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Abstract

Using AI to create autonomous researchers has the potential to acceler-1

ate scientific discovery. A prerequisite for this vision is understanding2

how well an AI model can identify the underlying structure of a black-3

box system from its behavior. In this paper, we explore how well a large4

language model (LLM) learns to identify a black-box function from pas-5

sively observed versus actively collected data. We investigate the reverse-6

engineering capabilities of LLMs across three distinct types of black-box7

systems, each chosen to represent different problem domains where future8

autonomous AI researchers may have considerable impact: programs, for-9

mal languages, and math equations. Through extensive experiments, we10

show that LLMs fail to extract information from observations, reaching11

a performance plateau that falls short of the ideal of Bayesian inference.12

However, we demonstrate that prompting LLMs to not only observe but13

also intervene—actively querying the black box with specific inputs to14

observe the resulting output—improves performance by allowing LLMs to15

test edge cases and refine their beliefs. By providing the intervention data16

from one LLM to another, we show that this improvement is partly a result17

of engaging in the process of generating effective interventions, paralleling18

results in the literature on human learning. Further analysis reveals that19

engaging in intervention can help LLMs escape from two common failure20

modes: overcomplication, where the LLM falsely assumes prior knowledge21

about the black box, and overlooking, where the LLM fails to incorporate22

observations. These insights provide practical guidance for helping LLMs23

more effectively reverse-engineer black-box systems, supporting their use24

in making new discoveries.25

1 Introduction26

Developing intelligent systems to accelerate scientific discovery has been a long-standing27

goal of artificial intelligence research (Gil et al., 2014; Wang et al., 2023). Despite rapid28

progress in creating large language models (LLMs) for understanding text and solving29

problems such as math and coding, automating scientific processes poses a different kind30

of challenge. A core aspect of scientific discovery is reverse-engineering the underlying31

mechanism behind a black-box system, which requires capabilities beyond responding32

to a one-off query. In particular, reverse-engineering often involves 1) understanding33

a collection of observed data in order to develop hypotheses, 2) designing experiments34

to actively acquire informative data from the black-box to test those hypotheses, and 3)35

describing and communicating the results.36

Existing work using LLMs for automating scientific processes either focuses on static obser-37

vational data (Rmus et al., 2025; Shojaee et al., 2025) or emulates scientific workflows using38

“LLM scientists” with many moving parts (Gandhi et al., 2025; Schmidgall et al., 2025). In39

contrast, research in related fields has used carefully controlled tasks to evaluate whether40

machine learning systems can perform key aspects of reverse-engineering, including in-41

ductive reasoning (Rule et al., 2024), learning causal features from passive data (Lampinen42

et al., 2023), and optimal experimental design (Chaloner & Verdinelli, 1995; Foster et al.,43

2019). This work is often informed by research in cognitive science, which has studied44
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Math Equation: 

 
Observations: 
x = [7, 2], [3, 5], y = second 
x = [1, 9], [6, 3], y = first,  
…
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Figure 1: Reverse-engineering. Left: Defining the problem. The AI scientist will obtain
either passive observations from the black box or collect data through active intervention
to construct a hypothesis. Right (top): with only passive observations, the LLM cannot
make effective use of the data and lags behind Bayesian inference by large margin; allowing
the LLM to intervene improves performance. Right (bottom): effective intervention can
mitigate two common failure modes: overcomplication and overlooking.

how humans engage in active learning using methods in which the source (i.e. passive45

observation or active experimentation) and content of data can be differentiated (Markant &46

Gureckis, 2010; 2014). However, such controlled methodologies have not yet been applied47

to evaluating state-of-the-art LLMs, leaving fundamental questions unanswered: “How well48

can LLMs make inferences from passive observations?” and “Can they actively collect data to refine49

their hypotheses?”.50

To answer these questions, we systematically study LLMs on three reverse-engineering51

tasks inspired by the cognitive-science literature and selected to mimic challenges that52

arise in scientific settings: reconstructing list-mapping programs (Rule et al., 2024), formal53

languages (McCoy & Griffiths, 2023), and math equations (Foster et al., 2019). Through54

extensive experiments, we show that LLMs are limited in their ability to make inferences55

from observations, leading to performance plateaus when compared to Bayesian models.56

However, allowing LLMs to perform interventions—generating test cases or queries to57

collect new, informative data—can significantly improve their performance.58

Through further experiments in which the results of the interventions conducted by one59

LLM become observational data for another, we show that the benefits of intervention seem60

to come from the LLM testing and refining its own beliefs rather than simply collecting61

higher-quality data. This is similar to a phenomenon observed in human learning, where62

people show limited benefit from interventions generated by others (Markant & Gureckis,63

2010; 2014). Further investigation reveals that generating interventions seems to help LLMs64

overcome two failure modes: 1) overcomplication, where the LLM tends to construct overly-65

complex hypotheses, and 2) overlooking, where the LLM neglects observations or draws66

overly-generic conclusions without careful checking.67

Our contributions are as follows:68

• Drawing inspiration from controlled studies of human cognition, we formalize69

reverse-engineering as a core problem for assessing the scientific discovery capabilities70

of LLMs and design three black-box tasks that can be used in such assessment.71

• We demonstrate empirically that frontier LLMs still struggle, relative to Bayesian72

inference, at reverse-engineering these black boxes when provided with only passive73

observations.74
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• We show that LLMs can perform interventions to obtain more informative data,75

and that effective intervention mitigates the failure modes of overcomplication and76

overlooking.77

• We show that performance degrades when repurposing the LLM’s intervention data78

as observations, pinpointing the mechanism behind the improvements it produces79

and highlighting a potential pitfall for exchanging knowledge among LLMs.80

2 Related Work81

Inductive Inference Some of the earliest work on reverse-engineering appears under82

the label of inductive inference for “hypothesizing a general rule from examples” (Angluin83

& Smith, 1983). Classic instances of this problem include work on identifying the un-84

derlying structure of a finite-state automaton through observations of its input-output85

behavior (Rivest & Schapire, 1987; 1989). While this problem typically considers passive86

observations, seminal work on active learning focuses on analyzing the benefits of actively87

querying inputs to solicit the most-informative outputs from the unknown function of88

interest (Littlestone, 1988; Angluin, 1988; Settles, 2009). The key distinction between these89

seminal works and ours is the attention towards LLMs and assessing their capacity for90

successfully identifying different types of black boxes from input-output examples.91

Bayesian Optimal Experiment Design An adjacent line of work considers the sequential92

design of experiments which maximally yield information gain about an unknown parame-93

ter of interest (Lindley, 1956; DeGroot, 1962; Chaloner & Verdinelli, 1995; Foster et al., 2019);94

one may interpret these methods as studying a non-LLM-focused, Bayesian analogue of95

the reverse-engineering problem we formulate in the subsequent section, where a learner96

begins with a prior distribution over the black box in question and must maximally reduce97

epistemic uncertainty (Der Kiureghian & Ditlevsen, 2009) with a given budget of experi-98

ments. To the extent that LLMs may implicitly engage with an underlying approximate99

posterior inference scheme (Xie et al., 2021; Griffiths et al., 2024; Zhu & Griffiths, 2024a; Falck100

et al., 2024; McCoy et al., 2024), the reverse-engineering capabilities studied in this work can101

be tied to this Bayesian optimal experiment design problem.102

Reinforcement Learning The fundamentals of the reverse-engineering problem also con-103

nect with various ideas studied in the context of reinforcement learning (RL) (Sutton & Barto,104

1998). Any model-based RL agent (Sutton, 1990; 1991; Brafman & Tennenholtz, 2002; Strehl105

