage 2: Detailed Reasoning and Fi- 343

nal Answer Generation: In the second stage, 344

the model builds upon the foundation estab- 345

lished in Stage 1. Here, the model is trained 346

not only to generate the summary and caption 347

but also to provide detailed reasoning followed 348

by final answer based on these components. 349

Training data comprises of 99K structured sam- 350

ples from Llava-CoT (Xu et al., 2024a), cov- 351

ering diverse domains like General VQA (e.g., 352

ShareGPT4V (Chen et al., 2025), ChartQA (Masry 353

et al., 2022), A-OKVQA (Schwenk et al., 2022), 354

DocVQA (Mathew et al., 2021), PISC (Junnan 355

et al., 2017), CLEVR (Johnson et al., 2017)) and 356

Science-Targeted VQA (e.g., GeoQA+ (Cao and 357

Xiao, 2022), AI2D (Kembhavi et al., 2016a), Sci- 358

enceQA (Lu et al., 2022) and CLEVR-Math (Lind- 359

ström and Abraham, 2022)). Each sample includes 360

a summary, caption, detailed reasoning, and final 361

answer to form a structured learning path. The 362

model is trained using curriculum learning, where 363

it progressively develops reasoning skills in two 364

stages. In Stage 1, the model focuses on under- 365

standing the problem structure and generating con- 366
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textual descriptions through summaries and cap-367

tions. In Stage 2, it engages in multi-step reasoning,368

where each step builds on the previous one—using369

the summary and caption to generate reasoning370

steps, and then leveraging those reasoning steps to371

derive the final answer. This incremental learning372

approach systematically integrates information for373

structured, step-by-step reasoning.374

3.2.2 Optimizing Inference Efficiency375

Efficient inference is crucial for real-world deploy-376

ment of large multimodal models. To improve both377

speed and reasoning quality we adopt Beam Search,378

which helps to enhance inference efficiency along379

with high output quality (Meister et al., 2020).380

Simplified Output Design: Unlike LLava-381

CoT (Xu et al., 2024b), our approach does not382

require a highly structured output format. This383

flexibility simplifies the reasoning process, allow-384

ing the model to focus on generating high-quality385

outputs without the overhead of rigid structural386

constraints. This design choice makes our method387

more adaptable to a wide range of reasoning sce-388

narios, improving generalization across tasks.389

Improved Efficiency with Beam Search: The390

Beam Search technique allows us to generate mul-391

tiple reasoning paths in parallel and select the most392

optimal one. This approach enhances both the qual-393

ity and consistency of the model’s outputs. By394

evaluating multiple candidates and selecting the395

best, we ensure that the final answer is logical and396

robust. Our approach also achieves significant com-397

putational efficiency with O(1) inference time scal-398

ing, making it more scalable than LLava-CoT’s399

O(n) complexity in terms of model calls for larger400

datasets and complex reasoning tasks.401

4 Experiments402

In this section, we extensively evaluate our model403

performance trained with curriculum learning. We404

employ Llama-3.2-11B-Vision-Instruct (Meta AI,405

2024) as the baseline. Training is conducted on sub-406

set of PixMo, G-LLaVA and LLaVA-CoT-100k, al-407

lowing a structured progression from basic summa-408

rization to complex multi-step reasoning. We eval-409

uate the performance on the proposed reasoning410

benchmark (VRC-Bench), designed for multi-step411

chain-of-thought evaluation in multimodal contexts.412

Additionally, we present performance comparison413

on six multimodal benchmarks from LLaVA-CoT,414

covering visual, mathematical, and scientific visual415

reasoning.416

4.1 Experimental Setup 417

We fine-tune the baseline Llama-3.2-11B-Vision- 418

Instruct (Meta AI, 2024) using llama-recipes frame- 419

work with Supervised Fine-Tuning (SFT). Starting 420

with simpler tasks on a subset of PixMo and G- 421

LLaVA in Stage 1, where model learns founda- 422

tional reasoning skills such as approach summary 423

and caption. In Stage 2, training progresses to 424

more complex LLaVA-CoT-100k dataset. We use 425

Llama-3.2-11B-Vision-Instruct (Meta AI, 2024) as 426

the base model for its strong multimodal reasoning 427

capabilities. The model undergoes full-parameter 428

optimization. Training is conducted on 8 NVIDIA 429

A100 (80GB) GPUs. Additional training details 430

are presented in the Appendix (Section D). 431

We evaluate our model on the proposed reason- 432

ing benchmark (VRC-Bench) and six established 433

multimodal benchmarks: MMStar (Chen et al., 434

2024a), MMBench (Liu et al., 2025), MMVet (Yu 435

et al., 2023), MathVista (Lu et al., 2024b), AI2D 436

(Kembhavi et al., 2016b), and Hallusion (Guan 437

et al., 2024). These benchmarks assess visual ques- 438

tion answering, mathematical and scientific reason- 439

ing, and handling hallucinations and visual illu- 440

sions. For step-by-step reasoning evaluation, we 441

use a fuzzy evaluation strategy with GPT-4o as 442

the judge, ensuring robust assessments. To ensure 443

fair and reproducible performance comparison, we 444

adopt the VLMEvalKit (Duan et al., 2024), as used 445

in the LLaVA-CoT. 446

4.2 Results 447

Our model demonstrates significant improvements 448

over existing methods on our proposed reasoning 449

benchmark, as shown in Table 1. The evaluation 450

compares final answer accuracy and step-by-step 451

reasoning performance with state-of-the-art mod- 452

els. Models like GPT-4o (, 2024), Claude-3.5- 453

Sonnet (cla, 2024), Gemini-2.0-Flash and Gemini- 454

1.5-Pro (Reid et al., 2024) exhibit strong reason- 455

ing capabilities. Our approach achieves better fi- 456

nal answer accuracy (56.49) compared to GPT-4o- 457

mini (OpenAI, 2024) and other open-source mod- 458

els, such as Llama-3.2-Vision (Meta AI, 2024), 459

Mulberry (Yao et al., 2024a) and LLava-CoT (Xu 460

et al., 2024a) as well as competitive step scores 461

(68.93%). This highlights the model’s ability to 462

generate accurate outputs while maintaining logi- 463

cal coherence in multi-step tasks. 464

Table 2 summarizes the performance compar- 465

ison on six established benchmarks: MMStar, 466
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Table 1: Comparison of models based on Final Answer accuracy and Reasoning Steps performance on the proposed
VRC-Bench. The best results in each case (closed-source and open-source) are in bold. Our LlamaV-o1 achieves
superior performance compared to its open-source counterpart (Llava-CoT) while also being competitive against the
closed-source models.

