
Published as a conference paper at ICLR 2025

RANDOM IS ALL YOU NEED: RANDOM NOISE INJEC-
TION ON FEATURE STATISTICS FOR GENERALIZABLE
DEEP IMAGE DENOISING

Zhengwei Yin, Hongjun Wang, Guixu Lin, Weihang Ran, Yinqiang Zheng∗
Department of Mechano-Informatics, The University of Tokyo
zhengwei.yin.default@gmail.com yqzheng@ai.u-tokyo.ac.jp
{hjwang-ai,linguixu831,ran-weihang}@g.ecc.u-tokyo.ac.jp

ABSTRACT

Recent advancements in generalizable deep image denoising have catalyzed the
development of robust noise-handling models. The current state-of-the-art, Masked
Training (MT), constructs a masked SwinIR model which is trained exclusively
on Gaussian noise (σ=15) but can achieve commendable denoising performance
across various noise types (i.e. speckle noise, poisson noise). However, this method,
while focusing on content reconstruction, often produces over-smoothed images
and poses challenges in mask ratio optimization, complicating its integration
with other methodologies. In response, this paper introduces RNINet, a novel
architecture built on a streamlined encoder-decoder framework to enhance both
efficiency and overall performance. Initially, we train a pure RNINet (only simple
encoder-decoder) on individual noise types, observing that feature statistics such
as mean and variance shift in response to different noise conditions. Leveraging
these insights, we incorporate a noise injection block that injects random noise
into feature statistics within our framework, significantly improving generalization
across unseen noise types. Our framework not only simplifies the architectural
complexity found in MT but also delivers superior performance. Comprehensive
experimental evaluations demonstrate that our method outperforms MT in various
unseen noise conditions in terms of denoising effectiveness and computational
efficiency (lower MACs and GPU memory usage), achieving up to 10 times faster
inference speeds and underscoring it’s capability for large scale deployments.

1 INTRODUCTION

Image denoising is a critical area of research in low-level image processing aimed at recovering
clean images from noisy counterparts. The rapid advancements in deep learning have inspired
numerous studies proposing specialized image denoising networks. These networks, typically trained
on pre-defined noise distributions, show remarkable performance in noise removal. However, their
generalization to other noise types is limited, restricting their application in real-world scenarios
where noise distributions often vary from those in the training phase.

In the current research trend on the image denoising task, most existing works (i.e. SwinIR (Liang
et al., 2021), Restormer (Zamir et al., 2022)) train and evaluate models on images corrupted with
Gaussian noise, which limits their performance to this specific noise distribution. To address this lim-
itation, some methods (Zhang et al., 2017) assume an unknown noise level for a particular noise type,
while others (Brooks et al., 2019b; Wei et al., 2020) attempt to improve the performance in real-world
scenarios by synthesizing or collecting training data closer to the target noise or directly performing
unsupervised training on the target noise (Chen et al., 2018; Yuan et al., 2018). Despite these efforts,
recent work by Chen et al. (Chen et al., 2023) argues that none of these methods substantially improve
the generalization performance of denoising networks, and they still struggle when the noise distri-
bution is mismatched (Abdelhamed et al., 2018b). In response, they propose masked training and
construct a masked SwinIR model which learns the reconstruction of image textures and structures

∗Corresponding author

1

Published as a conference paper at ICLR 2025

rather than overfitting to a specific noise type, their model is trained on Gaussian noise σ = 15 but
can generalize well to other different unseen noise types. Nevertheless, we notice that despite the
enhanced performances, their model also introduces unwanted side-effects that tends to over-smooth
image contents, leading to the loss of high-frequency details and a drop in PSNR (refer to Fig. 1).

Noisy Image MT (29.87 dB) Ours (31.67 dB)

Figure 1: The side-effects of MT (Chen
et al., 2023) on image quality: Over-
smoothing of content results in a de-
crease in PSNR. In contrast, our method
preserves more details while removing
noise, thereby achieving higher PSNR.

The generalization challenge in deep denoising continues
to be a significant hurdle for broader applicability.

In this paper, we present RNINet, a novel architecture built
on a streamlined encoder-decoder framework to enhance
both efficiency and overall performance for generalizable
deep image denoising. Initially, we train a pure RNINet
(only simple encoder-decoder) on individual noise types
and observe that feature statistics, such as mean and vari-
ance, shift in response to different noise conditions (refer
to Fig. 2). Some recent studies (Liu et al., 2021; 2023;
Chen et al., 2023) have conduct generalization analysis ex-
periment based on feature statistics distribution, but none
of them conduct manipulations directly on the learned fea-
ture statistics. Leveraging these insights, we incorporate
noise injection blocks within RNINet to inject random
noise on feature statistics, thereby creating noised features
that influence the model’s learning. While feature statis-
tics can contain domain-specific information (Huang & Belongie, 2017; Li et al., 2021), this noise
injection manipulation allows the noised feature statistics to represent potential unseen noise domains,
significantly enhancing the model’s generalization capabilities. The main contributions of this work
are summarized as follows:

• We present RNINet, a novel architecture that utilizes a streamlined encoder-decoder frame-
work to both enhance efficiency and improve the performance of generalizable deep image
denoising. This approach simplifies the architectural complexity typically found in existing
generalizable denoising methods, facilitating broader application to real-world deployment
environments.

• We introduce a noise injection block that injects random noise into feature statistics, aimed
at potential unseen noise domains. This development significantly enhances generalization
capabilities, distinguishing our approach from existing research that primarily focuses on
generalization analysis without direct operational interventions.

• Our pipeline is straightforward yet highly effective. Comprehensive experiments demon-
strate that RNINet surpasses the performance of the state-of-the-art method MT in various
unseen noise conditions, delivering superior denoising effectiveness and computational
efficiency (lower MACs and GPU memory usage), achieving up to 10 times faster inference
speeds and underscoring it’s capability for large scale deployments.

Figure 2: Impact of training with different noise on feature statistics. We investigate the shifts in
mean and variance by initially training a pure RNINet (only simple encoder-decoder) with Gaussian
and Poisson noise. The feature statistics exhibit markedly different distributions for each noise type.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

2.1 IMAGE DENOISING

Image denoising techniques predominantly fall into two categories: traditional model-based methods
and data-driven deep learning approaches. Traditional methods (Buades et al., 2005; Dabov et al.,
2007; Elad & Aharon, 2006; Gu et al., 2014; Mairal et al., 2009) generally rely on modeling image
priors to recover content from images affected by noise, demonstrating a certain level of flexibility
and generalization capability (Abdelhamed et al., 2018b) across various noise types. However, these
methods often struggle to reconstruct fine image details and achieve high PSNR. In contrast, data-
driven deep learning models have achieved remarkable denoising performance. CNN models (Zhang
et al., 2017; 2022; Lefkimmiatis, 2018; 2017; Mao et al., 2016; Divakar & Venkatesh Babu, 2017; Jia
et al., 2019; Zhang et al., 2018) were once the mainstream in denoising models, offering substantial
performance improvements over traditional methods. The advent of Vision Transformers (Dosovitskiy
et al., 2020), which treat pixels as tokens and leverage self-attention to parse token interactions, has
marked a significant paradigm shift. Variants based on Vision Transformers (Zamir et al., 2022;
Liang et al., 2021; Zhao et al., 2023; Zhang et al., 2023a; Wang et al., 2022; Chen et al., 2021; 2022b;
Yin et al., 2024a;b) have largely supplanted CNN models as the mainstream solution due to their
enhanced capability to capture global dependencies. Despite these advancements, a prevalent issue
is the training of models on noise patterns identical to those encountered during testing, where the
primary performance metric becomes the network’s capacity to overfit training noise.

2.2 GENERALIZATION PROBLEM

The generalization dilemma in low-level vision tasks, such as image denoising, often emerges
when there is a discrepancy between training and testing degradations. Conventionally, models
are trained on Gaussian noise, a practice misaligned with the predominantly non-Gaussian noise
encountered in real-world scenarios, leading to performance degradation. To address this, solutions
have diverged into two primary methodologies: one seeks to simulate real-world noise more closely
during training (Brooks et al., 2019b; Wei et al., 2020; Chen et al., 2018; Guo et al., 2019; Plotz
& Roth, 2017; Krull et al., 2019; Abdelhamed et al., 2018b), while the other develops ’blind’
denoising models assuming that the noise level is unknown or training on a large amount of noise
types (Krull et al., 2019; Yue et al., 2019; Zhang et al., 2023b; 2017; Ji et al., 2023b;a; 2024).
Recent work by Chen (Chen et al., 2023) has pointed out that these efforts do not sufficiently
delve into the generalization shortfalls; these methods still fail to generalize to noise types not
represented in the training dataset. Some studies (Liu et al., 2021; 2023) have attempted to analyze
the reasons behind poor generalization capabilities of super-resolution models and have identified
that conventional training methods tend to make models overfit specific degradation type to achieve
higher PSNR. Building on these insights, Chen et al. (Chen et al., 2023) introduced masked training
and constructed a masked SwinIR (Liang et al., 2021), designed to focus on content reconstruction
rather than overfitting specific noise types. While their approach achieved commendable results, it
also introduced some unwanted side-effects: the image content tends to be over-smoothed, leading to
a loss of high-frequency details and a drop in PSNR performance. Most recently, Cheng (Cheng et al.,
2024) enhanced generalization performance by incorporating a pretrained CLIP model. However,
because the CLIP model has been exposed to prior information from billions of images containing
diverse noise types, their method is categorized into another track and often excluded from direct
comparisons with benchmark methods that were solely trained with Gaussian noise, to ensure fairness.

