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Abstract

Near an optimal learning point of a neural network, the learning performance of gradient
descent dynamics is dictated by the Hessian matrix of the loss function with respect to the
network parameters. We characterize the Hessian eigenspectrum for some classes of teacher-
student problems, when the teacher and student networks have matching weights, showing
that the smaller eigenvalues of the Hessian determine long-time learning performance. For
linear networks, we analytically establish that for large networks the spectrum asymptoti-
cally follows a convolution of a scaled chi-square distribution with a scaled Marchenko-Pastur
distribution. We numerically analyse the Hessian spectrum for polynomial and other non-
linear networks. Furthermore, we show that the rank of the Hessian matrix can be seen as
an effective number of parameters for networks using polynomial activation functions. For
a generic non-linear activation function, such as the error function, we empirically observe
that the Hessian matrix is always full rank.

1 Introduction

Neural networks have achieved tremendous success in the last decade. Their practical usefulness and tech-
nological potential is now undeniable. However, there is an enormous gap between our current theoretical
understanding and the state-of-the-art techniques used in recent applications.

Among the many unsolved theoretical puzzles, understanding the generalization and robustness of trained
models is particularly important since modern neural networks often work with a number of parameters
vastly larger than the amount of available training data. The unexpected effectiveness of stochastic gradient
descent as a training method, for high-dimensional and non-convex learning tasks, is also one of the many
empirical observations that still lack a consensual explanation.

In this context, understanding the universal properties of the dynamics of learning in high-dimensional
neural networks, although particularly challenging, has the potential of unveiling some of the magic behind
their remarkable practical effectiveness. In this work, we study learning under gradient descent dynamics
in simple, yet nontrivial examples, in an attempt to characterize the effectiveness of the learning process in
terms of the features of the network, for a regression task with a single neuron output.

We make two important simplifying assumptions:

1. We focus on a teacher-student setup (Zhang et al., 2019; Goldt et al., 2020; Safran et al., 2021;
Akiyama & Suzuki, 2023). Here, a neural network, called the student, is tasked with learning
another fixed neural network, the teacher, through its outputs. The learning problem is completely
determined by the student and teacher architectures. Thus, empirical claims, which are typically
difficult to validate in less academic setups, can be effectively verified using numerical tools and
sometimes even analytically.

2. We assume that the network’s initialization is sufficiently close to an optimal point. In this case,
the Hessian matrix of the loss function with respect to the network’s parameters fully characterizes
the loss landscape in quadratic order. It is worth noting that previous analyses of the Hessian have
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been used to evaluate the flatness and overall curvature of the loss function and its rank used as
an effective measure of the number of the network’s parameters (Maddox et al., 2020; Singh et al.,
2021).

Under these assumptions, we are seeking answers to the following questions:

• How does the evolution of the loss function for a student initialized near the optimal point depend
on the characteristics (number of parameters, activation functions) of the network?

• Under which conditions can the Hessian rank at the optimal point be interpreted as an effective

number of parameters?

All the code supporting this research is available in the provided supplementary material.

Related work In 2021, Singh et al. (2021) published an analytical study of the Hessian rank of deep
linear networks, providing tight upper bounds. For non-linear networks, they found that the linear formulas
were still empirically valid in determining the numerical Hessian rank. That study came at a time where
empirical investigations into the eigenspectrum of the Hessian matrix were being performed (Sagun et al.,
2017; 2018). In our work, we determine the Hessian rank at the optimal point, in the teacher-student setup,
and we propose using the Hessian rank as a measure of the effective number of parameters. We also provide
upper bounds for the Hessian rank at the optimal point for polynomial networks.

Still related to the Hessian matrix, Liao & Mahoney (2021) in 2021 studied the Hessian eigenspectra of
nonlinear neural networks, with the objective of understanding the effect of some simplifying assumptions
made in the literature to turn the Hessian spectral analysis tractable. Those authors performed a theoretical
analysis using random matrix theory that did not make such simplifying assumptions. They found that
the Hessian eigenspectra for a broad category of nonlinear models can have different behaviors. They can
exhibit either single or multiple bulks of eigenvalues; they can have isolated eigenvalues away from the bulk,
and even distributions with bounded and unbounded support. In our work, we shall see that some of the
eigenspectra we find also exhibit these very different kinds of spectral behavior.

The teacher-student setup as an investigative tool had a revival in recent work by Goldt et al. (2020), where
they studied the dynamics of online stochastic gradient descent for a two-layer teacher-student setup. They
focused on the effect of overparameterization of the student network with respect to the teacher network
and found that, when training both layers, the generalization error either stayed constant or decreased with
student size, depending on the specific activation function chosen for both networks. This result provided
a rigorous foundation for a series of earlier papers that studied the teacher-student setup in soft committee
machines (Biehl & Schwarze, 1995; Saad & Solla, 1995a;b). Although their object of study is different from
ours, we share some of the underlying assumptions, namely, the input data distribution in the teacher-student
setup. However, in 2020, Arjevani & Field (2020), used the teacher-student setup to theoretically compute
the Hessian eigenvalues at the global minimum and other local minima, for a restricted class of shallow ReLU
networks, becoming one of the first theoretical works to find a skewed Hessian eigenspectrum, where most
eigenvalues concentrate around zero.

Finally, one concept that is connected to the Hessian and has also been an important tool in theoretical
Machine Learning is the Fisher information matrix (FIM), which plays the role of a Riemannian metric in
parameter space (Karakida et al., 2020). In 2018, Pennington & Worah (2018) studied the eigenspectrum
of the Fisher information matrix in the limit of infinite network input, output and hidden dimensions, using
tools from random matrix theory. Other works, such as Karakida et al. (2020; 2021), explored the eigenvalue
statistics of the Fisher information matrix, finding that most eigenvalues are concentrated close to zero, with
a few rarer but much larger eigenvalues. As shown in Appendix D, the Hessian matrix at the global optimum
is equal to the expected FIM, making our analysis of the Hessian rank deeply connected to these works that
study the FIM.

Paper structure In the next subsection, we formally describe the teacher-student setup as well as the
notation used in the rest of this work. In Section 2, we derive the associated gradient and Hessian equations
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as well as the learning dynamics near the optimal point. In Section 3, we answer our two main questions
for linear networks, where we are able to fully characterize the probability distribution for the eigenvalues of
the Hessian matrix. In Sections 4 and 5, the same analysis is performed for networks with polynomial and
another non-linear activation function, the error function. Finally, in Section 6, we summarize our work and
discuss possible future work.

1.1 Teacher-Student Setup

We use a teacher-student setup where a neural network, called the student, has to learn a function represented
by yet another neural network, called the teacher. The teacher network is a fixed neural network which is
randomly initialized and is not trained, serving only to create a learning problem that we can tune to alter
its complexity.