& Littman, 2008) naturally engages with a particular instance of the reverse-engineering106

problem where the black-box function in question is the transition function and/or re-107

ward function of a Markov Decision Process (MDP) (Bellman, 1957; Puterman, 1994). The108

distinction explored in this work between a LLM that passively observes versus actively109

intervenes on the black box in question has a direct connection to the exploration challenge110

in RL, which has profound impact on an agent’s ability to recover an accurate model of111

the world (Thrun & Möller, 1991; Deisenroth & Rasmussen, 2011; Strens, 2000; Osband112

et al., 2013); while recent work (Arumugam & Griffiths, 2025) has studied how to improve113

exploration with LLMs, this paper focuses on assessing the innate capabilities of LLMs to114

actively query informative data. The KWIK learning framework of Li et al. (2008) provides a115

theoretical analysis for reverse-engineering a MDP transition function when a learner must116

either confidently estimate the environment dynamics or say “I don’t know” (Walsh et al.,117

2009; Li & Littman, 2010; Sayedi et al., 2010; Szita & Szepesvári, 2011; Abernethy et al., 2013).118

Finally, there is a connection between intervention for effective reverse-engineering and119

meta RL (Liu et al., 2021), with recent work showing that passive learning can be effective120

with LLMs once there is an effective exploration strategy capable of yielding high-quality121

observations (Lampinen et al., 2023); naturally, the latter problem is precisely what we122

demonstrate interventions allow LLMs to solve for themselves in reverse-engineering tasks.123

LLMs for Automating the Scientific Process With the rapid advances in LLMs, recent124

work has explored using them to automate different parts of the scientific process such as125

ideation (Si et al., 2024), assistance (Gottweis et al., 2025), writing research papers (Lu et al.,126
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2024; Starace et al., 2025), or emulating AI scientists in simulated environments (Schmidgall127

et al., 2025). Additionally, multi-modal and multi-agent AI models have driven significant128

progress in applications such as protein science (O’Neill et al., 2025), while frameworks129

like MatPolit (Ni et al., 2024) integrate human cognitive insights to accelerate discoveries130

in materials science. These works utilize the abundant knowledge stored in the LLMs131

to directly tackle real-world complexity in science (Reddy & Shojaee, 2025). However,132

the complexity of these settings and the resulting agents make it hard to disentangle the133

consequences of all the engineering choices that go into these systems. Our work instead134

focuses on using simple and controllable black boxes to study the core capabilities of the135

LLMs themselves.136

Understanding Failure Modes in LLMs Recently, many works have examined the failure137

modes of formal reasoning in LLMs. It has been observed that LLMs can exhibit failure138

modes of both “overthinking” (Chen et al., 2024) and “underthinking” (Wang et al., 2025)139

when tackling mathematical problems and code generation (He et al., 2025; Sprague et al.,140

2024; Cuadron et al., 2025; Sprague et al., 2024; Sui et al., 2025; Cemri et al., 2025). To141

understand LLM abilities beyond formal reasoning tasks, recent work has leveraged insights142

and datasets from cognitive science (Frank, 2023; Binz & Schulz, 2023; Coda-Forno et al.,143

2024; Ying et al., 2025). In particular, researchers have started to use cognitive science to144

explore the failed behaviors in LLMs (Ku et al., 2025). Using these methods, researchers145

have found that LLMs sometimes overestimate human rationality (Liu et al., 2024a), exhibit146

inconsistencies in probability judgments (Zhu & Griffiths, 2024b), and perform worse as a147

result of engaging in reasoning (Liu et al., 2024b). In a similar vein, our work draws upon148

research from cognitive science to design the black boxes used in our reverse-engineering149

experiments.150

3 Reverse Engineering151

3.1 Problem Formulation152

We define a black box f ∗ : X → Y as a deterministic function that maps a query x ∈ X to a153

response y ∈ Y through its internal dynamics. The reverse-engineering problem is for a154

model to infer the internals of a black box f ∗ (e.g. list mapping programs, production rules155

of formal languages, and math equations) from a sequence of query-response pairs O =156

{(x1, y1), (x2, y2), . . . , (xN , yN)} ⊂ X × Y (Figure 1). We consider two cases of the reverse-157

engineering problem: observation-only and observation-intervention. In the observation-158

only scenario, all the queries are randomly sampled from X and the corresponding response159

yi = f ∗(xi) is generated by the black box from a uniform distribution to construct the160

observation set. A large language model M must generate a hypothesis f = M(O) without161

further interaction with the black box. This setting assesses the model’s ability to perform162

inductive reasoning (Angluin & Smith, 1983). In the observation-intervention scenario, the163

LLM is first given a set of observations O obtained in the observation-only scenario and is164

instructed to interact with the black box in a multi-round fashion. In each round, the LLM165

chooses one of the following actions: 1) construct a new query xN+1 to query the black box166

and obtain the response yN+1, 2) construct a new query-response pair (xN+1, y′N+1) and167

check its validity using the black box (1[y′N+1 = f ∗(xN+1)]), or 3) stop and conclude with a168

hypothesis f about the black box. Before constructing the new query, the LLM can analyze169

the current oservations with strategies such as verbalizing its current belief or describing170

the current hypothesis (§I). Before the LLM chooses to stop or reaches the maximal number171

of rounds, the query-response pairs obtained during intervention are appended to O for the172

next round.173

3.2 Black-Box Types174

Drawing on the literature on inductive inference in cognitive science, we select tasks com-175

monly used to study learning of complex relationships to design our black-box systems and176

scale them up for evaluation with LLMs. These three distinct black-box function classes –177

Program, Formal Language, and Mathematical Equation – simulate problems encountered178
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in scientific reverse-engineering scenarios. Due to space constraints, detailed black-box179

designs are relegated to Appendix A.180

Program. We use list-mapping programs (Rule et al., 2024) for the Program black-box.181

Each program implements a lambda expression (e.g., (lambda(singleton(third $0)))) in182

Python, where the query is a list of integers and the response is an integer.183

Formal Language. The Formal Language black-box is defined by a simple program that184

generates sequences of symbols. For example, the language AnBn generates sequences185

consisting of some number of As followed by the same number of Bs. The black-box allows186

the LLM to intervene by validating if a string is allowable under the rule. We define 46187

distinct black boxes each based on a language from Yang & Piantadosi (2022) or McCoy &188

Griffiths (2023).189

Math Equation. We use the Constant Elasticity of Substitution (CES) formulation from190

economics (Foster et al., 2019) as the Math Equation black-box. The utility U =
(
∑i aixr

i
) 1

r is191

given by the weights ai, the ratio r, and the quantities of each kind of goods xi. The LLM192

can query the black-box with two lists of item types with quantities and obtain a response193

indicating which list has higher utility.194

3.3 Evaluation Protocol195

A black-box can be represented in multiple ways, rendering evaluation challenging. For196

example, two black-boxes can be compared through their descriptions in natural language197

(descriptive evaluation) or whether they respond similarly to the same queries (functional198

evaluation; see §K). In this paper we focus on descriptive evaluation, where the black-box199

f ∗NL is expressed in natural language, due to its communicative nature and real-world use200

(Chopra et al., 2019; Gandhi et al., 2025). The LLM-generated hypothesis fNL is scored by201

an LLM judge against the black-box on a 0 − 10 scale based on the criteria of each black-202

box type (score = LM-Judge( fNL, f ∗NL)). We use descriptive evaluation for Program and203

Formal Language. As the Math Equation does not require verbalization beyond the weights204

and ratio, we report the flipped root mean square error (1 - RMSE) between the inferred205

parameters and ground truth.206

4 Experiments207

Experimental setup. We use different versions of GPT-4o (Hurst et al., 2024) for reverse-208

engineering (gpt-4o-2024-08-06, dubbed as reverse-engineer LLM) and as the judge (gpt-4o-209

2024-05-13, dubbed as the judge LLM). We use greedy decoding of both the reverse-engineer210

and the judge LLMs and report performance over 3 seeds. For the observation-only experi-211

ments, we report performance for number of observations N = {2, 5, 10, 20, 50, 100}. For the212

observation-intervention setting, the reverse-engineer LLM performs M = {5, 10, 20, 50}213

rounds of interventions conditioned on the initial set of 10 observations (|O| = 10). In214

addition to GPT-4o, we report full results for Claude-3.5-Sonnet-20241022 (Anthropic, 2024),215

