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Abstract

A peculiarity of conversational search systems is that they involve mixed-initiatives such
as system-generated query clarifying questions. Evaluating those systems at a large scale
on the end task of IR is very challenging, requiring adequate datasets containing such
interactions. However, current datasets only focus on either traditional ad-hoc IR tasks
or query clarification tasks, the latter being usually seen as a reformulation task from the
initial query. Only a few datasets are known to contain both document relevance judgments
and the associated clarification interactions such as Qulac and ClariQ. Both are based on
the TREC Web Track 2009-12 collection, but cover a very limited number of topics (237
topics), far from being enough for training and testing conversational IR models. To fill
the gap, we propose a methodology to automatically build large-scale conversational IR
datasets from ad-hoc IR datasets in order to facilitate explorations on conversational IR.
Our methodology is based on two processes: 1) generating query clarification interactions
through query clarification and answer generators, and 2) augmenting ad-hoc IR datasets
with simulated interactions. In this paper, we focus on MsMarco and augment it with query
clarification and answer simulations. We perform a thorough evaluation showing the quality
and the relevance of the generated interactions for each initial query. This paper shows the
feasibility and utility of augmenting ad-hoc IR datasets for conversational IR.

1 Introduction

Conversational systems, including personal assistant systems and chatbots, are becoming increasingly pop-
ular for a wide variety of tasks, including online information seeking. While more recent Large Language
Models (LLM) like OpenAI’s ChatGPT (Ouyang et al., 2022) have demonstrated their ability to answer
factual questions, they cannot be considered as conversational search systems because they only generate
the most likely answer text without referring explicitly to the sources and without guarantee of veracity,
amplifying potential bias and false truth (called Stochastic Parrots) (Bender et al., 2021). To overcome this
limitation, conversational search systems must rely on information retrieval capabilities to locate relevant
sources/documents (Shah & Bender, 2022; Dalton et al., 2022; Zamani et al., 2022; Anand et al., 2020;
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Bender et al., 2021). However, this does not mean that one can merely rely on models such as LaMDA
(Thoppilan et al., 2022), WebGPT (Glaese et al., 2022) or Sparrow (Shuster et al., 2022) to generate an
answer conditioned to the information retrieved by an independent tool, because top retrieved documents
may not contain relevant information, leading to untruthful or uninformative answers (Nakano et al., 2021).
This underlines the importance of including retrieval capabilities in the evaluation of conversational search
models as a whole, as suggested in (Dalton et al., 2020a).

Beyond providing natural language responses, a key ability of conversational search systems is their
(pro)active participation in the conversation with users to help clarify or refine their information need
(Shah & Bender, 2022; Chu-Carroll & Brown, 1997; Dalton et al., 2022; Zamani et al., 2022; Anand et al.,
2020; Bender et al., 2021; Radlinski & Craswell, 2017; Trippas et al., 2020; Aliannejadi et al., 2019; Keyvan
& Huang, 2022; Zamani et al., 2020b). While recent advances in information retrieval based on LLM have
significantly improved the performance of information retrieval (IR) models by reducing vocabulary mis-
matches between queries and documents (Formal et al., 2021; Reimers & Gurevych, 2019a; Hofstätter et al.,
2021), accurately understanding the user’s intent remains a challenge, in particular when the information
need is complex, multi-faceted or when the resulting query is ambiguous (Culpepper et al., 2018). As the
user cannot browse through the list of documents in conversational search, the conversational system must
actively participate in the conversation and ask clarifying questions to help the user to clarify or refine their
needs (Shah & Bender, 2022; Dalton et al., 2022; Zamani et al., 2022; Anand et al., 2020; Bender et al., 2021;
Radlinski & Craswell, 2017; Trippas et al., 2020; Aliannejadi et al., 2019; Keyvan & Huang, 2022; Zamani
et al., 2020b). This makes it particularly challenging to evaluate conversational search systems properly
because the mixed initiatives of the user and the system can lead to many different directions.

Attempts have been made to evaluate conversational IR (Sekulić et al., 2021; Aliannejadi et al., 2019; Salle
et al., 2021; Bi et al., 2021), but they mainly focus on evaluating the quality of the generation of clarifying
questions using aligned datasets, such as Qulac (Aliannejadi et al., 2019) and ClariQ (Aliannejadi et al.,
2021) that contain pairs of query and clarifying question. Other models (Hai et al., 2023a) address the
retrieval task in the context of a conversation as in TREC CAsT (Dalton et al., 2020b). Owoicho et al
proposed to use GPT4 to simulate user feedback on topics from the TREC CAsT datasets (Owoicho et al.,
2023).

While the emerging trend highlights the need of designing ranking models taking into account mixed-initiative
interactions, it also demonstrates the necessity to build large-scale IR datasets containing mixed-initiative
interactions. The two datasets mentioned above, Qulac and ClariQ, have been built on the basis of queries
of the TREC Web Track 2009-12 collection. However, they only contain at most 237 topics, limiting our
ability to train and to test neural conversational retrieval models properly.

The critical need for large conversational IR datasets motivates us to carry out this study, which aims at
creating large-scale mixed-initiative IR datasets, containing not only user’s queries, but also user-system
interactions. Collecting such conversational data is challenging because of not only the high annotation cost,
but also the inherent difficulties to ask clarifying questions: the ambiguity arising from user’s query depends
on the context, the collection, and also the user’s patience, expertise, cooperation, or engagement (Wang &
Ai, 2021; Salle et al., 2021; Zamani et al., 2020a)

In our work, we aim to leverage simulation techniques to automatically generate mixed-initiative interac-
tions between a user and a system and propose a methodology to augment ad-hoc IR datasets with such
interactions. To do so, we design a query clarification generator leveraging the ClariQ dataset as well as a
user simulation for user’s response. We use them to generate mixed-initiative interactions on the MsMarco
ad-hoc IR dataset. The resulting dataset is called MIMarco for Mixed Initiave MsMarco. Our contribution
is threefold:

• We propose a methodology to augment ad-hoc IR datasets to integrate mixed-initiative interactions;

• We evaluate our dataset-building methodology, and particularly the quality of mixed-initiative interac-
tions generated for the ad-hoc IR dataset MsMarco;
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• We demonstrate the utility of simulated interactions for document ranking on augmented MsMarco.
This result can also be seen as an evaluation proxy of the usefulness and the relevance of the simulated
mixed-initiative interactions within the ad-hoc IR dataset.

2 Related Work

2.1 Evaluating Conversational Search

Designing an adapted framework for evaluating conversational search systems is still challenging in the
IR community. Indeed, conversational search involves both dialogue and IR tasks that should lead to
mixed-initiative interactions to support and guide the user during his/her search (Dalton et al., 2022).
A conversational search system should be therefore able to 1) generate questions to clarify/elicit users’
information needs, and 2) retrieve documents providing relevant information. There are two main strategies
to train and evaluate these systems by either 1) leveraging existing datasets, often at the cost of not having
all the dimensions of conversations, or 2) simulating interactions between the user and the system. We briefly
review some typical attempts for different types of conversational systems.