Close-Source Open-Source
Model GPT-4o Claude-3.5 Gemini-2.0 Gemini-1.5 Gemini-1.5 GPT-4o Llama-3.2 Mulberry Llava-CoT LlamaV-o1

Sonnet Flash Pro Flash mini Vision (Ours)

Final Answer 59.28 61.35 61.16 61.35 54.99 56.39 48.40 51.90 54.09 56.49
Steps 76.68 72.12 74.08 72.12 71.86 74.05 58.37 63.86 66.21 68.93

Table 2: Performance comparison on six benchmarks (MMStar (Chen et al., 2024a), MMBench (Liu et al., 2025),
MMVet (Yu et al., 2023), MathVista (Lu et al., 2024b), AI2D (Kembhavi et al., 2016b), Hallusion (Guan et al.,
2024)) including average scores. GPT-4o leads among closed-source models (71.8%), while our LlamaV-o1 achieves
the best open-source performance (67.33%), surpassing Llava-CoT by 3.8%.

Model MMStar MMBench MMVet MathVista AI2D Hallusion Average

Close-Source
GPT-4o-0806 (, 2024) 66.0 82.4 80.8 62.7 84.7 54.2 71.8
Claude3.5-Sonnet-0620 (cla, 2024) 64.2 75.4 68.7 61.6 80.2 49.9 66.7
Gemini-1.5-Pro (Reid et al., 2024) 56.4 71.5 71.3 57.7 79.1 45.6 63.6
GPT-4o-mini-0718 (OpenAI, 2024) 54.9 76.9 74.6 52.4 77.8 46.1 63.8

Open-Source
InternVL2-8B (Chen et al., 2024c) 62.50 77.40 56.90 58.30 83.60 45.00 64.00
Ovis1.5-Gemma2-9B (Lu et al., 2024c) 58.70 76.30 50.90 65.60 84.50 48.20 64.00
MiniCPM-V2.6-8B (Yao et al., 2024c) 57.10 75.70 56.30 60.60 82.10 48.10 63.30
Llama-3.2-90B-Vision-Inst (Meta AI, 2024) 51.10 76.80 74.10 58.30 69.50 44.10 62.30
VILA-1.5-40B (Liu et al., 2024) 53.20 75.30 44.40 49.50 77.80 40.90 56.90
Mulberry-7B (Yao et al., 2024a) 61.30 75.34 43.90 57.49 78.95 54.10 62.78
Llava-CoT (Xu et al., 2024a) 57.60 75.00 60.30 54.80 85.70 47.80 63.50

Our Models
Llama-3.2-11B-Vision-Inst (Meta AI, 2024) 49.80 65.80 57.60 48.60 77.30 40.30 56.90
LlamaV-o1 (Ours) 59.53 79.89 65.40 54.40 81.24 63.51 67.33

MMBench, MMVet, MathVista, AI2D, and Hal-467

lusionBench. Among open-source models, our468

method achieves the highest average score of469

67.33%, surpassing recent models like LLaVA-CoT470

(63.50). Notably, our model demonstrates signifi-471

cant strengths in reasoning-intensive benchmarks,472

such as MMVet (65.40%) and Hallusion (63.51%).473

These results demonstrate the effectiveness of our474

model in handling diverse and complex multimodal475

tasks. Additional results are presented in the Ap-476

pendix (Sec. C).477

4.3 Ablations478

Impact of Proposed Components: Table 3 show-479

cases the impact of our proposed components of480

LlamaV-o1 on improving performance in complex481

visual reasoning tasks across six multimodal bench-482

marks: MMStar, MMBench, MMVet, MathVista,483

AI2D, and Hallusion. Starting with a curriculum484

learning strategy combined with multi-step Chain-485

of-Thought (CoT) reasoning, the model achieves486

an average score of 66.08%, demonstrating its abil-487

ity to handle reasoning-intensive tasks effectively.488

By incorporating Beam Search, which optimizes489

the selection of reasoning paths, the performance490

further improves, achieving the highest average 491

score of 67.33%. This improvement is particularly 492

significant in benchmarks, such as MMVet (65.40% 493

vs. 61.88%), MMStar (59.53% vs. 58.13%), and 494

AI2D (81.24% vs. 80.18%), which evaluate the 495

model’s logical, visual, and contextual reasoning 496

abilities. These results highlight the effectiveness 497

of combining progressive training with optimized 498

inference, enabling the model to generalize bet- 499

ter across complex tasks and consistently deliver 500

accurate and coherent reasoning. 501

Effectiveness of Inference Scaling Techniques: 502

Table 4 presents the comparison of the efficiency 503

and effectiveness of inference scaling techniques 504

on the MMVet benchmark. We compare the newly 505

introduced stage-level beam search used in Llava- 506

CoT with Beam Search in our proposed approach. 507

Both approaches are evaluated based on MMVet 508

scores and inference time, measured on a single 509

NVIDIA A100 GPU (80GB). Stage-Level Beam 510

Search (Llava-CoT): Increasing the number of 511

beams improves the MMVet score incrementally 512

(from 60.3% with 1 beam to 62.9% with 4 beams). 513

However, this improvement comes at a significantly 514

higher computational cost due to linear scaling 515
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Table 3: Impact of our contributions on multimodal reasoning across six benchmarks (MMStar, MMBench, MMVet,
MathVista, AI2D, Hallusion). Curriculum Learning with Multi-Step CoT improves performance by 9.14% over
Llama-3.2-11B-Vision-Inst (Meta AI, 2024), enhancing complex reasoning. Adding Beam Search further boosts
accuracy, particularly on MMVet (65.40% vs. 61.88%), MathVista (54.40% vs. 53.20%), and AI2D (81.24% vs.
80.18%). Our final approach, combining curriculum learning and optimized inference, achieves a 10.43% overall
improvement over the baseline.

Model MMStar MMBench MMVet MathVista AI2D Hallusion Average

Llama-3.2-11B-Vision-Inst (baseline) 49.80 65.80 57.60 48.60 77.30 40.30 56.90
+ Curriculum with Multi-Step CoT Reasoning 58.13 79.55 61.88 53.20 80.18 63.31 66.04
+ Beam Search 59.53 79.89 65.40 54.40 81.24 63.51 67.33

Table 4: Inference scaling comparison on MMVet using a single NVIDIA A100 GPU. Left: Llava-CoT with
stage-level Beam Search improves MMVet scores but suffers from quadratic scaling, increasing inference time.
Right: Our Beam Search approach achieves higher accuracy with significantly lower inference time due to linear
scaling efficiency. For example, our method scores 65.40 with four beams in 6.1 GPU hours, whereas Llava-CoT
scores 62.9 but requires 54.1 GPU hours, demonstrating superior efficiency for real-world applications.