DeepSeek-R1 (Guo et al., 2025), Llama-3.3-70B-Instruct Grattafiori et al. (2024) in Appendix216

E and the reliability of using GPT-4o as a judge in Appendix J. We provide the prompts217

for both intervention and hypothesis generation in Appendix D. We also study different218

evaluation approaches in Appendix K.219

4.1 LLM Struggles to Utilize Observations Optimally220

We first establish the reference performance achievable by the Bayesian model in each221

setting. These three settings were selected in part because they are all cases where previous222

work has defined inference algorithms that make it possible to approximate the posterior223

distribution over hypotheses as more observations becomes available (Rule et al., 2024; Yang224

& Piantadosi, 2022; Foster et al., 2019). As shown in Figure 2 (Top), the Bayesian models225

(green) consistently improve with the increased number of observations across all three226
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Figure 2: Top: observation-only results across three black-box types. We compare the
GPT-4o performance (blue) to Bayesian inference (green). The x-axis represents the number
of provided (x, y) pairs. We report 1 - RMSE for Math Equation and descriptive score
for Program and Formal Language. Bottom: observation-intervention results across three
black-box types. Red: observation-intervention by GPT-4o. Yellow: taking the observation-
intervention collected from GPT-4o as observations for the Bayesian inference algorithms.
Dashed lines: observation-only reference for GPT-4o (blue) and Bayesian inference (green).

tasks. On the other hand, while the LLM reverse-engineer (blue) starts off with higher227

performance for Program and Formal Language, potentially leveraging its prior knowledge,228

it peaks at 10 observations and struggles to use the extra observations thereby causing229

performance to plateau. We also calculate repeated measures ANOVAs (Girden, 1992) for230

each black-box type and found significant Model × number of datapoints interactions for231

Program (F(5, 10) = 51.9, p < 0.001), Formal Language (F(5, 10) = 11.8, p = 0.001), and232

Math Equation (F(5, 10) = 8.7, p = 0.002), showing that the Bayesian inference algorithms233

increasingly outperformed LLMs with additional observations. Details for the ANOVA234

calculations are provided in Appendix C.1.235

4.2 Intervention Is Crucial for the LLM to Refine Hypotheses236

In Figure 2 (Bottom), we compare the performance of models with access to only the obser-237

vations (dashed lines) against using the data that is actively collected through intervention238

(solid lines). We observe that enabling the LLM to actively intervene significantly improves239

performance (red) over observation-only (dashed blue). Through intervention, the LLM240

consistently improves as more data becomes available across all three black-box types. To241

assess the quality of the interventions, we provide the LLM-collected intervention data to242

the Bayesian model as observations, akin to the passive yoked data studied in Markant &243

Gureckis (2010; 2014). Our results indicate that while the interventions are beneficial to the244

LLM itself, they are not universally more informative, paralleling the findings in human245

active learning (Markant & Gureckis, 2010; 2014). This gap was statistically significant, as246

shown by an ANOVA for each black box type: Program (F(5, 10) = 23.9, p < 0.001), Formal247

Language (F(5, 10) = 7.9, p = 0.003), and Math Equation (F(5, 10) = 14.9, p < 0.001).248

4.3 Identifying the Value of Generating the Intervention Data249

The improvement in performance produced by the interventions could have two sources:250

it could be that the resulting data are more informative, or that the process of generating251

interventions itself helps the model. To tease these apart, we adopt the passive-yoked252
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Figure 3: Comparing intervention-yoked results with observation-only and observation-
intervention across three black-box types.

design that Markant & Gureckis (2010; 2014) used to study human learning, where the253

data generated via active learning by one group of participants is presented to another254

group of participants as passive observations. In Figure 3, we compare GPT-4o across three255

conditions: observation-only (blue), observation-intervention (red), and intervention-256

yoked (purple) where GPT-4o only passively observes the interventional data without the257

verbalization and analysis that are used to construct such data. Results consistently show258

that the intervention-yoked setting leads to lower performance compared to the observation-259

intervention setting across all three black-box types. This shows that active learning is more260

beneficial than passive-yoked learning in part because it allows the LLM to dynamically261

refine its hypothesis in response to its own interventions.262

5 Analysis of Failure Modes263
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Figure 4: Descriptive scores for five different complexity levels. Averaged across three seeds
for each of the three black-box types.

To understand how intervention improves LLM performance, we analyze common failures264

by sampling 20 failed examples (scoring below 2 out of 10 points) from the observation-265

only experiment, which were inspected by human experts. We provide more details in266

Appendix F.1. We identify two major failure modes: 1) overcomplication, where the LLM267

excessively interprets the data, resulting in unnecessarily complex hypotheses, and 2)268

overlooking, where the LLM inadequately leverages available information, leading to poorly269

reasoned hypotheses. We classified 20 randomly sampled examples for each black-box270

into the two failure modes or “Not Applicable” by human annotation. Results show271

that for Program the failures are predominantly from overcomplication (17 cases out of272

20) whereas Math Equation contains more overlooking failures (16 cases out of 20). The273

failures are more evenly distributed for Formal Language, with 8 examples classified as274

overcomplication, 11 examples as overlooking, and 1 example as “Not Applicable”. We275

provide examples for these failure mode in Appendix F.2. Notably, we find that the impact276

of interventions on alleviating these two failure modes is contingent upon the complexity277
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of the reverse-engineering task itself. For each of the three specific domains we study, we278

include a brief characterization of complexity in Appendix N. Within each domain, we279

observe that the complexity of the reverse-engineering problem instance characterized280

by f ∗ governs the extent to which interventions rectify failures of overcomplication and281

overlooking. In Figure 4, we show that performance improvements from intervention on282

Program diminish as task complexity increases for black-box systems dominated by the283

overcomplication failure mode. In contrast, actively collected data proves more beneficial284

when addressing challenging black-box instances dominated by the overlooking failure mode,285

such as Math Equation. For Formal Language, where both failure modes frequently occur,286

we observe consistent improvements across all complexity levels.287

6 Limitations and Future Directions288

We have discussed in this paper the abilities and failure modes of LLMs in reverse-289

engineering black boxes. However, the three black-box types we studied represent only290

a narrow slice of possible tasks, even within controlled settings. A more comprehensive291

assessment will require expanding and scaling up the evaluation suite to probe LLMs’292

reverse-engineering abilities across a broader spectrum of scenarios. In addition, we have293

assumed idealized, noise-free black-boxes and fully trustworthy data—a condition that is294

rarely met in real scientific practices. An important next step is to relax this assumption295

and rigorously test LLM robustness in the presence of noise and uncertainty. As our paper296

highlights the failure modes of LLMs, we leave open the question: “How can we train LLMs297

to become effective reverse engineers?”, which includes enhancing the ability of LLMs to per-298

form correct inference from passive observations and to conduct optimal experiments. In299

particular, what kinds of data and algorithms are needed to train such a model (e.g., rein-300

forcement learning using black-box environments), and can improvements in one domain301

generalize to broader scientific automation tasks? Finally, we have demonstrated that the302

actively acquired data by one LLM may not be useful for another LLM, pointing to the303

issue of transferability of experiences. This is important for automating scientific discovery304

as many major scientific advances have relied on effective collaborations. Understanding305

and quantifying the impact of this limited transferability of knowledge may be crucial as306

multi-agent systems become prevalent, and it will be essential to design such systems with307

effective communication baked in.308

7 Conclusion309

In this paper, we identified and formalized the reverse-engineering problem as a core310

ability and prerequisite for building a reliable AI scientists. We showed that current LLMs311

still struggle to effectively leverage passive observations even on seemingly simple and312

controlled black-boxes. Allowing LLMs to actively collect intervention data improves313

performance, but still falls short of closing the gap with Bayesian inference, casting doubt314

on the promise of truly reliable AI scientists. Through extensive analysis, we identified315

issues such as overcomplication and overlooking and illustrated how intervention can316

mitigate such failures. Despite the effectiveness of intervention, our analysis revealed that317

the intervention data collected by LLMs were primarily beneficial to the models themselves,318

rather than being objectively informative or transferable to other models. Altogether,319

our paper directly assesses the ability of LLMs to infer underlying causal structures and320

mechanisms through controlled reverse-engineering experiments. This capacity mirrors321

the fundamental scientific discovery process, which relies heavily on identifying hidden322

relationships and principles behind observed phenomena. Consequently, if an LLM cannot323

reliably reverse-engineer even simple or controlled systems, this raises concerns regarding its324

dependability in addressing more complex and ambiguous scientific challenges. Evaluating325

an LLM’s reverse-engineering ability provides a concrete and principled way to assess its326

capacity for scientific reasoning, helping us understand whether such models possess the327

foundational skills required to function as dependable AI scientists.328
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A Black Box Designs605