2.3 FEATURE STATISTICS IN NEURAL NETWORKS

Feature statistics (i.e. mean and variance) are commonly utilized in the analysis of various neural
networks, with research (Huang & Belongie, 2017; Li et al., 2021) indicating that they can capture
informative characteristics of specific domains (e.g., color, texture, and contrast). In scenarios
involving out-of-distribution data, feature statistics often demonstrate inconsistencies with those of
the training domain due to differing domain characteristics (Wang et al., 2019; Gao et al., 2021),
while some normalization methods (Ioffe & Szegedy, 2015; Li et al., 2022) can also improve model
performance by manipulating feature statistics. Recent studies in the field of low-level vision
have also explored model generalization capabilities with feature statistics. For instance, (Liu
et al., 2023) proposed a metric based on feature statistics to assess the generalization ability of

3

Published as a conference paper at ICLR 2025

Feature Map

μ

σ

Mean Var

Mean Var

Norm

Conv

Feature Map

HxWxC

3x
3

3x
3 HxWx3HxWxC

�� ���

NI Block x1

NI Block x1

 Basic Block x2

 Basic Block x2

 Basic Block x2

 Basic Block x3

2x2 Dconv

 Basic Block x3

 Basic Block x3

 Basic Block x2

NI Block x1

NI Block x1

2x2 Dconv

2x2 Dconv

H
8

x
W
8

x8C

H
8

x
W
8

x8C

H
4

x
W
4

x4C

H
4

x
W
4

x4C

H
2

x
W
2

x2C

H
2

x
W
2

x2C

Skip Connections

Norm Batch Normalization

2x2 ConvTranspose2d

Basic Block Structure

Noise Injection (NI) Block

NI Block Structure

Downsample

Upsample

Element-wise Addition

RELU Activation

Feature Shift

2x2 Dconv

Input (�) Restored (�)

Figure 3: Overview of RNINet. Our model consists of a streamlined hierarchical encoder-decoder
architecture that integrates basic blocks and noise injection blocks. The basic blocks function
as feature extractors within both encoder and decoder stages. Noise injection blocks enhance
generalization capabilities by injecting random noise into the feature statistics in the encoder stage.

super-resolution models, while (Liu et al., 2021) introduced the CHI evaluation score following
dimensionality reduction and clustering based on feature statistics. Subsequently, MT (Chen et al.,
2023) utilized the metric from (Liu et al., 2021) to validate the generalization performance of
their generalizable denoising models. However, these studies typically treat feature statistics as
deterministic values obtained from the features and rely solely on statistical analysis of these values to
validate the generalization capability and efficacy of their methods. In contrast, our approach provide
a novel perspective that injects random noise tensors to alter feature statistics, thereby enhancing the
generalization capability of our denoising models.

3 METHOD

3.1 OVERALL PIPELINE

The overall structure of RNINet is depicted in Fig. 3. In the general inference manifold, given a
noisy input image I ∈ RH×W×3, our proposed RNINet commences by extracting low-level features
F0 ∈RH×W×C through a convolution operation followed by a ReLU activation function, where H×W
represents the spatial resolution, and C denotes the number of channels. Subsequently, these feature
embeddings F0 are processed via a four-level hierarchical encoder-decoder structure to transform
into deep features Fd ∈ RH×W×C. Each encoder-decoder level incorporates multiple basic blocks,
each consisting of a convolution layer, a batch normalization layer, and a ReLU activation layer. The
encoder progressively reduces spatial resolution while enhancing channel capacity, culminating in
a low-resolution latent representation F̂n. To facilitate the encoding process, noise injection blocks
are strategically integrated at every two levels of the encoder. These blocks obtain noised feature
statistics F̂n by injecting random noise tensors. The decoder’s objective is to incrementally reconstruct
the high-resolution clean output from F̂n. Downsampling and upsampling within the features are
executed using convolution and transposed convolution, respectively. The refined deep features Fd are
subsequently processed through a final convolution layer to produce a residual image R ∈ RH×W×3,
which is added to the degraded input to yield the restored image: I = I+R. Following this, we detail
the specific modules comprising the basic and noise injection blocks.

4

Published as a conference paper at ICLR 2025

3.2 BASIC BLOCK

To mitigate the risk of overfitting and thereby enhance the generalization capabilities of our denoising
model, as indicated by existing studies (Liu et al., 2023; Chen et al., 2023; Liu et al., 2021), we have
opted for a straightforward structure for the basic block within our RNINet framework. As depicted
in Fig. 3, the basic block consists of three layers and functions as feature extractor at both the encoder
and decoder stages of the network. Given the input features F ∈ RB×H×W×C, the transformation
process facilitated by the basic block is defined by the following equation:

Fe = ReLU(BN(Conv(F))) (1)

where Conv denotes the convolution operation, BN represents batch normalization, and ReLU is the
rectified linear unit activation function. This streamlined structure ensures efficient and effective
feature extraction, with reduced complexity to prevent overfitting issue.

3.3 NOISE INJECTION BLOCK

The noise injection block is designed to generate noised features with altered statistical properties,
enhancing the model’s generalization to unseen noise types. Given feature Fe, this block first conducts
downsampling via convolution (excluding the final block), after which the features undergo batch
normalization and ReLU activation, resulting in F̂e ∈ RB×Hs×W s×C s

, where Hs,W s,C s denote the
new height, width, and channel dimension after downsampling. The downsampling step increases the
channel dimension, aiding in the computation of feature statistics in the subsequent process. Random
noises are then injected into these statistics to generate features with altered characteristics.

3.3.1 FEATURE STATISTICS

Building on prior research (Li et al., 2021; Huang & Belongie, 2017; Li et al., 2022), we recognize
that feature statistics, specifically the mean and standard deviation, retain informative properties
of a domain. We compute these statistics for the downsampled feature representation F̂e, where
µ ∈ RB×C s

and σ ∈ RB×C s
represent the channel-wise mean and standard deviation of each instance

in a batch, respectively:

µ =
1

HsW s

Hs

∑
h=1

W s

∑
w=1

F̂e (2)

σ
2 =

1
HsW s

Hs

∑
h=1

W s

∑
w=1

(F̂e −µ)2 (3)

Before injecting noise, we standardize the features using Z-score normalization. This step is crucial
as it prepares the baseline features by aligning the distribution around a zero mean and unit variance,
ensuring the consistency of baseline features in subsequent manipulations. The normalized features,
denoted as F̂z, are calculated as follows:

F̂z = (F̂e −µ)/σ (4)

3.3.2 REPARAMETERIZATION AS NOISE INJECTION

Reparameterization is a technique to render the sampling operation differentiable. In our approach,
we reshape the reparameterization as noise injection operation which involves sampling a latent
variable using a deterministic function that incorporates the mean, variance, and an auxiliary variable
from a standard distribution. Specifically, we sample two random noise tensors: ε1 ∈ RB×C s

and
ε2 ∈ RB×C s

from a normal distribution N(0, 1). We then apply a deterministic function follow the
format of reparameterization to inject two random noise tensors respectively into the mean and
standard deviation of the downsampled feature representation F̂e, this process can be formulated as
below:

µ
n = µ + ε1 ∗V (µ), σ

n = σ + ε2 ∗V (σ) (5)

5

Published as a conference paper at ICLR 2025

The function V calculates the variance across the batch dimension, and * denotes element-wise
multiplication. This reparameterization format allows the network to adaptively learn modifications
through its parameters during the noise injection process. Using the altered feature statistics, we
restore the normalized feature F̂z to obtain the noised feature F̂n:

F̂n = F̂z ∗σ
n +µ

n (6)

To allocate space for more thorough experiments, we have moved the pseudo-code style pipeline
(Algorithm 1), along with the technical explanation and proof part, to Appendix A.3. Please refer
to this appendix for comprehensive details. The encoding process in our model integrates varied
semantic information from low-level to high-level characteristics during model learning. To enhance
performance, noise injection block is applied at each encoding level, for a total of four times. The
resultant noised feature F̂n possesses significantly altered feature statistics, containing potential
domain information from various unseen noise types—crucial for robust model generalization.

4 EXPERIMENTS

Implementation Details. Our RNINet framework comprises a 4-level encoder-decoder setup.
Channel counts across these levels are [64, 128, 256, 512]. In the basic blocks, the convolution layers
have a kernel size of 3, while in the noise injection blocks, the downsampling convolution layers
feature a kernel size of 2 with a stride of 2. Following the state-of-the-art methodology outlined
in MT (Chen et al., 2023), we train our model exclusively with Gaussian noise characterized by
a standard deviation of σ = 15. The testing involves noise types not seen during training. Our
training dataset amalgamates DIV2K (Agustsson et al., 2017), Flickr2k (Timofte et al., 2017),
BSD400 (Arbeláez et al., 2011), and WED (Ma et al., 2017). All experimental procedures are
executed using the PyTorch framework on an RTX 4090 GPU. Training employs the Adam optimizer
with β1 = 0.9 and β2 = 0.999. The learning rate is maintained at 1×10−4 with a batch size of 8. The
training process spans 50,000 iterations, as extending beyond this count might lead to the overfitting
of Gaussian noise. For data augmentation, we apply horizontal and vertical flips and extract random
128 × 128 patches.