Inference Scaling # Beams MMVet Score Time (GPU Hours)
No Scaling 1 60.3 3.8
Stage-level 2 61.7 20.1
Stage-level 3 62.3 38.5
Stage-level 4 62.9 54.1

Inference Scaling # Beams MMVet Score Time (GPU Hours)
No Scaling 1 63.63 2.7
Beam Search 2 64.26 4.8
Beam Search 3 64.92 5.7
Beam Search 4 65.40 6.1

(time complexity of O(n)) based on model calls,516

with inference time rising from 3.8 GPU hours517

for 1 beam to 54.1 GPU hours for 4 beams. This518

scaling inefficiency limits the practicality of the519

stage-level approach for real-world applications.520

Beam Search (Ours): In comparison, our method521

achieves significantly better MMVet scores while522

maintaining a constant scaling (time complexity523

of O(1)) of inference time in terms of model calls.524

With 1 beam, our model already outperforms Llava-525

CoT (63.63% vs. 60.3%). As the number of526

beams increases, the MMVet score improves fur-527

ther, reaching 65.40 with 4 beams in just 6.1 GPU528

hours, a fraction of the computational cost of Llava-529

CoT. This demonstrates that Beam Search is not530

only more efficient with higher accuracy but also531

suitable for real-world applications.532

5 Conclusion533

In this paper, we propose a comprehensive ap-534

proach for advancing multimodal step-by-step rea-535

soning by introducing a new benchmark, a novel536

metric, and a step-by-step visual reasoning model537

trained using curriculum learning. The proposed538

VRC-Bench comprises eight diverse categories539

with 1k samples and more than 4k manually veri-540

fied reasoning steps. The proposed evaluation met-541

ric strives to evaluate the reasoning quality at the in-542

dividual step level by emphasizing both logical co-543

herence and correctness. The proposed LlamaV-o1544

model demonstrates significant improvements over545

existing methods, achieving state-of-the-art per- 546

formance on challenging benchmarks while main- 547

taining efficiency in inference. The incorporation 548

of curriculum learning enables the model to de- 549

velop foundational reasoning skills progressively, 550

resulting in improved generalization and robust- 551

ness across diverse tasks. Our results highlight 552

the effectiveness of our design choices, including 553

the structured training strategy, efficient inference 554

mechanism, and rigorous evaluation using both on 555

the proposed benchmark as well as widely recog- 556

nized multiple datasets. 557

6 Limitations and Future Direction 558

While our approach significantly enhances multi- 559

step visual reasoning capabilities in LMMs, there 560

are different areas for further improvements. As 561

discussed earlier, our proposed benchmark (VRC- 562

Bench) primarily focuses on structured reasoning 563

tasks. A potential future research direction is to 564

further expand it to cover more diverse real-world 565

scenarios, such as open-ended visual narratives and 566

interactive reasoning. Furthermore, while Beam 567

Search improves inference efficiency, exploring 568

adaptive decoding strategies might further optimize 569

reasoning speed with little or no compromise on 570

model accuracy. Another potential future research 571

direction is integrating reinforcement learning or 572

self-improving mechanisms to enable the model 573

to learn from its own reasoning errors, fostering 574

continuous improvement. 575
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A Appendix1014