Program We used 100 list-mapping program instances from (Rule et al., 2024) to design the606

Program black-box API. Each black-box instance represents as a symbolic program defined607

in a domain-specific language (DSL). We implemented an interpreter pipeline that parses608

DSL expressions into abstract syntax trees and compiles them into executable Python code.609

Each black-box supports two modes: observation (observation-only) and intervention610

(observation-intervention). In the observation mode, the black-box takes a random input611

list and returns the output produced by the underlying symbolic program, generating612

paired observational data:613

input list → program execution → output list

In the intervention mode, the LLM queries an input or explicitly specifies an input-output614

pair. The black-box generates the output list or evaluates whether the given output matches615

the internally computed output and provides clear feedback:616

Feedback =

{
”output ⇒ Correct”, if the provided output matches the program output,

”output ⇒ Incorrect”, otherwise.

Formal Language We followed Yang & Piantadosi (2022) and McCoy & Griffiths (2023) to617

implement a collection of 46 formal language instances to construct our formal language618

black-box, each instance being capable of generating strings according to specific symbolic619

rules (e.g. AnBn). Each black-box instance behaves as an API from a generative model,620

operating in two modes: observation and intervention.621

In the observation mode (observation-only), the black-box randomly produces valid strings622

from its underlying rule, explicitly labeling each as generated output, for example:623

“AAAABBBB” is generated by the black-box.

In the intervention mode (observation-intervention), the LLM submits a specific string624

query to the black-box, which evaluates whether the string complies with its rule. The625

black-box responds clearly, indicating either acceptance or rejection:626

Response =

{
“[string] is generated by the black-box”, if the string follows the rule,

“[string] cannot be generated by the black-box”, otherwise.

To avoid generating infinite strings, we imposed a maximum character length of 64 for all627

single characters generated by the black-box.628

Math Equation For the math equation, we implemented the CES utility model as the629

black-box, designing it as a generative model capable of generating observational data or630

responding to queries from an LLM. The utility function is mathematically defined as:631

U =

(
∑

i
aixr

i

) 1
r

,

where the weights ai satisfy the constraint ∑i ai = 1, the parameter r controls the substitution632

elasticity, and xi represents the quantities of goods in a basket.633

CES black box also provides two operational modes: observation (observation-only) and634

intervention (observation-intervention). In the observation mode, the black-box randomly635

samples two baskets (each a list of good quantities) and computes their utilities using the636

CES formulation. It then returns the preference outcome indicating which basket is preferred637

based on higher utility:638

Preference =





Basket1, U(Basket1) > U(Basket2),

Basket2, U(Basket1) < U(Basket2),

equal utility, U(Basket1) = U(Basket2).
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In the intervention mode, an external model explicitly queries the black-box by specifying639

two baskets. In addition, the external model can also provide an estimated preference. The640

CES black box internally evaluates the utilities based on the specified baskets and returns641

the actual preference outcome or feedback indicating whether the provided estimate was642

“correct” or “incorrect”.643

B Bayesian models as the ‘Optimal’ Reference644

We employ Bayesian models as an oracle for optimal reverse-engineering against which645

we may assess the capabilities of LLMs. Unlike LLMs, Bayesian models explicitly perform646

probabilistic inference within a clearly defined hypothesis space, systematically updating647

posterior beliefs using the Bayes rule to identify the underlying mechanism that best explain648

observed data. Under the critical assumption that the true underlying rule resides within649

this hypothesis space (that is, the standard assumption of a well-specified prior), Bayesian650

models serve as an optimal reference standard in our experimental setting. We hypothesize651

that LLMs, when provided only with passive observational data, are unable to effectively652

utilize available information due to their inherent reliance on prior knowledge, resulting in653

significantly lower performance compared to the Bayesian optimal standard. However, al-654

lowing LLMs to actively intervene and collect data can substantially reduce the performance655

gap. For each of the three black-box systems evaluated, we replicated the Bayesian models656

from their original studies, adapting them to closely match our experimental conditions.657

Specifically, we provide Bayesian models with observed data generated by our black-box658

systems as an ideal reference. We also provide Bayesian models with the actively collected659

data from LLMs intervention to assess the informativeness of the data gathered by LLMs.660

To ensure rigorous comparability, we applied identical evaluation methodologies to both661

the Bayesian models and LLMs.662

Program We used the Bayesian inference approach from (Rule et al., 2024) to establish663

an optimal reference for list-mapping program black-box. Specifically, we utilized their664

MetaProgram Learner, which performs Bayesian inference over symbolic metaprograms665

that generate target programs from observed data.666

Given observational data D, consisting of input-output pairs generated by symbolic pro-667

grams, the MPL computes the posterior distribution over candidate hypotheses (metapro-668

grams) H according to the Bayes rule:669

P(H | D) ∝ P(D | H) · P(H).

The prior distribution P(H) integrates two complementary sources of simplicity bias: the670

meta-program prior PM(H) and the induced program prior PP (H̃). This combined prior is671

defined as:672

P(H) ∝ exp

(
ln PM(H) + ln PP (H̃)

2

)
,

where H̃ denotes the program compiled from the metaprogram H.673

The likelihood P(D | H) measures the consistency of a meta-program H with the observa-674

tional data provided, incorporating a noise model to accommodate minor discrepancies675

between the model predictions and observations.676

Formal Language We adopted the Bayesian inference approach from Yang & Piantadosi677

(2022) as an optimal reference model to determine the theoretical upper bound on the678

learnability of formal language rules from the observations generated by our black-boxes679

or from the interventions queried by LLM. Specifically, we provided strings generated by680

our formal language black-boxes as observational data to the Bayesian model, which then681

inferred the underlying symbolic grammar rules.682

Just as before, the Bayesian inference framework defines the posterior distribution over683

candidate hypotheses conditioned on observed data using Bayes’ rule:684

P(H | D) ∝ P(D | H) P(H),
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where H represents a candidate hypothesis (grammar or probabilistic program), D rep-685

resents the observed string data generated by the black-box, P(H) represents the prior686

probability reflecting initial beliefs about the simplicity and plausibility of hypotheses, and687

P(D | H) denotes the likelihood of observing data D given hypothesis H.688

The Bayesian model uses a structured prior P(H), assigning higher probabilities to simpler,689

more concise grammars or symbolic programs. As observational data increases, Bayesian690

updating systematically refines prior beliefs into posterior distributions, enhancing the691

probability assigned to grammars that best explain the data. Formally, each new observed692

string updates the posterior, shifting probability mass toward hypotheses consistent with693

the cumulative dataset. By leveraging this Bayesian inference mechanism, we quantify the694

upper bound of the learnability of the observations, thus providing a rigorous baseline to695

evaluate LLM’s effectiveness in utilizing the same observational data.696

Math Equation To infer the parameters of the CES utility model from the observations697

provided, we followed (Foster et al., 2019) by employing a Bayesian inference approach ex-698

plicitly conditioned on these observations. Bayesian inference integrates observed data with699

prior beliefs, updating these beliefs into posterior distributions to progressively improve700

parameter estimates. Initially, we specified prior distributions for the model parameters:701

ρ ∼ Beta(ρ0, ρ1),
α ∼ Dirichlet(αconc),

slope ∼ LogNormal(slopeµ, slopeσ).

