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Abstract

The problem of Open Domain Generalization (ODG) is multifaceted, encompassing shifts in do-
mains and labels across all source and target domains. Existing approaches have encountered chal-
lenges such as style bias towards training domains, insufficient feature-space disentanglement to
highlight semantic features, and discriminativeness of the latent space. Additionally, they rely on a
confidence-based target outlier detection approach, which can lead to misclassifications when target
open samples visually align with the source domain data. In response to these challenges, we present
a solution named ODG-NET. We aim to create a direct open-set classifier within a discriminative,
unbiased, and disentangled semantic embedding space. To enrich data density and diversity, we
introduce a generative augmentation framework that produces style-interpolated novel domains for
closed-set images and novel pseudo-open images by interpolating the contents of paired training
images. Our augmentation strategy skillfully utilizes disentangled style and content information to
synthesize images effectively. Furthermore, we tackle the issue of style bias by representing all im-
ages in relation to all source domain properties, which effectively accentuates complementary visual
features. Consequently, we train a multi-class semantic object classifier, incorporating both closed
and open class classification capabilities, along with a style classifier to identify style primitives. The
joint use of style and semantic classifiers facilitates the disentanglement of the latent space, thereby
enhancing the generalization performance of the semantic classifier. To ensure discriminativeness in
both closed and open spaces, we optimize the semantic feature space using novel metric losses. The
experimental results on six benchmark datasets convincingly demonstrate that ODG-NET surpasses
the state-of-the-art by an impressive margin of 1 − 4% in both open and closed-set DG scenarios.

1 Introduction

Domain Generalization (DG) Zhou et al. (2022) aims to create a shared embedding space from labeled source domains,
applicable to an unseen target domain. However, existing DG techniques primarily operate in a closed-set setting Zhou
et al. (2020b;a), where the source and target domains share the same label spaces. Unfortunately, this approach may
not always be practical in dynamic real-world scenarios, such as Robotics, where a robot navigating its environment
may encounter both shared and environment-specific categories Zhao & Shen (2022). This realization highlights
the need to address the more realistic and challenging scenario of Open Domain Generalization (ODG) Shu et al.
(2021), involving training on labeled source domains with both shared and domain-specific categories. The target
domain, in this case, comprises samples from either known classes or novel classes exclusive to the target domain,
presenting several significant challenges. Firstly, severe data imbalance arises due to the unequal representation of
known classes in the source domains. Secondly, achieving a domain-agnostic and discriminative embedding space
becomes challenging due to unrestricted domain and label shifts. Thirdly, there is a lack of prior knowledge about the
open space in the target domain. While one naive solution to ODG could involve combining an existing closed-set DG
technique with an off-the-shelf open-set recognition (OSR) approach like Openmax Bendale & Boult (2016b), this
approach may prove sub-optimal. The DG technique is likely to be influenced by the domain-specific classes present
in ODG, which suffer from severe under-representation.

Remarkably, ODG techniques have yet to garner significant attention in the DG literature, leaving DAML Shu et al.
(2021) as the solitary model explicitly tailored for ODG. Nevertheless, our thorough investigation has uncovered

1



Under review as submission to TMLR

Source 
Domain-1

Source
Domain-2

Generative Domain
& Class

Augmentation

Unbiased Latent
Feature Generation

Feature
Disentanglement 

& Ensuring
Discriminativeness

O
pe

n-
se

t O
bj

ec
t

C
la

ss
ifi

er

D
om

ai
n

C
la

ss
ifi

er

Domain-1
Domain-2

Pseudo Open Samples
Pseudo Domains

Class-1 Class-2
Class-3 Class-4

Figure 1: The working principle of ODG-NET. Given a number of source domains with shared and private classes
for each domain, our algorithm follows three simple stages to obtain an effective semantic open-set object classifier,
as depicted in the figure.

three potential limitations of DAML. Firstly, DAML augments the available source domains with multi-domain mix-
up features, utilizing a Dirichlet-distribution based weighting scheme where the same weight configuration signifies
the label for the generated feature. The fusion of content and style information in the raw latent features could
potentially lead to semantically incoherent feature and label pairs. Our validation through a straightforward multi-
label classification experiment on the PACS dataset Li et al. (2017) demonstrated notably poor accuracy for classifying
the synthesized features. Secondly, DAML overlooks the vital aspect of disentangling content features from domain
properties. As a result, the model may exhibit biases towards certain styles, impeding its adaptability to diverse visual
domains. Thirdly, DAML’s outlier rejection strategy relies on thresholding the responses of an ensemble of source
domain classifiers. This approach may yield erroneous outcomes, particularly when target open samples exhibit visual
coherence with some of the source domain classes. These limitations highlight the need for further exploration and
refinement of ODG techniques to unleash their full potential and address the complexities meaningfully.