Testing Noise. Despite being trained solely on Gaussian noise, the model’s generalization capabilities
are tested against seven other types of noise: (1) Speckle Noise (2) Salt & Pepper Noise (3) Poisson
Noise (4) Image Signal Processing (ISP) Noise (Brooks et al., 2019a). (5) Mixture Noise obtained by
mixing the above different types of noise with different levels. The clean images origins from four
benchmark datasets: McMaster (Zhang et al., 2011), Kodak24 (Franzen, 1999), CBSD68 (Martin
et al., 2001), Urban100 (Huang et al., 2015). We also include two real noise types in our experiments:
(6) Monte Carlo Rendering Image Noise and (7) Smartphone Image Noise (Abdelhamed et al.,
2018a). Further details on these noise types are provided in the Appendix A.1. For performance
evaluation, we employ metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM).

4.1 THE GENERALIZATION PERFORMANCE

Our model was trained exclusively on Gaussian noise with σ = 15, yet it was tested on a range
of unencountered non-Gaussian noises to assess its generalization capability. We compared our
model with other state-of-the-art models that are not generalizable: SwinIR (Liang et al., 2021),
Restormer (Zamir et al., 2022), CODE (Zhao et al., 2023), DRUNet (Zhang et al., 2022), and also
with the current state-of-the-art method for generalizable deep image denoising: Masked Training
(MT) (Chen et al., 2023), under consistent experimental settings. Additionally, we report on a
baseline model where noise injection blocks were substituted with basic blocks. As depicted in Fig. 4
and Tab. 9 in the Appendix, our model consistently outperforms others in terms of generalization
performance across various tests. Specifically, in scenarios with speckle noise at σ2 = 0.02 and
σ2 = 0.024, our RNINet registered a PSNR improvement of 1.72 dB and 1.09 dB over MT, and
0.63 dB over the baseline model, respectively. The diminished performance of MT (Chen et al.,
2023) can be attributed to its design, which tends to result in over-smoothed images. Although
MT’s masking strategy yields competitive results in highly noisy conditions (e.g., σ2 = 0.04), it
falls short in scenarios with moderate noise levels. Besides, our method significant outperforms

6

Published as a conference paper at ICLR 2025

Figure 4: Performance comparisons on four noise types with different levels on the McMaster
dataset (Zhang et al., 2011). All models are trained only on Gaussian noise σ = 15. Our RNINet
demonstrates good generalization performance across different noise types. The quantitative results
can be found in Tab. 9 in Appendix. For more results on other testsets: Kodak24 (Franzen, 1999),
CBSD68 (Martin et al., 2001),Urban100 (Huang et al., 2015), please refer to Appendix A.2.

Reference Image

Speckle noise, σ=0.013

CODE

DRUNet

Restormer

SwinIR

MT

Baseline

Ours

Reference Image

Salt&Pepper noise, d=0.004

CODE

DRUNet

Restormer

SwinIR

MT

Baseline

Ours

Reference Image

Poisson noise, α=1.5

CODE

DRUNet

Restormer

SwinIR

MT

Baseline

Ours

Figure 5: Visual comparisons on out-of-distribution noises. Our RNINet is trained only on Gaussian
noise but can generalize well to other unseen noises. Compared with MT (Chen et al., 2023) which
generates over-smoothed content, our model can preserve more details, therefore leading to higher
PSNR and SSIM in testsets.

7

Published as a conference paper at ICLR 2025

MT in handling mixture noises, which are more complicated and representative in real application
environments. Visual comparisons in Fig. 5 further demonstrate that our model yields comparable
denoising outcomes compared to both non-generalizable models and the generalizable model.

4.2 EVALUATION ON MONTE CARLO RENDERING NOISE REMOVAL

We extend our evaluation to include the removal of noise from Monte Carlo rendering, consistent
with MT (Chen et al., 2023). Monte Carlo denoising is a critical component of the rendering process,
especially given the prevalent use of Monte Carlo rendering algorithms in the industry (Burley et al.,
2018; Christensen et al., 2018; Kulla et al., 2018). We utilize the test dataset proposed by (Firmino
et al., 2022) and convert the raw dataset to the sRGB color space for our Monte Carlo rendered image
denoising experiments. The test images were rendered at varying levels of samples per pixel (spp):
256 spp, 128 spp, and 64 spp. Notably, the lower the spp, the higher the noise intensity in the images.
Tab. 1 and Fig. 6 display the denoising results. Our method demonstrates superior performance across
all settings (256 spp, 128 spp, and 64 spp) and produces visually more appealing images with reduced
noise and enhanced details.

256 Samples Per Pixel 128 Samples Per Pixel 64 Samples Per Pixel
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

DRUNet (Zhang et al., 2022) 33.12 0.8656 29.78 0.7882 26.70 0.7068
SwinIR (Liang et al., 2021) 33.09 0.8566 29.70 0.7767 26.54 0.6948
Restormer (Zamir et al., 2022) 28.48 0.7342 27.08 0.6578 25.76 0.6620
CODE (Zhao et al., 2023) 31.98 0.7815 29.14 0.6995 26.28 0.6138
Baseline 32.69 0.8630 29.74 0.7940 27.12 0.7134

MT (Chen et al., 2023) 30.32 0.7769 28.87 0.7219 26.78 0.6349
Ours 33.36 0.8760 30.34 0.8056 27.38 0.7244

Table 1: Quantitative comparisons on Monte Carlo rendering image denoising.

4.3 EVALUATION ON ISP NOISE REMOVAL

Aligned with the current state-of-the-art, MT (Chen et al., 2023), we have conducted evaluations of
our model on ISP noise removal to assess its practical significance. Utilizing the systematic approach
proposed by Brooks et al. (Brooks et al., 2019a) for generating realistic raw data with ISP noise, we
applied the default parameter settings from their research to synthesize ISP noise using the McMaster
dataset (Zhang et al., 2011) for our experiments. The comparative results, presented in Tab. 2,
demonstrate that our method not only outperforms other models but also surpasses the MT (Chen
et al., 2023) benchmark by 1 dB in PSNR, despite a minor reduction in SSIM. The visualizations
shown in Fig. 8 in Appendix further highlight our model’s capability to preserve image detail while
effectively mitigating ISP noise, confirming its robustness in this domain.

Rendered Image: 256 spp

Noisy

SwinIR

Reference

MT

CODE

Ours

Figure 6: Visual comparisons on Monte Carlo rendering noise removal.

4.4 EVALUATION ON SMARTPHONE IMAGE NOISE REMOVAL

In addition to Monte Carlo rendering noise, in our study, we address another real world noise type:

8

Published as a conference paper at ICLR 2025

Smartphone Image Noise. The Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al.,
2018a) includes images from 10 different scenes captured under various lighting conditions using five
representative cameras. Testing the generalization performance of models on the SIDD validation
dataset is particularly challenging due to the complexity of the noise and the requirement that models
must not have prior information about the noise distributions in SIDD for a fair generalization test. As
shown in Tab. 3, our method achieves significant improvements in PSNR (+0.24 dB than MT (Chen
et al., 2023)) over competing methods even under these stringent conditions. The visual results,
presented in Fig. 9 in Appendix, demonstrate that while the MT method tends to oversmooth content,
resulting in unclear edges, neither CODE nor SwinIR effectively reduce the appearance of black cyan
noise spots, but our model can preserve image detail while effectively reducing noise. It is crucial to
note that we had no access to the images from the training or testing portions of the SIDD prior to
testing, meaning we lacked prior information about the image content and noise distribution within
the dataset. Although some supervised methods (Chen et al., 2022a; Yue et al., 2020; Jang et al.,
2024) have demonstrated superior results on SIDD, their models can not generalize as effectively to
other noise types as our RNINet does due to that they are still overfitting the noise in SIDD dataset.

Synthetic ISP Noise
Method PSNR↑ SSIM↑

DRUNet (Zhang et al., 2022) 31.01 0.8033
SwinIR (Liang et al., 2021) 31.09 0.7968
Restormer (Zamir et al., 2022) 26.02 0.6762
CODE (Zhao et al., 2023) 30.59 0.7908
Baseline 30.99 0.8129

MT (Chen et al., 2023) 30.15 0.8232
Ours 31.15 0.8195

Table 2: Quantitative comparisons on syn-
thetic ISP noise removal.

Smartphone Image Noise
Method PSNR↑ SSIM↑

DRUNet (Zhang et al., 2022) 28.09 0.5726
SwinIR (Liang et al., 2021) 27.62 0.5604
Restormer (Zamir et al., 2022) 22.54 0.3700
CODE (Zhao et al., 2023) 26.81 0.5186
Baseline 28.64 0.5953

MT (Chen et al., 2023) 28.66 0.6044
Ours 28.90 0.6041

Table 3: Quantitative comparisons on smart-
phone image noise removal.

