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Abstract

The use of contrastive loss for representation001
learning has become prominent in computer002
vision, and it is now getting attention in Natu-003
ral Language Processing (NLP). Here, we ex-004
plore the idea of using a batch-softmax con-005
trastive loss when fine-tuning large-scale pre-006
trained transformer models to learn better task-007
specific sentence embeddings for pairwise sen-008
tence scoring tasks. We introduce and study a009
number of variations in the calculation of the010
loss as well as in the overall training proce-011
dure; in particular, we find that a special data012
shuffling can be quite important. Our experi-013
mental results show sizable improvements on a014
number of datasets and pairwise sentence scor-015
ing tasks including classification, ranking, and016
regression. Finally, we offer detailed analy-017
sis and discussion, which should be useful for018
researchers aiming to explore the utility of con-019
trastive loss in NLP.020

1 Introduction021

Recent years have seen a revolution in Natural Lan-022

guage Processing (NLP) thanks to the advances in023

machine learning. A lot of attention has been paid024

to architectures, especially for deep learning, as025

well as to loss functions. Notably, loss functions026

based on similar ideas were proposed in unrelated027

papers in different machine learning fields under028

different names. This can cause difficulties when029

solving new problems or when designing new ex-030

periments based on previous results. To a greater031

extent, this applies to “universal” loss functions,032

which can be applied in different machine learning033

areas and tasks such as Computer Vision (CV), Rec-034

ommendation Systems, and NLP. An example of035

such loss function is the batch-softmax contrastive036

(BSC) loss, which we will discuss below.037

For many NLP tasks, it is important to obtain038

representations of sentences for semantic match-039

ing problems, since they can be used for further040

analysis, e.g., for finding the best answer to a ques- 041

tion. Sentence BERT is a recent popular approach 042

for this (Reimers and Gurevych, 2019): it can 043

be trained with different loss functions, and we 044

show that the choice of a loss function is impor- 045

tant. Moreover, we show that it will not be optimal 046

to take the “standard” batch-softmax contrastive 047

loss, which is used for training SimCSE (Gao et al., 048

2021), a recent alternative to Sentence BERT, and 049

we suggest ways to improve its efficiency. Our 050

contributions can be summarized as follows: 051

• We study the use of a batch-softmax con- 052

trastive loss for fine-tuning large-scale trans- 053

formers to learn better task-specific embed- 054

dings for pairwise sentence scoring tasks. 055

• We introduce and study a number of novel 056

variations in the calculation of the loss such 057

as symmetrization, incorporating labeled neg- 058

atives, aligning scores on the similarity ma- 059

trix diagonal, normalizing over the batch axis, 060

as well as in the overall training procedure, 061

e.g., shuffling, trainable temperature, and se- 062

quential pre-training. 063

• We demonstrate sizable improvements for a 064

number of pairwise sentence scoring tasks 065

such as classification, ranking, and regression. 066

• We offer detailed analysis and discussion, 067

which would be useful for future research. 068

• We release our code at http: 069

//anonymous 070

2 Related Work 071

The contrastive loss was proposed by Hadsell et al. 072

(2006) as metric learning that contrasts Euclidean 073

distances between embeddings of samples from 074

one class and between samples from different 075

classes. Weinberger et al. (2006) suggested the 076

triplet loss, which is based on a similar idea, but 077

uses triplets (anchor, positive, negative), and aims 078

for the difference between the distances for (an- 079

chor, positive) and for (anchor, negative) to be 080
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larger than a margin. N -pair loss was presented as081