In our quest to overcome the aforementioned limitations, we present a novel approach for training a powerful gen-
eralized semantic open-set classifier, endowed with the unique ability to discern both closed-set and potential open
samples within an unbiased and disentangled embedding space. However, accomplishing this requires representative
open-space samples for training the classifier, which, regrettably, are not available during the training phase. To over-
come this hurdle, we propose sample hallucination, ingeniously crafting a way to generate these essential samples
to facilitate the comprehensive training of our classifier. Furthermore, we acknowledge and address the challenge of
class imbalance in ODG. Our strategy involves augmenting the diversity in appearance of the training classes. As we
progress, we diligently focus on representing the images in a feature space that remains unswayed by the nuances of the
training domains. To this end, we propose segregating the semantic features from the style primitives, unlocking the
true essence of each image’s content. Finally, our journey culminates in ensuring that the semantic space is inherently
class-discriminative, allowing our classifier to make decisive and accurate distinctions between various categories.

Our proposed ODG-NET: In this paper, we propose ODG-NET (Fig. 1), a discriminative model to address the
concerns raised above. Our model comprises three crucial modules, each dedicated to tackle the model bias, feature
disentanglement, and discriminative semantic feature space learning, respectively.

At the core of our research lies the objective to augment the available source domains through two distinct types of
synthesized images from a novel conditional GAN, each serving specific goals: the enrichment of closed-set class di-
versities and the generation of representative pseudo-open images. The first type, aptly named domain or style mix-up
images, involves a sophisticated interpolation of the style properties from the source domains using a Dirichlet dis-
tribution. This approach gives rise to novel domains that diversify the style of the source images while meticulously
preserving their intrinsic semantic object properties. The second type, known as pseudo open-space images, emerges
through a skillful interpolation of both domain and class identifiers from the source domain images using Dirichlet
sampling. To ensure the creation of diverse and meaningful samples, we have introduced a diversification regular-
ization to safeguard against potential mode collapse during the generation of domain or label-interpolated samples.
Additionally, we have implemented a structural cycle consistency mechanism, thereby upholding the structural superi-
ority of the generated images. Our approach takes on several formidable challenges, ranging from class imbalance and
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limited style diversity to the absence of an open-space prior. A distinguishing feature of our methodology lies in its
ability to unify the concepts of label and domain mix-up while granting the flexibility to tailor individual conditioning.
In this manner, we transcend existing augmentation methods, which merely perform style or random image mix-ups
Mancini et al. (2020a); Zhou et al. (2021).

Our model aims for an unbiased latent embedding space, free from source domain bias. We achieve this through a
novel approach of training domain-specific classifiers, expertly capturing domain-specific features from each source
domain. Each image is then represented as a concatenation of features from all domain-specific models, creating a
comprehensive and unbiased embedding.

We strive to disentangle domain-specific properties from semantic object features within the latent representations.
To this end, we train two attention-driven classifiers: a domain classifier identifying the domain label and an object
classifier recognizing class labels from the augmented domain set, enriching our model’s understanding of object
semantics, while reducing the effects of the domain-specific artifacts considerably.

Ensuring a highly discriminative semantic feature space, we introduce a contrastive loss among known classes, sharp-
ening the distinction between different categories. Moreover, our entropy minimization objective strategically pushes
pseudo outliers far from the known-class boundary, enhancing the model’s robustness.

We summarize our major contributions as:

[-] In this paper, we present ODG-NET, an end-to-end network that tackles the challenging ODG problem by jointly
considering closed and open space domain augmentation, feature disentanglement, and semantic feature-space opti-
mization.

[-] To synthesize augmented images that are diverse from the source domains, we propose a novel conditional GAN
with a cycle consistency constraint and an anti-mode-collapse regularizer that interpolates domain and category labels.
We also adopt a classification-based approach for feature disentanglement. Finally, we ensure the separability of the
semantic feature space for closed and open classes through novel metric objectives.