On question answering (QA), the datasets have been extended from one-shot QA such as Squad (Rajpurkar
et al., 2018), Quac (Choi et al., 2018), ELI5 (Fan et al., 2019), or OpenQA (Chen et al., 2017) to con-
versational Q&A such as coQA (Reddy et al., 2019). One can train/evaluate answer generation systems,
and possibly information retrieval systems using the collection of passages. Despite this interesting move,
the datasets are insufficient for IR because they usually focus on factual questions instead of complex or
exploratory questions that characterize information needs. The TREC CAsT dataset (Dalton et al., 2020b)
extends the scope of questions and addresses different information facets within the conversation (a facet
can be seen as a specific sub-category of the topic). However, the interactions provided are often limited
to answer generation without proactive interactions engaging the system in a real support of search. Other
datasets, such as CANARD (Elgohary et al., 2019), focus on query refinement or reformulation, without
proactive interactions. Therefore, most approaches focused on generating reformulated queries as input to
ranking systems (Hai et al., 2023b). Last year, the TREC CAsT track (Dalton et al., 2020b) introduced
mixed-initiative questions related to the proposed IR-oriented conversations, without providing the associ-
ated users’ responses. This dataset constitutes a first step toward exploring mixed-initiative conversational
search, but does not dispose of a complete and coherent conversation.

Several initiatives have been taken to build query clarification datasets (Rahmani et al., 2023). For example,
the MIMICS dataset (Zamani et al., 2020a) contains large-scale open domain clarifying questions collected
from real users on the Bing search engine. The query clarifications are associated with initial users’ queries
and other information such as clicks. However, this dataset does not provide document relevance judgments
or conversational interactions between the user and the system. To the best of our knowledge, only Qulac
and ClariQ datasets contain both document relevance judgments and the associated mixed-initiative conver-
sations. These datasets are built from the TREC Web Track 2009-12 collection, which provides annotated
topics and facet pairs, associated with relevant documents. Users’ responses have been collected through
crowd-sourcing platforms, allowing to build a complete dataset of mixed-initiative interactions grounded in
an ad-hoc IR dataset. However, collecting these interactions has been costly and the datasets remain small
with only 237 topics and 762 topic facets. This is too limited for training and evaluating conversational
retrieval systems.

Facing the lack of adequate datasets, a growing idea in the community is to rely on user simulation to evaluate
conversational search systems (Erbacher et al., 2022; Salle et al., 2021). User simulations by mimicking users’
queries and feedback are cost-efficient and allow for the evaluation of various strategies without direct data
annotations. For example, Salle et al (Salle et al., 2021) evaluate their query clarification systems with a
user simulation aiming at generating answers. Their user simulation relies on a BERT model fine-tuned to
classify "Yes"/"No" answers to the clarifying questions. With a controllable parameter, the user simulation
can also add words from the intent in the answer to simulate more or less cooperative feedback. Sekulić et
al (Sekulić et al., 2022) confirmed with an additional human judgment that user simulations can generate
answers and give feedback with fluent and useful utterances. User simulation is also exploited to design
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evaluation frameworks for conversational recommender systems (Kang et al., 2019; Gao et al., 2022; Wu
et al., 2020; Zhou et al., 2020; Fu et al., 2020), resulting in large synthetic dialogue interactions from ad-hoc
recommendation datasets (Kang et al., 2019; Gao et al., 2022; Wu et al., 2020; Zhou et al., 2020; Fu et al.,
2020). However, in the recommendation context, we notice that conversations are generated under explicit
search constraints over annotated features like price range, color, location, movie genre, or brand, whatever
the generation approaches used – either by using large language models (Asri et al., 2016) or by following
agenda (Schatzmann et al., 2007; Peng et al., 2018; Li et al., 2017; Kreyssig et al., 2018). Unfortunately,
similar approaches cannot be used for complex and exploratory search tasks (Belkin & Croft, 1992). In
open-domain IR, the facets underlying information needs are not necessarily discrete or easily identifiable,
making it much harder to identify and annotate users’ needs.

2.2 Asking Clarifying Question

Asking clarifying questions is a conversational task that allows the user to be involved in the query disam-
biguation process by interacting with the system. For open-domain conversational IR, a first line of works
to identify a clarifying question relies on ranking strategies applied to a pool of predefined, human-generated
candidates. In the pioneering work, Aliannejadi et al. (Aliannejadi et al., 2019) propose a ranker that
iteratively selects a clarifying question at each conversation turn. Bi et al. (Bi et al., 2021) complete this
approach with an intent detection based on negative feedback and a Maximal Marginal Relevance-based
BERT. Hashemi et al. (Hashemi et al., 2020) use a transformer architecture to retrieve useful clarifying
questions using the query and the retrieved documents. However, leveraging a fixed question pool will limit
the coverage of topics, and therefore hinder the effectiveness of the approach. To overcome this limitation,
a second line of works rather aims at generating clarifying questions. In (Salle et al., 2021), Salle et al. use
templates and facets collected from the Autosuggest Bing API to generate clarifying questions. At each turn
in the conversation, they select a new facet to generate the question until the user’s answer is positive. This
inferred facet is then used to expand the initial query. Sekulić et al (Sekulić et al., 2021) propose to further
improve the fluency by using a LLM to condition the clarifying questions generation on the initial query and
a facet. For instance, the query ’Tell me about kiwi’, conditioned to facets ’information fruit’ or ’biology
birds’ can generate questions like "Are you interested in kiwi fruit?’ or ’Are you interested in the biology of
kiwi birds?’. They rely on Clariq dataset to fine-tune GPT2, and found that generated questions are more
natural and useful than template-based methods. They have extended this work by generating questions
using facets extracted from retrieved documents (Sekulić et al., 2022). Zamani et al. (Zamani et al., 2020a)
propose to generate clarifying questions associated with multiple facets (clarifying panels) which are collected
using query reformulation data. They investigate three methods to generate clarifying questions: templates,
weak supervision, and maximum likelihood, and use reinforcement learning to maximize the diverse set of
clarifying panel candidates.
(Owoicho et al., 2023) The literature review highlights that there is a lack of adequate large-scale datasets
containing mixed-initiative interactions for the IR task. Having in mind that collecting those datasets with
human annotations would be costly, we believe that a possible alternative is to generate mixed-initiative
interactions automatically from existing collections. We propose therefore a methodology to first generate
clarifying questions and the associated answers, and second augment ad-hoc IR datasets. As already dis-
cussed earlier, the definition of facets in information retrieval is not always obvious but seems critical for
generating relevant clarifying questions. We will put a particular attention on this aspect in our methodology.