a generalization of the contrastive and the triplet082

losses as a way to solve the problem of exten-083

sive construction of hard negative pairs and triplets084

(Sohn, 2016). To this end, a batch of N pairs of085

examples from N different classes is sampled, and086

the first element in each pair is considered to be an087

anchor. Thus, for each anchor, there are one posi-088

tive and N´1 negative pairs. The loss contrasts the089

distances simultaneously using the softmax func-090

tion over dot-product similarities. The approach091

was used successfully in CV tasks.092

The same method of Multiple Negative Rank-093

ing for training Dot-Product Scoring Models was094

applied to ranking natural language responses to095

emails (Henderson et al., 2017), where the loss096

uses labeled pairs. A similar idea, called Negative097

Sharing, was used to reduce the computational cost098

when training recommender systems (Chen et al.,099

2017). Wu et al. (2018) presented an approach100

with N -pairs like logic, as a Non-Parametric Soft-101

max Classifier, replacing the weights in the softmax102

with embeddings of samples from such classes. It103

was also proposed to use L2 normalization and tem-104

perature. Yang et al. (2018) proposed to use Mul-105

tiple Negative Ranking to train general sentence106

representations on data from Reddit and SNLI.107

Logeswaran and Lee (2018) presented a Quick-108

Thoughts approach to learn sentence embeddings,109

which constructs batches of contiguous sets of sen-110

tences, and for each sentence, contrasts the next111

sentence in the text and all other candidates.112

A lot of subsequent work has focused on max-113

imizing Mutual Information (MI). Oord et al.114

(2018) presented a loss function based on Noise-115

Contrastive Estimation, called InfoNCE. It models116

the “similarity” function that estimates the MI be-117

tween the target (future) and the context (present)118

signals, and maximizes the MI between temporally119

nearby signals. If this “similarity” function ex-120

presses the dot-product between embeddings, the121

InfoNCE loss is equivalent to the N -pair loss up to122

some constants. It was also shown that InfoNCE is123

equivalent to the Mutual Information Neural Esti-124

mator (MINE) up to a constant (Belghazi et al.,125

2018), whose minimization maximizes a lower126

bound on MI. Deep InfoMax (DIM) (Hjelm et al.,127

2019) improves MINE, and can be modified to in-128

corporate some autoregression as InfoNCE. How-129

ever, Tschannen et al. (2020) pointed out that the130

effectiveness of loss functions such as DIM and131

InfoNCE might be primarily connected not to deep 132

metric learning but rather to MI. 133

The idea gained a lot of popularity in Computer 134

Vision with the advent of SimCLR (a Simple frame- 135

work for Contrastive Learning of visual Represen- 136

tations), which introduced NT-Xent (normalized 137

temperature-scaled cross-entropy loss) (Chen et al., 138

2020). It uses self-supervised learning, where aug- 139

mentations of the same image are used as positive 140

examples and augmentations of different images 141

are used as negative examples. Thus, the task is as 142

follows: for each example in a batch, find its paired 143

positive augmentation. Here, the N -pairs loss is 144

modified with a temperature parameter and with an 145

L2 normalization of embeddings to the unit hyper- 146

sphere. The loss was further extended for super- 147

vised learning as SupCon loss (Khosla et al., 2020), 148

which aggregates all positive examples (from the 149

same class) in the softmax numerator. 150

Subsequently, these losses were introduced to 151

the field of Natural Language Processing (NLP). 152

Gunel et al. (2020) combined the SupCon loss with 153

the cross-entropy loss and obtained state-of-the- 154

art results for several downstream NLP tasks us- 155

ing RoBERTa. Giorgi et al. (2020), Fang and Xie 156

(2020) and Meng et al. (2021) used NT-Xent to 157

pre-train Transformers, considering spans sampled 158

from the same document, sentences augmented 159

with back-translation as positive examples, and se- 160

quences corrupted with MLM. Luo et al. (2020) 161

proposed to use NT-Xent in a self-supervised set- 162

ting to learn noise-invariant sequence representa- 163

tions, where sentences augmented with masking 164

were considered as positive examples. Finally, 165

Gao et al. (2021) introduced the SimCLR loss to 166

NLP under the name SimCSE (Simple Contrastive 167

Learning of Sentence Embeddings), where sen- 168

tences processed by a neural network with dropout 169

served as augmentations of the original sentences. 170

Here, we explore various ways to use a similar loss 171

function for pairwise sentence scoring tasks. 172

While the above-described loss functions have 173

different names, they are all based on similar ideas. 174

Below, we will use the name Batch-Softmax Con- 175

trastive (BSC) loss, which we believe reflects the 176

main idea best. In our experiments below, we will 177

use the “modern” variant of the loss: with tem- 178

perature, normalization, and symmetrization com- 179

ponents (described in more detail in Section 3.1). 180

These components were not used for NLP in com- 181

bination before. We further introduce a number of 182
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Figure 1: For the set of positives pairs pqi, aiq,
e.g., question–answer, for each qi, the BSC loss con-
trasts the scores between qi and ai (positive examples)
vs. between qi and aj for all j ‰ i (negative examples)
using softmax. Here ‚ denotes the dot-product.

novel and important modifications in the definition183

of the loss and in the training procedure, which184

make it more efficient, and we show that using the185

resulting loss yields better task-specific sentence186

embeddings for pairwise sentence scoring tasks.187

3 Method188

3.1 Batch-Softmax Contrastive (BSC) Loss189

Pointwise approaches for training models for pair-190

wise sentence scoring tasks, such as mean squared191

error (MSE), are problematic as the loss does not192

take the relative order into account. For instance,193

for two pairs with correct target scores (0.4, 0.5),194

the loss function would equally penalize answers195

like (0.3, 0.6) and (0.5, 0.4). However, the first pair196

is better, as it keeps the correct ranking, while the197

second one does not. This is addressed in pairwise198

approaches, e.g., in triplet loss, where the model199

directly learns an ordering. Yet, there is a problem200

for constructing pairs or triplets in the training set,201

as it is hard to find non-trivial negatives examples.202

Unlike traditional pairwise loss functions, the203

BSC loss treats all other possible pairs of examples204

in the batch as “negatives.” That is, only positive205

pairs are needed for training. Consider a batch206

X of pairs from a question-answering dataset. In207

general, let Qmˆn and Amˆn be the matrices of208

embeddings produced by a query model and an an-209

swer model. We define the loss function as follows:210
211

LBSCpXq “ L0pXq ` L1pXq212

“ ´mean

ˆ

log

ˆ

diag

ˆ

softmax
ˆ

QAT

τ

˙˙˙˙

213

´ mean

ˆ

log

ˆ

diag

ˆ

softmax
ˆ

AQT

τ

˙˙˙˙

(1)

214

Here, softmax is applied by rows (Figure 1), and215

τ is the temperature. Both components can be 216

rewritten, e.g., L0pXq can be written as follows: 217
218

´
1

mτ

m
ÿ

i“1

qTi ai`
1

m

m
ÿ

i“1

log
m
ÿ

j“1

exp

ˆ

qTi aj
τ

˙

(2)