We can control several parameters in both the student and the teacher networks, like the number of layers,
the activation function or whether there are any biases in the linear transformations at each layer. Figure 1
depicts the neural networks under study. However, to be able to study the behavior of the student network
at the optimal point, we assume that the parameters that define the architectures of both the teacher and
student are the same. Doing so, enables us to always know one optimal solution where the student is capable
of reproducing the output of the teacher, which is when all the weights and biases of the student coincide
with those of the teacher network.

To further simplify the analysis we make the following architectural choices:

• We work with two-layer neural networks, with one hidden layer with a given activation function,
and one linear output layer (no activation function).

• We do not use biases, so that at each layer the pre-activation vector is given by a linear map.

• The output is always a single real number.

• The weights of the teacher network are taken from a normal distribution centered at zero with
variance 1

N , where N is the size of the previous layer.

Figure 1: Depiction of the architecture of neural networks considered.

Notation used throughout the article We denote by Ni the size of the input layer so that x is a vector
in R

Ni referred to as input. Similarly, we denote by Nh the size of the hidden layer, i.e., the number of
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neurons in the hidden layer. Matrix W1, which is a Nh × Ni matrix, represents the linear transformation
between the input and the hidden layer. Similarly, matrix W2 is the linear transformation between the
hidden layer and the output: it is a 1 × Nh matrix, which can be seen as a row vector due to our choice of
only having a real scalar output.

The output of the student network is represented by y. Under the above architectural choices, the output
of the student network is given by

y = W2 g (W1x) ,

where g : R → R is the activation function that acts on the entries of the pre-activation vector z = W1x,
yielding the hidden vector h.

We denote the vector of all the network parameters by θ. Any of the previous quantities with an additional
hat above denotes a parameter of the teacher network, e.g. θ⋆ represents the set of parameters of the teacher
and y⋆ the output of the teacher network.

We also have some usage conventions for indices. The index i is only used to identify a sample in a given
batch. As such, when talking about inputs x, hidden vectors h, or pre-activation values z, the first index
is the batch index if and only if it is an i. Otherwise, we assume that a batch size of one is being used. To
further simplify the notation, we represent the (m, n) entry of the weight matrix W1 as W1mn and similarly
for W2.

2 Hessian and Learning Equations

The loss function used in this study is the mean square error (MSE), which, for a batch size of N input
vectors, takes the form

L =
1

2N

N
∑

i=1

(yi − y⋆
i )

2
,

where yi is the output of the student network and y⋆
i is the output of the teacher network.

In the simplest case, where the student is a two-layer neural network without any biases, the Hessian matrix
for the derivatives of the loss function with respect to the parameters of the student can be decomposed into
three different submatrices, or blocks, as

H =



A C

CT B



.

Matrix A contains the derivatives with respect to weights of matrix W1. Similarly, B contains the derivatives
with respect to weights of matrix W2. Finally, the matrix in the antidiagonal, C, contains all the cross-
derivatives with respect to the two different layers.

Taking the derivative of the loss function with respect to the parameters leads to

∂L
∂W1mn

=
1

N

n
∑

i=1

(yi − y⋆
i ) W2m g′(zim)xin , (1)

∂L
∂W2k

=
1

N

N
∑

i=1

(yi − y⋆
i ) hik . (2)

Note that, as we will work with the above equations at the optimal point, the two terms that depend on
yi − y⋆

i are always zero. Under the notation and definitions of Singh et al. (2021), this corresponds to
only studying what the authors call outer product Hessian, since the functional Hessian, which depends on
the term yi − y⋆

i , is zero. It is also worth noting that the outer product Hessian shares the same nonzero
eigenspectrum as the Neural Tangent Kernel (NTK) (Jacot et al., 2018) and coincides, at the optimal point,
with the Fisher information matrix, as detailed in the Appendix D.
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If we again take the derivatives with respect to the parameters of Equations (1) and (2) we obtain the
Hessian. In total there are three expressions, one for each of the three blocks of the Hessian,

∂2L
∂W2k∂W2j

=
1

N

N
∑

i=1

hikhij , (3)

∂2L
∂W1pq∂W1mn

=
1

N

N
∑

i=1

[W2mW2pg′(zim)g′(zip)xinxiq + (yi − y⋆
i ) W2mg′′(zim)xinxiqδpm] , (4)

∂2L
∂W2k∂W1mn

=
1

N

N
∑

i=1

[δkm (yi − y⋆
i ) g′(zim)xin + hikW2mg′(zim)xin] . (5)

To obtain analytical results, we need additional assumptions. We assume that the input data are distributed
according to a standard normal distribution centered at the origin. With this in mind, we define the
generalization error as the expected value of the loss function, given by

Lg = Ex [L] = Ex



1

2
(y − y⋆)

2



= Ex



1

2
(fθ(x) − fθ∗(x))

2



=

∫

Rn

1

2



1

2π

d/2

(fθ(x) − fθ∗(x))
2

e− 1
2

∥x∥2

dx .

The expressions for learning and Hessian components remain the same as long as we make the substitution
1
N

∑N
i=1 →

∫

Rn

(

1
2π

)d/2
e− 1

2
∥x∥2

dx. The advantage of working with the generalization error is that we are
now able to perform analytical computations by taking expected values of Equations (3-5). These result
in expressions that depend on the weights of the student network, which coincide with the weights of the
teacher network at the optimal point. From this point onwards, we will only work with the generalization
error, denoting it by L to simplify the notation. Similarly, unless stated otherwise, we use the designations
loss function and generalization error interchangeably.

2.1 Learning Dynamics near the Optimal Point

Near the optimal point, θ∗, which is the minimum of the loss function, L(θ), with θ being the set of all
trainable parameters of the network, the Hessian matrix determines the convergence rate of a network
initialized at a point θ′ close to θ∗. To see this, we look at the gradient flow dynamics dθ

dt = − dL
dθ around θ∗,

by taking the Taylor series of L(θ) around θ∗,

L(θ) ≈ L(θ∗) +

D
∑

i=1

∂L(θ∗)

∂θi
δθi +

1

2

D
∑

i,j=1

∂2L(θ∗)

∂θi∂θj
δθiδθj

=
1

2

D
∑

i,j=1

δθiHijδθj ,

with δθi = (θi − θ∗
i ), Hij being the (i, j) Hessian matrix component, and where D = dim(θ) is the number

of parameters. The first two terms of the Taylor series vanish at the minimizer of the loss function, as it is
a zero as well as an absolute minimum. Now, we have that

dθ

dt
= −∇θL ≈ −Hδθ =⇒ δθ(t) ≈ δθ(0)e−Ht ,

so that the exponential of the Hessian controls how the network parameters evolve with time. If we know
the eigensystem of H, i.e., the unit eigenvectors vi and respective eigenvalues λi such that Hvi = λivi, we
have that

∥δθ(t)∥2 ≈
D
∑

i=1

e−2λit
∣

∣vT
i δθ(0)

∣

∣

2
. (6)

This shows that, ultimately, the eigenvalues near the optimum point of the loss function drive the parameter
evolution under gradient descent.
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We can lose the dependency on the eigenvectors in Equation (6) by averaging over the initial condition,
δθ(0), assuming it follows a multivariate Gaussian distribution with mean zero and variance σ2

0 , yielding

〈

∥δθ(t)∥2
〉

δθ(0)
=

D
∑

i=1

e−2λit
〈

∣

∣vT
i · δθ(0)

∣

∣

2
〉

δθ(0)

= σ2
0

T
∑

i=1

e−2λit .