4.5 IN DISTRIBUTION PERFORMANCE COMPARISON

Our method has shown promising results on unseen noise types, highlighting its excellent generaliza-
tion capabilities, it is equally important to assess performance on in-distribution noise. Therefore,
we conducted a comparative analysis with the state-of-the-art generalizable method MT (Chen et al.,
2023), which is also trained on single Gaussian noise with σ = 15. Following the Gaussian denoise
benchmark criteria outlined in (Liang et al., 2021; Zamir et al., 2022; Zhao et al., 2023), we tested
both MT and our RNINet on four testsets: McMaster (Zhang et al., 2011), Kodak24 (Franzen, 1999),
CBSD68 (Martin et al., 2001), Urban100 (Huang et al., 2015). As illustrated in Tab. 4, our method
significantly outperforms MT in both PSNR and SSIM, with improvements in PSNR ranging from a
minimum of 2.46 dB to a maximum of 3.46 dB. MT’s underperformance in in-distribution conditions
can be attributed to its masking operation, which tends to overly smooth image content to achieve
better generalization. In contrast, our method not only delivers good generalization performance but
also excels in in-distribution denoising scenarios, further demonstrating the robustness of our noise
removal approach.

4.6 MACS, GPU MEMORY USAGE AND RUNTIME

Resource efficiency is crucial when deploying generalizable denoising models in real-world appli-
cations. Therefore, we report on MACs, GPU memory cost, and runtime comparisons between
MT (Chen et al., 2023) and our RNINet. As indicated in Tab. 5, RNINet demonstrates significantly
lower MACs, reduced GPU memory usage, and faster runtime, attributable to our model’s simplified
architectural design. Unlike MT, which employs a complex masked swinir structure leading to higher
resource consumption and longer runtimes, RNINet offers superior resource cost efficiency alongside
enhanced general denoising performance. This makes RNINet particularly suitable for applications
requiring efficient operation without compromising on denoising quality.

9

Published as a conference paper at ICLR 2025

MT Ours
Dataset PSNR↑ SSIM↑ PSNR↑ SSIM↑

McMaster 30.85 0.8325 34.05↑3.20 0.9122↑0.0797

Kodak24 31.65 0.8836 34.11↑2.46 0.9128↑0.0292

CBSD68 31.00 0.8880 33.50↑2.50 0.9217↑0.0337

Urban100 29.51 0.8992 32.97↑3.46 0.9310↑0.0318

Table 4: Quantitative comparisons on in-distribution de-
noising performance. Our method significantly outper-
forms MT (Chen et al., 2023) in both PSNR and SSIM
across four benchmark datasets. The ↑ indicates the ab-
solute improvement over MT, highlighting the robust
in-distribution denoising capability of our approach.

Metrics MT Ours

MACs 51.6G 44.7G↓0.87×
GPU Memory Usage 0.90G 0.62G↓0.69×

Runtime 1.04s 0.10s↓0.10×

Table 5: Quantitative comparisons on
MACs, GPU memory usage and run-
time. MACs and GPU memory usage
were tested on images of size 256 × 256.
Runtime was tested by calculating the
average inference time per image in Mc-
Master testset. The ↓ denotes the relative
rate compared with MT, highlighting the
efficiency of our method.

4.7 GENERALIZATION ANALYSIS

Following (Kong et al., 2022; Wang et al., 2024), we utilize the Deep Degradation Representation
(DDR) introduced by (Liu et al., 2021) and visualize it in Fig. 7. DDR enables us to probe the
network’s generalization capabilities by analyzing model behavior across different degradations. In
our cases, each point corresponds to an input image, with different colors denoting various noise types.
For instance, in the cases of SwinIR and Restormer, it is noticeable that images with identical noise
types tend to cluster together, suggesting that these models may encode noise-specific information,
potentially leading to an overfitting issue. Nevertheless, the points in MT and our method are clustered
based on their content rather than noise type. (Liu et al., 2021) also employs the Calinski-Harabaz
Index (CHI) score for a more quantitative analysis of clustering efficiency, where a lower CHI score
indicates better cluster separation and, consequently, superior generalization ability. Notably, both MT
and our method achieve very low CHI scores; however, our method’s CHI score is still significantly
lower than that of MT, which underscores our model’s enhanced generalization performance.

SwinIR (CHI: 3.4458) Restormer (CHI: 48.7714) MT (CHI: 0.0044) Ours (CHI: 0.0006)

Figure 7: Visualization of the DDR clusters for generalization analysis. A lower CHI score demon-
strates better cluster separation, which in turn suggests superior generalization capability.

5 CONCLUSION

In this work, we introduce RNINet, a novel architecture designed for generalizable deep image
denoising. RNINet incorporates a streamlined encoder-decoder framework with noise injection
blocks, addressing the prevalent issue of over-smoothing observed in the existing MT method, while
also enhancing both efficiency and overall performance. Our approach leverages the insight that
feature statistics, such as the mean and variance of a denoising model, shift significantly in response
to different noise types used during training. To exploit this, we introduce a noise injection block
within our framework that injects random noise into the feature statistics, significantly improving
generalization across unseen noise types. Extensive experimental results demonstrate that RNINet not
only surpasses the state-of-the-art MT method in terms of denoising effectiveness and computational
efficiency but also achieves inference speeds up to ten times faster. This study not only advances the
field of generalizable deep image denoising but also paves the way for future research into broader
applications of robust noise-handling models.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This research was supported in part by JSPS KAKENHI Grant Numbers 24KK0209, 24K22318,
22H00529, JST-Mirai Program JPMJMI23G1 and JST SPRING Grant Number JPMJSP2108.

REFERENCES

Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising dataset
for smartphone cameras. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1692–1700, 2018a.

Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality denoising dataset
for smartphone cameras. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1692–1700, 2018b.

Agustsson et al. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
July 2017.

Pablo Arbeláez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and
hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(5):898–916, 2011. doi: 10.1109/TPAMI.2010.161.

Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and Jonathan T Barron.
Unprocessing images for learned raw denoising. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11036–11045, 2019a.

Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, and Jonathan T Barron.
Unprocessing images for learned raw denoising. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11036–11045, 2019b.

Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image denoising. In
2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
volume 2, pp. 60–65. Ieee, 2005.

Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel, Patrick Kelly, Peter
Kutz, Yining Karl Li, and Daniel Teece. The design and evolution of disney’s hyperion renderer.
ACM Transactions on Graphics (TOG), 37(3):1–22, 2018.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing
Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12299–12310, 2021.

Haoyu Chen, Jinjin Gu, Yihao Liu, Salma Abdel Magid, Chao Dong, Qiong Wang, Hanspeter Pfister,
and Lei Zhu. Masked image training for generalizable deep image denoising. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1692–1703, 2023.

Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming Yang. Image blind denoising with generative
adversarial network based noise modeling. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3155–3164, 2018.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
arXiv preprint arXiv:2204.04676, 2022a.

Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xin Yuan, et al. Cross aggregation transformer
for image restoration. Advances in Neural Information Processing Systems, 35:25478–25490,
2022b.

Jun Cheng, Dong Liang, and Shan Tan. Transfer clip for generalizable image denoising. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
25974–25984, 2024.

11

Published as a conference paper at ICLR 2025

Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, Andrew Kensler,
Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister, et al. Renderman: An
advanced path-tracing architecture for movie rendering. ACM Transactions on Graphics (TOG),
37(3):1–21, 2018.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Transactions on image processing, 16
(8):2080–2095, 2007.

Nithish Divakar and R Venkatesh Babu. Image denoising via cnns: An adversarial approach. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
80–87, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Michael Elad and Michal Aharon. Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image processing, 15(12):3736–3745, 2006.

Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann Jensen. Progressive denoising of monte
carlo rendered images. In Computer Graphics Forum, volume 41, pp. 1–11. Wiley Online Library,
2022.

Rich Franzen. Kodak lossless true color image suite. source: http://r0k. us/graphics/kodak, 4(2):9,
1999.

Shang-Hua Gao, Qi Han, Duo Li, Ming-Ming Cheng, and Pai Peng. Representative batch normaliza-
tion with feature calibration. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8669–8679, 2021.

Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear norm minimization
with application to image denoising. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 2862–2869, 2014.

Shi Guo, Zifei Yan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. Toward convolutional blind
denoising of real photographs. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1712–1722, 2019.

Jin Han, Yixin Yang, Peiqi Duan, Chu Zhou, Lei Ma, Chao Xu, Tiejun Huang, Imari Sato, and
Boxin Shi. Hybrid high dynamic range imaging fusing neuromorphic and conventional images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7):8553–8565, 2023. doi:
10.1109/TPAMI.2022.3231334.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 1501–1510,
2017.

Huang et al. Single image super-resolution from transformed self-exemplars. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Hyemi Jang, Junsung Park, Dahuin Jung, Jaihyun Lew, Ho Bae, and Sungroh Yoon. Puca: patch-
unshuffle and channel attention for enhanced self-supervised image denoising. Advances in Neural
Information Processing Systems, 36, 2024.

Xiang Ji, Zhixiang Wang, Shin’ichi Satoh, and Yinqiang Zheng. Single image deblurring with
row-dependent blur magnitude. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 12269–12280, 2023a.

12

Published as a conference paper at ICLR 2025

Xiang Ji, Zhixiang Wang, Zhihang Zhong, and Yinqiang Zheng. Rethinking video frame interpolation
from shutter mode induced degradation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 12259–12268, 2023b.

Xiang Ji, Haiyang Jiang, and Yinqiang Zheng. Motion blur decomposition with cross-shutter guidance.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12534–12543, 2024.