219

Mathematically, this loss function is similar to 220

the one presented in (Chen et al., 2020). The differ- 221

ence is that we do not use augmentations, and we 222

do not compare qi to qj (or ai to aj) due to their 223

different nature: we want to compare a question to 224

an answer, not a question to a question or an answer 225

to an answer. Thus, we apply the symmetrization 226

in the formula. So, the difference from SimCSE 227

(Gao et al., 2021) is that we compare not only qi to 228

all aj , but also ai to all qj in the batch. 229

Note that, although a frequent short answer may 230

fit multiple questions in a batch, such pairs are con- 231

sidered as “negative” examples in the loss. How- 232

ever, the loss learns Mutual Information (Tschan- 233

nen et al., 2020), that is ppqi, aiq{pppqiqppaiqq, and 234

thus it is robust to this false negatives problem. 235

Early research has already shown the importance 236

of properly configuring and using some BSC loss 237

settings. For example, low temperatures are equiv- 238

alent to optimizing for hard positives/negatives 239

(Khosla et al., 2020), while L2 normalization of 240

vectors to the unit hypersphere along with temper- 241

ature effectively weighs different examples (Chen 242

et al., 2020). We further propose a number of im- 243

portant modifications that can have a major impact 244

on the performance for a number of tasks. 245

3.2 Batch Construction 246

In computer vision, it is common to use a batch 247

size of 5,000, which in turn would naturally be very 248

likely to contain some hard negative examples. In 249

NLP, fine-tuning Transformer-based models with 250

large batch sizes requires very large amounts of 251

memory. Thus, much smaller batches are used 252

in practice, and as a result, it becomes important 253

to make sure these batches do contain some hard 254

negative examples. We achieve this by fixing the 255

content of the batches at each epoch of the train- 256

ing process. Note that this is much simpler than 257

mining hard negatives, as we only need to increase 258

the likelihood that there would be a hard negative 259

example present in the batch, but we do not need to 260

know which particular example in the batch would 261

be hard. Inside the batch, this would be controlled 262

by the temperature parameter. 263
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Example-based shuffling The key idea of this264

method is to batch several groups, so that within265

each group all pairs are similar based on their first266

or based on their second elements. In this way,267

each positive pair would be accompanied by hard268

negatives from the same group and by simpler nega-269

tives from the remaining examples inside the batch270

(which come from other groups). We use the k-271

nearest neighbors for an input example to form a272

group for it, and Faiss (Johnson et al., 2019) to273

quickly find these nearest neighbors in the embed-274

ding space. Let the pairs be grouped by their first275

elements qi. Algorithm 1 summarizes the proposed276

method.277

Algorithm 1 Example-based shuffling

Input: sequence D, group size s
initialize R Ð rs Ź sequence to store the result
initialize U Ð ∅ Ź set of used examples
randomly shuffle D
for e in D do

if e R U then
find the n nearest neighbors of e from D
choose the top s ´ 1 that are not in U
add them and e to R and also to U

return reversed R

Note that we use two stages in kNN to limit the278

range of possible candidates and thus to reduce279

the computational costs (both in terms of time and280

memory). We first extract the top-n neighbors (for281

some large n, e.g., 500), and then we take the top-k282

from them, so that no duplicates appear in the final283

sequence (for some small k “ 7). The time com-284

plexity of such a check is O(1). If all such neigh-285

bors are already used, then only the considered ex-286

ample will be added to the resulting sequence. This287

case will often arise for the last examples, and thus288

batches will consist of simple 1-element groups.289

Therefore, we reverse the sequence to start with290

these simple batches, as in curriculum learning.291

By default, we assume that there should be one292

positive example for each question/answer (on the293

diagonal of the matrix), and thus identical neigh-294

bors could be optionally filtered. Still, if there295

are the same qi in the batch X , the loss definition296

(eq. 1) does not change. Indeed, let Pq “ ti | qi “297

q, pqi, aiq P Xu, then @i, j P Pq : pqi, ajq form a298

positive pair. According to Khosla et al. (2020),299

for each q, all q̃ P Pq should be placed in the soft-300

max numerator and then averaging over all such q̃301

should be performed outside the logarithm. Thus,302

in L0pXq (eq. 2) only the first sum would change: 303

304
ÿ

iPPq

qTi ai ù
ÿ

iPPq

1

|Pq|

ÿ

jPPq

qTi aj 305

“
ÿ

jPPq

1

|Pq|

ÿ

iPPq

qTaj “
ÿ

jPPq

qTj aj (3) 306

In L1pXq: 307

308
ÿ

iPPq

qTi ai ù
ÿ

iPPq

1

|Pq|

ÿ

jPPq

qTj ai 309

“
ÿ

iPPq

1

|Pq|

ÿ

jPPq

qTai “
ÿ

iPPq

qTi ai (4) 310

To select the groups even better, we consider 311

task-specific embeddings. To this end, we apply 312

the current model to encode all pairs at each epoch. 313

Algorithm 2 Shuffling by words

Input: sequence D, group size k, shingle size t
for e in D do

e.shingle Ð random subset of t words
of e (ignoring stop-words)

sort D by e.shingle
initialize gID Ð random uint64 Ź group ID
initialize s Ð 0 Ź current group size
initialize prev Ð first element of D
for e in D do

if e.shingle ‰ prev.shingle then
gID Ð random uint64

if s ě k then
gID Ð random uint64
s Ð 0

e.gID Ð gID
s Ð s ` 1
prev Ð e

sort D by e.gID
return D

Fast shuffling For extremely large datasets, 314

example-based shuffling is time-consuming even 315

with Faiss; thus, we propose several effective op- 316

tions to perform a less-thorough shuffling. We 317

choose some attribute by which we will group the 318

examples, that is, we guarantee some closeness of 319

the examples. Thus, the examples are close if they 320

share the same words, the same cluster number 321

or the same nearest neighbors. First, consider the 322

case of words and grouping by the first elements 323

of the pairs (the case of the second elements is the 324
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same). Algorithm 2 presents the shuffling process.325