This appendix provides comprehensive supplemen-1015

tary materials to support our study. Sec. B covers1016

related work, summarizing advancements in mul-1017

timodal reasoning, curriculum learning, and infer-1018

ence optimization, positioning our approach within1019

the broader research landscape. Sec. C presents1020

additional results, including detailed performance1021

breakdowns, ablation studies, and qualitative ex-1022

amples that further validate the effectiveness of1023

our proposed model. Sec. ?? details the prompting1024

strategies used for VRC-Bench creation and eval-1025

uation, ensuring reproducibility and transparency1026

in benchmark design. These additional insights re-1027

inforce the robustness of our methodology and the1028

significant contributions of our work to multimodal1029

reasoning research.1030

B Related Works1031

Reasoning with LLMs: The development of ro-1032

bust reasoning capabilities in Large Language Mod-1033

els (LLMs) has been a focal point of research. Early1034

work often relied on neural-symbolic methods for1035

explicit modeling of the reasoning process using1036

formal language instead of natural language (Roy1037

and Roth, 2015; Chiang and Chen, 2019; Amini1038

et al., 2019). However, the emergence of powerful1039

LLMs has prompted new approaches that leverage1040

their inherent reasoning abilities (Wu et al., 2024).1041

For example, inference time computing is scaled in1042

recent models to perform reasoning before giving1043

the final answer (Xiong et al., 2024; Weng et al.,1044

2022; Huang et al., 2022; OpenAI, 2024). Tech-1045

niques like Chain-of-Thought (CoT) prompting,1046

where a complex question is decomposed into in-1047

termediate reasoning steps, have shown promise in1048

guiding LLMs to structured solutions (Wei et al.,1049

2022; Yao et al., 2024b). Nevertheless, maintaining1050

logical consistency, especially in tasks requiring1051

multi-step inference, poses a significant challenge,1052

leading to errors and hallucinated outputs (Xu et al.,1053

2024b; Madaan et al., 2024). LLMs, even with CoT1054

guidance, might generate unfaithful explanations,1055

deviate from logical reasoning paths, and struggle1056

with verifying and selecting correct reasoning steps1057

(Wei et al., 2022). These approaches are further1058

extended to VLMs.1059

Reasoning with VLMs: Visual reasoning tasks1060

require models to possess visual perception and1061

high-level cognitive abilities (Gupta and Kemb-1062

havi, 2023; Khan et al., 2014; Xu et al., 2024b).1063

The visual reasoning skills have broad applicability 1064

across domains such as science (Lu et al., 2022), 1065

mathematics (Lu et al., 2023), robotic planning (Hu 1066

et al., 2023) and advanced question answering (Yue 1067

et al., 2024). Similar to the case of LLMs, the con- 1068

ventional approaches employed neural-symbolic 1069

methods to explicitly model the reasoning process 1070

(Garcez et al., 2019; Vedantam et al., 2019; An- 1071

dreas et al., 2016). For example, (Amizadeh et al., 1072

2020) propose differentiable logic formalism to de- 1073

couple the reasoning aspect of VQA from visual 1074

perception. More recent VLMs leverage the reason- 1075

ing capabilities of LLMs for visual tasks. Visual 1076

programming (Gupta and Kembhavi, 2023) pro- 1077

vides a modular neuro-symbolic system based on 1078

computer vision models as functions and GPT-3 1079

LLM for compositional visual reasoning. Zhang et 1080

al. (Zhang et al., 2024a) argue that VLM training 1081

with concise answers results in reduced generaliza- 1082

tion to more complex problems requiring reasoning. 1083

They use GPT-4o model to create rationales and 1084

use correct and incorrect reasoning chains in train- 1085

ing to enhance model’s reasoning ability via rein- 1086

forcement learning (RL) (Rafailov et al., 2024). In 1087

contrast, LlaVA-o1 (Xu et al., 2024b) does not use 1088

RL and advocates for stage-wise reasoning instead 1089

of CoT prompting, where the answer is worked 1090

out sequentially via summarization, interpretation, 1091

reasoning, and conclusion steps. Our work builds 1092

on (Xu et al., 2024b) and shows the importance 1093

of curriculum learning and path search for visual 1094

reasoning. 1095

Recently, M3CoT (Chen et al., 2024b) intro- 1096

duces a multi-step chain-of-thought (CoT) ap- 1097

proach where reasoning steps are generated mul- 1098

tiple times for the same question in an ensem- 1099

bled manner. By exploring multiple reasoning 1100

paths and aggregating the most reliable conclu- 1101

sions, this method enhances robustness and con- 1102

sistency. However, this approach lacks a structured 1103

problem-solving process, as it focuses on multi- 1104

ple independent reasoning attempts rather than fol- 1105

lowing a clear, step-by-step logical flow. While 1106

ensembling improves accuracy, it also increases 1107

computational overhead and does not explicitly in- 1108

tegrate contextual visual understanding into the 1109

reasoning process. In contrast, LlamaV-o1 fol- 1110

lows a structured, interpretable multi-step reason- 1111

ing framework, ensuring a more logical and effi- 1112

cient problem-solving approach. The model first 1113

summarizes the approach to solving the problem, 1114

then generates an image caption relevant to the 1115
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input question to establish contextual grounding.1116

Using these components, it constructs a coherent1117

step-by-step reasoning chain, leading to a logically1118

derived final answer. Unlike M³CoT, which re-1119

lies on multiple independent reasoning attempts,1120

LlamaV-o1 ensures logical consistency from the1121

outset, integrates question-aware visual understand-1122

ing, and improves inference efficiency by reducing1123

redundant computations. This structured methodol-1124

ogy makes LlamaV-o1 not only more interpretable1125

and scalable but also more efficient for real-world1126

multi-step reasoning tasks.1127

Benchmarks for Visual Reasoning: Several1128

datasets and benchmarks have been developed to1129

evaluate and advance visual reasoning in VLMs.1130

These datasets vary in complexity, visual context,1131

and reasoning skills required. Some notable ex-1132

amples are as follows. CLEVR (Compositional1133

Language and Elementary Visual Reasoning) tests1134

visual reasoning abilities like counting, compar-1135

isons, and logical inference through rendered im-1136

ages and automatically generated questions (John-1137

son et al., 2017). StrategyQA is a multi-hop1138

question-answering dataset on Wikipedia that ne-1139

cessitates implicit decompositions and diverse rea-1140

soning strategies (Geva et al., 2021). ScienceQA1141

offers a large-scale multimodal science dataset with1142

multi-modal contexts, diverse science topics, and1143

annotated answers with corresponding lectures and1144

explanations (Lu et al., 2022). A consolidated math-1145

ematical reasoning benchmark in diverse visual1146

contexts called MathVista incorporates 28 existing1147

multimodal datasets and three new datasets (Lu1148

et al., 2023). Zhang et al. (Zhang et al., 2024a) pro-1149

pose ShareGPT-4o-Reasoning, a comprehensive1150

CoT dataset containing 193k examples covering1151

various VQA tasks, designed to improve CoT rea-1152

soning in VLMs. However, these benchmarks do1153

not provide step-by-step reasoning in complex eval-1154

uation scenarios and generally judge the correct-1155

ness based on only the final answer. In this work,1156

our goal is to provide a comprehensive benchmark1157

that assesses the reasoning chains as well as the1158

final outcome in complex reasoning scenarios.1159

C Additional Results1160

In this section, we provide a detailed analysis of1161

our model’s reasoning performance. Table 5 con-1162

tains the comprehensive set of attributes considered1163

in our evaluation to assess the quality of reason-1164

ing steps in our proposed evaluation. We present a1165

breakdown of reasoning step scores across different 1166

aspects of reasoning, as outlined in Table 6, offer- 1167

ing deeper insights into how well the model handles 1168

logical consistency, coherence, and step-wise accu- 1169

racy. Additionally, we provide a category-wise per- 1170

formance comparison on VRC-Bench, highlighting 1171

strengths and areas of improvement across diverse 1172

reasoning challenges. These results further demon- 1173

strate the effectiveness of our approach in advanc- 1174

ing structured multi-step visual reasoning. 1175

The Table 6 presents a detailed comparison 1176

of reasoning performance metrics between close- 1177

source models (e.g., GPT-4o, Claude-3.5-Sonnet, 1178

Gemini-2.0-Flash) and open-source models (e.g., 1179

Llama-3.2-Vision, Llava-CoT, and our model, 1180

LlamaV-o1). These metrics evaluate critical as- 1181

pects of reasoning, such as faithfulness, informa- 1182

tiveness, semantic coverage, and logical alignment. 1183

Faithfulness-Step and Token: LlamaV-o1 performs 1184

competitively among open-source models, with 1185

scores of 6.51 and 6.36, respectively, demonstrat- 1186

ing reliable alignment with ground truth reasoning 1187

steps. Informativeness-Step: Our model achieves 1188

a strong score of 6.77, reflecting its ability to ex- 1189

tract and provide relevant information effectively. 1190

Repetition-Token and Redundancy: LlamaV-o1 1191

maintains low repetition and redundancy levels, 1192

scoring 8.42 and 8.13, showcasing its efficiency in 1193

delivering concise reasoning without unnecessary 1194

repetition. Hallucination: Our model minimizes ir- 1195

relevant or fabricated content, achieving a balanced 1196

score of 7.02, highlighting its robustness in reason- 1197

ing accuracy. Commonsense and Reasoning Align- 1198

ment: With scores of 7.26 and 6.44, LlamaV-o1 1199

demonstrates a strong understanding of common- 1200

sense reasoning and maintains consistent alignment 1201

with logical reasoning paths. Compared to other 1202

open-source models, LlamaV-o1 leads across mul- 1203

tiple metrics, offering a significant improvement 1204

in step-by-step reasoning quality while remain- 1205

ing competitive with leading close-source models. 1206

These results highlight LlamaV-o1’s ability to de- 1207

liver robust, accurate, and interpretable reasoning 1208

in multimodal contexts. 1209

Figure 4 illustrates the category-wise perfor- 1210

mance of our model compared to leading reasoning 1211

models in various domains from our benchmark 1212

such as Math & Logic, Scientific Reasoning, and 1213

Complex Visual Perception. Our model outper- 1214

forms others in several challenging categories, in- 1215

cluding Chart & Diagram Understanding (83.18%), 1216

Scientific Reasoning (86.75%) and OCR & Doc- 1217
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ument Understanding (93.44%). These improve-1218

