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Abstract
Previous work on multimodal machine trans-001
lation (MMT) has focused on the way of in-002
corporating vision features into translation but003
little attention is on the quality of vision mod-004
els. In this work, we investigate the impact005
of vision models on MMT. Given the fact that006
Transformer is becoming popular in computer007
vision, we experiment with various strong008
models (such as Vision Transformer) and en-009
hanced features (such as object-detection and010
image captioning). We develop a selective at-011
tention model to study the patch-level contribu-012
tion of an image in MMT. On detailed probing013
tasks, we find that stronger vision models are014
helpful for learning translation from the vision015
modality. Our results also suggest the need of016
carefully examining MMT models, especially017
when current benchmarks are small-scale and018
biased.019

1 Introduction020

Multimodal machine translation (MMT) has021

emerged as an active field of research which mar-022

ries the worlds of computer vision (CV) and natural023

language processing (NLP) (Specia et al., 2016).024

Early models of this kind produce a translation025

given the fused representation of both the visual026

and textual inputs (Caglayan et al., 2016; Libovický027

and Helcl, 2017; Calixto and Liu, 2017). As ex-028

pected, such a paradigm achieves promising BLEU029

improvements and inspires the community to fol-030

low up.031

But soon researchers find that MMT systems do032

not act as what we would ordinarily design: the033

vision modality contributes to translation little. For034

example, it is not harmful to MMT systems when035

the input image is irrelevant to the text (Grönroos036

et al., 2018; Lala et al., 2018), or even when the037

vision features are absent (Elliott, 2018). More re-038

cently, Wu et al. (2021) have pointed out that the039

use of the vision modality is a way of regulariza-040

tion for training but not a complement to the text041

modality. As another response to the analysis of 042

MMT, Caglayan et al. (2019) investigate how the 043

vision features correlate to the text. They find that 044

the input image helps translation when some of the 045

input words are masked. 046

Note that previous work has for the most part 047

focused on integrating off-the-shelf vision models 048

(such as ResNet-50) into MMT. The underlying 049

assumption here is that the existing vision models 050

are powerful enough to encode the image. This 051

implicitly ignores the quality of vision models in 052

representing images. But computer vision is facing 053

a new trend by moving from CNNs to Transformer 054

as the backbone model (Dosovitskiy et al., 2021; 055

Liu et al., 2021b; Carion et al., 2020). A natu- 056

ral question that arises is: how will MMT systems 057

behave if stronger vision models are adopted? 058

In this work, we address this question by a sys- 059

tematic study of using various vision models in 060

MMT, in particular using the most successful mod- 061

els in recent studies (such as Vision Transformer, 062

or ViT for short). We find that the patching method 063

used in Transformer-based vision models offers an 064

opportunity to detail the patch-level contribution of 065

the image. This leads us to develop a selective atten- 066

tion model to correlate words with image patches. 067

Beyond this, we introduce object-detection and 068

image captioning features into MMT for further 069

improvements of the vision models (Carion et al., 070

2020; Fang et al., 2021). 071

Following (Caglayan et al., 2019)’s work, we 072

design more detailed probing tasks to examine 073

to what degree the vision modality contributes to 074

MMT. We run an extensive set of experiments on 075

En-De and En-Fr MMT tasks. Our findings are 076

• Stronger vision models help. For example, 077

ViT can beat ResNet-50 on the probing tasks 078

though the superiority is not significant on 079

standard MMT data. 080

• Automatic evaluation on current MMT tasks 081
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SRC : a man in green pants walking down the road

MASK1 a [MASK_P] in green pants walking down the road
MASK2 a man in [MASK_C] [MASK_NS] walking down the road
MASK3 a man in [MASK_C] [MASK_NS] walking down the [MASK_N]
MASK4 a [MASK_P] in [MASK_C] [MASK_NS] walking down the [MASK_N]

Table 1: An example of the proposed the probing tasks. We replace the masked token by four symbols respectively.