To produce a shuffle by clusters, we apply the same326

algorithm, where each sentence is replaced by its327

cluster number. Thus, each shingle has size t “ 1.328

In order to make a shuffle by nearest neighbors, we329

create shingles by “sentences,” where the words330

are the positions of the top-k nearest neighbors331

in the input sequence (for some small k). All of332

these approaches, as well as k-means clustering,333

can be effectively implemented using MapReduce334

and parallel computations.335

3.3 Labeled Negatives336

Usually, when the data size is small, hard nega-337

tive examples may be hard to obtain even with338

data shuffling, e.g., when all examples are semanti-339

cally distant. Nonetheless, if the dataset contains340

a labeled negative pair with some anchor, then its341

elements are semantically close by traditional rules342

of dataset construction. Thus, using such a pair343

inside the batch, where this anchor is present, will344

add the necessary hard negative example.345

The only change that is added in the loss function346

is the masking of negative examples—we have no347

guarantees that the selected negative example is348

closer to the anchor than the rest of the examples349

inside the batch. Let yi be a binary label, where350

yi “ 1 if the i-th pair is positive. Then, we have351

352

L0pXq “ ´
1

mτ

m
ÿ

i“1

1ryi “ 1sqTi ai353

`
1

m

m
ÿ

i“1

1ryi “ 1s log
m
ÿ

j“1

exp

ˆ

qTi aj
τ

˙

(5)354

3.4 Combo Loss355

Theoretically, it is beneficial to use several loss356

functions for training if they are calculated on the357

same batch (and thus do not require additional com-358

putations). That is, joint training of BSC and MSE359

losses combines the advantages of pointwise and360

of pairwise approaches, thus ensuring that for pos-361

itives examples, the values on the diagonal of the362

dot-product matrix are not only greater than the rest,363

but are also close to 1 or to some target similarity.364

Note that here LMSEpXq “ 1
m

řm
i ppqTi aiq ´ yiq

2365

for target positive similarities yi, and thus we do366

not force all other similarities to zero. At the same367

time, the BSC loss adds new examples (“negative”368

pairs) to the training set.369

In order to use the BSC loss when training a370

model in tasks with non-binary labels, we modify371

the indicator function in the equation 5, as 1ryi ą 372

ts, where t is a configurable binarization threshold. 373

Then, we use their convex combination with the 374

configurable hyperparameter µ P p0, 1q: 375

LpXq “ µLBSCpXq ` p1 ´ µqLMSEpXq (6) 376

3.5 Normalization 377

L2 normalization of matrices A and B means that 378

aTi bj will be equivalent to cosine similarity. The 379

embeddings can also be normalized by the batch 380

dimension (by coordinates), which can bring ad- 381

ditional regularization. In our experiments, we 382

confirm the importance of this, e.g., new represen- 383

tations can be calculated with L2 normalization by 384

coordinates or in a min-max scale. 385

4 Datasets 386

NLP tasks that compare pairs of sentences can 387

be divided into regression (predicting a similarity 388

score), classification (e.g., similar vs. dissimilar), 389

and ranking (search for the best matches). They 390

differ only by the quality assessment functions, and 391

thus they all can benefit from the above losses. 392

Note that it is important to calculate sentence 393

representations in ranking tasks, as when indepen- 394

dently calculating the embeddings of the individual 395

elements in the pairs, the inference time of the 396

model becomes linear instead of quadratic. There- 397

fore, we use Sentence-BERT (SBERT), which is 398

trained as a Siamese BERT model, and offers a 399

way to obtain state-of-the-art sentence embeddings, 400

which have been proven useful for a number of 401

tasks (Reimers and Gurevych, 2019; Thakur et al., 402

2020). At inference time, we first use SBERT to 403

obtain independently a representation for each sen- 404

tence in the pair, and then we calculate the cosine 405

similarities between these embeddings. 406

We use the following English datasets and tasks 407

for the evaluation. Four ranking tasks (ranking an- 408

swers to non-factoid questions, ranking questions 409

by their similarity with respect to other questions, 410

ranking comments by their similarity to a given 411

question, ranking fact-checked claims by their rele- 412

vance with respect to an input claim), two binary 413

classification tasks (paraphrases identification, and 414

duplicate question identification), and one regres- 415

sion task (semantic sentence similarity). 416

Antique The dataset contains 2,626 non-factoid 417

questions with answer choices (Hashemi et al., 418

2019), asked by users on Yahoo! Answers. There 419

are a total of 34,011 question–answer pairs: 27,422 420
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for training and 6,589 for validation. Each answer421