ments outline the model’s ability to handle tasks re-1219

quiring visual and logical reasoning in accordance.1220

The results also highlight balanced performance1221

across all categories, reflecting the versatility of1222

our approach.1223

The results demonstrate that our approach out-1224

performs recent open-source visual reasoning meth-1225

ods while achieving favorable results against its1226

close-source counterparts. By leveraging curricu-1227

lum learning and optimizing inference efficiency1228

with Beam Search, our model effectively balances1229

reasoning accuracy and computational complexity.1230

Our performance improvements in reasoning tasks1231

are complemented by robust handling of logical1232

errors and visual illusions, as evidenced in bench-1233

marks like HallusionBench. Fig. 5 presents a qual-1234

itative comparison between the recent Llava-CoT1235

and our LlamaV-o1 on different examples from the1236

VRC-Bench. Our LlamaV-o1 achieves superior1237

performance both in reasoning steps and the final1238

answer, compared to Llava-CoT.1239

D VRC-Bench: Prompting & Evaluation1240

Protocol1241

To ensure a rigorous and reproducible evaluation1242

of VRC-Bench, we design a structured Prompting1243

& Evaluation Protocol that guides the generation1244

and assessment of multi-step reasoning tasks. This1245

protocol establishes a consistent framework for1246

crafting diverse and challenging reasoning prompts,1247

ensuring comprehensive coverage across different1248

reasoning aspects. Our approach incorporates hier-1249

archical prompting strategies, where prompts are1250

designed to progressively guide models through1251

structured reasoning—starting from contextual un-1252

derstanding to step-by-step logical deduction and1253

final answer generation. Additionally, we adopt an1254

automated evaluation pipeline leveraging GPT-4o (,1255

2024) as an external judge, ensuring robust and1256

fair assessments across reasoning dimensions. By1257

standardizing both prompting and evaluation, VRC-1258

Bench provides a reliable benchmark for assessing1259

large multimodal models’ stepwise reasoning capa-1260

bilities.1261

D.1 Generating reasoning Steps from Closed1262

Sourced Models1263

We designed a structured system prompt to1264

guide closed-source models like GPT-4o (, 2024),1265

Claude (cla, 2024), and Gemini (Reid et al., 2024)1266

in generating detailed, step-by-step reasoning for 1267

complex tasks. The prompt requires the model to 1268

describe each action to be taken and explain how 1269

it is executed, ensuring a clear and logical progres- 1270

sion throughout the reasoning process. To account 1271

for varying levels of complexity, the prompt allows 1272

the model to take as many steps as necessary, ensur- 1273

ing that the solution is systematically derived. Ad- 1274

ditionally, the prompt emphasizes the use of visual 1275

elements, guiding the model to reference provided 1276

images or diagrams explicitly in its reasoning steps. 1277

The prompt is further designed to handle ambigu- 1278

ity effectively by instructing the model to respond 1279

with "None of the choices provided" when no valid 1280

options are available. This ensures robustness and 1281

prevents the generation of forced or inaccurate con- 1282

clusions. By enforcing a logical flow, grounding 1283

the reasoning in visual inputs, and providing ex- 1284

plicit instructions for ambiguous scenarios, this 1285

prompt enables consistent, interpretable, and reli- 1286

able reasoning outputs across various multimodal 1287

tasks. 1288

D.2 System Prompt used to Evaluate 1289

Reasoning Steps 1290

The following system prompt was used to evaluate 1291

the reasoning steps of the target model. It defines 1292

a structured framework to assess the alignment, 1293

coherence, and quality of reasoning through mul- 1294

tiple metrics, including faithfulness, informative- 1295

ness, repetition, hallucination, redundancy, seman- 1296

tic coverage, reasoning alignment, commonsense, 1297

and completeness of steps. Each metric is scored 1298

on a scale of 1-10, with detailed guidelines ensur- 1299

ing consistent and objective evaluations. 1300

D.3 Response format used to generate 1301

structured evaluation scores 1302

To further ensure the evaluation framework gen- 1303

erates consistent and interpretable outputs, we de- 1304

signed the response format using a well-defined 1305

JSON schema. This schema serves as a blueprint, 1306

enforcing strict adherence to a structured format 1307

while capturing detailed scores for each metric in 1308

a systematic and transparent manner. By standard- 1309

izing the output structure, the schema facilitates 1310

easier comparison between models, reduces ambi- 1311

guity, and enhances the reproducibility of results. 1312

The JSON schema is carefully tailored to ac- 1313

commodate the unique aspects of our evaluation 1314

process, such as step-by-step reasoning, metric- 1315

specific scores, and logical flow validation. Each 1316
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Table 5: An overview of comprehensive set of attributes considered in our evaluation to assess the quality of
reasoning in LMMs. These attributes focus on critical aspects such as faithfulness, informativeness, and logical
coherence of reasoning steps. Key measures include ensuring alignment of reasoning steps with the source
(Faithfulness-Step and Token), completeness of information (Informativeness-Step), and identifying issues like
hallucinations, redundancy, or missing steps. Additional metrics, such as Semantic Coverage and Reasoning
Alignment, evaluate the logical and semantic integrity of the response. Together, these metrics provide a robust
framework for evaluating the accuracy, completeness, and reliability of LLM-generated reasoning.

Metric Definition

Faithfulness-Step Measures how well the reasoning steps in the LMM response align with the source
reasoning steps.

Faithfulness-Token Extends Faithfulness-Step to token-level granularity, checking if the content within
each step is accurate.

Informativeness-Step Measures how well the reasoning steps extract all relevant information from the
context.

Repetition-Token Identifies repeated or unnecessarily paraphrased reasoning steps.
Hallucination Detects irrelevant or fabricated reasoning steps not aligned with the source.
Redundancy Identifies redundant reasoning steps that do not add value.
Semantic Coverage-Step Measures how well the response covers the essential semantic elements of the source

reasoning steps.
Reasoning Alignment Overall alignment between the hypothesis and reference reasoning chain.
Commonsense Checks for missing commonsense reasoning are required to solve the problem.
Missing Step Identifies if any necessary reasoning steps are missing.