might not be a good indicator for the effec-082

tiveness of MMT models. For example, mod-083

els enhanced with object-detection and image084

captioning features yield good BLEU scores085

on the original MMT task but show modest or086

no contributions on the probing tasks.087

We hope that the results here can inspire more088

research on exploring better vision models and eval-089

uation methods for multimodal NLP.090

2 Preliminary091

We start with description of the probing tasks. It092

is followed by a design of vision features and a093

selective attention mechanism for introducing ViT-094

like representations into MMT.095

2.1 Insufficient Text Generation096

To know how an image contributes to translation, a097

way is to mask some of the input words (call this098

insufficient text) and force the translation model099

to learn from the image. Following previous de-100

sign of color deprivation and entity-based mask-101

ing, we present detailed probing tasks which are102

complementary to Caglayan et al. (2019)’s work.103

In preliminary experiments1, we find that “color”,104

“character” and “noun” are three kinds of words105

which could be complemented according to the106

vision modality once the corresponding texts are107

masked. The following probing tasks are designed108

accordingly.109

Color-based Probing In training, all source110

words referring to a color are replaced by a spe-111

cial token [Mask_C]. There are 8, 919 sentences112

involving color words, and nearly one third of them113

involve more than one color. It is worth noting that114

each color may have two or more translations due115

to the rich morphology in German and French. For116

example, the English “green” can be translated to117

“grün”, “grüne”, “grünes”, “grüner”, “grünen” and118

“grünem” in German. We design two criteria to119

1We choose the Multi30K En-De and En-Fr datasets for
experiments.

measure the accuracy of translation. The first cri- 120

terion is strict. The correct translation requires 121

generating the same color and the same gender as 122

in reference translations. The second criterion is 123

relaxed and all translations expressing the same 124

color are correct. 125

Character-based Probing For character words, 126

we choose “man”, “woman”, “people”, “men”, 127

“girl” and “boy”. Each character word has a sin- 128

gle translation only, except for “people”. Because 129

about 60% sentences contain character words in 130

our training data, they are reasonable indicators 131

of assessing the ability of inferring correct transla- 132

tions from the input image. Here we use [MASK_P] 133

for masking. 134

Noun-based Probing For more complex scenar- 135

ios, a sentence can be masked with several kinds of 136

ambiguous words, such as animals, clothing, and 137

vehicles, provided by Flickr30K (Plummer et al., 138

2015). High-frequency words labeled with noun (or 139

nouns) are more likely to be masked as [MASK_N] 140

(or [MASK_NS])). See Table 1 for example insuffi- 141

cient text with different numbers of masks. 142

2.2 Various Vision Features 143

In addition to ResNet-50, we choose several 144

Transformer-based vision models. 145

• General Backbone. Vision Transformer (ViT) 146

and Swin Transformer are popular models in 147

computer vision (Dosovitskiy et al., 2021; Liu 148

et al., 2021b). We use ViT with various model 149

capacities to vary from weak to strong ViT 150

models. 151

• Object-detection. For pretrained object- 152

detection vision models, we choose DETR 153

(Carion et al., 2020) and QueryInst (Fang 154

et al., 2021) for their strong performance. 155

• Image Captioning. For image captioning 156

models, we choose CATR because it is a 157
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Figure 1: The overview of selective attention multimodal Transformer when using ViT as the vision feature.