3 Simulated interactions

3.1 Problem definition

We introduce our methodology to generate automatically large-scale mixed-initiative-driven IR datasets. To
do so, we propose to augment ad-hoc IR datasets with simulated user-system interactions, namely clarifying
questions (for the system side) and the corresponding answers (for the user side). To provide a dataset
useful for training mixed-initiative-oriented neural ranking models and capturing similarity signals in the
matching loss, it is important to provide a wide range of interactions, namely clarifying questions that give
rise to either positive or negative answers. Having in mind that a topic might be complex or ambiguous,
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we follow previous works (Sekulić et al., 2021; Zamani et al., 2020a; Salle et al., 2021) leveraging facets to
generate those clarifying questions. Extracting positive or negative facets around a topic can be seen as
a proxy to constrain the generation of clarifying questions expecting ’yes’ and ’no’ answers. Moreover, to
ensure the overall quality of the mixed-initiative interactions, we propose to introduce another constraint
variable modeling the user’s search intent. The pair of facet and intent variables allows to generate positive
and negative clarifying questions (thanks to the facet) by always keeping the answer generation coherent
with the relevance judgments in the initial dataset (thanks to the intent). Said otherwise, sampling different
facet-intent pairs from passages with known relevance judgment allows constituting a dataset with positive
and negative mixed-initiative interactions that reflect the search intent of the user. For the sake of simplicity,
we only consider single-turn interactions, and discuss the extension to multi-turn interactions in Section 6.

Let us consider an ad-hoc IR dataset D = {P,Q,R}, in which P is a collection of passages (or documents),
Q is a set of queries, and R is a set of relevance judgments. R includes tuples (q,P+

q ,P−
q ) indicating

relevant P+
q ⊂ P and irrelevant passages P−

q ⊂ P, for a query q ∈ Q. We assume P−
q ∩ P+

q =. Our
objective is to augment this dataset D with a mixed-initiative interaction set X = {X1, . . . , Xi, . . . , Xn}.
We note a mixed-initiative interaction Xi = (q, cq, a) where q refers to an initial query, cq a clarifying
question, and a the associated answer. With this in mind, we design a dataset-building methodology M :
D → D ∪ {X1, . . . , Xi, . . . , Xn} relying on two main steps: 1) extracting the (positive and negative) facets
f related to each topic (if not available in the initial ad-hoc IR dataset) which is then used to constrain
the clarifying question generation, and 2) generating mixed-initiative interactions given a query q and this
facet f . Depending on the dataset, the sets of positive F+ and negative F− facets associated with query q
might be available or need to be built (Section 3.2). We also assume that the search intent int of the user
is characterized by the relevant documents available in the initial dataset. Then we propose to generate
a mixed-initiative interaction Xi given a query q and the constraint variables f and int. We rely on 1) a
clarifying model CM : q, f → cq aiming at generating a clarifying question cq around facet f given the query
topic q, and 2) a user simulation US : (cq, int, f)→ a which infer the answer a in response to the clarifying
question cq given the relevance of the facet f and the user intent int.

Below, we introduce the method to extract facets, as well as the components enabling to generate clarifying
questions and answers. Then, we present the overall methodology to augment ad-hoc IR datasets with
mixed-initiative interactions. Examples of expected mixed-initiative interactions are presented in Table 1.

3.2 Extracting Facet

Facets might be explicit or implicit depending on the dataset. For example, they are specified in TREC Web
2009-12 (Clarke et al., 2009), and accordingly, Qulac and ClariQ (Over, 2001)). If not explicitly specified,
we propose to extract them from documents. Previous works have shown that query facets can be extracted
from top-retrieved documents (Dou et al., 2016; Kong & Allan, 2013). Inspired by the analysis provided by
Sekulić et al. (Sekulić et al., 2022), we extract top contextual keywords to represent facets, as suggested in
(Sharma & Li, 2019). The goal of the facet extraction is to provide additional keywords that can be used
to later generate a clarifying question about various topics or subtopics. In this work, facets are a set of
keywords providing additional context to the query. We formulate it as a bijective function ψ(P ) :→ F that
maps a set P of passages to a set of facets. Given a query q, we construct the sets F+ and F− of positive
and negative facets from respectively relevant and irrelevant passage sets, resp. P+

q and P−
q . This allows us

to keep the relevance of facets. To do so, for a passage p ∈ (P+
q ∪P−

q ), we extract as a facet f ∈ F the set of
K words in the passage that are the most similar to the passage embedding (i.e., the embedding of the [CLS]
token). To compute the similarity, we use a pre-trained Sentence-Bert (i.e., MiniLM-L6-v2 model) (Reimers
& Gurevych, 2019b) between each token embedding and the passage one.

3.3 Generating Mixed-Initiative Interactions

3.3.1 Generating clarifying questions

The goal of the clarifying model CM is to ask relevant clarifying questions relating to an ambiguity in the
meaning or the object of the query. In most of the proposed models (Zamani et al., 2020a; Sekulić et al.,
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Simulated mixed-initiative interactions in MiMarco
Query: why did the us volunterilay enter ww1
System: do you want to know the effect of unrestricted submarine warfare on the us ?
Answer: yes
Intent: The effects of unrestricted submarine (U-Boat) warfare, economic ties to the Allies, the public
outrage to the sinking of the Lusitania, the Sussex torpedoing, and the Zimmerman Telegram caused this
change, and the United States entered an Allied Alliance and a World War for the first time in its history.
Facet: effects unrestricted submarine boat warfare
Query: find phone number for irs
System: are you looking for phone numbers for the irs internal revenue service?
Answer: yes
Intent: Internal Revenue Service Phone Numbers. 800-829-1040 For individual and joint filers who need
procedural or tax law information and/ or help to file their 1040-type IRS Tax Help Line for individual
returns (including Individuals| Schedules C and E); and, general account information for Form 1040 Filers.
Facet: internal revenue service phone numbers
Query: lps laws definition
System: are you looking for a definition of a limited partnership?
Answer: no
Intent: The Court will not let you establish an LPS conservatorship unless it finds beyond a reasonable
doubt, that the mentally ill person, is gravely disabled. Gravely disabled means that, because of a mental
disorder, the person cannot take care of his/her basic, personal needs for food, clothing, or shelter. Facet:
limited partnership business

Table 1: Examples of simulated interactions belonging to the MiMarco dataset. In the first ad second
example, both the intent and the facet are sampled from a relevant passage. In the third example, the intent
is sampled from a relevant passage but the clarifying question is referring to a negative topic facet.

2022; Sekulić et al., 2021; Salle et al., 2021; Aliannejadi et al., 2019), this ambiguity is addressed by using
the concept of facet. Therefore, the generation of clarifying questions cq is conditioned on the initial query
q and a facet f :

p(cq|q, f) = Πip(cqi|cq<i, q, f) (1)

where qi is the ith token in the sequence and q<i the previously decoded tokens. Our clarifying question
generation is based on a pre-trained sequence-to-sequence model which is fine-tuned to generate a clarifying
question cq given the following input sequence:

Query: q Facet: f (2)

where Query : and Facet : are special tokens.