Xixi Jia, Sanyang Liu, Xiangchu Feng, and Lei Zhang. Focnet: A fractional optimal control network
for image denoising. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 6054–6063, 2019.

Changjin Kim, Tae Hyun Kim, and Sungyong Baik. Lan: Learning to adapt noise for image denoising.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
25193–25202, 2024.

Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, and Chao Dong. Reflash dropout in image super-
resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 6002–6012, 2022.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2void - learning denoising from
single noisy images. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019, pp. 2129–2137. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPR.2019.00223. URL http://openaccess.thecvf.com/
content_CVPR_2019/html/Krull_Noise2Void_-_Learning_Denoising_
From_Single_Noisy_Images_CVPR_2019_paper.html.

Christopher Kulla, Alejandro Conty, Clifford Stein, and Larry Gritz. Sony pictures imageworks
arnold. ACM Transactions on Graphics (TOG), 37(3):1–18, 2018.

Stamatios Lefkimmiatis. Non-local color image denoising with convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3587–3596,
2017.

Stamatios Lefkimmiatis. Universal denoising networks: a novel cnn architecture for image denoising.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3204–3213,
2018.

Boyi Li, Felix Wu, Ser-Nam Lim, Serge Belongie, and Kilian Q Weinberger. On feature normalization
and data augmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 12383–12392, 2021.

Xiaotong Li, Yongxing Dai, Yixiao Ge, Jun Liu, Ying Shan, and Ling-Yu Duan. Uncertainty modeling
for out-of-distribution generalization. arXiv preprint arXiv:2202.03958, 2022.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Im-
age restoration using swin transformer. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1833–1844, 2021.

Yihao Liu, Anran Liu, Jinjin Gu, Zhipeng Zhang, Wenhao Wu, Yu Qiao, and Chao Dong. Discovering
distinctive” semantics” in super-resolution networks. arXiv preprint arXiv:2108.00406, 2021.

Yihao Liu, Hengyuan Zhao, Jinjin Gu, Yu Qiao, and Chao Dong. Evaluating the generalization ability
of super-resolution networks. IEEE Transactions on pattern analysis and machine intelligence,
2023.

Kede Ma, Zhengfang Duanmu, Qingbo Wu, Zhou Wang, Hongwei Yong, Hongliang Li, and Lei
Zhang. Waterloo exploration database: New challenges for image quality assessment models.
IEEE Transactions on Image Processing, 26(2):1004–1016, 2017. doi: 10.1109/TIP.2016.2631888.

Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman. Non-local sparse
models for image restoration. In 2009 IEEE 12th international conference on computer vision, pp.
2272–2279. IEEE, 2009.

13

http://openaccess.thecvf.com/content_CVPR_2019/html/Krull_Noise2Void_-_Learning_Denoising_From_Single_Noisy_Images_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Krull_Noise2Void_-_Learning_Denoising_From_Single_Noisy_Images_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Krull_Noise2Void_-_Learning_Denoising_From_Single_Noisy_Images_CVPR_2019_paper.html

Published as a conference paper at ICLR 2025

Xiaojiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections. Advances in neural information
processing systems, 29, 2016.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pp. 416–423 vol.2, 2001. doi: 10.1109/ICCV.2001.937655.

Seonghyeon Nam, Youngbae Hwang, Yasuyuki Matsushita, and Seon Joo Kim. A holistic approach
to cross-channel image noise modeling and its application to image denoising. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1683–1691, 2016.

Tobias Plotz and Stefan Roth. Benchmarking denoising algorithms with real photographs. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1586–1595,
2017.

Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-Hsuan Yang, and Lei Zhang. Ntire 2017
challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017.

Hongjun Wang, Jiyuan Chen, Yinqiang Zheng, and Tieyong Zeng. Navigating beyond dropout: An
intriguing solution towards generalizable image super resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 25532–25543, 2024.

Ximei Wang, Ying Jin, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Transferable
normalization: Towards improving transferability of deep neural networks. Advances in neural
information processing systems, 32, 2019.

Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang Zhou, Jianzhuang Liu, and Houqiang Li.
Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 17683–17693, 2022.

Kaixuan Wei, Ying Fu, Jiaolong Yang, and Hua Huang. A physics-based noise formation model
for extreme low-light raw denoising. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2758–2767, 2020.

Jun Xu, Hui Li, Zhetong Liang, David Zhang, and Lei Zhang. Real-world noisy image denoising: A
new benchmark. arXiv preprint arXiv:1804.02603, 2018.

Zhengwei Yin, Guixu Lin, Mengshun Hu, Hao Zhang, and Yinqiang Zheng. Flexir: Towards flexible
and manipulable image restoration. In Proceedings of the 32nd ACM International Conference on
Multimedia, pp. 6143–6152, 2024a.

Zhengwei Yin, Mingze Ma, Guixu Lin, and Yinqiang Zheng. Exploring data efficiency in image
restoration: A gaussian denoising case study. In Proceedings of the 32nd ACM International
Conference on Multimedia, pp. 2564–2573, 2024b.

Yuan Yuan, Siyuan Liu, Jiawei Zhang, Yongbing Zhang, Chao Dong, and Liang Lin. Unsupervised
image super-resolution using cycle-in-cycle generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops, pp. 701–710, 2018.

Zongsheng Yue, Hongwei Yong, Qian Zhao, Deyu Meng, and Lei Zhang. Variational denoising
network: Toward blind noise modeling and removal. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
1688–1699, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
6395ebd0f4b478145ecfbaf939454fa4-Abstract.html.

Zongsheng Yue, Qian Zhao, Lei Zhang, and Deyu Meng. Dual adversarial network: Toward real-
world noise removal and noise generation. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16, pp. 41–58. Springer,
2020.

14

https://proceedings.neurips.cc/paper/2019/hash/6395ebd0f4b478145ecfbaf939454fa4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6395ebd0f4b478145ecfbaf939454fa4-Abstract.html

Published as a conference paper at ICLR 2025

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5728–
5739, 2022.

Jiale Zhang, Yulun Zhang, Jinjin Gu, Jiahua Dong, Linghe Kong, and Xiaokang Yang. Xformer:
Hybrid x-shaped transformer for image denoising. arXiv preprint arXiv:2303.06440, 2023a.

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7):
3142–3155, 2017.

Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward a fast and flexible solution for cnn-based
image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622, 2018.

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play
image restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(10):6360–6376, 2022. doi: 10.1109/TPAMI.2021.3088914.

Kai Zhang, Yawei Li, Jingyun Liang, Jiezhang Cao, Yulun Zhang, Hao Tang, Deng-Ping Fan,
Radu Timofte, and Luc Van Gool. Practical blind image denoising via swin-conv-unet and data
synthesis. Mach. Intell. Res., 20(6):822–836, 2023b. doi: 10.1007/S11633-023-1466-0. URL
https://doi.org/10.1007/s11633-023-1466-0.

Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color demosaicking by local directional
interpolation and nonlocal adaptive thresholding. J. Electronic Imaging, 20:023016, 2011.

Haiyu Zhao, Yuanbiao Gou, Boyun Li, Dezhong Peng, Jiancheng Lv, and Xi Peng. Comprehensive
and delicate: An efficient transformer for image restoration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14122–14132, 2023.

15

https://doi.org/10.1007/s11633-023-1466-0

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILS OF TEST NOISE

In this section, we provide details on the test noises used in our evaluations:

Speckle Noise: Speckle noise is a granular noise that inherently degrades the quality of images
produced by coherent imaging systems such as laser, synthetic aperture radar, and ultrasound. It
arises from the random interference of coherent waves scattered by the surface roughness of the target.
Following the method outlined in MT (Chen et al., 2023), we use the imnoise function in MATLAB
to generate speckle noise. The noise level is controlled by the parameter σ2.

Salt & Pepper Noise: Salt-and-pepper noise is a type of impulse noise characterized by randomly
occurring white and black pixels in an image, typically caused by errors in data transmission or
malfunctioning camera sensors. As described in MT (Chen et al., 2023), we use the imnoise function
in MATLAB to generate salt & pepper noise, with the parameter d controlling the noise level.

Poisson Noise: Also known as shot noise, Poisson noise occurs in systems where the signal consists
of statistically independent discrete events. This type of noise follows a Poisson distribution and is
commonly observed in photon counting processes in optical systems. Following MT (Chen et al.,
2023), we amplified the noise using different scaling factors α according to the equation J = I+n ·α ,
where n represents the generated Poisson noise, and α is the scaling factor.

Image Signal Processing (ISP) Noise: ISP noise encompasses various types of noise introduced
during the process of capturing and converting signals from an image sensor into digital images. This
includes noise from sensor readout, fixed pattern noise, dark current noise, and other electronic or
thermal interferences. We use the code provided by Brooks et al. (Brooks et al., 2019a) and apply the
default settings to convert RGB images to raw format, add ISP noise, and then convert them back to
RGB format.

Monte Carlo Rendered Image Noise: Monte Carlo rendered image noise arises in images generated
by Monte Carlo rendering techniques, due to the stochastic nature of sampling. Insufficient samples
can lead to visible graininess or speckles. We utilize the test dataset proposed by Firmino et
al. (Firmino et al., 2022) and convert the raw dataset to the sRGB color space using the code from
another study (Han et al., 2023). Unlike MT (Chen et al., 2023), we did not use the tonemapping
function when converting raw images to RGB images due to the unavailability of configuration
parameters and codes for tonemapping in their work.