Transformer-based image captioning architec-158

ture and can be easily implemented on top of159

ViT.160

We form a number of vision features by combin-161

ing the methods described above. More details are162

presented in Section 3.163

2.3 Selective Attention164

ViT and related models perform in almost the same165

way as Transformer in NLP (Vaswani et al., 2017).166

Unlike the general models in CV, ViT does not167

represent the image as a single vector. Instead, it168

generates a sequence of patches for image repre-169

sentation. An advantage of this design is that we170

can use the attention mechanism to correlate image171

patches to words. Thus, we present a selective at-172

tention model to model the patch-level contribution173

of the image. See Figure 1 for the architecture.174

Text-only Transformer Transformer follows an175

encoder-decoder paradigm (the purple region in176

Figure 1) . The encoder is a stack of identical177

layers. Each layer consists of a self-attention (SAN)178

block and a feedforward network (FFN) block. The179

decoder shares a similar design with the encoder,180

but with an additional cross-attention block.181

Gated Fusion Gated fusion mechanism is a pop-182

ular technique for fusing representations from dif-183

ferent sources (Wu et al., 2021; Zhang et al., 2020;184

Lin et al., 2020; Yin et al., 2020). Given the text185

input X text and the image input X img, the text rep-186

resentation H text and the image feature H img can187

be defined as:188

H text = TransformerEncoder(X text) (1) 189

H img = W ViT(X img) (2) 190

whereW is a projection matrix to convert the shape 191

of ViT(X img) into that of H text. Note that ViT(·) 192

can be replaced by other vision models, e.g. DETR, 193

Swin Transformer and etc. Then, the gate λ ∈ 194

[0, 1] and the fuzed output are defined as: 195

λ = Sigmoid(UH text + V H img) (3) 196

HOut = (1− λ) ·H text + λ ·H img (4) 197

where U and V are trainable variables. λ controls 198

how much visual information is kept. Then, the 199

fusion vector HOut is fed into the decoder. See the 200

pink region in Figure 1 for an illustration of the 201

gated fusion models. 202

Selective Attention After obtaining the text and 203

image representations (or features), we use a single- 204

head attention network to correlate words with im- 205

age patches, where the query, key and value are 206

H text, H img and H img, respectively. Then the se- 207

lective attention output H img
attn is defined to be: 208

H
img
attn = Softmax(

QKT
√
dk

)V (5) 209

where dk is the same as the dimension of H text 210

because a single head is used. Then the fused rep- 211

resentation could be obtained by using Eqs. 3 and 212

4 and replacing H img with H img
attn. 213
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# Model Feature English→German English→French
Test2016 Test2017 MSCOCO Test2016 Test2017 MSCOCO

Text-only Transformer
1 Tiny - 41.02 68.22 33.36 62.05 29.88 56.64 61.80 81.02 53.46 75.62 44.52 69.43

Existing MMT Systems
2 Doubly-ATT ResNet 41.45 68.04 33.95 61.83 29.63 56.21 61.99 81.12 53.72 75.71 45.16 70.25
3 Imagination ResNet 41.31 68.06 32.89 61.29 29.90 56.57 61.90 81.20 54.07 76.03 44.81 70.35
4 UVR-NMT ResNet 40.79 - 32.16 - 29.02 - 61.00 - 53.20 - 43.71 -
5 Gated Fusion ResNet 41.96 67.84 33.59 61.94 29.04 56.15 61.69 80.97 54.85 76.34 44.86 70.51

Our MMT Systems
6 Gated Fusion ViT-Large 41.55 68.34 33.49 61.67 29.27 55.64 61.93 81.08 54.98 75.12 45.65 70.81
7 Selective Attn ViT-Large 41.84 68.64 34.32 62.32 30.22 56.91 62.24 81.41 54.52 76.30 44.82 70.63
8 7 + ViT-Tiny ViT-Tiny 40.74 67.20 32.48 60.46 28.10 55.19 61.44 80.91 53.31 75.65 45.82 70.75
9 7 + ViT-Small ViT-Small 40.86 67.64 33.62 61.61 29.72 56.94 61.78 81.30 54.21 76.04 45.28 70.89
10 7 + ViT-Base ViT-Base 41.93 68.55 33.60 61.42 31.14 56.77 62.48 81.71 54.44 76.46 44.72 71.20
11 7 + DETR DETR 42.23 68.94 34.14 61.57 30.13 57.01 62.14 81.45 55.17 76.40 45.10 70.38
12 7 + QueryInst QueryInst 41.90 68.64 34.90 62.27 30.20 56.89 62.33 81.26 54.97 76.61 45.56 70.64
13 7 + CATR CATR 42.50 68.81 34.28 61.81 29.59 56.36 62.79 81.75 55.44 76.57 45.27 70.73

Table 2: BLEU (left) and METEOR (right) scores of En→De and En→Fr tasks. Some of the results are from Wu
et al. (2021)’s work.