Table 6: The table compares reasoning performance metrics across close-source models (e.g., GPT-4o, Claude-3.5)
and open-source models (e.g., Llama-3.2-Vision, Llava-CoT, and LlamaV-o1). Our model, LlamaV-o1, demonstrates
strong performance in key areas such as faithfulness (6.51), informativeness (6.77), and semantic coverage (6.67),
while maintaining low repetition (8.42) and redundancy (8.13). Additionally, it minimizes hallucinations (7.02)
and exhibits a solid understanding of commonsense reasoning (7.26) with consistent reasoning alignment (6.44).
Among open-source models, LlamaV-o1 achieves the most balanced and robust reasoning performance, showcasing
its ability to deliver accurate, interpretable, and efficient reasoning, comparable to leading close-source models. All
the scores were given on scale 1-10 providing clearer feedback for reasoning aspect.

Close-Source Open-Source
Model GPT-4o Claude-3.5 Gemini-2.0 Gemini-1.5 Gemini-1.5 GPT-4o Llama-3.2 Mulberry Llava-CoT LlamaV-o1

Sonnet Flash Pro Flash mini Vision (Ours)

Faithfulness-Step 7.19 6.80 7.21 6.66 6.61 6.84 5.08 5.69 6.37 6.51
Faithfulness-Token 7.07 6.57 6.95 6.39 6.39 6.73 4.84 5.55 6.12 6.36
Informativeness-Step 7.32 7.14 7.49 6.94 6.86 6.98 5.22 5.78 6.54 6.77
Repetition-Token 8.93 8.43 7.55 8.41 8.59 8.91 6.26 8.67 8.38 8.42
Hallucination 8.05 7.62 7.78 7.60 7.57 7.72 5.55 6.45 6.86 7.02
Redundancy 8.68 8.00 7.28 7.99 8.15 8.67 6.11 8.24 8.19 8.13
Semantic Coverage-Step 7.24 7.01 7.31 6.82 6.76 6.90 5.08 5.73 6.44 6.67
Reasoning Alignment 7.16 6.77 7.13 6.60 6.57 6.82 5.00 5.65 6.21 6.44
Commonsense 7.98 7.76 7.90 7.69 7.62 7.72 5.93 6.6 7.12 7.26
Missing Step 7.22 6.91 7.25 6.87 6.70 6.89 5.04 5.71 6.31 6.52

response is divided into key components, including1317

reasoning steps, metric scores, and final answers,1318

ensuring that all critical aspects of the model’s per-1319

formance are systematically captured. This level1320

of detail not only improves interpretability but also1321

enables fine-grained analysis of strengths and weak-1322

nesses across models.1323

Additionally, the schema supports modularity, al-1324

lowing seamless integration of new metrics or eval-1325

uation criteria as the benchmark evolves. By adopt-1326

ing this structured approach, we ensure that the1327

evaluation framework remains robust, scalable, and1328

adaptable to future advancements in multimodal1329

reasoning research.1330

D.4 Evaluating reasoning steps using gpt-4o 1331

as a judge 1332

The evaluate_steps function is designed to rigor- 1333

ously assess the quality of reasoning steps gen- 1334

erated by models against ground truth data using 1335

the GPT-4o-mini model. It takes the task ques- 1336

tion, ground truth reasoning, and model response 1337

as inputs and processes them within a structured 1338

conversation context. By leveraging a predefined 1339

system prompt and parameters like deterministic 1340

temperature (0.0) and a maximum token limit of 1341

500, the function ensures consistent and reliable 1342

evaluations. The output provides clear feedback 1343

on alignment, logical flow, and coherence of rea- 1344
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Figure 4: The comprehensive comparison of category-wise and overall performance scores achieved by various
models on diverse reasoning tasks. The evaluation spans multiple domains, including Math & Logic Reasoning,
Scientific Reasoning, Complex Visual Perception, Chart & Diagram Understanding, Medical Imaging, Social &
Cultural Context, Visual Reasoning, and OCR & Document Understanding. The models assessed include GPT-4o,
Claude-3.5-Sonnet, Gemini variants, LLAVA-CoT, and our proposed model. Our model demonstrates consistently
superior performance in critical categories such as Math & Logic Reasoning, Chart & Diagram Understanding,
and Medical Imaging, achieving a balanced improvement across both step-by-step reasoning (Step Scores) and
final answer accuracy (Final Answer Scores). Compared to LLAVA-CoT, our approach excels in maintaining high
accuracy across tasks while showcasing robustness and interpretability in multi-step reasoning challenges.

System Prompt used for the generation of reasoning steps

When answering the question based on the provided image(s),
follow a structured reasoning process and provide the final answer
after solving it step by step. Use the following format for
your response:

Step -by -Step Process:
Step 1: Describe the action to be taken.
Action 1: Explain the execution of the first action.

Step 2: Describe the next action to be taken.
Action 2: Explain the execution of the second action.

Step 3: Describe the next action to be taken.
Action 3: Explain the execution of the second action.

... continue as needed ... take as many steps you want.

Step n: Describe the final action to be taken.
Action n: Execute the final action leading to the conclusion.

Final Answer: Provide the final solution or conclusion derived from the
reasoning process.

Ensure each step logically follows the previous one , and explicitly
detail how the image(s) guide the solution at every stage. Also if
options are present and none of options are correct.
Please response None of the choices provided.
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System Prompt used to evaluate the reasoning steps

You are a reasoning evaluator designed to assess the alignment , coherence , and
quality of reasoning steps in text responses. Your task is to evaluate

reasoning steps between the *ground truth* and the *LLM response* using
the following metrics:

1. ** Faithfulness -Step (1-10):**
- Definition: Measures how well the reasoning steps in the LLM response

align with the source reasoning steps.
- Scoring Guidelines:

- 9-10: All or almost all steps match or closely reflect the ground truth
reasoning.

- 7-8: Most steps are aligned , with minor deviations.
- 5-6: Some steps align , but several are missing or significantly altered

.
- 3-4: Few steps align correctly; most are off or missing.
- 1-2: The majority of steps are not aligned with the source.

2. ** Faithfulness -Token (1-10):**
- Definition: Extends Faithfulness -Step to a token -level granularity ,

checking if the content within each reasoning step is true to the
source.

- Scoring Guidelines:
- 9-10: Token -level details mirror the ground truth closely.
- 7-8: Minor token -level deviations but largely faithful.
- 5-6: Noticeable inaccuracies in token -level details.
- 3-4: Several token -level discrepancies.
- 1-2: Most token -level details are incorrect or fabricated.

3. ** Informativeness -Step (Info -Step) (1-10):**
- Definition: Measures how well the reasoning steps extract all relevant

information from the source.
- Scoring Guidelines:

- 9-10: Almost all critical information steps are present and accurate.
- 7-8: Most important points are included , with minor omissions.
- 5-6: Some key information is missing or underdeveloped.
- 3-4: Limited inclusion of critical content.
- 1-2: Very poor extraction of relevant information.