Smartphone Image Noise: We utilized the Smartphone Image Denoising Dataset (SIDD) (Ab-
delhamed et al., 2018a), which comprises images from 10 different scenes captured under various
lighting conditions using five representative cameras, to evaluate the generalization capabilities of
our RNINet and other methods. We processed the SIDD evaluation data using data preparation codes
from NAFNet (Chen et al., 2022a) and directly tested several benchmark methods trained exclusively
on Gaussian noise with σ = 15. It is important to note that we did not have access to any images
from the training and testing datasets before testing, which means we had no prior information about
the image content and noise distribution within that dataset. While some supervised methods have
obtained comparable results on the SIDD evaluation, they can not generalize as well to other noise
types as our RNINet does.

Mixture Noise: We simulate real-world noise scenarios by mixing different types of noise with
varying intensities, resulting in four levels of mixture noise. The order of noise addition is speckle
noise (variance σ2

s1), salt & pepper noise (density d), and Poisson noise (scale α). Unlike MT (Chen
et al., 2023), we did not add Gaussian noise, as it is a in-distribution noise that reduces denoising
difficulty. The four levels are as follows:

• Level 1: σ2
s1 = 0.003, d = 0.002, α = 1

• Level 2: σ2
s1 = 0.004, d = 0.002, α = 1

• Level 3: σ2
s1 = 0.006, d = 0.003, α = 1

• Level 4: σ2
s1 = 0.008, d = 0.004, α = 1

16

Published as a conference paper at ICLR 2025

By providing these detailed descriptions and parameters, we aim to ensure the reproducibility and
clarity of our noise generation processes.

A.2 ADDITIONAL RESULTS AND ABLATION EXPERIMENTS

Additional Ablation Experiments. As detailed in Section. 4 and illustrated in our experiment tables,
the most important ablation study reported involves a baseline model where noise injection blocks
were replaced with basic blocks. Regarding more ablation studies, we adjusted the intensity of
random noise injected into feature statistics by applying a scaling factor. The results are presented
in Tab. 6. We found that the original scale (no scaling) delivers the best performance compared to
other methods. We believe this superior performance is due to the scaling operation disrupting the
standard values in the tensors sampled from a Gaussian distribution, thereby degrading the overall
performance.

Speckle Noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Scale PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑ PSNR↑/SSIM↑

1.2 31.06/0.8310 29.96/0.8032 28.62/0.7685 26.99/0.7250
1.1 31.20/0.8411 30.20/0.8136 28.87/0.7784 27.18/0.7342
0.9 31.30/0.8335 30.25/0.8076 28.88/0.7738 27.15/0.7295
0.8 31.44/0.8469 30.24/0.8189 28.84/0.7829 27.02/0.7369

1.0 (Original) 32.20/0.8674 31.29/0.8443 30.04/0.8097 28.35/0.7639

Table 6: We adjusted the intensity of random noise injected into feature statistics by applying a
scaling factor. The experiments demonstrate no scaling delivers the best performance compared to
other methods. We believe this superior performance is due to the scaling operation disrupting the
standard values in the tensors sampled from a Gaussian distribution, thereby degrading the overall
performance.

Additional Comparison with Zero-Shot Real-World Denoisers. LAN (Kim et al., 2024) is a
recent approach designed to bridge the noise distribution gap across various real-world denoising
datasets, thereby enhancing generalization capabilities. To further validate the effectiveness of
our method under zero-shot real-world denoising conditions, we included comparisons with two
zero-shot denoisers from LAN (Kim et al., 2024), alongside the previous state-of-the-art (SOTA)
method, MT. Following the experimental setup in LAN, we processed the PolyU (Xu et al., 2018)
and Nam (Nam et al., 2016) testsets. The results are presented in Tab. 7. We believe these findings
provide additional evidence of our method’s strong generalization capability in addressing zero-shot
real-world denoising conditions.

PolyU (Xu et al., 2018) Nam (CC) (Nam et al., 2016)
Dataset PSNR↑ SSIM↑ PSNR↑ SSIM↑

ZS-Denoiser (ZS-N2N) (Kim et al., 2024) 31.47 0.8750 34.47 0.9020
ZS-Denoiser (Nbr2Nbr) (Kim et al., 2024) 32.93 0.9110 35.39 0.9230

MT (Chen et al., 2023) 33.96 0.9260 33.20 0.9209
RNINet (Ours) 37.59 0.9551 37.15 0.9525

Table 7: Additional results on PolyU (Xu et al., 2018) and Nam (Nam et al., 2016) datasets, compared
with MT and two zero-shot denoisers introduced in LAN (Kim et al., 2024).

Additional Results on Four Benchmark Datasets. In this section, we first present quantitative
results on four benchmark datasets: McMaster (Zhang et al., 2011), CBSD68 (Martin et al., 2001),
Kodak24 (Franzen, 1999), and Urban100 (Huang et al., 2015). As shown in Tab. 9, Tab. 10, Tab. 11,
and Tab. 12, our RNINet outperforms other state-of-the-art methods in most cases. Specifically,
RNINet achieves significantly better performance than other methods for mixture noises in all
settings, which are more complicated and representative in real application environments. Besides
these significant improvements, our RNINet also demonstrates computational efficiency, with lower
MACs and GPU memory usage, RNINet achieves up to 10 times faster inference speeds compared to

17

Published as a conference paper at ICLR 2025

MT (Chen et al., 2023) as indicated in Tab. 5, making it particularly suitable for applications requiring
efficient operation without compromising on denoising quality.

A.3 THEORETICAL EXPLANATION AND PROOF

In this section, we provide a theoretical explanation and proof of our random noise injection strategy,
demonstrating why it can improve generalization capability on unseen noise types. This process
consists of two steps. In the forward step, we prove that features generated from images with different
noise distributions can form a normal distribution. In the backward step, we explain how altered
features noised by random tensors sampled from a normal distribution can be mapped through a
nonlinear neural network to match features from images with unseen noise types.

Algorithm 1 Pipeline and Pseudo-code

Input: Normal feature F̂e from basic block encoder
Output: Noised feature F̂n through noise injection
Define: F̂e ∈ RB×Hs×W s×C s

, µ represents the mean and σ represents the standard deviation.
V calculates the variance across the batch dimension, * denotes element-wise multiplication.
1: Prepare
2: Calculate the channel-wise mean µ ∈ RB×C s

by Equation 2.
3: Calculate the channel-wise standard deviation σ ∈ RB×C s

by Equation 3.
4: Then
5: # Obtain normalized feature
6: F̂z = (F̂e −µ)/σ

7: # Sample tensors from normal distribution
8: ε1 ∼ N(0,1), ε2 ∼ N(0,1)
9: # Inject noise with deterministic function

10: Noised µ → µn = µ + ε1 ∗V (µ)
11: Noised σ → σn = σ + ε2 ∗V (σ)
12: # Alter the normalized feature
13: F̂n = F̂z ∗σn +µn

14: Return Noised feature F̂n

Forward: Suppose the neural network N is a complex nonlinear function, with fi =N(xi) representing
the feature map of an intermediate layer after input xi passes through the neural network. Assume
that for different inputs xi, their noise distributions follow different distributions such as speckle noise
distribution, salt & pepper noise distribution, poisson noise distribution, etc.

According to the Lindeberg-Feller Central Limit Theorem, even if these xi have different noise
distributions, the sum or average of fi will converge to a normal distribution if certain requirements
are met. Due to that xi are independent but differently distributed, therefore fi are also independent
but differently distributed, a large number of fi can form a normal distribution. The examination of
the four conditions for the Lindeberg-Feller Central Limit Theorem is as follows:

1. Independence: ✓, fi is independent, with each fi generated from xi following a different
noise distribution.

2. Existence of Expectation and Variance: ✓, the expectation µi and variance σ2
i of fi exist,

as we have calculated the feature statistics before.

3. Normalization Condition: ✓, ∑
n
i=1 σ2

i → ∞, the number n of training sample is very large.

4. Lindeberg Condition: ✓, for any ε > 0,

1
∑

n
i=1 σ2

i

n

∑
i=1

E

[
(fi −µi)

2 · I(| fi −µi| ≥ ε

√
n

∑
i=1

σ2
i)

]
→ 0

Backward: During model training, we only accept input images xα
i with Gaussian noise at a level

of 15, with the feature map represented as f α
i . As we have proven above, a large number of fi from

different noise distribution can form a normal distribution. Thus, in return, we sample random noise
tensors ε1 and ε2 from a normal distribution N(0, 1), and inject them into the feature statistics (µα

i
and σα

i) of feature map f α
i .

18

Published as a conference paper at ICLR 2025

1. Through a proper nonlinear mapping function, we can map the noised f α
i by ε1 and ε2 to

match the unseen fi, for improved generalization capability.
2. We use reparameterization to make this noise injection differentiable, which enables the neural

network to automatically learn suitable nonlinear mapping functions for f α
i → fi .

A.4 PRIMARY EXPLORATION USING MULTIPLE NOISE TYPES FOR TRAINING

The original setup for this task follows the previous SOTA method MT (Chen et al., 2023), which
involves training solely on Gaussian noise, with the aim of generalizing to other unseen noise
types. This setup simplifies data construction and focuses primarily on developing a robust model
architecture. However, we recognize that the community may be interested in results obtained when
the model is trained not only on Gaussian noise but also on other noise types (e.g., Poisson noise).