An expression for the time evolution of the loss function can thus be derived

⟨L(t)⟩δθ(0) ≈ 1

2

〈

δθ(0)T e−2HtHδθ(0)
〉

δθ(0)

=
σ2

0

2
Tr e−2HtH

=
σ2

0

2

∫ +∞

0

e−2λtλρ(λ)dλ , (7)

where ρ(λ) is the eigenspectrum of the Hessian matrix.

For a single realization of the teacher-student setup, where the spectrum is discrete, we thus expect the
large-time behavior of the loss function near the optimal point to be determined by the smallest non-zero
eigenvalue. This behavior can be clearly seen in the linear network, discussed in the next section.

3 The Linear Network

In a linear network, the activation function is the identity function, i.e., we have g(x) = x, so that g′(x) = 1
and g′′(x) = 0. Its first derivative is always equal to one and the second derivative is always equal to zero.
Taking the second derivatives of the generalization error with respect to the student’s weights leads to the
following Hessian components at the optimal point,

∂2L
∂W2k∂W2j

= Ex [hkhj ] =
∑

m

W1kmW1jm , (8)

∂2L
∂W1pq∂W1mn

= W2mW2pδnq , (9)

∂2L
∂W2k∂W1mn

= W1knW2m , (10)

where we used the fact that the loss function is zero at the optimum. We find that, for linear networks, each
sub-matrix of the Hessian depends only on weights of a single layer and only the anti-diagonal contains cross
terms.

As these equations are valid at the optimal point, we have that the teacher’s weights are the same as the
student’s weights. Thus, using Equations (9-10), together with the teacher weights, we can directly compute
the Hessian matrix of a student at the optimal point. From the Hessian, we can then also calculate the
eigenvalues. More interestingly, if we know how the weights of the teacher network are distributed, we can
even derive an expression for the eigenvalue distribution of the Hessian.

3.1 Eigenvalues of the Hessian at the Optimal Point

The linear teacher-student setup exhibits a particularly interesting structure for the eigenvalues of the Hessian
at the optimal point: they are given by sums of eigenvalues of each of the diagonal sub-matrices of the Hessian.
For a detailed analysis we refer the reader to Appendix A.

Thus, in the linear network, we are able to calculate the entire eigenspectrum from the eigenspectrum of
each diagonal sub-matrix of the Hessian. The A sub-matrix has just one non-zero eigenvalue given by

6



Under review as submission to TMLR

∑Nh

k=1 W 2
2k. This eigenvalue has a multiplicity equal to Ni, the input dimension. Under the assumption

that the components of W 2 were taken from a normal distribution with zero mean and variance 1
Nh

, we

find that this eigenvalue follows a scaled chi-squared distribution with Nh degrees of freedom, λ ∼ 1
Nh

χ2
Nh

.

On the other hand, the B block has min(Ni, Nh) non-zero eigenvalues that asymptotically follow a scaled
Marchenko-Pastur distribution (Götze & Tikhomirov, 2004). The probability density function of the scaled
Marchenko-Pastur distribution is given by Equation (15) in Appendix A.

The eigenvalues of the entire Hessian matrix are given by summing the eigenvalue of the upper left block with
the (possibly zero-padded) eigenvalues of the lower right block, yielding Ni non-zero eigenvalues in total.
Thus, if Ni ≤ Nh, asymptotically the eigenvalues follow a convolution of the scaled chi-square distribution
with the scaled Marchenko-Pastur distribution, denoted by C. If Ni > Nh, then the eigenvalue distribution
is a mixed distribution, asymptotically given by

λ ∼ Ni − Nh

Ni



1

Nh
χ2

Nh



+
Nh

Ni
C .

Figure 2 illustrates both cases. On the left, we have Ni < Nh, thus the eigenvalue distribution is fully
described by the convolution of the scaled chi-squared distribution and the scaled Marchenko-Pastur distri-
bution. On the right, we have Ni > Nh, thus the distribution is mixed, having contributions from both the
convoluted distribution as well as the scaled chi-squared distribution.

(a) Ni = 10 , Nh = 20, only the convolution is valid. (b) Ni = 30 , Nh = 10, the distribution is mixed.

Figure 2: Agreement between the predicted eigenvalue distribution for the Hessian and numerical simulations.

A detailed proof for the expression of the Hessian eigenspectrum in the linear teacher-student setup can
be found in Appendix A. This eigenvalue distribution is quite different from all the others distributions
considered in the present work. The most notable difference is that, unlike non-linear networks, here there
is a lack of a bulk of eigenvalues concentrated near zero. As such, the long term behavior of Equation (7)
can be more easily checked in this case, as we can clearly distinguish the correct eigenvalues from numerical
error when we diagonalize the Hessian matrix that is determined by a test dataset.

Figure 3 shows, in blue, the loss function evolution with time of a linear student network initialized near the
optimal point. Time here is to be understood as the product of the number of iterations with the learning
rate. We obtain this by randomly generating a teacher network, copying its weights to the student, adding
random noise to them, and finally training the student using stochastic gradient descent. In black, we see the
function α exp (−2λmint), where λmin is the smallest non-zero eigenvalue at the optimal point, calculated
beforehand. Here, α is such that L(tf ) = α exp (−2λmintf ) so that both functions meet at the final time,
tf . Initially the loss function decays faster due to the contribution from the larger eigenvalues. However, the
long-time behavior of the loss function is well determined by just the exponential of its smallest eigenvalue,
as predicted.

7



Under review as submission to TMLR

Figure 3: Agreement between the loss function of a student network initialized near the optimum point and
the exponential of the smallest eigenvalue.