[-] We evaluate ODG-NET on six benchmark datasets in both open and closed DG settings. Our experiments demon-
strate that ODG-NET consistently outperforms the literature. For instance, on ODG for Multi-dataset Shu et al.
(2021) and on closed DG for DomainNet Peng et al. (2019), ODG-NET outperforms the previous state-of-the-art by
approximately 3%.

2 Related Works

(Open) DG. The initial studies in closed-set DG focused on domain adaptation (DA) Li et al. (2020); Wang et al.
(2021); Li et al. (2021a) due to the disparity in domain distributions. Several DG methods have since been developed,
such as self-supervised learning Carlucci et al. (2019), ensemble learning Xu et al. (2014), and meta-learning Patricia
& Caputo (2014); Wang et al. (2020b); Li et al. (2019b; 2018a; 2019a); Huang et al. (2020). To address the domain
disparity, the concept of domain augmentation Li et al. (2021c); Kang et al. (2022); Zhou et al. (2020b; 2021); Zhang
et al. (2022) was introduced, which involves generating pseudo-domains and adding them to the available pool of
domains. Subsequently, the notion of ODG was introduced in Shu et al. (2021), which is based on domain-augmented
meta-learning. To solve the single-source ODG problem, Zhu & Li (2021) and Yang et al. (2022) further extended the
idea of multi-source ODG. See Zhou et al. (2022) for more discussions on DG.

Our proposed ODG-NET represents a significant departure from DAML Shu et al. (2021). Unlike their ad-hoc feature-
level mix-up strategy, we introduce a more robust augmentation technique that leverages generative modeling to seam-
lessly synthesize pseudo-open and closed set image samples. Additionally, we take a direct approach to learning an
open-set classifier in a meaningful and optimized semantic space, in contrast to the source classifier’s confidence-
driven inference used in Shu et al. (2021). As a result, ODG-NET is better suited to handling open samples of
different granularities.

Augmentation in DG. Data augmentation is a crucial technique in DG, and it can be implemented using various
methods such as variational autoencoders, GANs, and mixing strategies Goodfellow et al. (2020); Kingma & Welling
(2013); Zhang et al. (2017). For instance, Rehman et al. Rahman et al. (2019) used ComboGAN to generate new data
and optimized ad hoc domain divergence measures to learn a domain-generic space. Zhou et al. Zhou et al. (2020b)
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combined GAN-based image generation with optimal transport to synthesize images different from the source data.
Gong et al. Gong et al. (2019) treated generation as an image-to-image translation process and extracted intermediate
images given an image pair. Similarly, Li et al. (2021b) used adversarial training to generate domains instead of
samples. Mix-up, on the other hand, generates new data by interpolating between a pair of samples and their labels.
Recently, mix-up techniques Yun et al. (2019); Mancini et al. (2020a); Zhou et al. (2021) have become popular in the
DG literature, applied to either the image or feature space.

The augmentation approach used by ODG-NET stands out from the existing literature by going beyond simple style or
image mix-up. Our approach ensures that the object properties of images remain intact when using style mix-up, and
we also have control over label mix-up to generate pseudo-open samples that can scatter the open space with varying
levels of similarity to the source domains.

Among the existing augmentation strategies, Zhou et al. (2020b) and Gong et al. (2019) are the closest to our approach
as they both use conditional GANs. However, there are several key differences between our method and theirs: (a)
Gong et al. (2019) requires paired training data to sample intermediate pseudo-stylized images, whereas we use
conditional generation without the need for paired data; (b) Zhou et al. (2020b) uses extrapolation for domains, which
is ill-posed, while we use Dirichlet distributions to interpolate domains and classes; and (c) while both Zhou et al.
(2020b) and Gong et al. (2019) use style mix-up for closed-set data, we generate both closed and pseudo-open samples
judiciously.

Disentangled representation learning. Disentangled feature learning refers to the process of modeling distinct and
explanatory data variation factors. As per Dittadi et al. (2020), disentanglement can aid in out-of-distribution tasks.
Previous efforts have focused on disentangling semantic and style latent variables in the original feature space using
encoder-decoder models Wang et al. (2022); Cai et al. (2019), causality Ouyang et al. (2021), or in the Fourier space
Wang et al. (2022). These models are complex and require sophisticated knowledge to improvement the feature
learning of the models. In contrast, ODG-NET proposes to use simple to implement yet effective, attention-based
classifiers, to separate the style and semantic primitives from the latent visual representations.