is annotated with a relevance score with respect to422

the question on a scale from 1 to 4, and the task is423

to rank the answers by their relevance. To model424

relevance as a cosine similarity, we normalize the425

scores to the r0, 1s interval. We use Mean Recipro-426

cal Rank (MRR) as the main evaluation measure.427

CQA-A This dataset was used in SemEval-2017428

Task 3 on Community Question Answering sub-429

task A (Nakov et al., 2017). The goal is to rank430

the first ten answers in a question thread on Qatar431

Living, so that good answers are ranked higher432

than bad ones. We used the clean part of the433

dataset, which consists of 14,110 and 2,440 labeled434

question–comments pairs for training and devel-435

opment, respectively. The evaluation measure is436

Mean Average Precision (MAP). This dataset con-437

tains important metadata, e.g., the date and time of438

the comment, and sorting the comments by time439

yields a strong baseline; yet, we only use the text.440

To train the model with the triplet loss, we group441

the pairs by the first element (anchor).442

CQA-B This dataset was developed for443

SemEval-2017 Task 3, subtask B (Nakov et al.,444

2017), whose goal was to rank 10 potentially re-445

lated questions by their similarity with respect to446

an input question. These questions are retrieved447

from the Qatar Living forum using Google and the448

input question as a query. We use the clean part449

of the dataset, which consists of 19,990 training450

and 5,500 development labeled question-question451

pairs. The main evaluation measure here is MAP.452

There is additional information, e.g., the rank of453

the retrieved question in the Google search results,454

which we do not use.455

PFCC-S Shaar et al. (2020) presented a dataset456

for detecting Previously Fact-Checked Claims on457

Snopes (PFCC-S), aimed at facilitating the solution458

of a fact-checking problem: given an input claim,459

it asks to rank claims that have been previously460

fact-checked, so that claims that can help verify461

the input claim are ranked as high as possible. The462

dataset has 800 positive input–verified claim pairs463

for training and 200 such positive pairs for testing,464

and they are to be matched against a database of465

10,369 verified claims. The evaluation is performed466

in terms of a HasPositive@k metric, which checks467

whether there is a positive match among the first k468

results in the ranked list. In order to train models469

using MSE or triplet loss, we sampled negatives470

according to the following scheme. First, we en-471

coded all sentences using SBERT, pretrained on 472

STSb and NLI. Then, we selected the first element 473

in each positive pair as an anchor and we sorted all 474

other examples by their similarity to this anchor. 475

The assumption is that positive examples will be 476

concentrated in the beginning, e.g., among the top- 477

100. Thus, we selected negatives starting from 101 478

on, logarithmically: on positions 100 ` 2k, k P N. 479

As a result, we obtain many hard negative examples 480

and a small number of easy ones. Finally, we over- 481

sampled the positive pairs to correct the balance of 482

positive and negative examples. 483

Microsoft Research Paraphrase Corpus 484

(MRPC) Dolan et al. (2004) contains 5,800 pairs 485

of sentences, extracted from online news sources. 486

Each pair was labeled with a tag indicating whether 487

the sentences are paraphrases (semantically equiva- 488

lent). There are 3,668, 407, and 1,725 pairs in the 489

training, development, and test subsets. As it is a 490

binary classification task with class imbalance, it is 491

evaluated in terms of F1. 492

Quora Question Pairs (QQP) Quora presented 493

a dataset containing over 500,000 sentences with 494

over 400,000 lines of potential duplicate questions. 495

Each line has a binary label indicating whether the 496

line truly contains a duplicate pair. Due to the sam- 497

pling method, which returns mostly positive pairs, 498

the authors supplemented the dataset with nega- 499

tive pairs composed of “related questions.” As in 500

(Thakur et al., 2020), we sample randomly 10,000 501

examples for training, and we use the F1 score as 502

the main evaluation measure. 503

Semantic Textual Similarity Benchmark 504

(STSb) The STS benchmark comprises a selection 505

of the English datasets used in the STS tasks orga- 506

nized in the context of SemEval between 2012 and 507

2017 (Cer et al., 2017). The benchmark comprises 508

8,628 sentence pairs. The pairs were annotated 509

with similarity scores on a scale from 0 to 5 (5 indi- 510

cating complete equivalence). There are a total of 511

5,749, 1,500 and 1,379 pairs in the training, in the 512

development, and in the testing split, respectively. 513

The main metric is Spearman’s rank correlation. 514

As in the Antique dataset, we normalize the scores 515

to the r0, 1s interval and then we binarized them 516

based on a threshold of 0.6. 517

5 Experimental Setup 518

We used BERT-base uncased in all our experiments 519

to be able to perform direct comparison for tasks 520

such as MRPC, QQP and STS to previous work 521
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Approach / Metric MRR P@1 nDCG@1

MSE 0.781 0.660 0.769
BSC 0.804 0.680 0.754
BSC - positives 0.784 0.655 0.744
BSC - random shuffle 0.799 0.670 0.754
Combo BSC + MSE 0.822 0.710 0.773

SimCSE (unsup.) 0.681 0.525 0.686
Hashemi et al. (2019) 0.797 0.709 0.713

Table 1: Results for Antique.

Approach / Metric MAP MRR MAP MRR

MSE 0.869 0.911 0.471 0.513
BSC 0.801 0.867 0.495 0.534
BSC - clusters shuffle 0.787 0.859 0.493 0.534
BSC - random shuffle 0.763 0.828 0.487 0.530
BSC - w/o shuffle 0.816 0.884 0.481 0.532
Combo BSC + MSE 0.872 0.912 0.496 0.540
Triplet loss 0.857 0.917 0.475 0.529

SimCSE (unsup.) 0.684 0.735 0.439 0.478
Nakov et al. (2017) 0.884 0.928 0.472 0.501

Table 2: Results for CQA-A and CQA-B.

(Reimers and Gurevych, 2019; Thakur et al., 2020).522

We considered SimCSE (sup-simcse-bert-base-523

uncased checkpoint) (Gao et al., 2021) as an un-524

supervised baseline as it uses the base version of525

the BSC loss, which we modified. Below, by BSC526

we will denote using optimal settings in the tables,527

and variants like BSC - random shuffle would mean528

that instead of these optimal settings, we applied529

random shuffling.530

The hyperparameter settings are described in531

detail in Appendix A.532

6 Results533

In this section, we compare the BSC loss to other534

loss functions: MSE and triplet loss. Addition-535

ally, we make an ablation study for the BSC loss536

modifications we proposed.537

Antique The results are shown in Table 1. Our538

best approach of combo-training MSE and BSC539

losses outperforms all other variants and the ap-540

proach proposed in (Hashemi et al., 2019), where541

specific negative sampling and a triplet loss were542

used. Besides, the best BSC configuration achieves543

higher scores than MSE. We can see the impor-544

tance of using predefined hand-crafted negative545

examples, which brings additional difficult cases546

and increases MRR by 0.02.547

CQA-A The results for CQA subtask A are548

shown in Table 2. A comparison with (Nakov et al.,549

2017) is not very fair, as we did not use the meta-550

Approach / Metric HP@1 HP@5 HP@50

MSE 0.362 0.508 0.709
BSC 0.673 0.844 0.899
BSC - 1-dim norm 0.588 0.764 0.899
BSC - no norm 0.608 0.744 0.884
BSC - random shuffle 0.663 0.794 0.915
Triplet loss 0.668 0.794 0.899

SimCSE (unsup.) 0.412 0.693 0.849
Shaar et al. (2020) 0.402 0.653 0.784

Table 3: Results for PFCC-S.