3.2 Number of Effective Parameters

In the linear network, we find that for a randomly generated teacher with weights following a normal
distribution, the Hessian at the optimal point always has Ni positive eigenvalues, with all others being zero.
Thus, in terms of the loss landscape, of the (Ni + 1)Nh possible directions in which the loss can vary, only
a set of Ni directions are required to fully characterize the behavior of the loss function around the optimal
point. The loss function does not vary in all the other directions orthogonal to these Ni directions.

We can look at this from another perspective, trying to answer the following question: "When is a student
network equivalent to another student network?". Here, "equivalent" is to be understood as, given any input,
both students giving the exact same output. To answer this question, we notice that, due to the activation
function being the identity, the student network takes the form

y = W2W1x = Ax ,

where A is a 1 × Ni matrix. Therefore, for two students to be equivalent, it is only required that the
components of A are equal. This shows that, even though the network has (Ni + 1)Nh parameters, due to
the architecture, it can be encoded using only Ni parameters.

Thus, for the linear network, we find that the number of positive eigenvalues of the Hessian, or equivalently,
the rank of the Hessian, at the optimal point, gives a measure of an effective number of parameters.

4 Polynomial Networks

4.1 The Quadratic Network

In this subsection, we consider a teacher-student setup, where the underlying activation function is of the
form

g(x) = x + ϵx2 .

The associated first and second derivatives are g′(x) = 1 + 2ϵx and g′′(x) = 2ϵ.
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Following the same procedure as for the linear network, we solve the associated Gaussian integrals and arrive
at the following expressions for the Hessian matrix components:

∂2L
∂W2k∂W2j

=
∑

m

W1kmW1jm + ϵ2F1(k, j) , (11)

∂2L
∂W1pq∂W1mn

= W2mW2pδnq + 4ϵ2F2(p, q, m, n) , (12)

∂2L
∂W2k∂W1mn

= W2mW1kn + 2ϵ2F3(k, m, n) , (13)

with

F1(k, j) =
∑

m

W 2
1km

∑

m

W 2
1jm + 2

(

∑

m

W1kmW1jm

)2

,

F2(p, q, m, n) = δnq

∑

r

W1mrW1pr + W1mnW1pq + W1mqW1pn ,

F3(k, m, n) = W1mn

∑

p

(W1kp)2 + 2W1kn

∑

p

W1mpW1kp .

As expected, for ϵ = 0, we recover Equations (9-10) for the linear network. However, unlike the linear case,
here we were not able to analytically obtain the eigenvalues. Nevertheless, we briefly make some remarks on
the eigenspectrum of quadratic networks.

Numerically, the eigenspectrum of a realization of this teacher-student setup where the weights of the teacher
are sampled from a normal distribution exhibits a bulk of eigenvalues near zero, with a single eigenvalue
being much farther apart from the bulk. In Figure 4, we see that behavior when the input dimension equals
the hidden dimension: as the dimension of the network increases, the bulk of the eigenvalues gets closer to
zero. We note that the gaps between lines of the same color represent areas where we did not observe any
eigenvalues empirically. In opposition, the highest eigenvalue, which is always far away from the bulk near
zero, diverges, leaving another much smaller bulk of eigenvalues for larger and larger values of λ, as the
dimensions of the network increase.

Figure 4: Eigenspectrum distribution for a quadratic teacher-student setup with ϵ = 1 and Ni = Nh = N .
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4.1.1 Number of Effective Parameters

In the linear case, we saw that a network with Ni input neurons and Nh hidden neurons has (Ni + 1)Nh

parameters in total, but its Hessian matrix has at most Ni non-zero eigenvalues. In the quadratic case, if Nh

is the number of hidden neurons, then above a certain threshold, say T , for Nh > T the number of zeroes of
the Hessian is given by (Nh − 1) Nh/2, which are the triangular numbers (0, 1, 3, 6, 10, 15, 21, 28, . . .).

We use the same strategy as in the linear network to find the number of effective parameters, Neff. As the
activation function is only used once, in the hidden layer, we know that the function being represented by
the student network is a quadratic function of the input vector x. Such a function can be written as

f(x⃗) = A · x + xT Bx ,

without a constant term as the network has no biases. Such a quadratic function is represented by Ni

parameters for A and Ni(Ni + 1)/2 for B. The latter come from the fact that, in the expression xT Bx =
∑N

i,j=0 xixjBij , for i ̸= j, what matters is the sum Bji + Bij , and so we only need to deal with symmetric
matrices.

As such, the number of effective parameters of the quadratic network is Ni + Ni(Ni+1)
2 . Note however, that

this assumes that the network has enough free parameters in the Hessian matrix, in particular it is only valid
whenever Nh ≥ Ni.

The previous result is only an upper bound for the total number of independent parameters. The actual
number depends on both Ni and Nh, because the network may not be able to fully express any degree-two
polynomial in the weights if Nh is not large enough. Numerically, we found that the threshold for this upper
bound to be saturated happens for Nh = Ni. We were able to prove that the number of effective parameters
in the general case is given by

Neff = Ni +
Ni(Ni + 1)

2
−


ν2 + 3ν

2



H(ν) , (14)

where ν = Ni − Nh and H(x) is the Heaviside step function. We refer to Appendix B for a detailed proof of
Equation (14).

4.2 Upper Bound for the Effective Number of Parameters for Higher-Order Polynomials

We can generalize the analysis above for activation functions that are higher-order polynomials. We can
give an upper bound for the effective number of parameters by counting the number of parameters that
describe an n-th polynomial function of a vector x. Similarly to the quadratic network approach, a degree-n
polynomial can be represented as

f(x⃗) =

Ni
∑

i=1

A
(1)
i xi +

Ni
∑

i,j=1

A
(2)
ij xixj + · · · +

Ni
∑

i1,...,in=1

A
(n)
i1...in

xi1
· · · xin

,

where each A(k) is a k-dimensional symmetric tensor. Finally, counting the number of parameters amounts
to summing the number of symmetric components of each tensor. For a symmetric tensor of order n, the
number of independent parameters is given by

(

Ni+n−1
n

)

. With the help of the hockey-stick identity (Jones,
1996), we find that

Neff ≤
n
∑

k=1



Ni + k − 1

k



=



Ni + n

n



− 1 ,

which is the upper bound for the number of effective parameters for a polynomial activation function of
degree n.
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5 Error Function Network

Finally. we study the case where the activation function is the error function

g(x) = erf



x√
2



=
2√
π

∫ x/
√

2

0

e−t2

dt ,

which has first derivative g′(x) =
√

2/π e−x2/2 and second derivative g′′(x) = −x g′(x). This choice of
activation function is common in machine learning as it is a sigmoid function. Moreover, its associated
Gaussian integrals are well defined analytically. The derivation and final system of Equations (16-18) is
available in Appendix C.