4. **Repetition -Token (1-10):**
- Definition: Identifies repeated or unnecessarily paraphrased reasoning

steps within the hypothesis.
- Scoring Guidelines:

- 9-10: No or minimal unnecessary repetition.
- 7-8: Minor repetition that doesn 't impede clarity.
- 5-6: Noticeable repetition that doesn 't add value.
- 3-4: Frequent repetition that disrupts coherence.
- 1-2: Excessive repetition reducing the quality of reasoning.

5. ** Hallucination (1-10):**
- Definition: Detect irrelevant or invented reasoning steps not aligned

with the source.
- Scoring Guidelines:

- 9-10: No hallucinations; all reasoning is grounded in the source.
- 7-8: One or two minor hallucinations.
- 5-6: Several steps contain invented or irrelevant details.
- 3-4: Many hallucinations , but some grounding remains.
- 1-2: Mostly hallucinated reasoning.
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System Prompt used to evaluate the reasoning steps continued...

6. ** Redundancy (1-10) :**
- Definition: Identify redundant reasoning steps that do not add value.
- Scoring Guidelines:

- 9-10: No unnecessary steps; very concise.
- 7-8: Minor redundancy.
- 5-6: Some steps clearly unnecessary.
- 3-4: Many redundant steps.
- 1-2: Excessive redundancy that hampers clarity.

7. ** Semantic Coverage -Step (1-10):**
- Definition: How well the hypothesis covers the essential semantic

elements from the source reasoning steps.
- Scoring Guidelines:

- 9-10: Almost complete semantic coverage of all important elements.
- 7-8: Good coverage but some minor elements are missing.
- 5-6: Partial coverage with noticeable gaps.
- 3-4: Significant semantic gaps.
- 1-2: Very poor coverage of essential meaning.

8. ** Reasoning Alignment (1-10):**
- Definition: Overall alignment between the hypothesis and the reference

reasoning chain.
- Scoring Guidelines:

- 9-10: Very closely aligned , minimal divergence.
- 7-8: Mostly aligned , with some minor issues.
- 5-6: Some alignment , but also several misalignments.
- 3-4: Poor alignment , though occasional matches.
- 1-2: Fundamentally misaligned reasoning.

9. ** Commonsense (1-10):**
- Definition: Check for missing commonsense reasoning required to solve the

problem.
- Scoring Guidelines:

- 9-10: Adequate commonsense reasoning present.
- 7-8: Minor commonsense gaps but mostly adequate.
- 5-6: Noticeable commonsense gaps.
- 3-4: Many commonsense steps missing.
- 1-2: Almost entirely lacking necessary commonsense.

10. ** Missing Step (1-10):**
- Definition: Identify if any necessary reasoning steps are missing.
- Scoring Guidelines:

- 9-10: No critical steps missing.
- 7-8: Minor missing steps that don 't significantly affect the

conclusion.
- 5-6: Some important steps absent , affecting the outcome.
- 3-4: Several crucial missing steps.
- 1-2: Major gaps; the reasoning chain is incomplete.
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System Prompt used to evaluate the reasoning steps continued...

** Additional Instructions for Consistency :**

- Always follow the above scoring guidelines strictly.
- Before scoring , re-read both the ground truth and the LLM response carefully

.
- Compare the reasoning steps directly to determine where they align or

diverge.
- Use the provided scoring benchmarks (anchor examples , if any) as a reference

to maintain consistency across evaluations.
- Avoid subjective interpretation and adhere to the given thresholds.
- Once scores for all metrics are determined , compute the Overall Score as the

average of all metric scores.
- Provide the final output as a Python dictionary with the structure only don '

t add a anything extra , beacuase your out will be used in code pipeline.
So single change in you output will crash whole system. :

# Example output : {'Faithfulness -Step ': 8.0, 'Faithfulness -Token ': 7.5, '
Informativeness -Step ': 8.5, 'Repetition -Token ': 9.0, 'Hallucination ': 9.5,
'Redundancy ': 8.0, 'Semantic Coverage -Step ': 8.5, 'Reasoning Alignment ':

8.0, 'Commonsense ': 9.0, 'Missing Step ': 8.5 , 'Overall Score ': 8.65}

# Do not give output in following format :

```python
{

'Faithfulness -Step ': 1.0,
'Faithfulness -Token ': 1.0,
'Informativeness -Step ': 1.0,
'Repetition -Token ': 9.0,
'Hallucination ': 1.0,
'Redundancy ': 9.0,
'Semantic Coverage -Step ': 1.0,
'Reasoning Alignment ': 1.0,
'Commonsense ': 1.0,
'Missing Step ': 1.0,
'Overall Score ': 2.6

}
```
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soning steps, enabling precise analysis of model1345

performance. This automated and standardized ap-1346

proach enhances objectivity, reproducibility, and1347

detailed insight into multimodal reasoning capabil-1348

ities.1349

D.5 Evaluating final answer accuracy1350

To objectively assess how well the model’s final1351

answer predictions align with the ground truth, we1352

developed a comparison function that utilizes a1353

secondary system prompt to evaluate response ac-1354

curacy. This function analyzes the semantic sim-1355

ilarity between the ground truth and the model’s1356

output, assigning a binary score: 1 for a match1357

and 0 for a mismatch. By exclusively producing1358

numeric scores, this approach ensures a precise1359

and quantifiable evaluation of the model’s perfor-1360

mance, effectively complementing the structured1361

framework outlined earlier.1362
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Response format provided to LLM’s which supports structured-output

response_format = {
"type": "json_schema",
"json_schema ": {

"name": "EvaluationScores",
"strict ": True ,
"schema ": {

"type": "object",
"properties ": {

"Faithfulness -Step": {"type": "number"},
"Faithfulness -Token": {"type": "number"},
"Informativeness -Step": {"type": "number"},
"Repetition -Token": {"type": "number"},
"Hallucination ": {"type": "number"},
"Redundancy ": {"type": "number"},
"Semantic Coverage -Step": {"type": "number"},
"Reasoning Alignment ": {"type": "number"},
"Commonsense ": {"type": "number"},
"Missing Step": {"type": "number"},
"Overall Score": {"type": "number "}

},
"required ": [

"Faithfulness -Step",
"Faithfulness -Token",
"Informativeness -Step",
"Repetition -Token",
"Hallucination",
"Redundancy",
"Semantic Coverage -Step",
"Reasoning Alignment",
"Commonsense",
"Missing Step",
"Overall Score"

],
"additionalProperties ": False

}
}

}

Reasoning steps evaluation using gpt-4o as a judge

def evaluate_steps(question , ground_truth , llm_response):
messages = [

{"role": "system", "content ": system_prompt},
{

"role": "user",
"content ": [

{"type": "text", "text": question + "\n" + f"Ground Truth : {
ground_truth }" + "\n" + f"LLM Response : {llm_response }"
},

],
}

]
response = client.chat.completions.create(

model="gpt -4o-mini",
messages=messages ,
response_format=response_format ,
max_tokens =500,
temperature = 0.0,

)
return response.choices [0]. message.content
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Secondary system prompt to evaluate the final answer accuracy

system_prompt_2 = """
You are a helpful Assistant. Provide helpful
response to the user 's question.