data, e.g., the comment position, which was cru- 551

cial for the best systems. Besides, we use SBERT, 552

which is inferior to a fine-tuned BERT. Neverthe- 553

less, our best approach of combo training with 554

MSE and BSC losses yielded competitive results. 555

We further compared different shuffling strategies. 556

The data is ordered by questions, and keeping this 557

order turns out to be best. That is, the model learns 558

to distinguish positive answers for each question 559

from manually selected negative ones and from an- 560

swers to other questions. Also, note that random 561

shuffling completely eliminates this structure, and 562

MAP drops by 6% absolute. Fast shuffling by 300 563

clusters, an advanced version of shuffling by words, 564

improves these results. Example-based shuffling 565

finds a data order similar to the initial one, and the 566

quality does not degrade much. 567

CQA-B The results for CQA-B are shown in Ta- 568

ble 2. Again, we did not use the question position, 569

which is a critically important feature for the best 570

systems. We can see that the BSC loss achieved 571

the best score, noticeably outperforming MSE and 572

triplet losses. The experiments also demonstrate 573

the importance of data order when training with 574

the BSC loss. Since the dataset is small, the model 575

overfits when the original data order is fixed. 576

PFCC-S Table 3 shows the results for PFCC- 577

S (HP@k stands for HasPositives@k). Note that 578

the scores from (Shaar et al., 2020) are for pre- 579

trained SBERT without task-specific fine-tuning. 580

We observed that even when using oversampling to 581

improve the balance of positive examples, MSE per- 582

formed worse than their results. Here, we used only 583

positives examples to train with BSC, and normal- 584

izing by the zero dimension was the best. Overall, 585

the approaches using BSC and triplet losses were 586

comparable. However, the dataset size for training 587

with the BSC loss was much smaller, which is also 588

true for MSE. As a result, the BSC loss is faster, 589

and preferable for this task. 590
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Approach / Metric MRPC (F1) QQP (F1)

MSE 89.08 74.29
BSC 86.73 73.13
Combo BSC + MSE 89.46 75.07

SimCSE (unsup.) 85.43 68.65
Thakur et al. (2020) 87.89 (88.55) 74.97 (79.77)

Table 4: Results for MRPC and QQP.

Approach / Metric ρ ˆ 100

MSE 84.80
BSC 83.26
Combo BSC + MSE 84.59
Fine-tuning MSE with BSC 84.95
Fine-tuning BSC with MSE 85.71

SimCSE (unsup.) 84.25
Reimers and Gurevych (2019) 84.86

Table 5: Results for STSb: Spearman rank correlation.

MRPC Table 4 shows the results for MRPC.591

MSE outperformed the BSC loss, but combo592

achieved a slightly higher F1 score.593

QQP The results for QQP are presented in594

Table 4. We also show results for SBERT and595

augmented SBERT (in parentheses) from (Thakur596

et al., 2020). There score was obtained by training597

SBERT with MSE using another random training598

sample, but nonetheless, the F1 score is close to599

ours. The combo approach outperformed separate600

training with BSC or MSE.601

STSb Table 5 shows the results for STS. It is602

the only task where combo with the BSC loss was603

worse than MSE. This could be due to hard nega-604

tives not appearing in the batch in any of the shuf-605

fling procedures. Moreover, we observed only606

marginal improvement when fine-tuning with a607

BSC model initially trained with MSE. However,608

if it was pretrained with BSC up to overfitting, fine-609

tuning it with MSE yielded sizable improvements.610

7 Discussion611

We highlight the following observations:612

• Combo-training with BSC and MSE losses613

generally yields the best results (the only ex-614

ception is STS), and it outperforms the triplet615

loss with advanced negative sampling.616

• The order in which the data is presented for617

training can be critical, as we have seen in the618

cases of CQA-A and CQA-B.619

• The use of labeled negatives examples gener-620

ally improves the scores by 1-2% absolute.621

• Embedding normalization during training is622

important. Moreover, it is useful to normalize 623

to the zero dimension (e.g., for PFCC-S). 624

• Temperature τ of order 0.1 should be used 625

with the standard normalization, and τ of or- 626

der 1-3 for coordinate normalization. 627

• An incorrect training setup may hurt the per- 628

formance by more than 10%, as was demon- 629

strated for (i) filtering out negative exam- 630

ples for which no positives were given in the 631

dataset (Table 1), (ii) using poorly formed 632

batches (highest effect in Table 2), (iii) subop- 633

timal normalization (Table 3), and (iv) wrong 634

temperature value. 635

• BSC is more suitable for ranking tasks, but 636

it can help for other tasks if applied as pre- 637

training or in joint training with MSE. 638

Selecting a loss function is important. For in- 639

stance, if the model optimizes Pearson correlation, 640

it achieves a score of 85.57 on the STS task. Thus, 641

it outperforms almost all considered approaches. 642

Moreover, the combination of such a loss with BSC 643

allows the model to achieve an F1 score of 89.88 644

in the MRPC task (a classification task). 645

Finally, we would like to draw a parallel between 646

our work and Augmented SBERT (Thakur et al., 647

2020). When using the BSC loss, some negatives 648

are implicitly added to the dataset. Augmented 649

SBERT adds new examples too and retrieves them 650

using BM25 or Semantic Search samplings. These 651

methods are comparable to our fast shuffling by 652

words (n-grams) and to example-based shuffling, 653

respectively. Moreover, the task-specific model is 654

used to encode the data in both cases. However, we 655

do not need to label such pairs with another model 656

(cross-encoder) due to the BSC loss definition. 657

8 Conclusion and Future Work 658

We explored the idea of using a batch-softmax con- 659

trastive loss for fine-tuning large-scale pre-trained 660

transformers to learn better task-specific sentence 661

embeddings for pairwise sentence scoring tasks. 662

We introduced and studied a number of variations 663

in the calculation of the loss as well as in the over- 664

all training procedure. Our experimental results 665

have shown sizable improvements on a number of 666

datasets and pairwise sentence scoring tasks includ- 667

ing ranking, classification, and regression. 668

In future work, we want to explore new varia- 669

tions of the loss, and to gain better understanding 670

of when to use which variation. We further plan 671

experiments with a larger set of NLP tasks. 672
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Ethics and Broader Impact673