The results of a numerical analysis of the eigenspectrum of the Hessian matrix obtained from Equations
(16-18) are displayed in Figure 5. We see a similar structure to the quadratic case. There is a bulk of
positive eigenvalues near zero that, as the network size increases, gets closer and closer to zero. There is
another bulk of larger eigenvalues that remains fixed as the network size increases. For a single realization
of this teacher-student setup, we find that the number of eigenvalues belonging to the bulk away from zero
is always equal to Nh, the number of parameters in W2. This may be due to the fact that the output layer
does not have an activation function whereas the hidden layer does.

Figure 5: Eigenspectrum distribution for a error function teacher-student setup with Ni = Nh = N .

5.1 Number of Effective Parameters

For the error function network, we empirically find that no matter how large the networks are, the Hessian
matrix is always full rank. If we try to follow our strategy for counting the number of effective parameters,
as the teacher network is some linear combination of error functions, we can no longer compress this network
onto a finite polynomial. Thus, it appears that no further compression is possible and the entire suite of
parameters of the teacher is required for the student to perfectly replicate the teacher’s outputs.

6 Conclusion and Future Work

In this work, we explored the Hessian rank as a measure of the effective number of parameters. Under the
teacher-student setup, where the teacher and the student networks share their architecture, we found that
this measure is valid for polynomial networks, for a sufficiently large number of hidden neurons. For a more
complicated activation function, like the error function, this approach breaks down as the Hessian is always
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full rank at the optimal point, an indication that no further compression of the number of parameters can
be done for such networks.

For all linear, quadratic, and error function networks, we were able to derive the equations for the Hessian
components, under the assumption of the input distribution being a Gaussian centered at zero. Specifically
for linear networks, we were able to analytically derive the distribution of the eigenvalues of the Hessian,
when the distribution of weights of the teacher network is known. In the case where this distribution is
Gaussian, we found that, in general, the distribution of eigenvalues of the Hessian asymptotically follows a
convolution of a scaled Marchenko-Pastur distribution with a scaled chi-squared distribution.

Finally, we point out future research directions in this teacher-student perspective. Firstly, we could study
how this notion of an effective number of parameters changes if we add biases to the analysis. Following the
same strategy as in this work, we would expect to obtain the same results incremented by one. This new
degree of freedom comes from the constant term of the polynomial function in the compressed representa-
tion. Following the same train of thought, we could also try to generalize the result for deeper networks.
On the other hand, still working with two-layer neural networks, one can possibly study the effects of over-
parameterization on student networks. This is because, in the case where the student has more parameters
than the teacher, the optimal solution still exists. The optimal solution in this case can be obtained by
zeroing out any extra neurons present in the student network. Comparing the Hessian spectrum of such an
overparameterized student with the ones obtained in this work could provide insight into the unreasonable
performance of large neural networks. Finally, one other possible path to explore would be to study the
Hessian rank evolution with time.
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A The Linear Teacher-Student Case

To understand where the expression for the distribution of the eigenvalues of the Hessian comes from, it is
helpful to first study the eigenvalues of each Hessian sub-matrix separately.

A.1 Eigenvalues of the A block of the Hessian

The A block of the Hessian matrix has an interesting symmetry to it. Its components are given by Equation
(9),

∂2L
∂W1pq∂W1mn

= W2mW2pδnq .

This matrix is very sparse. We flatten the matrix W1 by following a row-first convention, i.e., we flatten
the matrix by concatenating its rows. As such, the δnq term makes it so that we can only have a non-zero
element every Nh steps, when k mod Nh = 0, with k being the current row. The effect of this term is that
this matrix will be built of identity INi

blocks being multiplied by a real number.

For example, for Ni = 3 and Nh = 4 we would have











































W22
1 0 0 W21W22 0 0 W21W23 0 0 W21W24 0 0

0 W22
1 0 0 W21W22 0 0 W21W23 0 0 W21W24 0

0 0 W22
1 0 0 W21W22 0 0 W21W23 0 0 W21W24

W21W22 0 0 W22
2 0 0 W22W23 0 0 W22W24 0 0

0 W21W22 0 0 W22
2 0 0 W22W23 0 0 W22W24 0

0 0 W21W22 0 0 W22
2 0 0 W22W23 0 0 W22W24

W21W23 0 0 W22W23 0 0 W22
3 0 0 W23W24 0 0

0 W21W23 0 0 W22W23 0 0 W22
3 0 0 W23W24 0

0 0 W21W23 0 0 W22W23 0 0 W22
3 0 0 W23W24

W21W24 0 0 W22W24 0 0 W23W24 0 0 W22
4 0 0

0 W21W24 0 0 W22W24 0 0 W23W24 0 0 W22
4 0

0 0 W21W24 0 0 W22W24 0 0 W23W24 0 0 W22
4











































We can rewrite the above matrix in a more compact notation using the following tensor product









W22
1 W21W22 W21W23 W21W24

W21W22 W22
2 W22W23 W22W24

W21W23 W22W23 W22
3 W23W24

W21W24 W22W24 W23W24 W22
4









⊗ I3 .

One important consequence of the above is that every eigenvalue of the original matrix will have a multiplicity
of Ni. In general, this block of the Hessian matrix can be written as (W2W T

2
)⊗INi

, with W2 ∈ R
Nh . Thus,

W2 has Nh − 1 orthogonal directions with eigenvalue equal to zero. To get the other eigenvalue, note that
by associativity

(W2W T
2

)W2 = ♣♣W2♣♣2 W2 .

From this we get that the other eigenvalue is given by
∑Nh

i=1 W 2
2i. We thus have the values and multiplicities

of all eigenvalues of the A block of the Hessian matrix: we have Ni(Nh − 1) eigenvalues equal to zero and

Ni equal to
∑Nh

i=1 W 2
2i. Being sums of squares of a normal distribution with fixed variance, this eigenvalue

follows a scaled chi-square distribution with Nh degrees of freedom, λ ∼ σ2χ2
Nh

. In the following figure we
can see some numerical simulations of this part of the Hessian as well as the predicted distribution on top.
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(a) Nh = 3 (b) Nh = 100

Figure 6: Agreement between the predicted distribution for this eigenvalue of the first diagonal block, A, of
the Hessian and numerical simulations.

A.2 Eigenvalues of the B block of the Hessian

This block is given by the expression W1W T
1

. Asymptotically, the eigenvalues of this block then follow a
scaled Marchenko-Pastur distribution (because the entries are not being normalized) (Götze & Tikhomirov,
2004). This distribution is scaled by a factor of Ni. Furthermore, if Nh > Ni the matrix is singular and has
only Ni non-zero eigenvalues. In the other cases it has Nh non-zero eigenvalues.