Given pairs of consumption bundles (d1, d2) and the corresponding observed user pref-702

erences y, the Bayesian framework models these preferences probabilistically through a703

censored sigmoid-normal likelihood:704

y ∼ CensoredSigmoidNormal (slope · (U(d1)− U(d2)), slope · obs sd · (1 + ∥d1 − d2∥2)) ,
where U(d1)− U(d2) denotes the utility difference between the two bundles. Here, “cen-705

sored” refers to applying a sigmoid function to latent utility values and then truncating706

the results to the observed preference interval (e.g., [0, 1]), ensuring that responses remain707

within these limits.708

The posterior distributions are updated via Bayes’ theorem by explicitly integrating obser-709

vational data:710

p(ρ, α, slope | y, d) ∝ p(y | ρ, α, slope, d) p(ρ, α, slope),
where p(ρ, α, slope) represents prior distributions and p(y | ρ, α, slope, d) represents the711

likelihood function given the observations.712

While some sources prefer uppercase probability notation such as P(H | D), this paper713

adopts lowercase notation (p) consistently for both probability densities and random vari-714

ables throughout.715

Parameter estimation was performed via variational inference (Blei et al., 2017), iteratively716

optimizing the evidence lower bound (ELBO), defined as:717

ELBO(ϕ) = Eqϕ [log p(y | ρ, α, slope, d)]− DKL
(
qϕ(ρ, α, slope) ∥ p(ρ, α, slope)

)
,

where qϕ denotes the variational posterior distribution used to approximate the true poste-718

rior distribution.719

Thus, as additional observational data are incorporated, Bayesian inference continually720

updates prior beliefs into posterior distributions, systematically refining parameter estimates721

toward their true underlying values.722

C Statistical Significant Tests723

C.1 Repeated-measures ANOVA724

To statistically evaluate the interaction between models (Bayesian vs. LLM) and steps, we725

calculated the repeated-measures ANOVAs. Each black-box instance involved multiple726
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repeated measurements corresponding to different steps. Letting Yijk represent the perfor-727

mance score for subject i, models j (Bayesian or LLM), and step k, the repeated-measures728

ANOVA model can be expressed as:729

Yijk = µ + Si + Mj + Tk + (M × T)jk + ϵijk

where µ is the mean in all measurements, Si represents the random effect of the subjects730

(individual seeds), Mj denotes the main effect of the model, Tk is the main effect of steps,731

(M × T)jk is the interaction between the model and the step, and ϵijk represents residual732

error.733

The ANOVA decomposes the total variance into these distinct sources. Specifically, the734

significance of the interaction of the Step Method × was determined by calculating the735

corresponding F-statistic:736

F =
MS(M×T)

MSerror

where MS(M×T) is the mean square for the Method × Step interaction, and MSerror is the737

residual mean square. Significance was assessed using an F-distribution with numerator738

degrees of freedom equal to (J − 1)(K − 1), where J is the number of method levels and K739

is the number of steps, and denominator degrees of freedom equal to (I − 1)(K − 1), where740

I is the number of subjects.741

D Prompts742

D.1 Intervention prompt743

In this task, you are given a ``black box'' and need to determine its inner
workings.
{black box information}
You will have a series of turns to interact with the black box. On each turn,
you can either gather more information or test your hypothesis. To gather more
information, {query instruction}, and obtain a result.
To test your hypothesis, {test instruction}. All the information gathered across
all the turns is used to reverse engineer the black box. Throughout the process,
you can decide whether the gathered information is sufficient to correctly
identify the workings of the black box, in which case you can stop. Otherwise,
you need to continue the interaction. Concretely, you can perform one of the
following actions at each turn: 1) query, 2) test, or 3) stop.

Provide a *thorough reasoning* before performing the action. Leverage the past
observations to design your next query and make your hypothesis as accurate as
possible. Below is the format for each action.

Query:
```query
List[int]
```

Test:
```test
List[int]
List[int]
```
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Stop:
```stop
```

Note that you should only perform one of the actions above with one input
example in your response.

Below are your past observations of the black box:
{observations}
Response:

D.2 Evaluation Prompts744

Program (judge):745

In this task you will be given a ground truth program and pseudocode that you
need to evaluate. You will output a score for the quality of the pseudocode
based on a set of assessment criteria.

Below is the ground truth program:
{ground_truth}

Evaluate the quality of the following pseudocode:
{response}

Score the above pseudocode against the ground truth program based on the
following criteria (total 10 points):
1. Does the provided pseudocode correctly specify the implementation of the
ground truth program and manipulate the variables in the same way? Ignore the
programming language difference. [5 point]
2. Does the provided pseudocode specify the implementation in the most simple
and straightforward way without extra unused parts (Occam's Razor principle) [5
point]

Explain your judgement and return the final score with the type float and
following the format below:
```judgement
YOUR JUDGEMENT HERE
```
```score
YOUR SCORE HERE
```

Response:

Formal Language (judge):746

In this task, you will be given a ground truth formal language and a proposed
rule describing that formal language, which you need to evaluate for quality.
You will then output a score based on a set of assessment criteria.

Below is the ground truth formal language:
{ground_truth}

Evaluate the quality of the following formal language rule:
{response}
Score the above formal language rule against the ground truth formal language
based on the following criteria (total: 10 points):
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1. Does the provided rule correctly generate the examples given in the ground
truth? Your score is determined by how many examples are correctly generated out
of the total number of examples. [3 points]
2. Does the provided rule correctly reverse engineer the ground truth formal
language? [5 point]
3. Is the provided rule in the most simple and straightforward way without extra
unused parts (Occam's Razor principle)? Note: If the provided rule is completely
incorrect, you should give 0 point for this criterion. [2 point]

Explain your judgement and return the final score with the type float and
following the format below:
```judgement
YOUR JUDGEMENT HERE
```
```score
YOUR SCORE HERE
```

Response:

Math Equation (judge):747

In this task, you are provided with a ground truth CES utility function and a
CES utility function predicted by a model.

Your task is to evaluate the quality of the predicted utility function based on
a set of assessment criteria and output a score.

The ground truth utility takes this form:
U(\\mathbf{{x}}) = \\left(\\sum_{{i=1}}ˆn a_i \\cdot
x_iˆ{{\\text{{rho}}}}\\right)ˆ{{1/\\text{{rho}}}}

The utility depends on the following parameters:
1. a_i: float rounded to the first decimal point and should sum up to 1. (Note
that there will be multiple a_i's.)
2. rho: float rounded to the first decimal point.

Below is the information about the ground truth utility function:
{ground_truth}

Evaluate the quality of the following predicted the parameters of the utility
function:
{response}

Score the predicted utility function against the ground truth using the
following criteria (total 10 points):
1. Is the predicted utility function has a correct rho? [2 points]
2. Compare the predicted utility function to the ground truth, how many a_i's
are correct (order matters)? This will give us an accuracy percentage. The score
for this bullet should be the accuracy percentage times the total allocated 6
points [6 points]
3. In the predicted utility function, do the unknown parameters a_i sum up to 1
and do the number of a_i's match the number of goods? [1 point]
4. Does the predicted utility function express the function in a simple and
straightforward way without any unnecessary elements (adhering to the Occam's
Razor principle)? [1 point]

Explain your judgement and return the final score with the type float and
following the format below:
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```judgement
YOUR JUDGEMENT HERE
```