3 Problem Definition and Proposed Methodology

In the context of ODG, we have access to multiple source domains denoted as D = {D1, D2, · · · , DS}. Each of
these domains has different distributions and contains a combination of domain-specific and shared categories. During
training, we use labeled samples from each domain Ds = (xi

s, yi
s)ns

i=1, where ys ∈ Ys is the label for xs ∈ Xs. The
total number of classes in D is denoted by C. The target domain DT = {xj

t }nt
j=1 has a distribution that is different

from that of D. It consists of unlabeled samples that belong to one of the source classes present in D or novel classes
that were not seen during training. The objective is to model a common classifier that can reject outliers while properly
recognizing the known class samples given D and then evaluate its performance on DT .

In our formulation, each domain/style in D is represented using an S-dimensional one-hot vector vd. In contrast, a
pseudo-domain (synthesized style) is represented by v̂d, which is sampled from a Dirichlet distribution with parameter
α and has the same length as vd. For instance, if S = 3, a source domain can be represented as a three-dimensional
one-hot vector (e.g., [0, 0, 1]), while a v̂d could be [0.2, 0.3, 0.5].

Similarly, we denote the label y as a C-dimensional one-hot vector. On the other hand, an interpolated label space
is represented by ŷ, which is sampled in the same way as v̂d. A real image-label pair from D is denoted as (xr, y).
In contrast, a cGAN synthesized image is denoted by (xcs

f , y) or (xos
f , ŷ) depending on whether it represents a style-

interpolated closed-set image with label y or a joint style and label interpolated pseudo-open image with label ŷ,
respectively. Finally, to aid in open-set classification, we introduce a label space ỹ ∈ RC+1. The first C indices are
reserved for closed-class samples, while the C + 1-th index is used for pseudo-outlier samples.

3.1 Model and training overview for ODG-NET

We aim to design a direct open-set classifier that operates in a disentangled, discriminative, and unbiased semantic
feature space. To achieve our goals, we introduce ODG-NET, which consists of four modules (see Fig. 2). Firstly,
ODG-NET employs a generative augmentation strategy, using a conditional GAN equipped with a U-Net based
generator FG and a binary discriminator Fdisc. We condition FG on four variables: domain label vd/v̂d, class label
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Figure 2: A depiction of the ODG-NET architecture. It shows the model components: the embedding networks:
(Fim, Fv, Fy , Fη), cGAN consisting of (FG, Fdisc), the local domain-specific classifiers {Fs

l = (Fb
ls, Fc

ls)}S
s=1,

and the global domain and semantic classifiers (Fd, Fo) with corresponding attention blocks Ad and Ao, respectively.
Colors indicate the flow of information for different data items.

y/ŷ, an input image xr/xcs
f /xos

f , and noise tensor η1/η2/η3 sampled from predefined distributions. To ensure that the
conditioning variables are combined correctly, we propose using separate embedding networks (Fim, Fv, Fy, Fη) to
encode the image, domain label, class label, and noise into meaningful latent representations. We train FG to generate
two types of images: (i) (xcs

f , y) when conditioned on (xr, v̂d, y, η1), where xcs
f preserves the class label y of xr

while the style changes according to v̂d, and (ii) (xos
f , ŷ) when conditioned on (xr, vd/v̂d, ŷ, η2), which changes the

semantic and style information of xr according to ŷ and vd/v̂d in xos
f . We use a standard min-max formulation to train

the cGAN and introduce a regularizer to prevent the generated samples from residing in a closer vicinity with the data
from D (Eq. 1). A cycle consistency loss is further introduced to maintain the semantic regularity of the generated
images (Eq. 2).

To obtain an unbiased latent feature space, we propose to represent all the images with respect to the feature space of
all source domains. We introduce S local source-domain specific networks consisting of a feature backbone and a
classification module, e.g., Fs

l = (Fb
ls, Fc

ls), which is trained on Ds. We combine feature responses from all Fb
ls to

obtain the latent representation Fel(x) = [Fb
l1; Fb

l2; · · · ; Fb
lS ] for a given image x (Eq. 3).