The pdf of the scaled distribution of eigenvalues is given by

pdf(x) =
1

2πσ2

√

(λ+ − x) (x − λ−)

λx
1x∈[λ−,λ+] (1λ≤1 + λ1λ>1) , (15)

where λ = Nh/Ni, λ± = σ2
(

1 ±
√

λ
2

, σ2 = 1
Ni

and 1C is an indicator function valid in the region denoted

by the condition C. In the following figure we can see the agreement between the above predicted distribution
and numerical experiments.

(a) Ni = 30 , Nh = 30 (b) Ni = 100 , Nh = 30

Figure 7: Agreement between the predicted eigenvalue distribution for the second diagonal block, B, of the
Hessian and numerical simulations.
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A.3 A description of the positive eigenvalues for the Hessian

The Hessian matrix may be written as

H =



W2W T
2

⊗ INi
W2 ⊗ W T

1

W T
2

⊗ W1 W1W T
1



.

We have that W2 is a column vector and, as analysed previously, its eigenvector is v := W T
2

, we shall call the
associated eigenvector λ2. From the rank-nullity theorem for W1, we have that Ni = rank (W1) + null (W1).
From the SVD decomposition of W1, we have that there will be as many non-zero singular values as the
rank of W1. For each one of these non-zero singular values, call it

√
λ1, let z′ be the corresponding singular

vector. Then we have that
{

W1z′ =
√

λ1z

W T
1 z =

√
λ1z′ ,

which implies that z is an eigenvector of W1W T
1 associated with the eigenvalue λ1.

Now, note that, with the vector given by y = [(v ⊗ z′)
√

λ1z]T , the product of the Hessian matrix with the
above vector gives Hy = (λ1 + λ2)y. Thus, for each non-zero singular value of W1 we have obtained an
eigenvector of the Hessian where the corresponding eigenvalue is indeed the sum of the eigenvalues of each
diagonal block matrix of the Hessian. The number of such eigenvectors is equal to the rank of W1.

Now, let z′ be a vector in the kernel of W1. The above relations remain true if we take into account that

now λ1 = 0. And thus the vector y =
[

(v ⊗ z′) 0⃗
]T

, where 0⃗ is a vector of Nh zeros, is also an eigenvector
of H, as Hy = λ2y = (0 + λ2) y = (λ1 + λ2)y. For the random matrices we considered for the teacher, the
kernel of W1 is non-trivial almost surely whenever Ni ≥ Nh.

Thus, in general, by the rank-nullity theorem for W1, we will have Ni linearly independent eigenvectors of the
Hessian matrix where the associated eigenvalues are the sum of the eigenvalues of each diagonal submatrix
of the Hessian.
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B Counting the Effective Parameters of a Polynomial Network

B.1 Quadratic Network: The Nh < Ni case

To make this discussion more clear, we shall consider the case where Nh = Ni − 1. Here, two interesting
effects happen: the first is that both the vector A⃗ and the matrix B lose a dependency on the last parameter
W2, which accounts for the loss of one of the degrees of freedom, when compared to the upper bound. If we
keep reducing Nh the number of degrees of freedom should also decrease linearly, for the same reason.

The second effect is on the rank of the matrix B. In the case where Ni ≤ Nh, the matrix B is made up of
the sum of at least Ni random rank one matrices and so, in general, it will be a rank Ni symmetric matrix.
However, when we have Nh < Ni, now B is made up of only Nh rank one matrices and, as such, it has a
smaller number of independent parameters.

To count this new number, we note that any symmetric real matrix has an eigenvalue decomposition such
that

B = XΛXT ,

where Λ is a diagonal matrix whose components are the eigenvalues of B and X is an Ni ×Ni real orthogonal
matrix. Furthermore, for real symmetric matrices, the number of non-zero eigenvalues is equal to the rank
of the matrix.

If we assume that B has full rank, then the degrees of freedom of B can be derived from the following
exercise:

• Each non-zero eigenvalue in Λ is one additional degree of freedom, giving N in total.

• The orthogonal matrix X has Ni(Ni−1)
2 independent components.

• In total we thus have Ni + Ni(Ni−1)
2 = Ni(Ni+1)

2 .

Thus, we get the same number that we obtained before for the independent components of B, if it is a full
rank matrix.

Now, if B is a matrix of rank r < Ni, the following happens:

• We now have only r degrees of freedom from the eigenvalues, as the other Ni − r eigenvalues are
zero.

• The orthogonal matrix has additional symmetries that appear due to the degeneracy of the zero
eigenvalues. In particular, we need to remove the number of permutations of columns of X as-
sociated with the null eigenvalue, as they will yield the same matrix B. Thus, we must remove
(Ni−r)(Ni−r−1)

2 =
(

Ni−r
2

)

degrees of freedom.

• Another way to state the above is that the space of the zero eigenvectors of B does not contribute
towards the number of independent components and, as such, we need to remove the number of
degrees of freedom that those eigenvectors used to contribute. That happens to be

(

Ni−r
2

)

.

• Yet another way to put is to say that the matrix B is independent of rotations of the space associated

with the null eigenvectors as, as such, we need to remove n(n−1)
2 degrees of freedom from the

orthogonal matrix.

• Thus, when B is a rank r matrix we have

r +
Ni (Ni − 1)

2
−


Ni − r

2



degrees of freedom.
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The overall result is that, whenever r = Nh < Ni, the number of effective parameters of the network is given
by

Ni +
Ni(Ni + 1)

2
− (Ni − r) − (Ni − r +



Ni − r

2



) = Ni +
Ni(Ni + 1)

2
−


(Ni − r)2 + 3(Ni − r)

2



,

which yields the predicted numerical results.

B.2 The number of symmetric components of a tensor of order n

Let us recall here how to obtain the number of symmetric components of a tensor of order n. Let A(n) be a
symmetric tensor of order n where the size of each dimension is Ni. Then

(

Ni

n

)

gives the number of distinct
groupings of n indices, thus accounting for the fact that the tensor is symmetric.

However, we are missing the terms with repeated indices. One way to account for them is to introduce some
abstract symbol R1 to indicate the repetition of some element.

For example, in counting the number of independent components of a symmetric matrix,
(

Ni+1
2

)

represents
all the possible pairings of the Ni different values for each index as well as the additional R1 symbol, which
we must interpret as the instruction "repeat the 1st lowest number in this pairing". Thus, ¶1, R1♢ ↔ x1x1

whereas ¶1, 2♢ ↔ x1x2 ↔ x2x1.