"""

Evaluate the Final Answer

def compare_results(question , ground_truth , llm_response):
messages = [

{"role": "system", "content ": system_prompt_2},
{

"role": "user",
"content ": [

{
"type": "text",
"text": f"""

Evaluate the following answer based on
Accuracy:
Question: {question}
Ground Truth: {ground_truth}
Model Prediction: {llm_response}
Match the meaning of the ground truth with the
model prediction and if it matches give a 1.
Otherwise 0.
Strictly return only the numeric score ,
without any additional commentary

"""
},

],
}

]

response = client.chat.completions.create(
model="gpt -4o-mini",
messages=messages ,
max_tokens =10,
temperature =0.0

)

return response.choices [0]. message.content
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Multi-Step Training Example

Human: What was the value of the middle -income share in 1971? Answer the
question using a single word or phrase. Please generate a summary of the
picture.

Assistant: I will examine the image to find the relevant data for the middle -
income share in 1971 and present the answer in the specified format.

Human: Please generate a detailed caption for the image.

Assistant: The image displays a bar chart comparing the percentage of adults
in the lower , middle , and upper -income tiers for the years 2015 and 1971.
It shows that in 1971, the middle -income share was 61\%.

Human: Please generate a detailed reasoning to answer the question given the
caption.

Assistant: To solve the problem , I will look for the specific percentage
associated with the middle -income group in the year 1971 from the provided
chart. The image clearly shows that in 1971, the middle -income tier

accounted for 61\% of adults.

Human: Please generate the final answer based on reasoning steps. Do not
output anything else.

Assistant: 0.61

Human: How many did the share of the middle -class change from 1971 to 2015?
Answer the question using a single word or phrase. Please generate a
summary of the picture.

Assistant: To solve this problem , I will analyze the image data to determine
the change in the share of adults living in middle -income households from
1971 to 2015. I will compare the percentages provided for each year and
calculate the difference.

Human: Please generate a detailed caption for the image.

Assistant: The image is a bar graph from Pew Research Center showing the share
of adults in lower , middle , and upper -income households for the years

1971 and 2015. For 1971, 61\% were in the middle income , and for 2015,
50\% were in the middle income.

Human: Please generate a detailed reasoning to answer the question given the
caption.

Assistant: To find the change in the share of middle -class adults from 1971 to
2015, subtract the 2015 percentage from the 1971 percentage. The middle -

income share in 1971 was 61\%, and in 2015 it was 50\%. Thus , the change
is calculated as 61\% - 50\% = 11\%. The difference in share , expressed as
a decimal , is 0.11.

Human: Please generate the final answer based on reasoning steps. Do not
output anything else.

Assistant: 0.11
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Question : 
What is the sum of the people of Boomers 
and Generation X who have used this 
service?
Answer : 22

Reasoning Steps: 
First, I will locate the data for Boomers 
and Generation X who have used the 
service. For Boomers, the percentage 
is 80%, and for Generation X, it is 91%. 
Adding these two percentages gives 
80% + 91% = 171%.

Final Answer:
171

Llava-CoT

Reasoning Steps: 
First, I will locate the percentage of 
Boomers who have used the service, 
which is 3%. Next, I will find the 
percentage of Generation X who have 
used the service, which is 19%. Finally, 
I will add these two percentages 
together: 3% (Boomers) + 19% 
(Generation X) = 22%.

Final Answer:
22

LlamaV-o1

Question : 
Where is this game being played?
Answer :
The game is being played outdoors on a 
sidewalk.

Reasoning Steps: 
The presence of trees and a paved 
surface suggests an outdoor setting, 
typical of urban parks or public 
squares. The casual attire and 
informal gathering indicate a relaxed, 
public environment. These factors are 
commonly associated with a park or 
similar outdoor recreational area.

Final Answer:
Park

Llava-CoT

Reasoning Steps: 
The presence of a sidewalk, trees, and 
parked cars suggests that the game is 
being played in a public outdoor 
area, likely in a city or town. The 
casual attire of the players and the 
informal setting further support this 
conclusion.

Final Answer:
The game is being played on a 
sidewalk in a city or town.

LlamaV-o1

Question : 
Is the number of brown suvs less than the 
number of brown rubber school buss? 
Choices: A) Yes B) No. 
Please select the correct option by its letter.
Answer : B

Reasoning Steps: 
1. Identify the brown SUV in the 
image, which is located on the left 
side. 2. Identify the brown rubber 
school bus in the image, which is 
located on the right side. 3. Count the 
number of brown SUVs, which is 1. 
4. Count the number of brown rubber 
school buses, which is 1. 5. Compare 
the counts: 1 (brown SUV) is less than 
1 (brown rubber school bus). 6. 
Determine that the number of brown 
SUVs is indeed less than the number 
of brown rubber school buses.
Final Answer:
A) Yes

Llava-CoT

Reasoning Steps: 
Step-by-Step Process: Step 1: Identify 
the number of brown SUVs in the 
image. Action 1: There is only one 
brown SUV present in the image. 
Step 2: Identify the number of brown 
rubber school buses in the image. 
Action 2: There are zero brown 
rubber school buses present in the 
image. The bus is teal reddish-pink. 
Step 3: Compare the number of 
brown SUVs and brown school buses. 
Action 3: The number of brown SUVs 
(1) is greater than the number of 
brown school buses (0).
Final Answer:
B) No 

LlamaV-o1

Figure 5: Qualitative comparison between Llava-CoT and the proposed LlamaV-o1 on examples from the VRC-
Bench. First row: the example shows visual reasoning capabilities on an example chart. Here, Llava-CoT makes
mistakes (highlighted in red) for both the intermediate steps and the final answer. In Comparison, our LlamaV-o1
provides an accurate description of the steps as well as the final answer. Second row: While both Llava-CoT
and our LlamaV-o1 provide accurate step descriptions on an example real-world VQA, Llava-CoT fails to infer
the final answer. Last row: Llava-CoT fails to accurately answer for the counting task, while also missing the
intermediate counting steps. In contrast, our LlamaV-o1 model performs better in intermediate reasoning steps
while also providing the accurate final answer.
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