Systems Test2016 Test2017 MSCOCO
Restrict Relaxed Restrict Relaxed Restrict Relaxed

English→German
Text-only Transformer 25.93 34.42 22.57 35.70 18.75 23.44
Gated Fusion + ResNet 27.23 (↑ 2.30) 35.51 (↑ 1.09) 23.10 (↑ 0.53) 37.01 (↑ 2.01) 21.88 (↑ 3.13) 25.00 (↑ 1.56)
Gated Fusion + ViT 35.08 (↑ 9.15) 42.48 (↑ 8.06) 25.46 (↑ 2.89) 41.73 (↑ 6.03) 25.00 (↑ 6.25) 31.25 (↑ 7.81)
Selective Attn + ViT 51.20 (↑ 25.27) 64.71 (↑ 30.29) 31.76 (↑ 9.19) 53.54 (↑ 17.84) 43.75 (↑ 25.00) 56.25 (↑ 32.81)

English→French
Text-only Transformer 30.72 33.12 34.91 38.85 23.44 29.69
Gated Fusion + ResNet 32.68 (↑ 1.96) 35.51 (↑ 2.39) 32.55 (↓ 2.36) 35.17 (↓ 3.68) 17.19 (↓ 6.25) 23.44 (↓ 6.25)
Gated Fusion + ViT 45.53 (↑ 14.81) 50.76 (↑ 17.64) 45.41 (↑ 10.50) 52.23 (↑ 13.38) 34.38 (↑ 10.94) 43.75 (↑ 14.06)
Selective Attn + ViT 62.96 (↑ 32.24) 68.85 (↑ 35.73) 49.34 (↑ 14.43) 55.38 (↑ 16.53) 43.75 (↑ 20.31) 53.12 (↑ 23.43)

Table 3: The accuracy of MMT systems when applied color-based probing.

3 Experiments214

3.1 Datasets215

We conducted experiments on the widely used216

Multi30K benchmark (Elliott et al., 2016). The217

training and validation sets consisted of 29,000 and218

1,014 instances, respectively. We reported the re-219

sults on the Test2016, Test2017 and MSCOCO test220

sets (Elliott et al., 2017). Note that MSCOCO is221

more challenging for MMT models due to the out-222

of-domain instances with ambiguous verbs. Fol-223

lowing the setup in (Wu et al., 2021), we learned224

a joint BPE code for 10,000 merging operations225

for both the source and target languages, resulting226

in vocabularies of 9,716 and 9,548 entries for the227

En-De and En-Fr tasks.228

3.2 Experimental Setups229

We followed the Wu et al. (2021)’s work to con-230

duct experiments with Transformer-Tiny configu-231

ration, which is more suited for small datasets like232

Multi30K. Note that smaller models even obtains233

higher BLEU scores than pervious MMT models. 234

Similar observations have been discussed when 235

building context-aware machine translation models 236

(Li et al., 2020). The model consists of 4 encoder 237

and decoder layers. The hidden size is 128 and the 238

filter size of FFN is 256. There are 4 heads in the 239

multi-head self-attention mechanism. We set the 240

dropout as 0.3 and the label smoothing as 0.1. 241

Our implementation was based on Fairseq (Ott 242

et al., 2019). For training, we used Adam Op- 243

timizer (Kingma and Ba, 2015) with β1 = 0.1, 244

β2 = 0.98 and ε = 10−8. We adopted the same 245

learning rate schedule as (Vaswani et al., 2017), 246

where the learning rate first increased linearly for 247

warmup = 2000 steps from 1e−7 to 5e−3. After 248

the warmup, the learning rate decayed proportion- 249

ally to the inverse square root of the current step. 250

Each training batch contained 4,096 tokens. We 251

also adopted the early-stop training strategy (Zhang 252

et al., 2020) to avoid the overfitting issue. 253

For evaluation, we averaged the last 10 check- 254

points for more reliable results. The width of beam 255
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Systems Test2016 Test2017 MSCOCO
Restrict Relaxed Restrict Relaxed Restrict Relaxed