To generalize this to higher dimensions we just need to add additional repetition symbols that are interpreted
as "Rn means that the n th lowest number in this grouping is to be repeated once". Thus, in the cubic case
we interpret ¶1, R1, 2♢ ↔ x1x1x2 and ¶R2, 1, 2♢ ↔ x1x2x2 – giving us the components of the tensor with
two equal indices. Also, we interpret ¶R1, 2, R2♢ ↔ x2x2x2, which gives the components with three repeated
indices. With the addition of these symbols we can see that the expression

(

Ni+n−1
n

)

counts all independent
symmetric components of an n-th order tensor.
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C The Error Function Network Hessian equations

The equations for the case where the activation function is the error function are:

∂L
∂W1pq∂W1mn

=
2W2mW2p

π
√

det Σ−1
[Σ]nq , (16)

∂2L
∂W2k∂W2j

=
2

π
arctan





∑n

i=1
WjiWki

√

1 +
∑n

i=1
W 2

ki +
∑n

i=1
W 2

ji +
(
∑n

i=1
W 2

ki

) (
∑n

i=1
W 2

ji

)

−
(
∑n

i=1
WjiWki

)2



 , (17)

∂2L
∂W2k∂W1mn

=
2

π
√

1 + W1mW T
1m

W2m

W1kn − W1kW T
1mW1mn

1+W1mW T
1m

√

1 + W1kW T
1k − (W1mW T

1k
)2

1+W1mW T
1m

, (18)

where we have that

Σ = I −

W T
mWm

1 + WmW T
m

−

W T
p Wp

1 + WpW T
p

−





(WmW T
p )2(

W T
mWm

1+WmW T
m

+
W T

p Wp

1+WpW T
p

) − (WmW T
p )(W T

mWp + W T
p Wm)

(1 + WpW T
p )(1 + WmW T

m) − (WmW T
p )2





.

The Upper Left block Looking at the upper left part of the Hessian, which contains the W1 − W1

correlations, we need to calculate the following expected value

∂L
∂W1pq∂W1mn

= W2mW2pEx[g′(zm)g′(zp)xnxq] + W2mδpmEx[g′′(zm)xnxq]

Focusing on the first additive term we have that

g′(zm)g′(zp) =
2

π
e

− 1
2

∑

k,l
(W1mkW1ml+W1pkW1pl)xkxl =

2

π
e

− 1
2

∑

k,l
Amp

kl
xkxl

i.e., the product of the two derivatives of the activation function result is an unnormalized multivariate
Gaussian distribution with inverse covariance matrix Amp. The components of this matrix are Amp

kl =
W1mkW1ml + W1pkW1pl.

When taking the expected value, what we will effectively do is calculate the second moments of a multivariate
Gaussian distribution, up to a multiplicative constant. This multivariate normal distribution has inverse
covariance matrix equal to Σ

−1 = Amp + I.

As for the second additive term, noting that g′′(x) = −xg′(x) is an odd function, we can directly see that

Ex[g′′(zm)xnxq] = −
∑

k

W1mkE[g′(zm)xkxnxq] = 0

because third moments of a normal distribution are always zero.

Derivation of the Second Moments We want to calculate Ex[g′(zm)g′(zp)xnxq]. We saw that this could
be reformulated in terms of the second moments when the distribution is the modified multivariate normal
distribution with inverse covariance matrix Σ−1 = I + Amp, where Amp = W T

mWm + W T
p Wp and Wm, Wp

are row vectors of the matrix W1. Taking into account the missing prefactor of the normal distribution as
well as the factor of 2/π we have that

Ex[g′(zm)g′(zp)xnxq] =
2

π

√
det Σ

∫

dx
1√

det 2πΣ
xnxqe− 1

2
x

T Σ−1
x =

2

π
√

det Σ−1
[Σ]nq .

And so all we have to do is find the determinant of Σ−1 = I + Amp as well as component nq of its inverse.
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To accomplish this we will make use of the following two linear algebra results: the Sherman–Morrison

formula for the inverse of

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
,

valid if 1 + vT A−1u ̸= 0; and the matrix determinant lemma which states that

det(A + uvT ) = (1 + vT A−1u) det A .

By applying the above two formulas inductively we find that the determinant of Σ−1 is

det(I + Amp) = 1 + WmW T
m + WpW T

p + WmW T
mWpW T

p − (WmW T
p )2

and that the inverse matrix can be computed as

Σ = I −

W T
mWm

1 + WmW T
m

−

W T
p Wp

1 + WpW T
p

−





(WmW T
p )2(

W T
mWm

1+WmW T
m

+
W T

p Wp

1+WpW T
p

) − (WmW T
p )(W T

mWp + W T
p Wm)

(1 + WpW T
p )(1 + WmW T

m) − (WmW T
p )2





The Lower Right block Now, for the W2 − W2 block, we need to calculate:

∂2L
∂W2k∂W2j

= Ex[hkhj ] = Ez[g(zk)g(zj)]

Because, zk =
∑

i W1kixi and each xi ∼ N(0, 1), we have that zk ∼ N(0,
∑

i W 2
1ki) and similarly for zj ,

thus both being marginally normal distributed. However, to take the expected value we need to know their
joint distribution. Multivariate statistics tells us that — see for example, Soch et al. (2024) — if x is a
multivariate normal distributed variable, x ∼ N(µ, Σ), then z = Ax + b is also normally distributed as
z ∼ N(Aµ + b, AΣAT ).

In our case µ = 0, Σ = I, where I is the n × n identity matrix, and A =



Wk

Wj



. Thus, (zk, zj) = z ∼

N(0, AAT ) where the covariance matrix

AAT =

 ∑n
i=1 W 2

ki

∑n
i=1 WkiWji

∑n
i=1 WkiWji

∑n
i=1 W 2

ji



.

So we are now in the position to evaluate

Ez [g(zk)g(zj)] =

∫ ∞

−∞
dzj

∫ ∞

−∞
dzk(2π)−1 det(Σ)−1/2 erf



zk√
2



erf



zj√
2



e− 1
2

z
T Σ−1

z

Solving the integral For simplicity let Σ−1 =



A F
F B



. We will first integrate one of the error functions

using the identity

∫ ∞

−∞
erf(ax + b)

1√
2πσ2

exp



− (x − µ)2

2σ2



dx = erf



aµ + b√
1 + 2a2σ2



.

And so, keeping only the terms in zk we want to solve

∫ ∞

−∞
dzk erf



zk√
2



e− 1
2 (Az2

k+2F zjzk)

Completing the square and using the aforementioned identity, we get

∫ ∞

−∞
dzk erf



zk√
2



e− 1
2 (Az2

k+2F zjzk) = e
F 2z2

j
2A

√

2π

A
erf



− Fzj√
2
√

A + A2


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And so, using the previous result, all that is left to do is calculate

∫ ∞

−∞
dzj(2π)− 1

2 det(Σ)−1/2 erf



zj√
2



e
F 2

2A
z2

j − B
2

z2
j

1√
A

erf



− F√
A + A2

zj√
2



.