In this paper, we limit the clarifying questions to those that expect yes/no answers.

3.3.2 User Simulation

The goal of the user simulation US is to mimic the user’s answer in response to a clarifying question given
his/her intent. In the user simulation, we expect accurate answers to clarifying questions, giving useful
feedback to help the system understand his/her intent. The intent is a representation of the information
need or of the goal behind the initial query. It is used to constrain the user simulation’s answer towards
this goal (Kang et al., 2019; Gao et al., 2022; Wu et al., 2020; Zhou et al., 2020; Fu et al., 2020; Erbacher
et al., 2022). While sophisticated user simulations have been proposed to exhibit various types of behaviors
like cooperativeness or patience (Salle et al., 2021), we limit the clarifying question to ask if the intent is
about a facet and the answer of the user simulation to ’yes’ or ’no’ answer. This limited form of answer
is motivated by two reasons: (1) despite the simplicity, a correct answer of this form corresponds to basic
realistic interactions with users and is highly useful for the system to better identify the intent behind the

6



Published in Transactions on Machine Learning Research (05/2024)

Algorithm 1 Offline methodology for building Mixed-Initiative IR dataset
Require: D = {P,Q,R}
X ← {} ▷ Set of mixed-initiative IR-oriented interactions
for q ∈ Q do
F+ ← ψ(P+

q ) ▷ Extract the positive facets
F− ← ψ(P−

q ) ▷ Extract the negative facets
for f ∈ (F+ ∪ F−) do

cq ← CM(q, f) ▷ Generate the clarifying question
if f ∈ F+

q then ▷ Building the answer
a← ’yes’

else
a← ’no’

end if
Xi = (q, cq, a)
X ← X ⊎Xi ▷ Increment the interaction set

end for
end for
return D ∪X

query. (2) This simple form of question and answer is easier to generate and evaluate. As an initial attempt,
we prefer to start with this simple setting.

More formally, the user simulation aims at estimating the probability of an answer a ∈ {yes, no} given a
query q, a search intent int, and a clarifying question:

p(a|q, int, cq) (3)

This is implemented as a sequence-to-sequence model that encodes the following input:

Query: q Intent: int Question: cq (4)

and generates a ’yes’/’no’ answer.

Intent modeling The user’s intent corresponds to the user’s information need and is only known by the
user. While multiple intent representations can be adopted (such as a detailed description of the information
need (Aliannejadi et al., 2019; 2021), a vector representation (Erbacher et al., 2022) or constraints (Kang
et al., 2019; Gao et al., 2022; Wu et al., 2020; Zhou et al., 2020; Fu et al., 2020)), IR datasets usually do not
have annotated intent associated with the query. However, relevant passages are known in an IR dataset. In
this paper, we use a sampled relevant passage p ∈ P+

q and assimilate its content to the underlying intent int.
Formally: int ← p. We acknowledge that this choice relies on a strong hypothesis that passages annotated
represent the user’s search intent, we further discuss it in Section 7.

3.4 Leveraging Mixed-Initiative Interactions to Adapt Ad-Hoc IR Datasets

Given an ad-hoc IR dataset D, our objective is to augment D with mixed-initiative conversations X. It is
worth distinguishing the creation of training and testing datasets since they have different purposes. The
training set requires including positive and negative interactions to allow the community to train properly
mixed-initiative IR-oriented neural models. As a reminder, those positive/negative interactions are built on
the basis of relevant and irrelevant documents determining positive and negative facets. Using the same
heuristics to generate a testing dataset is not suitable since it would imply to include relevance judgments
as evidence sources of the clarifying question generation at the inference step. Therefore, we propose to
design an online evaluation methodology, leveraging the clarifying model CM and the user simulation US to
generate mixed-initiative interactions without introducing a bias related to relevance judgments. We present
these two methodologies aiming at generating offline and online datasets in what follows.
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Figure 1: Online evaluation pipeline to create mixed-initiative interactions on a test ad-hoc IR set.

3.4.1 Building an offline training dataset with relevance judgments

Our offline methodology aims at generating a wide range of positive and negative mixed-initiative inter-
actions on the basis of an ad-hoc IR dataset. To do so, we use relevant/irrelevant documents to build
positive/negative facets constraining the clarifying question generation. As a supplementary quality con-
straint in the dataset supervision, we would like to ensure that answers fit with the relevance of the used
documents. Said otherwise, the user simulation presented in Section 3.3.2 is replaced by a simple heuristic
matching answers a with the relevance of facets f :

a =
{

′yes′ if f ∈ F+

′no′ otherwise
(5)

We propose the 3-step pipeline presented in Algorithm 1. Given a query q: 1) positive and negative facets,
resp. F+ and F−, are extracted from relevant and non-relevant passage sets, resp. P+

q and P−
q ; 2) a mixed-

initiative interaction Xi is issued for a facet f , generating the associated clarifying question cq (with CM)
and associating answer a with the facet relevance (Equation 5); 3) the interaction set X is incremented with
this new interaction Xi, allowing to build a mixed-initiative IR dataset by associating the interaction set X
built over all queries with the initial ad-hoc IR dataset D.

3.4.2 Building a testing dataset for online evaluation without relevance judgments

Our online methodology aims at generating mixed-initiative interactions without relying on rele-
vant/irrelevant documents. Instead, we leverage pseudo-relevance feedback by using SERPs of a first-stage
ranking model as a proxy to extract query facets. Each facet conditions the generation of the clarifying
question and the answer. More particularly, the proposed pipeline to generate online mixed-initiative inter-
actions for a query q is presented in Figure 1. It is built on the following steps: 1) ranking documents using a
first-stage ranker (in our case BM25), 2) extracting the set of facets on the basis of pseudo-relevant/pseudo-
irrelevant documents, and 3) generating the mixed-interactive interaction.

Depending on the evaluation needs, different choices can be made regarding facet extraction. One can extract
a single facet from the top-retrieved document to perform a single retrieval step for a query (the strategy
used in our experiments). Other tasks or evaluation objectives would require generating multiple facets,
and accordingly, multiple mixed-initiative interactions. This can be done by identifying top/flop documents
obtained with the first-stage ranking as pseudo-relevant/irrelevant documents; each document conditioning
the facet extraction as described in Section 3.2.
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Train set Test set
Number of documents 8M 8M
Number of query 500K 6980
Avg number of interactions per query 38.5 -
Avg length of clarifying questions 11.0 -
Percentage of positive answers 26.7% -
Percentage of negative answers 73.3 % -

Table 2: Statistics of the generated mixed-initiative IR dataset MIMarco.