To address this, we recently conducted preliminary exploratory experiments. Specifically, we trained
our RNINet model on Gaussian noise initially, followed by training on Poisson noise. This version is
referred to as RNINet-g2p. The total number of iterations for RNINet-g2p was kept identical to that
used for training RNINet exclusively on Gaussian noise (referred to as RNINet-original). While we
observed minor improvements in a few cases, the overall results showed a significant performance
drop, as presented in Tab. 8.

In conclusion, we believe that training solely on Gaussian noise yields overall satisfactory results.
However, there remains considerable potential for further exploration into the optimal combination of
noise types during training to achieve improved performance. This is an intriguing and open research
question that we are actively considering. We are optimistic that future studies will investigate this
phenomenon more thoroughly, both from theoretical and experimental perspectives. We hope our
findings can provide valuable insights and serve as a foundation for future research in this direction.

Speckle Noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

RNINet-g2p 31.42 0.8425 30.39 0.8153 29.09 0.7801 27.48 0.7341
RNINet-original 32.20 0.8674 31.29 0.8443 30.04 0.8097 28.35 0.7639

Salt & Pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

RNINet-g2p 34.54 0.9290 32.93 0.9042 30.65 0.8554 29.00 0.8075
RNINet-original 33.91 0.8992 33.04 0.8824 31.50 0.8486 30.11 0.8123

Poisson Noise α = 1.5 α = 2 α = 2.5 α = 3
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

RNINet-g2p 32.72 0.8747 29.36 0.7658 26.80 0.6730 24.81 0.5970
RNINet-original 33.65 0.9067 31.01 0.8337 28.19 0.7457 25.87 0.6673

Mixture Noise Level 1 Level 2 Level 3 Level 4
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

RNINet-g2p 32.79 0.8960 32.51 0.8880 31.24 0.8551 30.22 0.8227
RNINet-original 33.23 0.8956 33.09 0.8935 32.34 0.8774 31.56 0.8575

Synthetic ISP Noise Monte Carlo Rendering Noise

Method PSNR↑ SSIM↑ PSNR↑
(256 pp)

SSIM↑
(256 pp)

PSNR↑
(128 pp)

SSIM↑
(128 pp)

PSNR↑
(64 pp)

SSIM↑
(64 pp)

RNINet-g2p 30.88 0.7963 31.74 0.8240 29.18 0.7477 26.47 0.6668
RNINet-original 31.15 0.8195 33.36 0.8760 30.34 0.8056 27.38 0.7244

Table 8: Additional comparisons are provided by training our RNINet model on Gaussian noise first,
followed by training on Poisson noise. This approach is referred to as RNINet-g2p. The total number
of iterations for RNINet-g2p was kept identical to the iterations used for training RNINet exclusively
on Gaussian noise (referred to as RNINet-original).

A.5 VISUALIZATIONS

Here, we present additional visualizations referenced in the main paper. For detailed explanations
and analysis, please refer to the corresponding sections in the main text.

19

Published as a conference paper at ICLR 2025

Noisy

SwinIR

Reference

MT

CODE

Ours

Figure 8: Visual comparisons on synthetic ISP noise removal. Our method can remove noise and
preserve more details, therefore leading to higher PSNR and SSIM in testsets.

 Noisy Reference CODE

 SwinIR MT Ours

 Noisy Reference CODE

 SwinIR MT Ours

 Noisy Reference CODE Noisy Reference CODE

 SwinIR MT Ours SwinIR MT Ours

Figure 9: Visual comparisons on smartphone image noise removal. Our method can remove noise
and preserve more details, therefore leading to higher PSNR and SSIM in testsets.

A.6 LIMITATION AND FUTURE DIRECTION

While our method has achieved promising results, enhancing both efficiency and overall performance,
there are still areas that warrant further exploration. Compared to MT (Chen et al., 2023), our approach
generally performs better in most scenarios with 10 times faster inference speeds, particularly in
handling mixture noise which is more complex and representative in real cases. However, MT (Chen
et al., 2023) exhibits competitive performance under super high-intensity noise conditions due to its
stronger smoothing capabilities. Although such high levels of noise (somewhat rare and peculiar) are
unlikely to be encountered in real-world conditions, where noise is typically not as artificially extreme
as in MT’s setting (i.e. poisson noise multiplied by the scale factor 2/2.5/3), it is still valuable to
investigate how our method can further adapt to super-high noise intensities. Specifically, improving
our method’s ability to provide stronger smoothing under extremely high noise conditions without
excessively smoothing images in moderate noise scenarios remains an important area for future
research.

20

Published as a conference paper at ICLR 2025

Speckle Noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 29.85 0.8085 28.47 0.7795 26.84 0.7437 24.89 0.6996
SwinIR 29.19 0.7948 27.84 0.7662 26.30 0.7323 24.46 0.6912
Restormer 28.90 0.8008 27.97 0.7794 26.81 0.7522 25.30 0.7174
CODE 29.93 0.7641 28.63 0.7357 27.07 0.7009 25.18 0.6583
baseline 31.57 0.8486 30.66 0.8243 29.50 0.7907 27.93 0.7489

MT 30.48 0.8094 30.20 0.7985 29.69 0.7776 28.66 0.7360
Ours 32.20 0.8674 31.29 0.8443 30.04 0.8097 28.35 0.7639
Salt & Pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 32.33 0.8953 30.15 0.8637 27.47 0.8044 25.77 0.7508
SwinIR 31.75 0.8964 29.49 0.8642 26.75 0.8012 25.00 0.7420
Restormer 32.89 0.9246 30.18 0.8828 27.10 0.8088 25.31 0.7459
CODE 32.50 0.8555 30.42 0.8277 27.58 0.7718 25.74 0.7188
baseline 33.53 0.8893 32.69 0.8735 31.19 0.8398 29.83 0.8026

MT 30.88 0.8197 30.76 0.8164 30.46 0.8081 30.09 0.7973
Ours 33.91 0.8992 33.04 0.8824 31.50 0.8486 30.11 0.8123
Poisson Noise α = 1.5 α = 2 α = 2.5 α = 3
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 33.24 0.8773 28.26 0.7527 24.74 0.6510 22.27 0.5735
SwinIR 33.04 0.8697 27.84 0.7418 24.48 0.6453 22.13 0.5712
Restormer 31.99 0.8601 28.73 0.7768 25.78 0.693 23.63 0.6312
CODE 32.98 0.8247 28.26 0.7029 24.88 0.6094 22.52 0.5389
baseline 33.36 0.8949 30.44 0.8139 27.79 0.7324 25.60 0.6593

MT 30.76 0.8187 30.10 0.7972 28.56 0.7306 26.70 0.6514
Ours 33.65 0.9067 31.01 0.8337 28.19 0.7457 25.87 0.6673
Mixture Noise Level 1 Level 2 Level 3 Level 4
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 31.73 0.8865 31.48 0.8781 29.91 0.8412 28.60 0.8042
SwinIR 31.32 0.8856 31.05 0.8745 29.40 0.8326 28.07 0.7933
Restormer 31.06 0.8705 30.73 0.8612 29.38 0.8314 28.22 0.8001
CODE 31.65 0.8372 31.36 0.8276 29.75 0.7902 28.43 0.7543
baseline 32.96 0.8887 32.79 0.8851 31.97 0.8651 31.15 0.8419

MT 30.74 0.8176 30.70 0.8168 30.54 0.8133 30.36 0.8085
Ours 33.23 0.8956 33.09 0.8935 32.34 0.8774 31.56 0.8575

Table 9: Quantitative comparison on the McMaster (Zhang et al., 2011) dataset. Our RNINet
outperforms other state-of-the-art methods in most cases, achieving significantly better performance
in handling mixture noises, which are more complicated and representative in real application
environments.