English→German
Text-only Transformer 59.49 64.05 58.56 62.53 60.94 65.62
Gated Fusion + ResNet 60.06 (↑ 0.57) 64.91 (↑ 0.86) 56.08 (↓ 2.48) 59.06 (↓ 3.47) 61.72 (↑ 0.78) 65.23 (↓ 0.39)
Gated Fusion + ViT 66.33 (↑ 6.84) 70.76 (↑ 6.71) 67.00 (↑ 8.44) 71.46 (↑ 8.93) 71.09 (↑ 10.15) 75.78 (↑ 10.16)
Selective Attn + ViT 73.04 (↑ 13.55) 78.89 (↑ 14.84) 70.97 (↑ 12.41) 77.17 (↑ 14.64) 73.44 (↑ 12.50) 77.73 (↑ 12.11)

English→French
Text-only Transformer 63.48 65.48 61.04 62.53 64.84 67.19
Gated Fusion + ResNet 61.63 (↓ 1.85) 63.62 (↓ 1.86) 63.52 (↑ 2.48) 65.01 (↑ 2.48) 64.45 (↓ 0.39) 66.80 (↓ 0.39)
Gated Fusion + ViT 73.47 (↑ 9.99) 75.89 (↑ 10.41) 76.43 (↑ 15.39) 77.92 (↑ 15.39) 80.47 (↑ 15.63) 82.81 (↑ 15.62)
Selective Attn + ViT 78.89 (↑ 15.41) 81.31 (↑ 15.83) 78.16 (↑ 17.12) 79.65 (↑ 17.12) 79.69 (↑ 14.85) 81.64 (↑ 14.45)

Table 4: The accuracy of several MMT systems on character-based probing.

Gated Fusion+ResNet: Gated Fusion+ViT_large: Selective Attn+ViT_large:

(a) Results on Test2016

(b) Results on Test2017

(c) Results on MSCOCO
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Figure 2: Comparison of systems 5-7 in Table 2 with limited textual context on Test2016. Blue/Red pillars denote
the results evaluated on the En-De and En-Fr tasks, respectively. We exhibit the BLEU scores of three MMT
models with different masking granularities. The shadow denotes the score obtained by text-only Transformer.

size was set to 5. The performance was measured256

by BLEU and METEOR for all test sets. Also we257

used accuracy for evaluation on the probing tasks.258

3.3 Results259

Table 2 summarizes the results on standard MMT260

data. Each model was evaluated on three test sets261

on two language pairs. We see, first of all, that262

the improvements of previous methods (Rows 2-4)263

over the tiny baseline are marginal in terms of both264

BLEU and METEOR. This confirms the assump-265

tion that the visual features is not fully used if the266

text is complete (Caglayan et al., 2019). When267

switching the vision features from ResNet (Row.5)268

to ViT (Row.6), there are no significant BLEU269

gains. Then, we test them on the proposed probing270

tasks to examine the “real” contribution to MMT. 271

Color-based Probing Table 3 shows the accu- 272

racy on the color-based probing task. We see 273

that the accuracy improvement of the gated fusion 274

method is marginal by both restrict and relaxed 275

criteria. However, replacing ResNet by ViT yields 276

gains of over 8 accuracy points across three test 277

sets on En-De task. Similar improvements are ob- 278

served on the En-Fr task. The finding here indicates 279

that stronger vision features are helpful for repre- 280

senting the visual information. Moreover, selective 281

attention can make better use of the ViT features, 282

achieving +20 accuracy gains on three test sets. 283

This verifies the conjecture that the selective atten- 284

tion can further enhance the fused representation 285
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Figure 4: BLEU scores [%] of various vision features on En-De Test2016.