4 Assessing the Quality of the Dataset Generation Methodology

In this section, we evaluate our methodology, and particularly, the quality of simulated interactions. Please
note that we focus on augmenting the MsMarco dataset but our methodology is generalizable to any ad-hoc
IR datasets.

4.1 Evaluation protocol

4.1.1 Datasets

We focus here on the MsMarco 2021 passages dataset (Nguyen et al., 2016) which is an open-domain IR
dataset containing 8.8M passages and more than 500K Query-Passage relevance pairs with approximately
1.1 relevant passages per query on average. MsMarco is commonly used to train and evaluate first-stage
retriever and cross-encoder architectures (Thakur et al., 2021). We leverage the MsMarco passage dataset
with mined Hard Negatives released by sentence-transformers (Reimers & Gurevych, 2019b) 1 to build our
tuples (q,P+,P−). Hard Negatives are passages retrieved using a state-of-the-art retrieval method, which
are more closely related to the query. They allow us to generate more relevant questions and answers.

To train the clarifying model CM, we use the filtered version of the ClariQ dataset proposed in (Sekulić
et al., 2021) that maps clarifying questions with facets. All clarifying questions in this dataset are built
so as to expect ’yes’/’no’ answers. This dataset provides 1756 supervised tuples of (query-facet-clarifying
question) for 187 queries.

To train the user simulation US, we do not use the answers included in the ClariQ dataset for supervision
since answers are verbose (sentences with detailed information). Therefore, we leverage half of the train set
of the MsMarco dataset ( 250000 queries) to extract positive and negative facets as detailed in Section 3.2
and generate clarifying questions using the CM model. The supervison label related to answers is inferred
as proposed in the offline evaluation (see Equation 5).

To build a final dataset including training and testing sets, we respectively apply the offline evaluation
methodology (Algorithm 1) on the other half of the training set (not used to train the user simulation)
and the online evaluation methodology (Figure 1) on the test set of the MsMarco dataset. For the offline
evaluation, because the original dataset includes sparse annotations, i.e. some passages are actually relevant
but not annotated as such, it might be possible that relevant documents are considered as irrelevant ones.
This trend is however exhibited in the MsMarco train set which only includes one relevant document by
query. Therefore, to ensure labeling consistency, we follow (Qu et al., 2021) and denoise hard-negative in
the training set using a well-trained cross-encoder model 2 that captures similarities between passages.

For the online evaluation, we choose to generate a single mixed-initiative interaction based on the top-
retrieved document to fit with our extrinsic evaluation task based on IR. We will release, upon acceptance,
the complete generated datasets as well as the clarifying model CM and the user simulation US to allow the
generation of additional interactions. Statistics of the obtained mixed-initiative IR dataset, called MIMarco,
are presented in Table 2. Table 1 depicts some examples of simulated conversations generated from MsMarco
queries.

1https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
2https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
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4.1.2 Baselines and metrics

Evaluating clarifying questions with automatic metrics. We follow (Sekulić et al., 2021) and com-
pare our clarifying model, denoted CM, with 1) a template-based approach (Template). The template
follows a predefined sequence concatenating facets: ’Are you looking for + Facet’. 2) CMw/oFacet: the
version of our CM model only conditioned on the query. This is in fact based on a T5 model trained as a
machine translation model, which generates a clarifying question from the query only.

We evaluate the ability of CM to generate clarifying questions using references provided in the ClariQ
test set. We consider the METEOR metric (Banerjee & Lavie, 2005) and the average cosine similarity
between sentence embeddings (COSIM). METEOR is commonly used to evaluate machine translation output
considering unigram recall and precision. At the sentence level, this has a good correlation with human
judgments (Banerjee & Lavie, 2005). To compute the similarity score, we encode the questions using a
well-trained MiniLM-L6-v2 (Reimers & Gurevych, 2019b). We use t-test to assess the significance of metric
differences (***: p-value<0.005).
To evaluate if the generated questions on MsMarco are similar to their relative passage, we also compute the
mean cosine similarity between clarifying questions and their retrieved relevant and non-relevant passages.
We encode the questions using MiniLM-L6-v2 (Reimers & Gurevych, 2019b).

Human evaluations on clarifying questions. To compare and better assess the quality of a generated
clarifying question on MsMarco, we performed a human evaluation. Given the initial user query and the
passage used to generate the question, we asked annotators to evaluate the quality of 200 sampled clarifying
questions among the three models (Template, CMw/oFacets, and our CM model). To do so, annotators
are asked to select a preferred clarifying question from the three suggestions displayed in a shuffled order for
the following criteria:

• Usefulness: Assess if a question can help to better understand or refine the query by providing
additional information or suggestions.

• Naturalness: Assess the question fluency and readability.

• Relevance: Assess whether a question is specific or related to the information contained in a passage.

Each annotator evaluated 20 different cases and, for each metric to identify the best model output. We
recruited 10 evaluators. Each instance is evaluated by 2 annotators and we obtain a Kappa metric equal
to 0.324 showing a fair agreement between evaluators. We also distinguished results for both positive and
negative user’s answers by sampling relevant and irrelevant facets.

Human evaluations on answers. A strong hypothesis in our method is that clarifying questions gener-
ated with facets extracted from relevant passages lead to positive answers while using irrelevant passages to
generate negative facets intrinsically leads to negative answers. To validate this strong hypothesis, we have
shown human evaluators different instances including a query q, a clarifying question cq, and the relevant
passage p used to build the facet f . For each instance, we asked human evaluators to answer with ’yes’ or ’no’
to clarifying questions. This human evaluation involves 10 human annotators for a total of 200 questions,
with balanced relevant and non-relevant facets used to generate the clarifying question. Each instance is
annotated by 2 humans. We obtain a Kappa metric equal to 0.472 showing a moderate agreement between
evaluators. To validate our hypothesis, we set human answers as the reference, and we compare them with
our auto-labeling method (namely, the user simulation US) to calculate the accuracy metric.

4.1.3 Implementation details

For both CM and US, we used the pre-trained T5 checkpoint available on the Huggingface hub (Raffel et al.,
2020; Wolf et al., 2019). To finetune these two models, we used teacher forcing (Williams & Zipser, 1989)
and a cross-entropy loss. For optimization, we use AdaFactor (Shazeer & Stern, 2018), weight decay, and a
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METEOR COSIM
Template 0.338∗∗∗ 0.643∗∗∗

CMw/oFacet 0.326∗∗∗ 0.608 ∗∗∗

CM 0.557 0.812

Table 3: Evaluation of different clarifying models on the test set of ClariQ dataset. Significance two-sided
t-test: *** indicates statistically significant difference between baselines and our CM model (p<0.0015)

q p+ p-
cq+ 0.675 0.721 0.450
cq- 0.521 0.450 0.685

Table 4: Mean cosine similarity between generated clarifying questions and their related passages on the
train set. The cq+, cq− denote respectively clarifying questions generated using positive and negative facets.

learning rate of 5.10−5 with a batch size of 64. Keywords embeddings are computed using an off-the-shelf
pre-trained MiniLM-L6-v2 model (Reimers & Gurevych, 2019b). The number of extracted words is fixed
to k = 5 for the overall experiments. For inference, we use nucleus sampling (p=0.95) for the CM and US
models.