```score
YOUR SCORE HERE
```

Response:

Descriptive Evaluation:748

In this task, you are given a ``black box`` and need to determine its inner
workings.
{black box information}

Below are some past observations from the black box:
{observations}

Your task is to reverse engineer the rule underlying {more detailed
instructions} in the following format:
```Rule
YOUR RULE HERE
```

Response:

Function Implicit Evaluation:749

In this task, you are given a ``black box`` and need to determine its inner
workings.
{black box information}
Below are some past observations from the black box:
{observations}

{More detailed instructions}

Output your generated string in the following format:
```output
YOUR RESPONSE HERE
```

Response:

E Reverse Engineering Abilities Across Different Categories of LLMs750

In Figure 5, we report the results of observation-only and observation + intervention across751

different LLMs: Llama-3.3-70B-Instruct, Claude-3.5-Sonnet, and DeepSeek-R1. Across nearly752

all black-box types and models, actively intervening with iteratively refining hypotheses753

consistently enhances models’ understanding of the underlying black-box dynamics. In754

particular, we show that DeepSeek R1, utilizing Long CoT reasoning, has the potential to755

continuously extract informative knowledge even from passive learning scenarios. This756

detailed and long reasoning allows the model to explore various potential hypotheses.757

However, despite these advantages, DeepSeek R1 does not significantly outperform mod-758

els without explicit reasoning (e.g., GPT-4o, Llama-3.3-70B-Instruct, Claude 3.5 Sonnet)759

in reverse-engineering tasks. This finding highlights the inherent limitations of current760

reasoning steps for existing LLMs.761
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Figure 5: Results of reverse engineering abilities across different categories of LLMs. We
report Llama-3.3-70B-Instruct, Claude 3.5 Sonnet and Deepseek R1 on Program, Formal
Language and Math Equation.

F Common Failure Modes762

F.1 Human Annotation763

To systematically analyze LLM’s failure modes, we defined an LLM reverse-engineering764

attempt as a failure if its descriptive score was below 2 out of 10, according to our descrip-765

tive evaluation rubric. For each black-box type, we randomly selected 20 representative766

failure cases from the observation-only setting. We have two human experts independently767

reviewed these examples, categorizing each case based on the nature of the error. Any768

disagreements were resolved through discussion. Finally, human annotators identified two769

common failure modes: overcomplication and overlooking.770

F.2 Overcomplication & Overlooking Examples771

Across the three black-box types, we find that overcomplication is a common failure mode,772

particularly in the Program, while overlooking most often occurs in Math Equation. For773

Formal Language, both overcomplication and overlooking are observed when LLMs fail774

at reverse engineering. In Tables 1,2 3 and 4, we show the failure examples for Program775

(overcomplication), Formal Language (overcomplication & overlooking) and Math Equation776

(overlooking).777
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G Complexity Categorization778

We rank the complexity level from 1 − 5. Each black-box type includes multiple instances of779

varying task complexity.780

Program. The complexity level is determined based on the number of operations, which781

ranges from 1 − 12. Instances with fewer than 2 operations are classified as complexity782

level 1 (complexity − 1), those with fewer than 4 operations as complexity − 2, fewer than783

6 operations as complexity − 3, and fewer than 8 operations as complexity − 4. Due to the784

limited number of remaining examples, all others are grouped into the highest complexity785

level (complexity − 5).786

Formal Language. Instead of using five complexity levels, we divided the Formal Lan-787

guage instances into three levels, drawing on insights from (La Torre et al., 2007). Specifically,788

we categorized regular language instances as complexity-1 black-boxes, context-free lan-789

guages as complexity-3, and context-sensitive languages as complexity-5.790

Math Equation. We categorize complexity levels according to the number of goods in-791

volved, ranging from 2 to 6. Specifically, instances with 2 goods are labeled as complexity− 1,792

3 goods as complexity − 2, and so on, with instances involving 6 goods classified as the793

highest complexity level, complexity − 5.794

H Case study795

AAAABBBBCCCCCCCC         is generated by the black box 
AAABBBCCCCCC             is generated by the black box 
{more observations}

Black-Box: Formal Language Rule = A^n B^n C^(2n)

Intervention Round N

Observations

Intervention Round N+1

Let's review the observations and tests conducted so far to refine our understanding of the black box's rules: 
- A's and B's in the generated strings is equal; C’s is exactly double the number of A's (or B's) 
- AABBBCCCC:  Not generated, indicating the number of A's and B's must be equal. [...] 
- ABCCCC:     Not generated, reinforcing the rule that C's must be exactly double the number of A's (or B's). 
- AABBCCCC:   Generated, confirming the pattern of equal A's and B's, and C's being double. 
Hypothesis: the black box generates strings that follow these rules: 
- If not empty, it consists of a sequence of 'A's followed by 'B's followed by 'C's. 
- The number of 'A's and 'B's must be equal. 
- The number of 'C's must be exactly double the number of 'A's (or 'B's). 
Let's test a string that follows this pattern with a different count of A, B, and C. 
Test: ABCC             Black-box: can be generated

Hypothesis: the black box generates strings that follow a pattern where [...] 
- If not empty, it consists of a sequence of 'A's followed by 'B's followed by 'C's. 
- The number of 'A's and 'B's can vary, but the number of 'C's tends to be larger. 
Let’s test strings with a different count of 'A's, 'B's, and 'C's to see if it is generated by the black box. 
Test: AABBBCCCC        Black-box: cannot be generated 
Test: AAABBBCCCC       Black-box: cannot be generated 
Test: ABCCCC           Black-box: cannot be generated 
Test: AABBCCCC         Black-box: can be generated 
Test: AAAABBBBCCCCCCCC Black-box: can be generated

Figure 6: Case study example. GPT-4o updates the hypothesis using intervention on
Formal Language black box. Yellow: GPT-4o verbalizes the hypothesis based on the passive
observations in round N and updates the hypothesis in round N + 1. Red: constructing test
cases. Teal: black box response.

Figure 6 demonstrates how an LLM progressively updates its hypothesis through active796

interventions to ultimately reverse-engineer the underlying mechanism of a black-box sys-797

tem using a Formal Language black-box intervention example, where GPT-4o strategically798

designs subsequent queries to validate its current belief about the system. In contrast, under799

the observation-only scenario, the model remains trapped in identifying spurious patterns800

from passively observed data and lacks a meaningful way to assess its own uncertainty.801

Through active interventions, the LLM iteratively tests and revises its hypotheses after802

encountering failures, gradually reducing uncertainty and converging toward an accurate803

understanding of the black-box mechanism.804

I Intervention Strategies805
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Descriptive Functional Analyze-then-
Black Box Intervention Intervention Intervention Query Intervention

Program 43.4 47.6 19.2 50.8

Formal Language 24.1 28.6 22.8 34.7

Math Equation 34.8 38.8 39.9 38.0

Table 5: Comparison of the four intervention strategies.

Similar to how LLMs use806

chain-of-thought reasoning807

(Wei et al., 2022) to solve808

complex tasks, we allow809

the LLM to verbalize its hy-810

potheses and analyze the ob-811

servations before construct-812

ing the query. We investi-813

gate how different reason-814

ing strategies impact the effectiveness of intervention. We compare four strategies: 1)815

Intervention: no reasoning before constructing the query, 2) Descriptive Intervention: de-816

scribing the current hypothesis about the black-box, 3) Functional Intervention: verbalize817

the black-box implementation as a Python program (Li et al., 2025; Luo et al., 2025), and818

4) Analyze-then-Query: allowing the LLM to analyze data and verbalize a hypothesis819

freely. Throughout our experiments, we allow the LLM to reason once every five queries.820

As shown in Table 5, allowing the LLM to reason generally improves the effectiveness of821