for the ViT features.286

Character-based Probing Table 4 shows simi-287

lar results as in Table 3. ViT with selective attention288

performs the best. While the gated fusion method289

with ResNet feature behaves the worst, even com-290

pared with the text-only Transformer.291

Noun-based Probing Figure 2 plots the results292

of noun-based masking. It again verifies the above293

conjecture. The histograms in blue and red denote294

the results on the En-De and En-Fr tasks, respec-295

tively. The ViT features can significantly outper-296

form the ResNet features across all masking meth-297

ods on the two language pairs. We also observe that298

the gap between the ResNet and ViT features are299

gradually enlarged as more nouns are masked. This300

confirms the results in (Dosovitskiy et al., 2021).301

4 Analysis302

4.1 How Vision Features Improve the MMT303

We further explore the impact of model capacity.304

Here, we report the results of ViT and Swin Trans-305

former because they are strong models in recent306

studies. Our conjecture here is that larger ViT/Swin307

models can describe the image more accurately,308

which enables the text encoder to receive richer309

complementary information. Figure 3 depicts the310

BLEU scores in progressive noun masking scenar-311

ios. Intuitively, larger ViT and Swin models pro-312

vide more complementary knowledge to complete313

the insufficient text representations.314

Nevertheless, a counterintuitive phenomenon is315

the inferiority of Swin across all scenarios in the316

same configuration, though it outperforms ViT on317

most computer vision benchmarks. We attribute318

the reason to short length of the patch sequence. In319

patching, ViT has a length of 577 (576 sequence 320

segments and a special token CLS) when the image 321

resolution and the patching size are 384× 384 and 322

16×16. However, Swin has a fixed sequence length 323

(49) restricted by the shifted window operation. 324

This leads to more fine-grained local features for 325

ViT, which is beneficial to the selective attention 326

mechanism for extracting more relevant pieces. 327

4.2 Impact of Learning Objectives 328

Then, we investigate the impact of the enhanced 329

vision features on MMT. Previous studies have al- 330

ready attempted to leverage object-detection fea- 331

tures (Zhao et al., 2020; Wang and Xiong, 2021) 332

but the observation here is slightly different. Be- 333

yond the object-detection pretrained features, we 334

also take the image captioning task into account. 335

Rows 11-13 in Table 2 summarize the results 336

of the three enhanced vision features on the stan- 337

dard MMT data, and Figure 4 depicts the results 338

on insufficient texts. Here we choose ViT-Tiny- 339

based models for comparison due to the similar 340

model capacity they own2. We see that not only 341

the object-detection (DETR and QueryInst), but 342

also the image captioning (CATR) pretrained fea- 343

tures obtain superior performance compared with 344

ViT-tiny (Row 8) when the text is complete. It is 345

consistent with previous findings (Yin et al., 2020; 346

Zhao et al., 2020). However, the advantages do 347

not persist when switching to limited text scenarios. 348

A possible explanation is that these methods are 349

sensitive to the quality of the extracted objects. We 350

leave this as future work. 351

2Only pretrained vision models in a 256 hidden-size are
available
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System Patch Reso. Leng. Color Probing Character Probing Noun Probing
Restrict Relaxed Restrict Relaxed Mask1 Mask2 Mask3 Mask4

ViT 16×16 384 576 49.67 64.49 74.32 79.46 36.59 32.08 29.47 27.29
ViT 16×16 224 196 50.11 61.87 68.47 74.32 36.27 31.49 29.70 26.51
ViT 32×32 384 144 49.02 63.18 70.19 76.03 35.53 30.50 28.28 26.20
ViT 32×32 224 49 48.80 61.00 68.19 73.47 35.14 30.30 28.12 25.19
Swin 4×4 224 49 43.57 54.47 70.04 75.18 36.12 30.91 27.52 25.89

Table 5: Comparison of various resolutions and patch sizes on the En-De (Test2016) probing tasks.