We would also like to warn that the use of large-674

scale Transformers requires a lot of computations675

and the use of GPUs/TPUs for training, which con-676

tributes to global warming (Strubell et al., 2019).677

This is a bit less of an issue in our case, as we678

do not train such models from scratch; rather, we679

fine-tune them on relatively small datasets. More-680

over, running on a CPU for inference, once the681

model is fine-tuned, is perfectly feasible, and CPUs682

contribute much less to global warming.683

References684

Mohamed Ishmael Belghazi, Aristide Baratin, Sai685
Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron686
Courville, and Devon Hjelm. 2018. Mutual infor-687
mation neural estimation. In Proceedings of the688
35th International Conference on Machine Learn-689
ing, volume 80 of Proceedings of Machine Learning690
Research, pages 531–540, Stockholmsmässan, Stock-691
holm Sweden. PMLR.692

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-693
Gazpio, and Lucia Specia. 2017. Semeval-2017694
task 1: Semantic textual similarity multilingual and695
crosslingual focused evaluation. Proceedings of the696
11th International Workshop on Semantic Evaluation697
(SemEval-2017).698

Ting Chen, Simon Kornblith, Mohammad Norouzi, and699
Geoffrey Hinton. 2020. A simple framework for700
contrastive learning of visual representations. In701
Proceedings of the 37th International Conference702
on Machine Learning, volume 119 of Proceedings703
of Machine Learning Research, pages 1597–1607.704
PMLR.705

Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong.706
2017. On sampling strategies for neural network-707
based collaborative filtering. In Proceedings of the708
23rd ACM SIGKDD International Conference on709
Knowledge Discovery and Data Mining, KDD ’17,710
page 767–776, New York, NY, USA. Association for711
Computing Machinery.712

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.713
Unsupervised construction of large paraphrase cor-714
pora: Exploiting massively parallel news sources. In715
Proceedings of the 20th International Conference716
on Computational Linguistics, COLING ’04, page717
350–es, USA. Association for Computational Lin-718
guistics.719

Hongchao Fang and Pengtao Xie. 2020. Cert: Con-720
trastive self-supervised learning for language under-721
standing. CoRR, abs/2005.12766.722

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.723
SimCSE: Simple contrastive learning of sentence724
embeddings. arXiv preprint arXiv:2104.08821.725

John M Giorgi, Osvald Nitski, Gary D. Bader, and 726
Bo Wang. 2020. Declutr: Deep contrastive learn- 727
ing for unsupervised textual representations. ArXiv, 728
abs/2006.03659. 729

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves 730
Stoyanov. 2020. Supervised contrastive learning 731
for pre-trained language model fine-tuning. ArXiv, 732
abs/2011.01403. 733

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension- 734
ality reduction by learning an invariant mapping. In 735
2006 IEEE Computer Society Conference on Com- 736
puter Vision and Pattern Recognition (CVPR’06), 737
volume 2, pages 1735–1742. 738

Helia Hashemi, Mohammad Aliannejadi, Hamed Za- 739
mani, and W. Bruce Croft. 2019. ANTIQUE: A 740
non-factoid question answering benchmark. CoRR, 741
abs/1905.08957. 742

Matthew Henderson, Rami Al-Rfou, B. Strope, Yun- 743
Hsuan Sung, L. Lukács, R. Guo, S. Kumar, B. Mik- 744
los, and R. Kurzweil. 2017. Efficient natural lan- 745
guage response suggestion for smart reply. ArXiv, 746
abs/1705.00652. 747

Devon Hjelm, Alex Fedorov, Samuel Lavoie- 748
Marchildon, Karan Grewal, Philip Bachman, Adam 749
Trischler, and Yoshua Bengio. 2019. Learning deep 750
representations by mutual information estimation 751
and maximization. In ICLR 2019. ICLR. 752

J. Johnson, M. Douze, and H. Jégou. 2019. Billion- 753
scale similarity search with gpus. IEEE Transactions 754
on Big Data, pages 1–1. 755

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron 756
Sarna, Yonglong Tian, Phillip Isola, Aaron 757
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Super- 758
vised contrastive learning. 759

Lajanugen Logeswaran and Honglak Lee. 2018. An 760
efficient framework for learning sentence represen- 761
tations. In International Conference on Learning 762
Representations. 763

Fuli Luo, Pengcheng Yang, S. Li, Xuancheng Ren, and 764
X. Sun. 2020. Capt: Contrastive pre-training for 765
learning denoised sequence representations. ArXiv, 766
abs/2010.06351. 767

Yu Meng, Chenyan Xiong, Payal Bajaj, saurabh ti- 768
wary, Paul N. Bennett, Jiawei Han, and Xia Song. 769
2021. COCO-LM: Correcting and contrasting text 770
sequences for language model pretraining. In Thirty- 771
Fifth Conference on Neural Information Processing 772
Systems. 773

Preslav Nakov, Doris Hoogeveen, Lluís Màrquez, 774
Alessandro Moschitti, Hamdy Mubarak, Timothy 775
Baldwin, and Karin Verspoor. 2017. SemEval-2017 776
task 3: Community question answering. In Proceed- 777
ings of the 11th International Workshop on Semantic 778
Evaluation (SemEval-2017), pages 27–48, Vancou- 779
ver, Canada. Association for Computational Linguis- 780
tics. 781