intervention regardless of the strategy. However, the results also suggest that the most822

effective intervention typically requires the LLM to carefully analyze past observations and823

strategically plan subsequent steps to acquire more informative data from the black-box.824

Interestingly, while structured reasoning in functional intervention (Li et al., 2025; Luo et al.,825

2025) is known to improve performance in formal reasoning tasks, it does not produce826

additional improvement in the context of reverse-engineering. This suggests that the LLM827

reverse-engineering abilities may differ from its formal reasoning capabilities.828

J Reliability and Accuracy of Using GPT-4o as a Judge829

The use of LLM-as-Judge has been a common practice to evaluate model generation and830

GPT-4 level models have been shown to match or exceed human annotation in quality (Liu831

et al., 2023; Li et al., 2024) for evaluating generated text. In our experiment settings, the832

LLM judge takes a set of rubrics that sum to a total of 10 points, and the description of833

the black-box instance to score the model response description of the black-box instance to834

score the model response. Our implementation further removes the potential vagueness835

by adding rubrics to evaluate the correctness in a fine-grained manner. The description of836

the black-box instances are also non-ambiguous to the model as we provide the context in837

which they need to be interpreted. We show GPT-4o’s reliability as a judge by computing838

Cohen’s kappa between GPT-4o and (i) thinking LLMs (OpenAI o3 and Claude-4-Sonnet)839

and (ii) human annotations. We randomly sample 30 examples (10 for each black-box type)840

and collect annotations to calculate the Weighted Cohen Kappa score (for ordinal rating).841

We obtain an overall Weighted Cohen Kappa score of 0.773 for Human, 0.752 for Claude 4,842

and 0.734 for o3. All the results indicate substantial agreement (Landis & Koch, 1977) and843

show the reliability and accuracy of using GPT-4o as a judge.844

K Evaluation of Reverse-Engineering Ability845

Figure 7: Comparison of descriptive evaluation (yellow) and functional evaluation (purple)
across black-box complexity levels.
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Unlike typical tasks used to benchmark LLMs, such as solving math problems or question846

answering which are commonly evaluated using accuracies, the reverse-engineering ability847

is less straightforward. One can assess how well the black-box f ∗ is recovered by an LLM by:848

1) descriptive evaluation where the LLM verbalizes the hypothesis to compare to the ground849

truth and 2) functional evaluation which captures how well the LLM emulates the black-box’s850

input-output dynamics and generalizes to unseen examples (Kang et al., 2024). In functional851

evaluation, the LLM directly predicts the response conditioned on the test query and the852

past observations and compute accuracy Acc = 1
M ∑M

i=1 1[y
test
i = M(xtest

i ,O)], without853

generating the black-box implementation, akin to in-context learning (Brown et al., 2020).854

As shown in Figure 7, descriptive and functional evaluation trends align for Program across855

complexity levels. However, we also observe discrepancies of trends between the two856

evaluations for Formal Language (complexity level 3 to 5) and Math Equation (complexity857

level 1 to 3), demonstrating that the evaluation protocol and the format of the model output858

may capture different strengths and weaknesses of the model. For Program, we used the859

original samples from the black box of the list mapping program as test cases (Rule et al.,860

2024) and ensured that none of these input–output pairs were included in the observations.861

For Formal Language and Math Equation, we use our deterministic black-box randomly862

sample 20 test cases per black-box instance.863

L Another Black-Box Type: Board Game864

L.1 Black-Box Design865

We design a connect-n board game (2× 2 to 9× 9) variant following (Zhang et al., 2024). The866

black-box is defined by the rules that dictate the winning condition of the game (e.g., “Win867

by connecting 3 stones in a column.”). The LLM can query with a board state and an action,868

and the black-box responds with the new board state and a game status (win/lose/draw/on-869

going). In our black-box design, every game instance exposes two modes—observation870

(observation-only) and intervention (observation-intervention) —and uses the symbols X871

and O to mark the moves of the two players.872

Game definition. For a given instance, let the board be a r× c grid and let ⟨rwin, cwin, dwin⟩873

denote the required number of consecutive marks needed to win horizontally, vertically,874

and diagonally, respectively. During play the black-box tracks the current board state B, the875

active player p ∈ {X, O}, and whether the game has ended.876

In observation mode, an external LLM supplies an initial board (or leaves it empty). The877

black-box generates the following as the outputs:878

• the round number,879

• the updated board,880

• whose move it was last,881

• the current game status (ongoing, draw, PlayerX wins, etc.).882

If the move ends the game, the record also names the winner.883

In intervention, the LLM needs to specify (i) additional pieces to place on the board, (ii) the884

candidate action it wishes the black-box to take, and (iii) optionally, a predicted follow-up885

board. The black-box returns the same structured record as in observation mode. If the886

LLM also proposed a prediction of the next state, the black-box confirms it (“Correct”) or887

explains why it is invalid. For Board Game, we do not have a Bayesian model as the optimal888

reference for the comparison.889

L.2 GPT-4o Results890

In Figure 8, we do not observe the same trends seen in Programs, Formal Language, and891

Math Equation black-box types. For Board Game, actively collected data does not improve892

the reverse-engineering performance of the model, indicating that the data gathered is not893
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Figure 8: Observation-only and observation-intervention results for Board Game.

even significantly informative for the LLM itself. We hypothesize that this is because, to894

query the black-box, the LLM must (1) generate a board state, (2) propose a next move, and895

(3) predict the resulting board state, requiring a multi-step reasoning process. These com-896

pounded requirements make it challenging for the LLM to probe edge cases or effectively897

reduce uncertainty about the black-box. This result further highlights a key limitation of898

current LLMs: When the information signal from the black-box is sparse, actively collected899

data remain of limited utility.900

M Functional Evaluation Details901

For Program, we used the original samples from the black box of the list mapping program as902

test cases (Rule et al., 2024) and ensured that none of these input–output pairs were included903

in the observations. For Formal Language and Math Equation, we use our deterministic904

black-box randomly sample 20 test cases per black-box instance.905

N Complexity Categorization906

We rank the complexity level from 1 − 5. Each black-box type includes multiple instances of907

varying task complexity.908

Program. The complexity level is determined based on the number of operations, which909

ranges from 1 − 12. Instances with fewer than 2 operations are classified as complexity910

level 1 (complexity − 1), those with fewer than 4 operations as complexity − 2, fewer than911

6 operations as complexity − 3, and fewer than 8 operations as complexity − 4. Due to the912

limited number of remaining examples, all others are grouped into the highest complexity913

level (complexity − 5).914

Formal Language. Instead of using five complexity levels, we divided the Formal Lan-915

guage instances into three levels, drawing on insights from (La Torre et al., 2007). Specifically,916

we categorized regular language instances as complexity-1 black-boxes, context-free lan-917

guages as complexity-3, and context-sensitive languages as complexity-5.918

Math Equation. We categorize complexity levels according to the number of goods in-919

volved, ranging from 2 to 6. Specifically, instances with 2 goods are labeled as complexity− 1,920

3 goods as complexity − 2, and so on, with instances involving 6 goods classified as the921

highest complexity level, complexity − 5.922
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Black-box instance: (lambda (singleton (third $0)))