A boy plays in the leaves among the ducks .

A boy plays in the [MASK_NS] among the [MASK_NS] .

SRC:

MASK2:
A woman is holding a small white statue .

A [MASK_P] is holding a small [MASK_C] [MASK_N] .

SRC:

MASK3:

38
4
×

38
4

22
4
×

22
4

Figure 5: Attention map of ViT in 384× 384 vs 224× 224 resolution and 16× 16 patching.

4.3 Impact of Resolution and Patching Size352

It is well-known that higher resolutions are ben-353

eficial to the accuracy improvement in computer354

vision tasks (Dosovitskiy et al., 2021). Despite355

the success of the Transformer architecture, recent356

studies show that the success of ViT mainly comes357

from the successful use of the patching schema358

(Dosovitskiy et al., 2021). Here, we compare MMT359

systems with different resolutions and patch sizes360

based on ViT-Base. The results on three probing361

tasks (see Table 5) again confirm the above as-362

sumption that fine-grained vision features are more363

suited for the selective attention. Also, the atten-364

tion map visualized in Figure 5 demonstrate that365

high resolution with fine-grained patching schema366

can attend to correct region of the image for each367

masked token. For example, both models pay the368

right attention to the masked character and noun,369

but the model with low resolution fails to detect the370

right region of color. The finding here may shed371

light to other multimodal tasks, such as VQA.372

4.4 Incongruent Decoding373

Incongruent decoding is a widely used manner to374

evaluate whether the vision modality contributes375

to the text (Caglayan et al., 2019, 2021). Table376

6 shows that incongruent decoding causes obvi-377

ous BLEU drops except for the ResNet feature.378

ViT beats the ResNet with gated fusion. It yields 379

higher BLEU scores with congruent decoding and 380

exhibits larger BLEU drop with incongruent decod- 381

ing. We also find that the ViT features learned from 382

scratch is also insensitive to the vision modality. 383

This is reasonable that the learned vision systems 384

are not sufficiently strong due to the data scarcity 385

of Multi30K. Thus the vision modality acts more 386

like noise signals. In addition, focusing on the re- 387

sults of pretrained selective attention + ViT, the gap 388

between congruent and incongruent decoding grad- 389

ually becomes larger. Also, the ensemble vision 390

features perform the best. These results indicate 391

that visual contexts help. 392

4.5 Case Study 393

Finally, we compare several real cases. We choose 394

gated fusion (CNN) (Wu et al., 2021) and selective 395

attention + ViT_Base (ViT) for comparison. The 396

qualitative examples in Table 7 demonstrate that 397

the visual modality is complementary rather than 398

redundant if the text is insufficient. To figure out 399

whether the German translation is right or not, we 400

provide the human-translation results. For example, 401

ViT can fill in the masked entities and generate the 402

correct translations even four entities were masked. 403

Unfortunately, CNN incorrectly judges the man as a 404

woman. Also, it cannot distinguish the right color 405
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System Mask1 Mask2 Mask3 Mask4

Cong. Icong. Cong. Icong. Cong. Icong. Cong. Icong.
Transformer-Tiny 34.37 - 29.12 - 24.03 - 21.64 -

Gated Fusion + ResNet Pretrained 34.90 34.88 28.94 28.08 24.18 22.56 21.74 20.79
Gated Fusion + ViT Pretrained 35.61 33.77 30.40 25.43 27.58 19.79 25.30 16.66

Selective Attn + ViT Pretrained 36.59 32.88 32.08 25.58 29.47 20.42 27.29 15.80
Scratch 34.91 34.81 28.91 28.91 23.40 23.40 19.63 19.63