9

http://arxiv.org/abs/1905.08957
http://arxiv.org/abs/1905.08957
http://arxiv.org/abs/1905.08957
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2004.11362


A. Oord, Y. Li, and Oriol Vinyals. 2018. Representation782
learning with contrastive predictive coding. ArXiv,783
abs/1807.03748.784

Nils Reimers and Iryna Gurevych. 2019. Sentence-785
BERT: Sentence embeddings using Siamese BERT-786
networks. In Proceedings of the 2019 Conference on787
Empirical Methods in Natural Language Processing788
and the 9th International Joint Conference on Natu-789
ral Language Processing (EMNLP-IJCNLP), pages790
3982–3992, Hong Kong, China. Association for Com-791
putational Linguistics.792

Shaden Shaar, Nikolay Babulkov, Giovanni Da San Mar-793
tino, and Preslav Nakov. 2020. That is a known lie:794
Detecting previously fact-checked claims. In Pro-795
ceedings of the 58th Annual Meeting of the Asso-796
ciation for Computational Linguistics, pages 3607–797
3618, Online. Association for Computational Lin-798
guistics.799

Kihyuk Sohn. 2016. Improved deep metric learning800
with multi-class n-pair loss objective. In Advances in801
Neural Information Processing Systems, volume 29,802
pages 1857–1865. Curran Associates, Inc.803

Emma Strubell, Ananya Ganesh, and Andrew McCal-804
lum. 2019. Energy and policy considerations for805
deep learning in NLP. In Proceedings of the 57th806
Annual Meeting of the Association for Computational807
Linguistics, pages 3645–3650, Florence, Italy. Asso-808
ciation for Computational Linguistics.809

Nandan Thakur, Nils Reimers, Johannes Daxenberger,810
and Iryna Gurevych. 2020. Augmented sbert: Data811
augmentation method for improving bi-encoders for812
pairwise sentence scoring tasks.813

Michael Tschannen, Josip Djolonga, Paul K. Ruben-814
stein, Sylvain Gelly, and Mario Lucic. 2020. On815
mutual information maximization for representa-816
tion learning. In 8th International Conference on817
Learning Representations, ICLR 2020, Addis Ababa,818
Ethiopia, April 26-30, 2020. OpenReview.net.819

Kilian Q Weinberger, John Blitzer, and Lawrence Saul.820
2006. Distance metric learning for large margin near-821
est neighbor classification. In Advances in Neural822
Information Processing Systems, volume 18, pages823
1473–1480. MIT Press.824

Zhirong Wu, Yuanjun Xiong, S. Yu, and D. Lin. 2018.825
Unsupervised feature learning via non-parametric826
instance discrimination. 2018 IEEE/CVF Conference827
on Computer Vision and Pattern Recognition, pages828
3733–3742.829

Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong,830
Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan831
Sung, Brian Strope, and Ray Kurzweil. 2018. Learn-832
ing semantic textual similarity from conversations.833
In Proceedings of The Third Workshop on Represen-834
tation Learning for NLP, pages 164–174, Melbourne,835
Australia. Association for Computational Linguistics.836

10

https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
http://arxiv.org/abs/2010.08240
http://arxiv.org/abs/2010.08240
http://arxiv.org/abs/2010.08240
http://arxiv.org/abs/2010.08240
http://arxiv.org/abs/2010.08240


Appendix837

A Hyperparameters Setting838

We set the number of warm-up steps to 10% of839

the total steps, and we limited the input sequence840

length to 90 subtokens. We used a batch size of841

30 in all tasks, except for Antique and QQP, where842

we used 50. Note that an order of magnitude larger843

batch sizes would probably yield better results, but844

they would also require much more memory. We845

experimented with learning rates from {5e-6, 1e-846

5, 2e-5, 3e-5}, and we selected (on dev) 3e-5 for847

CQA-B and 2e-5 for all other experiments. We848

used the AdamW optimizer with the bias correction849

for the CQA tasks, and without bias correction for850

the rest. We trained the model for five epochs851

for Antique, CQA-A and STSb, for six epochs for852

QQP, MRPC and PFCC-S, and for seven epochs853

for CQA-B, saving a checkpoint after each one,854

and we selected the best checkpoint on dev.855

As recommended in (Thakur et al., 2020), due to856

instability, we did seed optimization, running each857

approach five times and selecting the best result858

(on dev).859

To train with the BSC loss, we used min-max860

normalization by coordinates with τ “ 1.2 for861

PFCC-S and QQP, standard L2 normalization with862

τ “ 0.055 for CQA-A, τ “ 0.07 for CQA-B, and863

τ “ 0.1 for all other tasks (to find the optimal τ , we864

made it trainable for one run). We applied example-865

based shuffling to train with the BSC loss. We used866

a group size of four in MRPC, of five in CQA-B,867

and of eight in all other tasks. We iterated over µ868

values from the set t0.1, 0.5, 0.9u, and we chose869

µ “ 0.1 to train the combo approach for CQA-A,870

MRPC, QQP and STSb tasks, and µ “ 0.9 for the871

other experiments.872

We trained the triplet loss variant from (Reimers873

and Gurevych, 2019) with margin “ 0.6 for874

PFCC-S, and margin “ 0.5 for all other tasks.875

As we have no answers for the test set in MRPC,876

and no test sets in Antique and PFCC-S, we split the877

training set into 9:1 to tune the hyper-parameters.878

The time for training SBERT with the BSC loss879

(or combo loss) was almost equal to the time for880

training with the standard MSE loss.881

We ran all experiments on a GeForce GTX 1080882

GPU Ti. Base SBERT has 110M parameters. Its883

training took up to 10 minutes per epoch depending884

on the dataset size.885
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