4.2 Evaluation of the generated interactions

4.2.1 Automatic evaluation.

Table 3 reports the effectiveness of the clarifying model on the ClariQ test set. Results show that our
model CM significantly outperforms all baselines. The lower results obtained by the CMw/oFacet baseline
highlight that a simple machine translation model is less effective than templates using facet terms. Facets
are useful to constrain the clarifying model, and seq-to-seq models based on large language models are more
natural than template-based methods. Facets are extracted from a relevant or irrelevant passage and used
to generate clarifying questions. Table 4 reports the cosine similarity between embeddings of questions and
respective passages. We observe that the similarity between clarifying questions and their related passages
(in bold) is higher than that between the clarifying questions and the queries. This shows that the generated
questions are not generic to the query but oriented toward the provided passages.

4.2.2 Human Evaluation

We report human evaluation of clarifying questions in Table 5. The CMw/oFacet fine-tuned without facet
generates more natural questions than other baselines (preferred for 46.3% of the sample). The CM model
fine-tuned with facet generates more useful and relevant questions, this model is considered as the more
relevant by evaluators in 59.9% of the test sample. This shows that the retrieved facet in the generation
helps generate more useful and relevant questions.

In the human evaluation of answers, we obtain an accuracy of 0.685 between human answers and automatic
labeling of clarifying questions. There are multiple causes explaining the difference between human answers
and auto-labeling. 1) Facet may not always capture correctly the information provided in a passage, leading
to poor clarifying questions. 2) The CM model does not always generate a question oriented toward the
provided facet and produce a reformulation of the initial query, therefore asking a question not related to a
facet.

Concerning the accuracy, we acknowledge that this may be low. We observed that this discrepancy may arise
from questions labeled as non-natural. The main limitation comes from automatic facet extraction. Some
keywords may not be representative of the document topics. Regarding the kappa, the disagreement may
come from various reasons; naturalness may play an important role in judgment as observed in the table 6.
Additionally, annotators must always choose a preferred question, even if none of the proposed questions are
actually useful given the query or if clarifying questions are similar, thus adding noise to the agreement.
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Answer Naturalness Usefulness Relevance

Template
positive 0.044 0.086 0.120
negative 0.073 0.095 0.146

total 0.119 0.181 0.267

CMw/oFacet
positive 0.243 0.195 0.077
negative 0.220 0.140 0.056

total 0.463 0.336 0.133

CM
positive 0.206 0.213 0.297
negative 0.211 0.268 0.301

total 0.417 0.481 0.599

Table 5: Results of the human evaluation on Msmarco-passage. The CM without facet produces more
natural questions, however not as relevant as CM with facet.

Examples for human evalutation
Query webster family definition
CQ1: Are you looking for Noah Webster (1758-1843) lexicographer?
CQ2: Would you like to know more about Webster family definition?
CQ3: Are you referring to the lexicographer Noah Webster (1758-1843)?
Passage Noah Webster (1758-1843) was a lexicographer and a language reformer. He is often called the
Father of American Scholarship and Education. In his lifetime, he was also a lawyer, schoolmaster, author,
newspaper editor, and an outspoken politician.
Query: what is venous thromboembolism
CQ1: Would you like to know more about venous thromboembolism?
CQ2: Would you like to know more about venous thromboembolism?
CQ3: Are you looking for venous thromboembolism?
Passage: Venous thromboembolism (VTE) is the formation of blood clots in the vein. When a clot forms
in a deep vein, usually in the leg, it is called a deep vein thrombosis or DVT. If that clot breaks loose and
travels to the lungs, it is called a pulmonary embolism or PE. Together, DVT and PE are known as VTE -
a dangerous and potentially deadly medical condition.

Table 6: Table showing examples of clarifying questions shown to human evaluators. Evaluators must assess
the most natural / relevant and useful question.

5 Evaluation on IR Task

In this section, we propose to assess indirectly the quality of the generated dataset through an IR task.
Indeed, previous works (Qu et al., 2020; Zhou et al., 2020; Li et al., 2018; Fu et al., 2020; Jia et al.,
2022) have already used extrinsic tasks to validate a dataset. Therefore, we introduce a neural ranking
model which estimates passage relevance scores based on the query and a mixed-initiative interaction. Our
objective is twofold: 1) Applying this model to our generated dataset provides some insights on whether
the clarifying question and the associated answer actually give useful feedback to better understand the
underlying information need. The evaluation is based on the following assumption: if a ranking model using
the generated interactions outperforms the one without them, the interactions are deemed relevant and
useful. 2) We provide a first baseline for mixed-initiative IR tasks.

5.1 Neural Ranking Model Leveraging Mixed-Initiative Interactions

We propose a simple model based on a cross-encoder architecture which has been shown to be effective for
IR task, especially when using large language models (Pradeep et al., 2021). Previous cross-encoder aims at
predicting the relevance of a passage p given a query q P (relevant = 1|q, p). Our model estimates a score
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for passages based on the query, a clarifying question, and a user answer (q, cq, a), i.e.

p(relevant = 1|p, q, cq, a) (6)

Following (Pradeep et al., 2021), the above score is transformed to the log-probability of predicting (decoding)
the true/false tokens, i.e.

sp = log p(true|q, p, cq, a) (7)

Following (Pradeep et al., 2021), we use the MonoT5 model and integrate mixed-initiative interactions to
estimate document scores. The input sequence is a concatenation of query, document, question, and answer
separated by special tokens:

Query: q Document: d Question: cq Answer: a (8)

5.2 Training details

We used a pre-trained MonoT5 checkpoint available on the Huggingface hub (Raffel et al., 2020; Wolf et al.,
2019). We fine-tune this model on our train set in 1 epoch, using our methodology with teacher forcing and
a cross-entropy loss. We consider a maximum sequence length of 512 and a batch size of 128 sequences.
In order to properly learn to contrast between relevant and non-relevant passages given a question, we use
in-batch negative answers.

For optimization, we use AdaFactor (Shazeer & Stern, 2018), weight decay, and a learning rate of 10−4. The
model fine-tuning takes approximately 4 hours on 4 RTX 3080 (24 Go).

At test time, we perform a first-stage retrieval on the initial query using the pyserini (Lin et al., 2021)
implementation of BM25. We then apply our model as a second-stage ranker with additional information.
We set the number of retrieved documents to 100.

5.3 Metrics and Baselines

We use classical metrics to evaluate the document ranking quality, namely the normalized discounted cumu-
lative gain (NDCG) at rank 1, 3, and 10; and the Mean Reciprocal Rank (MRR) at rank 10.