Selective Attn + DETR Pretrained 35.54 33.92 29.61 27.20 26.06 21.65 23.94 18.88
Selective Attn + CATR Pretrained 36.17 33.13 31.15 26.40 27.58 20.72 25.50 16.98
Select. Attn + ViT + CATR Pretrained 36.97 32.98 32.45 24.71 30.30 19.92 28.14 16.09

Table 6: The impact of incongruent decoding for the noun masking strategy. Here Cong./Icong. denotes congruent
and incongruent decoding, respectively. The results (BLEU [%]) were measured on the En-De Test2016 test set.

SRC: a brown-haired [man] in a [green] [shirt] plays a [trumpet] outdoors .
REF: ein mann mit braunen haaren in einem grünen hemd spielt im freien trompete .
MK4: a brown-haired [MASK_P] in a [MASK_C] [MASK_N] plays a [MASK_N] outdoors .
CNN: eine braunhaarige frau in einem roten kleid spielt im freien gitarre .

(a brown-haired woman in a red dress plays a guitar outdoors.)
ViT: ein braunhaariger mann in einem grünen hemd spielt im freien trompete .

(a brown-haired man in a green shirt plays a trumpet outdoors.)

SRC: a [boy] is leaning on a [car] with [flowers] on the [hood] .
REF: ein junge lehnt sich an ein auto mit blumen auf der motorhaube .
MK4: a [MASK_P] is leaning on a [MASK_N] with [MASK_NS] on the [MASK_N] .
CNN: ein mann lehnt an einer wand mit bäumen auf der straße .

(a man is leaning on a wall with trees on the street.)
ViT: ein kind lehnt sich an einem auto mit blumen auf dem gehweg .

(a child is leaning on a car with flowers on the sidewalk.)

Table 7: Qualitative examples from two complex scenarios. Strikethrough and bold words present the incorrect
and good lexical choices. Underline denotes the acceptable but not totally right translation.

of shirt due to the complex background. When406

given a more complex image, it is still a challenge407

for ViT to generate the totally right translation.408

5 Related Work409

Multimodal machine translation is a cross-domain410

task in the filed of machine translation. Early at-411

tempts mainly focused on enhancing the MMT412

model by better incorporation of the vision features413

(Calixto and Liu, 2017; Elliott and Kádár, 2017;414

Delbrouck and Dupont, 2017). However, directly415

encoding the whole image feature brings additional416

noise to the text (Yao and Wan, 2020; Liu et al.,417

2021a). To address the above issue, Yao and Wan418

(2020) proposed a multimodal self-attention to con-419

sider the relative difference of information between420

two modalities. Similarly, Liu et al. (2021a) used a421

Gumbel Softmax to achieve the same goal.422

Researchers also realize that the vision modality423

maybe redundant. Irrelevant images have little im-424

pact on the translation quality, and no significant425

BLEU drop is observed even the image is absent426

(Elliott, 2018). Encouraging results appeared in427

Caglayan et al. (2019)’s work. They pointed out 428

that the visual modality is still useful when the lin- 429

guistic context is scarce, but is less sensitive when 430

exposed to complete sentences. More recently, Wu 431

et al. (2021) attributed the BLEU gain on MMT 432

tasks to the regularization training. Caglayan et al. 433

(2021) proposed a cross-lingual visual pretraining 434

approach. In this work, we make a systematic study 435

on whether stronger vision features are helpful. We 436

also extend the research to enhanced features, such 437

as object-detection and image captioning, which is 438

complementary to previous work. 439

6 Conclusions 440

In this work, we show that stronger vision features 441

(e.g. ViT-like models) strengthen MMT systems 442

on three proposed probing tasks. We present a 443

selective attention method for ViT-based models to 444

make better use of the patch-level representation. 445

The result here shows a promising line of research 446

on developing better vision models for multimodal 447

tasks. Our code and metrics for probing tasks will 448

be open source soon. 449
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