To disentangle domain-dependent properties from semantic object features from Fel(x), we introduce global domain
and semantic object classifiers denoted by Fd with S output nodes and Fo with C + 1 output nodes (Eq. 4-5), shared
across domains. We use spectral-spatial self-attention modules Ad and Ao to highlight domain and semantic object
features from Fel, denoted by Fed and Feo, and seek to ensure discriminativeness of the semantic embedding space
(outputs of the feature encoder of Fo, denoted by Fb

o ) through novel metric losses, encouraging the separation of all
closed and pseudo-open class samples (Eq. 6-7). In the following, we discuss the proposed loss functions.

3.2 Loss functions, training, and inference

Regularized cGAN objectives with structural cycle consistency. To generate synthetic images, FG and Fdisc

engage in a min-max adversarial game. The goal of Fdisc is to accurately identify the real/fake domains of the images,
while FG aims to trick Fdisc. Hence, in order to ensure that the generated images are not collapsed with D, for a given
pair of real and synthesized image features Fel(xr) and Fel(xcs/os

f ), we propose a regularizer W that penalizes the

situation if xr and x
cs/os
f are identical for slightly different (vd, v̂d) or (yd, ŷd). δ is the cosine similarity and ϵ is a

small constant. Crisply, even if δ(vd, v̂d) or δ(yd, ŷd) → 1, W will enforce δ(Fel(xr), Fel(xcs/os
f )) → 0 to minimize

the loss. The total loss is mentioned below.
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LGan = E
PD,P

os/cs
noise

[log(Fdisc(F el(xr))) + log(1 − Fdisc(F el(xcs/os
f ))) + β

δ(F el(xr), F el(xos/cs
f )) + ϵ

δ(vd, v̂d) + δ(yd, ŷd) + ϵ︸ ︷︷ ︸
W

]. (1)

In this context, PD, P cs
noise, and P os

noise denote the data distribution of the source domains in D and the noise used
to generate closed-set and open-set samples, respectively. We set P cs

noise = N (0, I), and P os
noise = N (0, σ), where σ

is a large value. Our goal is to limit the space of generated closed-set images so that they represent similar semantic
concepts while allowing for more scattering in the pseudo-open space, aiding in learning a robust open-set classifier.

To maintain the structural robustness of FG against variations in style or label, we propose a method for reconstructing
xr. We take into account the embeddings of the synthesized x

cs/os
f , the actual class label y, the domain identifier vd,

and a noise vector η3 ∈ N (0, I) as inputs to FG: xrec
r = FG(xos/cs

f , vd, y, η3). By following the path xr → x
cs/os
f →

xrec
r , we ensure that x

cs/os
f represents a meaningful image rather than noisy data.

To compute the loss, we use the standard ℓ1 distance between the original real domain images and the remapped
images xrec

r , given by:

Lrec = E
PD,N (0,I)

[||xr − xrec
r ||11]. (2)

Learning style agnostic latent representations. To prevent the model from overfitting to any particular source
domain, we propose a method where input images are represented based on the properties of all source domains using
Fel(x). This creates a multiview representation space that captures complementary perspectives of the images.

To achieve this, we train Fs
l using Ds where s belongs to {1, 2, · · · , S}. We consider S multiclass cross-entropy

losses (LCE) for this purpose (as shown in Eq. 3), where P s
D represents the data distribution for the sth source domain.

Llocal = 1
S

∑
s∈{1,2,··· ,S}

E
P s

D

[LCE(Fc
ls(xs), ys)]. (3)

Disentangling latent features through global classifiers. The global domain classifier, Fd, aims to identify the
domain identifiers based on the attended features, Fed(x) = Fel(x) ⊗ Ad + Fel(x), using a multiclass cross-entropy
loss. We observe that Fd implicitly ensures that FG generates images according to the conditioning domain identifiers.
The corresponding loss function is presented below.