This expression looks rather intimidating. However, if we can find a formula for

I(a) =

∫ ∞

−∞
dx erf(x) erf(ax)e−b2x2

,

then we can proceed. To calculate this we will use the Feynman integral trick, i.e., we will differentiate under
the integral w.r.t the parameter a. We have that

dI

da
=

∫ ∞

−∞
dx erf(x)

2√
π

xe−a2x2

e−b2x2

.

This integral is solvable and using the software Mathematica we find that

dI

da
=

1

(a2 + b2)
3/2
√

1
a2+b2 + 1

.

Now, to obtain I(a) we just need to integrate both sides of the above from a′ = 0 to a′ = a. Noting that
I(0) = 0, we obtain

I(a) = −
2
√

a2+b2

a2+b2+1

√

1
a2+b2 + 1 tan−1

(

− a
√

a2+b2+1
b + a2

b + b


√
πb

+
2
√

1
b2 + 1

√

b2

b2+1 tan−1(b)
√

πb

In our case, if we make the substitution x =
zj√

2
, we can rewrite the integral as

∫ ∞

−∞
dx

√
2(2π)− 1

2 det(Σ)−1/2 erf (x) e− AB−F 2

A
x2 1√

A
erf



− F√
A + A2

x



.

Using the previous derivation with a = − F√
A+A2

and b2 = 1
A det(Σ) (which is always positive), we finally

obtain, after some simplification steps

Ez [g(zk)g(zj)] =
2

π
arctan

(

F
√

(AB − F 2) (AB + A + B − F 2 + 1)

)

which, when written in terms of the components of the covariance matrix Σ is

Ez [g(zk)g(zj)] =
2

π
arctan





∑n

i=1
WjiWki

√

1 +
∑n

i=1
W 2

ki +
∑n

i=1
W 2

ji +
(
∑n

i=1
W 2

ki

) (
∑n

i=1
W 2

ji

)

−
(
∑n

i=1
WjiWki

)2





The Upper Right block Here, we need to calculate

∂2L
∂W2k∂W1mn

= W2mEx [g(zk)g′(zm)xn] = W2m

√

2

π

1√
det Σ−1

Ex̃ [g(zk)xn]

As we saw previously, g′(zm) will modify the underlying multivariate normal distribution. Similarly, to
the previous calculation, the inverse of the covariance matrix will become Σ

−1 = Am + I, where Am
kl =

W1mkW1ml and I is the identity matrix.

Thus, to perform the calculation we need to be able to calculate Ex̃[g(zk)xn], where x̃ is the random variable
that follows the modified normal distribution. To do the above, we can try to find the distribution of
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Y = (zk, xn). As x is normally distributed then y = Mx is also normally distributed as z ∼ N(Mµ, MσMT ).

In this case µ = 0, σ = (I +Am)−1 and M =



Wk

δn



. Thus, (zk, xn) follows a normal distribution N(0, M(I +

Am)−1MT ). Using the same techniques as before we find that

Σ =



WkW T
k Wkn

Wkn 1



− 1

1 + WmW T
m



(WmW T
k )2 WkW T

mWmn

WmW T
k Wmn W 2

mn



Calculating the integral Assuming that we were able to show that (zk, xn) ∼ N(0, Σ) with

Σ =



σzz σzx

σzx σxx



,

we now want to perform the following integral

∫ ∞

−∞

∫ ∞

−∞
dxndzk

1

2π
√

det Σ
exp



−1

2
yT

Σ
−1y



xn erf



zk√
2



.

With the help of some tabulated integrals of error functions (check Ng & Geller (1969) and Korotkov &
Korotkov (2020)) it can be shown that the above yields the following result

E[xn erf(zk/
√

2)] =

√

2

π

σzx√
1 + σzz

.

Using the previous result we finally have that

∂2L
∂W2k∂W1mn

=
2

π
√

1 + W1mW T
1m

W2m

W1kn − W1kW T
1mW1mn

1+W1mW T
1m

√

1 + W1kW T
1k − (W1mW T

1k
)2

1+W1mW T
1m
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D Connection between the Hessian and the Fisher information matrix

As stated in the discussion preceding Equation 3, the Hessian we compute at the optimal point is also
called the outer product Hessian and there is an intimate connection between this Hessian and the Fisher
information matrix (FIM). Here, we explicit that connection.

Following Karakida et al. (2021), in the context of regression tasks, the Fisher information matrix is defined
as

F = E(x,y)

[

∇θ log p(x, y; θ)∇θ log p(x, y; θ)T
]

(19)

where the statistical model is given by p(x, y; θ) = p(y♣x; θ)q(x), where p(y♣x; θ) is the conditional probability
distribution of the Neural Network of the output y when given input x, that follows some input distribution
q(x). The expectation is taken over empirical input-output pairs, (x, y). For regression tasks, the ones
considered in this work, the following statistical model is used:

p(y♣x; θ) =
1√
2π

exp



−1

2
∥y − f(x; θ)∥2



. (20)

From the definition of the FIM, we have that

Fij = E(x,y)

[

(y − fθ(x))2∇θi
fθ(x)∇θj

fθ(x)
]

and so, taking the expectation with respect to y, we arrive at

Fij = Ex

[

∇θi
fθ(x)∇θj

fθ(x)
]

which is exactly the outer product Hessian of the generalization error. At the optimal point, the Hessian
just depends on the outer product Hessian and so the spectrum and rank of the Fisher information matrix
and the Hessian are the same.
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E Other Choices of Weight Distributions in the Linear Case

If instead of a normal distribution the teacher weights followed a distribution with zero mean and well-defined
variance, then the eigenvalues of the first diagonal block of the Hessian, being obtained from the sums of
squares of random variables, are subject to the Central Limit Theorem, which ultimately states that their
square sum will be governed by some Gaussian distribution. As for the eigenvalues of the second diagonal
block of the Hessian, the conditions to arrive at the Marchenko-Pastur distribution are that the distribution
for the matrix entries should have zero mean and finite variance (Götze & Tikhomirov, 2004).

The chi-squared distribution with a large number of degrees of freedom behaves as a Gaussian distribution.
Thus, when considering another distribution for the teacher weights that has zero mean and, without loss of
generality, unit variance, we expect that the Hessian eigenspectrum approximates that of the one obtained
from the normal distribution, provided that Nh is large enough. We can see in Figure 8 and Figure 9
examples where this is verified and not verified, respectively.

Figure 8: Other choices of distributions for the teacher network weights, showing the agreement for sufficiently
large networks. Here, Ni = 10 and Nh = 20.

Figure 9: Other choices of distributions for the teacher network weights, showing the differences versus the
predicted distribution when the networks dimensions are small. Here, Ni = 30 and Nh = 10.
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