Observations: Input: [97, 53, 5, 33, 65, 62, 51]; Output: [5]
Input: [61, 45, 74, 27, 64]; Output: [74]
Input: [36, 17, 96]; Output: [96]
Input: [79, 32]; Output: invalid input
Input: [90, 77, 18, 39, 12, 93, 9, 87, 42]; Output: [18]
Input: [71, 12, 45, 55, 40, 78, 81, 26]; Output: [45]
Input: [61, 56, 66, 33, 7, 70, 1, 11, 92]; Output: [66]
Input: [90, 100, 85, 80, 0, 78, 63]; Output: [85]
Input: [31, 93, 41, 90, 8, 24]; Output: [41]
Input: [28, 30, 18, 69, 57, 11, 10, 40, 65, 62]; Output: [18]
Input: [38, 70]; Output: invalid input
Input: [90, 15, 70, 42, 69]; Output: [70]
Input: [77, 70, 75, 36]; Output: [75]
Input: [11, 76, 49, 40, 73, 30, 37, 23]; Output: [49]
Input: [23, 4, 78, 84]; Output: [78]
· · ·
{More observations}
· · ·
Input: [60, 8, 11, 86, 96]; Output: [11]
Input: [19, 4, 10]; Output: [10]
Input: [87, 50, 90, 67, 35, 66, 30, 27, 86]; Output: [90]
Input: [53, 74, 35, 57, 63, 84, 82, 89, 45, 10]; Output: [35]
Input: [78, 14, 62, 75, 80, 42]; Output: [62]
Input: [31, 2, 93, 34]; Output: [93]
Input: [90, 28]; Output: invalid input
Input: [21, 42, 54, 7, 12, 100]; Output: [54]
Input: [89, 28, 5]; Output: [5]
Input: [81, 68, 77, 87, 9, 3, 15, 81, 24, 77]; Output: [77]
Input: [15, 50, 11, 47, 14, 4, 77, 2, 24, 23]; Output: [11]
Input: [61, 26]; Output: invalid input
Input: [86]; Output: invalid input
Input: [79, 12, 33, 8, 28, 9, 82]; Output: [33]
Input: [44, 55, 23, 7, 64]; Output: [23]

Model response:
(Overcomplication)

FUNCTION black box(input list):
IF length of input list ¡ 3:
RETURN ”invalid input”
ELSE:
SORT input list in ascending order
RETURN the third element in the sorted input list

Explanation:
The black box function takes a list of integers as input. If the list contains
fewer than 3 elements, it returns ”invalid input”. Otherwise, it sorts the list
in ascending order and returns the third smallest element (which is the third
element in the sorted list).

Table 1: Overcomplication example of Program. Red: LLM comes up with a more complex
rule of black-box instance.
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Black-box instance: AnBmAnBm (AnBm AnBm)

Observations: AAAAAAAAAAAAAA is generated by the black box
AABBBBBBAABBBBBB is generated by the black box
AAAAAAAAABBAAAAAAAAABB is generated by the black box
AAAAAAAABBBBBAAAAAAAABBBBB is generated by the black box
AAAAABBBBBBBBAAAAABBBBBBBB is generated by the black box
AAAAAAAABBBBBBBBBBAAAAAAAABBBBBBBBBB is generated by the black box
AAABBBBBBBBBAAABBBBBBBBB is generated by the black box
AAAAAAAABBBBBBAAAAAAAABBBBBB is generated by the black box
AAABBBBBBBBBAAABBBBBBBBB is generated by the black box
...
{More observations}
...
AAABBBBAAABBBB is generated by the black box
AAAABBAAAABB is generated by the black box
AAAAAAAAABAAAAAAAAAB is generated by the black box
AAAAAABBBBBBAAAAAABBBBBB is generated by the black box
AAAAAABBBBBAAAAAABBBBB is generated by the black box
AAAAAAAAAAAAAAAAAA is generated by the black box
AAAAAAAAAABBBBBBBBAAAAAAAAAABBBBBBBB is generated by the black
box
AAAAAAAAAABBAAAAAAAAABB is generated by the black box
AAAAABBBBBBBBBAAAAABBBBBBBBB is generated by the black box
AAAAABBBBBBBBAAAAABBBBBBBB is generated by the black box
AAAABBBBAAAABBBB is generated by the black box

Model response:
(Overcomplication)

The formal language generates strings composed of two segments: a sequence of
’A’s followed by a sequence of ’B’s. The number of ’A’s in the first segment must
be equal to the number of ’B’s in the second segment, or the number of ’A’s can be
zero, resulting in a string of only ’B’s. Additionally, the language allows for strings
composed entirely of ’A’s or entirely of ’B’s. The sequences of ’A’s and ’B’s can be
repeated multiple times, as long as the rule of equal counts between ’A’s and ’B’s in
each segment is maintained.

Table 2: Overcomplication example for Formal Language. Red: The LLM predicts a rule that
is more complex than necessary for this black-box instance. In this example, it incorrectly
reverse the number of As to be equal to the number of Bs.
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Black-box instance: XXX (three copies of the same string)

Observations: BBABBABABBABBABABBABBABA is generated by the black box
BABBABBABBABBABBAB is generated by the black box
ABBABBABB is generated by the black box
ABAAAABABAAAABABAAAAB is generated by the black box
AAA is generated by the black box
AAAAAA is generated by the black box
BBB is generated by the black box
ABAABAABAABAABAABA is generated by the black box
ABABAB is generated by the black box
ABAABAABA is generated by the black box
...
{More observations}
...
BBBBAABABABBBBAABABABBBBAABABA is generated by the black box
ABABAB is generated by the black box
AAABAABAAABAABAAABAAB is generated by the black box
ABABAB is generated by the black box
BABBBBBBBABABBBBBBBABABBBBBBBA is generated by the black box
ABBBABBBABBB is generated by the black box
BABABA is generated by the black box
BBABAABBABBABAABBABBABAABBA is generated by the black box
AAAAAA is generated by the black box

Model response:
(Overlooking)

The black box generates strings that are composed of repeated patterns or segments.
Each string can be broken down into one or more segments, where each segment is a
repetition of a smaller pattern. The patterns can be composed of the letters ’A’ and
’B’, and the repetition of these patterns can vary in length. Additionally, the black box
can generate an empty string.

The key characteristics of the generated strings are:
1. The strings can be empty.
2. The strings can be composed of repeated patterns of ’A’ and ’B’.
3. The patterns themselves can vary in complexity and length.
4. The repetition of these patterns can be consistent or vary within the string.

Examples of patterns include:
- Single letters repeated (e.g., ”AAA”, ”BBB”).
- Simple alternating patterns (e.g., ”ABABAB”, ”BABABA”).
- More complex patterns with varying repetition (e.g., ”ABBABBABB”, ”BABBAB-
BABBABBABBAB”).

The rule can be estimated as: The black box generates strings by repeating
patterns of ’A’ and ’B’, where the patterns can be simple or complex, and the
repetition can be consistent or vary within the string.

Table 3: Overlooking example of Formal Language. LLM estimates a rule of the black-box
instance without utilizing the observed data to come up with the hypothesis.
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Black-box instance: alpha=[0.1,0.1,0.4,0.4]; rho=0.4

Observations: Basket1: [87.79948556831374, 39.184851241810016, 22.551465649464433,
42.84633678341351];

Basket2: [66.20150946367784, 80.43281524767865, 68.02177295663886,
8.112415033884117];

Preference: Basket1

Basket1: [20.086807088533046, 79.79230548488334, 8.817190035426963,
90.22168650956948];

Basket2: [90.40796323190197, 70.51080246059688, 69.96510352125082,
48.476064999077785];

Preference: Basket2

...
{More observations}
...
Basket1: [40.80654893485903, 14.795240036848078, 37.35074210377093,
79.44298024697972];

Basket2: [51.30239830060435, 50.0604427932334, 21.59530896237239,
36.88204913376821];

Preference: Basket1

Basket1: [75.18968775093136, 42.30088453163497, 18.388385810882728,
95.92185012513752];

Basket2: [93.37477559149177, 86.19812315165629, 49.438229718409715,
98.68538582332832];

Preference: Basket2

Model response:
(Overlooking)

To reverse engineer the CES utility function, we need to determine the parameters ai
and ρ that best fit the observed preferences between baskets. The CES utility function
is given by:

U(x) =

(
n

∑
i=1

ai · xρ
i

)1/ρ

where ai are the weights for each good and ρ is the elasticity parameter.
Steps to Determine Parameters:

• Analyze Preferences: For each pair of baskets, the basket with the higher
utility is preferred.

• Estimate ρ: The parameter ρ affects the degree of substitutability between
goods. ρ = 1 is perfect substitutes, ρ = 0 is Cobb-Douglas, ρ < 0 is
complementarity.

• Estimate ai: The weights ai sum to 1 and reflect the importance of each good.

• Iterative Fitting: Use optimization to adjust ai and ρ to minimize preference
violations.

Estimation: After analyzing the data and testing various combinations, the follow-
ing provides a good fit for the observed preferences:
Best Fit Utility Function:

U(x) =
(

0.3x0.5
1 + 0.2x0.5

2 + 0.3x0.5
3 + 0.2x0.5

4

)2

This is derived by fitting the parameters to minimize preference violations. The
weights ai reflect the relative importance of each good, and ρ = 0.5 is selected to
match substitutability.

Table 4: Overlooking example of Math Equation. Instead of explicit plug-in all observed
data into the utility function, LLM estimates α and ρ.
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