Ldom = E
PD,P

cs/os
noise

[LCE(Fd(F ed(xrec
r )︸ ︷︷ ︸

domain features

), vd) + LCE(Fd(F ed(xos/cs
f )︸ ︷︷ ︸

domain features

), v̂d)]. (4)

In contrast, the open-set classifier, Fo, is trained to accurately identify all samples belonging to known classes while
disregarding the generated pseudo-outliers by labeling them as C + 1, from Feo(x) = Fel(x) ⊗ Ao + Fel(x). This is
achieved using a multiclass cross-entropy loss. Similar to Fd, Fo also aids FG in producing high-quality synthesized
images and supplements Lrec.

Lclass = E
PD,P

cs/os
noise

[LCE(Fo( F eo(xr)︸ ︷︷ ︸
object features

), ỹ) + LCE(Fo(F eo(xcs/os
f )︸ ︷︷ ︸

object features

), ỹ)]. (5)

Fd and Fo work together on Fel(x), and seek to learn the domain-specific and semantic features separately, suggesting
that fact that both the networks are devoted to disentangling the latent features wisely.

Ensuring discriminativeness of the semantic feature space. The inherent variations in multi-domain data make
it challenging for Fo to generate an optimized semantic feature space from Fb

o , where closed-set classes over the
augmented domains are expected to form distinct groups, and pseudo-open-set samples, are deemed to be pushed away
from the support of the closed set. To promote discriminativeness, we suggest using a contrastive loss for closed-set
samples across the augmented domain set while also minimizing the entropy (E) of Fo predictions for pseudo-open
samples. This, in turn, acts as a weighting to Fo for the pseudo-open samples, which increases p(y = C + 1|xcs/os

f )
while reducing the posteriors for the known-class indices (1 − C).
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To implement the contrastive loss, Lcon, we select an anchor sample, xa, and randomly obtain a positive sample, x+,
which shares the same class label as xa, as well as a set of negative samples, {xm

− }M
m=1, where no restrictions are

imposed on the styles of the samples. The goal is to maximize the cosine similarity, δ, for (xa, x+), while minimizing
it for all possible pairs of (xa, xm

− ). The semantic feature space optimization loss can be expressed as follows:

Lsem = E
PD,P

os/cs
noise

[E(Fo(F eo(xos
f ))) + Lcon]. (6)

where Lcon is defined as follows,

Lcon = [− log exp(δ(Fb
o(xa), Fb

o(x+))∑M

m=1 exp(δ(Fb
o(xa), Fb

o(xm
− ))

]. (7)

Total loss and training. We follow an alternate optimization strategy in each training episode for ODG-NET, men-
tioned in Algorithm 1. In the vanilla training stage, we train the embedding networks (Fim, Fv, Fy, Fη), GAN
modules FG, Fdisc, and the local domain-specific networks {Fs

l }S
s=1, given the fixed (Fd, Fo) to produce meaningful

images. ws represent the loss contributions and we set them to the value 1 in all our experiments.

argmin
Fim,Fv,Fy,Fη,FG,

{Fs
l

}S
s=1

argmax
Fdisc

[wGanLGan + wrecLrec + wlocalLlocal]. (8)

Subsequently, we train Fo and Fd to obtain the optimized semantic classifier keeping other parameters fixed.

arg min
Fo,Fd

[Ldom + Lclass + wf Lsem]. (9)

Algorithm 1 ODG-NET training algorithm
Require: Initialized FG, Fim, Fv, Fy, Fη, Fd, Fo, Fdisc, {Fs

l }S
l=1

1: while Not Converged do
2: Sample a batch of (xr, y, vd) from D and η1 ∼ N (0, I), η2 ∼ N (0, σ), η3 ∼ N (0, I). σ is the noise variance

for generating the pseudo-open samples.

3: Generate v̂ds and ŷs using Dirichlet(α). α is the parameter of the distribution.

4: Obtain a batch of xcs
f = FG(xr, v̂d, y, η1).

5: Obtain a batch of xos
f = FG(xr, vd/v̂d, ŷ, η2).

6: Obtain xrec
r = FG(xcs/os

f , vd, y, η3).

7: Obtain Fel, the latent representation corresponding to (xr, xos
f , xcs

f , xrec
r ).

8: Obtain Fed, the attended domain features, and Feo, the attended semantic features from Fel.

9: Solve: argmin
Fim,Fv,Fy,Fη,FG,

{Fs
l }S

s=1

argmax
Fdisc

[wGanLGan + wrecLrec + wlocalLlocal].

10: Solve: argmin
Fo,Fd

[Ldom + Lclass + wf Lsem].