To evaluate the potential of our mixed-initiative dataset, we compare the performance of our model, noted
BM25+CLART5, against the following approaches:

• BM25. BM25 is a well-known sparse first-stage retriever commonly used as a baseline (Thakur et al.,
2021).

• BM25 + RM3. RM3 is a pseudo-relevance feedback method for query expansion. The query is
expanded using expansion terms extracted from the top 10 retrieved documents. RM3 is a competitive
baseline and is still used for benchmarking IR models (Thakur et al., 2021; Adolphs et al., 2022).

• BM25 + MonoT5. MonoT5 is a second-stage ranker pre-trained on the original training set of
MsMarco, i.e. only queries and relevance judgments. This model achieves state-of-the-art performance on
the beir leaderboard (Thakur et al., 2021) and is a natural baseline as BM25+CLART5 uses the same second-
stage pre-trained model before fine-tuning it on mixed-initiative interactions. We compare the MonoT5
performances with and without interaction. Interactions are added in the models context, following the
same pattern as for CLART5 as shown in the equation 8.

5.4 Effectiveness of mixed-initiative-oriented neural ranking

We present the results of our mixed-initiative-driven neural ranking model obtained on the online evaluation
pipeline presented in Section 3.4 applied on the MsMarco test set (Table 7).

Table 7 highlights the fact that additional information helps BM25+CLART5 improve significantly all re-
trieval metrics on the mixed-initiative-augmented MsMarco dataset. For example, BM25+CLART5 increases
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MRR@10 NDCG@1 NDCG@3 NDCG@10
BM25 0.1840∗∗∗ 0.105∗∗∗ 0.1690∗∗∗ 0.228∗∗∗

BM25 + RM3 0.1566∗∗∗ 0.0807∗∗∗ 0.1386∗∗∗ 0.2021∗∗∗

BM25 + MonoT5 (without interaction) 0.3522∗∗∗ 0.2398∗∗∗ 0.3457∗∗∗ 0.4034∗∗∗

BM25 + MonoT5 (with interaction) 0.3413∗∗∗ 0.2302∗∗∗ 0.3381∗∗∗ 0.3946∗∗∗

BM25 + CLART5 0.3863 0.2788 0.3817 0.4327

Table 7: IR effectiveness on the MiMarco test set. ***: two-sided t-test w.r.t. BM25+CLART5. with
p-value<0.005

the MRR@10 score by 0.034 point compared to BM25+MonoT5. Further analysis of the results on MsMarco
shows that for 33.0% of the queries, the relevant passage is not retrieved in the top-100 by BM25, leading
MRR@100 to 0.0. For 25.6% of the queries Monot5 and ClarT5 obtain the same MRR@10. Out of all the
queries, BM25+CLART5 achieves a superior MRR@10 for 30.3% of them, whereas it yields a lower MRR@10
for 11.1% of the queries. Overall these results show that the feedback provided by the user simulation to
the clarifying question is relevant and useful. It helps increase the ranking of relevant passages. This result
indirectly confirms that the simulated interactions indeed encode relevant information to the underlying
search intents, which is what real users would provide in conversations. Therefore, the proposed simulations
are reasonable.

6 Complementary Experiments

6.1 Extension to Multi-Turn Interactions

In the previous section, we simulated one interaction given a single query X = (q, cq, a) for the online
inference. However, multiple different facets can be extracted from retrieved passages. This means that
sequences of interactions X0, ..., Xt can be inferred by sequentially selecting different facets. While a new
pool of passages could be retrieved using the last interaction, we only consider here facets from passages
retrieved with the initial query. Each tth turn exploits the tth document in the document list by the first-stage
ranking to build a facet and generate a clarifying question. Multi-turn interactions are therefore generated
in a non-arbitrary order.

Impact on the design of the neural ranking model. We propose to extend the model to multi-turn
re-ranking using multiple clarification turns around the same query. We evaluate passages using multiple
interactions around the same search intent. At each time step t a new score st

d is computed for the passages
in the same ranking using a single interaction. This score is computed using Equation 9 which predicts
cumulative relevance scores at all interactions, i.e. the sum of relevance scores till time T . This score is used
as the ranking score of a document following a sequence of interactions Xt = {q, cq1, a1, ..., cqt, at}. cqt and
at are the clarifying question and the answer generated at timestamp t.

sT
d =

T∑
t=0

log p(relevant = 1|q, p, cqt, at) (9)

where sT
d is the score of document p at time T . As the ranking is updated between turns, we select facets

from the top retrieved passage at each time step. We evaluate the retrieval performance at different lengths
of interactions, from T = 1 to T = 5. We also report ranking entropy (Shannon, 1948) as a measure of the
system’s confidence by measuring how the scores are distributed in the ranking. This entropy is maximized
when the score distribution is uniform over the ranking.

Results Table 8 shows the ranking performance while increasing the number of clarifying turns for the
MsMarco test set. We observe that increasing the number of turns does improve MRR, NDCG scores and
while minimizing the Entropy, suggesting that additional feedback helps to refine the user’s information need
further.
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MRR@10 NDCG@1 NDCG@3 NDCG@10 Entropy
BM25 + CLART5 T=1 0.3863 0.2788 0.3817 0.4327 2.951
BM25 + CLART5 T=2 0.44467 0.35186 0.43734 0.48038 2.303
BM25 + CLART5 T=3 0.48176 0.39828 0.47483 0.51089 2.163
BM25 + CLART5 T=4 0.50861 0.43266 0.50321 0.53183 2.06
BM25 + CLART5 T=5 0.52949 0.45946 0.52311 0.54814 1.99

Table 8: Effectiveness results on T interaction turns issued on the MsMarco test sets.

We depict qualitative examples of successful and unsuccessful clarification sequences in Table 9 as well as
examples of failure cases in Table 10. We can see in the first example that additional interaction helps better
refine passage scores leading to better MRR@100, while the entropy decreases. In the last interaction, the
entropy is very low, meaning that the score distribution is dense on a few passages. On the other hand, the
second example is a failure case where relevant passages are not even retrieved. The failure cases we observe,
where the interaction turns deteriorate the ranking, shows that generated interactions are still not perfect.
There is room for improvement in the future.