21

Published as a conference paper at ICLR 2025

Speckle Noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 29.31 0.8204 27.97 0.7868 26.34 0.7446 24.35 0.6876
SwinIR 28.88 0.8099 27.54 0.7772 25.98 0.7363 24.07 0.6810
Restormer 29.15 0.8276 28.12 0.8010 26.84 0.7667 25.17 0.7200
CODE 29.36 0.8150 28.06 0.7844 26.49 0.7451 24.56 0.6901
baseline 30.43 0.8567 29.63 0.8326 28.55 0.8005 27.05 0.7538

MT 29.90 0.8752 29.57 0.8678 28.99 0.8511 27.94 0.8144
Ours 31.21 0.8796 30.36 0.8574 29.17 0.8233 27.54 0.7742
Salt & Pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 32.6 0.9005 30.63 0.8736 28.08 0.8222 26.39 0.7736
SwinIR 31.87 0.9001 29.84 0.8726 27.24 0.8186 25.5 0.7653
Restormer 33.42 0.9475 30.97 0.9105 27.79 0.8409 25.89 0.7789
CODE 33.04 0.9015 31.24 0.8776 28.42 0.8255 26.49 0.773
baseline 33.07 0.8970 32.48 0.8873 31.30 0.8647 30.15 0.8371

MT 31.16 0.8746 31.06 0.8733 30.80 0.8692 30.48 0.8623
Ours 33.93 0.9092 33.21 0.8984 31.88 0.8752 30.64 0.8484
Poisson Noise α = 1.5 α = 2 α = 2.5 α = 3
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 32.25 0.8891 27.44 0.7500 23.84 0.6098 21.30 0.4997
SwinIR 32.15 0.8855 27.14 0.7397 23.69 0.6046 21.28 0.4988
Restormer 32.19 0.8917 28.70 0.7983 25.67 0.6949 23.52 0.6168
CODE 32.34 0.8796 27.47 0.7409 24.03 0.6091 21.67 0.5056
baseline 32.12 0.9025 29.34 0.8203 26.70 0.7183 24.48 0.6255

MT 30.55 0.8842 29.55 0.8696 27.79 0.8053 25.86 0.7171
Ours 32.69 0.9132 30.00 0.8452 27.10 0.7387 24.77 0.6384
Mixture Noise Level 1 Level 2 Level 3 Level 4
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 31.41 0.8946 31.19 0.8885 29.73 0.8568 28.50 0.8235
SwinIR 31.00 0.8935 30.79 0.8864 29.29 0.8523 28.06 0.8177
Restormer 31.08 0.8941 30.83 0.8869 29.52 0.8594 28.40 0.8298
CODE 31.73 0.8902 31.45 0.8824 29.85 0.8460 28.53 0.8089
baseline 32.06 0.8997 31.88 0.8974 31.17 0.8804 30.41 0.8596

MT 30.50 0.8797 30.40 0.8797 30.16 0.8782 29.91 0.8754
Ours 32.62 0.9070 32.45 0.9058 31.73 0.8930 30.99 0.8766

Table 10: Quantitative comparison on the CBSD68 (Martin et al., 2001) dataset. Our RNINet
outperforms other state-of-the-art methods in most cases, achieving significantly better performance
in handling mixture noises, which are more complicated and representative in real application
environments.

22

Published as a conference paper at ICLR 2025

Speckle Noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 29.90 0.8041 28.43 0.7611 26.65 0.7063 24.49 0.6356
SwinIR 29.39 0.7906 27.92 0.7480 26.22 0.6950 24.17 0.6268
Restormer 29.73 0.8125 28.67 0.7820 27.28 0.7377 25.54 0.6843
CODE 30.06 0.8032 28.60 0.7623 26.86 0.7093 24.76 0.6404
baseline 31.08 0.8451 30.20 0.8170 29.07 0.7780 27.41 0.7200

MT 30.65 0.8737 30.33 0.8665 29.74 0.8484 28.59 0.8027
Ours 31.85 0.8697 30.95 0.8437 29.69 0.8033 27.90 0.7425
Salt & Pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 33.11 0.8910 31.13 0.8626 28.57 0.8070 26.86 0.7550
SwinIR 32.26 0.8894 30.14 0.8591 27.50 0.7979 25.73 0.7395
Restormer 33.79 0.9352 31.02 0.8907 27.94 0.8152 26.16 0.7542
CODE 33.61 0.8943 31.80 0.8702 28.89 0.8115 26.88 0.7532
baseline 33.58 0.8837 33.04 0.8749 31.93 0.8541 30.84 0.828

MT 31.71 0.8719 31.63 0.8709 31.42 0.8675 31.15 0.8616
Ours 34.33 0.8978 33.70 0.8880 32.49 0.8664 31.28 0.8406
Poisson Noise α = 1.5 α = 2 α = 2.5 α = 3
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 32.95 0.8788 27.53 0.7002 23.71 0.5444 21.09 0.4301
SwinIR 32.77 0.8716 27.21 0.6884 23.58 0.5406 21.09 0.4314
Restormer 32.83 0.8805 29.12 0.7665 25.95 0.6448 23.85 0.5630
CODE 33.08 0.8727 27.61 0.6951 23.93 0.5463 21.48 0.4359
baseline 32.81 0.8952 29.72 0.7881 26.77 0.6645 24.40 0.5578

MT 31.21 0.8817 30.26 0.8636 28.29 0.7800 26.03 0.6678
Ours 33.34 0.9048 30.39 0.8178 27.14 0.6831 24.66 0.5685
Mixture Noise Level 1 Level 2 Level 3 Level 4
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 32.14 0.8877 31.87 0.8816 30.33 0.8459 29.06 0.8083
SwinIR 31.60 0.8855 31.33 0.8776 29.76 0.8396 28.49 0.8001
Restormer 31.67 0.8844 31.38 0.8769 30.01 0.8470 28.88 0.8144
CODE 32.45 0.8848 32.10 0.8753 30.38 0.8343 29.01 0.7930
baseline 32.77 0.8915 32.62 0.8896 31.84 0.8727 31.06 0.8501

MT 31.16 0.8776 31.09 0.8774 30.88 0.8761 30.67 0.8737
Ours 33.26 0.8990 33.09 0.8976 32.37 0.8851 31.65 0.8686

Table 11: Quantitative comparison on the Kodak24 (Franzen, 1999) dataset. Our RNINet outperforms
other state-of-the-art methods in most cases, achieving significantly better performance in handling
mixture noises, which are more complicated and representative in real application environments.

23

Published as a conference paper at ICLR 2025

Speckle Noise σ2 = 0.02 σ2 = 0.024 σ2 = 0.03 σ2 = 0.04
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 27.98 0.8036 26.63 0.7723 25.05 0.7339 23.16 0.6837
SwinIR 27.51 0.7931 26.19 0.7627 24.68 0.7256 22.88 0.6772
Restormer 28.21 0.8099 27.17 0.7851 25.86 0.7529 24.17 0.7106
CODE 28.06 0.7965 26.76 0.7674 25.26 0.7306 23.45 0.6825
baseline 29.52 0.8475 28.61 0.8227 27.51 0.7905 26.01 0.7464

MT 28.60 0.8831 28.25 0.8706 27.65 0.8466 26.64 0.8043
Ours 30.16 0.8696 29.25 0.8451 28.06 0.8113 26.48 0.7649
Salt & Pepper d = 0.002 d = 0.004 d = 0.008 d = 0.012
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 32.40 0.9199 30.47 0.8966 27.93 0.8509 26.25 0.8080
SwinIR 31.49 0.9171 29.43 0.8913 26.85 0.8405 25.16 0.7924
Restormer 32.80 0.938 30.25 0.9054 27.34 0.8481 25.63 0.7994
CODE 32.88 0.9154 31.08 0.8941 28.35 0.8484 26.49 0.8037
baseline 33.08 0.9137 32.35 0.9029 31.01 0.8791 29.80 0.8522

MT 29.75 0.8953 29.64 0.8932 29.38 0.8875 29.09 0.8802
Ours 33.48 0.9215 32.70 0.9102 31.32 0.8864 30.08 0.8606
Poisson Noise α = 1.5 α = 2 α = 2.5 α = 3
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 31.97 0.8872 26.93 0.7554 23.44 0.6442 21.02 0.5580
SwinIR 31.85 0.8815 26.60 0.7455 23.27 0.6390 20.96 0.5574
Restormer 31.94 0.8860 28.39 0.7970 25.33 0.7047 22.89 0.6269
CODE 31.98 0.8729 27.01 0.7452 23.69 0.6416 21.42 0.5619
baseline 31.91 0.9098 28.90 0.8231 26.33 0.7355 24.23 0.6600

MT 29.23 0.8961 28.39 0.8768 26.95 0.8144 25.33 0.7365
Ours 32.18 0.9218 29.50 0.8484 26.76 0.7537 24.57 0.6728
Mixture Noise Level 1 Level 2 Level 3 Level 4
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
DRUNet 31.36 0.9091 31.02 0.8977 29.39 0.8600 28.04 0.8239
SwinIR 30.85 0.9035 30.51 0.8909 28.84 0.8508 27.50 0.8141
Restormer 30.91 0.8953 30.62 0.8865 29.20 0.8562 28.07 0.8275
CODE 31.61 0.8961 31.19 0.8830 29.47 0.8432 28.08 0.8067
baseline 31.91 0.9120 31.67 0.9075 30.76 0.8852 29.89 0.8610

MT 29.23 0.8947 29.14 0.8942 28.91 0.8914 28.68 0.8874
Ours 32.11 0.9169 31.90 0.9146 31.10 0.8995 30.30 0.8799

Table 12: Quantitative comparison on the Urban100 (Huang et al., 2015) dataset. Our RNINet
outperforms other state-of-the-art methods in most cases, achieving significantly better performance
in handling mixture noises, which are more complicated and representative in real application
environments.

24

	Introduction
	Related Work
	Image Denoising
	Generalization Problem
	Feature Statistics in Neural Networks

	Method
	Overall Pipeline
	Basic Block
	Noise Injection Block
	Feature Statistics
	Reparameterization as Noise Injection

	Experiments
	The Generalization Performance
	Evaluation on Monte Carlo Rendering Noise Removal
	Evaluation on ISP Noise Removal
	Evaluation on Smartphone Image Noise Removal
	In Distribution Performance Comparison
	MACs, GPU Memory Usage and Runtime
	Generalization Analysis

	Conclusion
	Appendix
	Details of Test Noise
	Additional Results and Ablation Experiments
	Theoretical Explanation and Proof
	Primary Exploration Using Multiple Noise Types for Training
	Visualizations
	Limitation and Future Direction