Multi-turn Conversations mrr@100 Entropy
User: consolidate function 0.125 4.388
System: do you want to know what human resources functions the county provides?
User: no 0.14286 3.91

System: are you looking for media files referenced to itunes?
User: no 0.16667 2.74

System: do you want to know how to consolidate data source?
User: no 0.2 2.61

System: do you want to know how to use excel to consolidate data?
User: yes 0.5 0.09

User: where was the bauhaus built 0.04167 3.854
System: do you want to know where the bauhaus was founded?
User: no 0.25 3.52

System: do you want to know where the gropius sommerfeld house was built?
User: yes 0.5 0.69

System: do you want to know where the bauhaus art school was built?
User: no 1.0 0.000218

User: here there be dragons comic 0.16667 4.27
System: are you looking for a graphic novel called the deep ?
User: no 0.2 3.12

System: are you referring to the green arrow comics?
User: no 0.25 2.93

System: do you want to know what lenox globe dragons means is?
User: no 0.33333 1.81

System: are you looking for a james owen american comic book
User: yes 1.0 1.15

Table 9: Examples of successful cases. In this example, asking clarifying questions helps to refine the
user’s intent and better identify relevant passages. These examples show typical ambiguity in the retrieved
document. For example, the Bauhaus can refer to the rock band, the art school, the prize ..... here there be
dragons comic can also refer to multiple comics with the same name.
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Failure cases mrr@100 Entropy
User: what are tor 0.0 3.776
System: do you want to know if tor is free?
User: no 0.0 3.612

System: do you want to know more about tors transoral robotic surgery?
User: no 0.0 3.586

System: do you want to know how to connect to a computer network
User: no 0.0 3.567

System: are you looking for a web browser for tor onion?
User: no 0.0 3.541

System: do you want to know about tor anonymity?
User: no 0.0 3.329

User: what is the fastest production sedan 1.0 3.484
System: do you want to know what the fastest production sedan is?
User: yes 0.1 3.463

System: do you want to know what the fastest production sedan is?
User: yes 0.1 3.416

System: do you want to know what the fastest production sedan is?
User: yes 0.090 3.346

System: do you want to know what the fastest production sedan is?
User: yes 0.083 3.251

Table 10: Examples of failure cases. In the first example, none of the relevant passages are retrieved, asking
clarifying questions and re-ranking passages do not improve scores. In the second example, the CM fails to
capture passage’s facet and generates the same questions. Additionally this tends to decrease the scores.

MRR@10 NDCG@1 NDCG@3 NDCG@10
BM25 0.2634 0.1648 0.2354 0.3055
BM25 + RM3 0.2483 0.1457 0.2177 0.2941
BM25 + MonoT5 0.4422∗∗∗ 0.3314∗∗∗ 0.4190∗∗∗ 0.4764∗∗∗

BM25 +CLART5 T=1 0.4749 0.3725 0.4471 0.5012
BM25 +CLART5 T=2 0.54674 0.46002 0.51072 0.552
BM25 +CLART5 T=3 0.58267 0.50956 0.54204 0.57787
BM25 +CLART5 T=4 0.6047 0.53911 0.563 0.59291
BM25 +CLART5 T=5 0.62115 0.56286 0.57666 0.60469

Table 11: IR effectiveness on the augmented version of the Natural Question test set (3452 queries). ***:
two-sided t-test w.r.t. BM25+CLART5 T=1. with p-value<0.005

6.2 Transferability of the Methology

To test the potential to transfer the generators trained on a dataset to other datasets, we apply the same
clarifying model CM and user simulation US trained on MsMarco (as described in figure 1) to generate
simulated interactions on a new Natural Questions dataset (Kwiatkowski et al., 2019). Results are presented
in Table 11. The higher results obtained by our method BM25+CLART5 w.r.t. other baselines suggest
that the generated mixed-initiative interactions can benefit the neural ranking model. In other words, the
generators trained on a dataset can be transferred to another dataset to create reasonable simulations. The
experimental results on Natural Questions are consistent with those on MsMarco. This result is particularly
interesting, showing that our methodology can be used in inference of out-of-domain datasets. This opens
the potential perspective of constructing generic simulators of mixed-initiative interactions for any ad-hoc
IR dataset.
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Figure 2: Passages ranking similarity between interaction turn. Ranked Biased Overlap (RBO) metric
(p=0.9). Interaction 0 corresponds to the document ranking using Bm25 + MonoT5

6.3 Additional Analysis: Multi-turn Ranking similarity

In order to validate our results, we compute similarity metrics between ranking at each turn in the con-
versation. To measure the similarity between document rankings at different iterations, we rely on the
Rank-Biased Overlap (RBO) (Webber et al., 2010):

RBO(S, T, p) = (1− p)
∞∑

d=1
pd−1.Ad (10)

where S and T are two document rankings, d is the actual depth of the ranking. Ad expresses the agreement
(the size of the intersection of the two rankings) at depth d: Ad = |S:d∩T:d|

d . p determines the weight given to
the top ranked document. We set p = 0.9, which means that the 10 top documents weigh 85% of the score.

RBO measures the similarity between incomplete and non-conjoint rankings and also values more heavily top
ranked document. The more diverse the rankings, the lower the score. Figure 2 shows the ranking similarity
for each additional user feedback. We can observe that the ranking seems to stabilize with the number of
interactions: the similarity is higher between 4 and 5 interactions than between 0 and 1 interactions.

7 Conclusion and discussion

There is a critical need for adequate datasets with mixed-initiative interactions for conversational IR, but
creating such a dataset is very costly. In this paper, we proposed a method to augment ad-hoc IR datasets
by simulating a simple form of mixed-initiative interactions between a user and a conversational IR system.
This method generates automatically clarifying questions and answers from a large open-domain IR dataset,
making it possible to experiment conversational IR approaches at a large-scale. The proposed approach is
generic and can be applied to any existing ad-hoc IR dataset. In the experiments, we augmented the MsMarco
dataset and evaluate the quality of the interactions with intrinsic and extrinsic tasks, relying on automatic
metrics and human evaluations. The results show that, despite the simple form, the generated interactions
are relevant to the search intents and useful for better document ranking. This is a first investigation
on large-scale dataset augmentation for conversational IR. It demonstrates the feasibility of the automatic
construction of datasets. As a first investigation, this study has several limitations that can be improved in
the future.

17



Published in Transactions on Machine Learning Research (05/2024)

• First, our investigation is limited to clarifying questions based on a single facet, often assimilated to
questions of the type: "Are you referring to ’facet’?". However, real clarifying questions might also question
about multiple topics/facets in a single turn (ex: Are you interested to know about topic1, topic2 or topic3 )
or also be formulated as open-ended questions (e.g., "What would you like to know about topic?"). These
more complex questions are more difficult to generate and answer in simulations, but can potentially bring
more information and be more natural in the conversation.

• Second, the facet extraction relied on a few keywords and this can be improved. We observe that when
passages are long and address multiple topics, the generated question may not represent the topic addressed
in the passage.

• Third, the user simulation has been limited to ’yes’/’no’ answers. In a more sophisticated conversational
search, the user might provide more and various information in the answer. Simulating more complex user’s
answers is a challenge for the future.

• Finally, we also generated multi-turn interactions but did not consider the dependency between turns.
In real conversational search, later turns may depend on previous ones. More reasonable simulations of
multi-turn interactions should take the dependency into account.

Despite the limitations, the demonstration of feasibility made in this paper to create large-scale conversational
IR datasets opens the door for more investigations at large scale on the topic.
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