11: end while

Testing. During inference, images from DT are provided as input to {Fs
l }S

s=1. The class labels with the highest
softmax probability scores are predicted according to Fo.

4 Experimental Evaluations

Datasets. We present our results on six widely used benchmark datasets for DG. Specifically, we follow the approach
of Shu et al. (2021) and use the following datasets: (1) Office-Home Venkateswara et al. (2017), (2) PACS Li et al.
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Table 1: Comparative analysis for PACS and Office-Home on ODG. (In %)

Methods Art Sketch Photo Cartoon Avg Clipart Real-World Product Art Avg

Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score

AGG 51.35 38.87 49.75 47.09 53.15 44.19 66.43 48.98 55.17 44.78 42.83 44.98 62.40 53.67 54.27 50.11 42.22 40.87 50.43 47.41
MLDG Li et al. (2018a) 44.59 31.54 51.29 49.91 62.20 43.35 71.64 55.20 57.43 45.00 41.82 41.26 62.98 55.84 56.89 52.25 42.58 40.97 51.07 47.58
FC Li et al. (2019b) 51.12 39.01 51.15 49.28 60.94 45.79 69.32 52.67 58.13 46.69 41.80 41.65 63.79 55.16 54.41 52.02 44.13 43.25 51.03 48.02
Epi-FCR Li et al. (2019a) 54.16 41.16 46.35 46.14 70.03 48.38 72.00 58.19 60.64 48.47 37.13 42.05 62.60 54.73 54.95 52.68 46.33 44.46 50.25 48.48
PAR Wang et al. (2020b) 52.97 39.21 53.62 52.00 51.86 36.53 67.77 52.05 56.56 44.95 41.27 41.77 65.98 57.60 55.37 54.13 42.40 42.62 51.26 49.03
RSC Huang et al. (2020) 50.47 38.43 50.17 44.59 67.53 49.82 67.51 47.35 58.92 45.05 38.60 38.39 60.85 53.73 54.61 54.66 44.19 44.77 49.56 47.89
CuMix Mancini et al. (2020a) 53.85 38.67 37.70 28.71 65.67 49.28 74.16 47.53 57.85 41.05 41.54 43.07 64.63 58.02 57.74 55.79 42.76 40.72 51.67 49.40
Fish Shi et al. (2021) 52.22 39.54 55.54 54.28 69.41 48.87 69.85 51.75 61.75 48.61 43.76 44.38 65.25 58.74 57.86 57.33 49.78 46.57 54.16 51.75
Disentanglement Zhang et al. (2022) 53.18 38.32 56.39 53.36 71.99 47.39 70.54 50.63 63.02 47.42 44.89 42.87 63.38 59.51 58.88 55.44 45.49 43.43 53.16 50.31
Mixstyle Zhou et al. (2021) 53.41 39.33 56.10 54.44 72.37 47.21 71.54 52.22 63.35 48.30 42.28 41.15 61.78 60.23 59.92 53.97 50.11 42.78 53.52 49.53
DAML Shu et al. (2021) 54.10 43.02 58.50 56.73 75.69 53.29 73.65 54.47 65.49 51.88 45.13 43.12 65.99 60.13 61.54 59.00 53.13 51.11 56.45 53.34
DAML + OpenMax Bendale & Boult (2016a) 52.73 41.28 57.81 56.82 74.55 54.55 75.84 55.96 65.23 52.15 45.51 44.25 60.33 61.46 60.71 59.67 51.34 52.34 54.47 54.43

ODG-NET 57.21 46.19 61.85 59.25 78.76 56.67 77.39 61.11 68.80 55.81 49.81 48.39 68.45 63.33 63.29 61.51 56.05 53.52 59.40 56.69

Table 2: Comparative analysis for VLCS and Digits-DG on ODG. (In %)

Methods Caltech LabelMe Pascal VOC Sun AVG MNIST MNIST_M SVHN SYN AVG

Acc H-score Acc H-score Acc H-Score Acc H-score Acc H-score Acc H-score Acc H-score Acc H-Score Acc H-score Acc H-score

EPI-FCR Li et al. (2019a) 66.81 62.98 47.83 45.33 50.22 45.56 46.03 44.32 52.72 49.55 72.39 68.33 45.83 43.34 51.27 46.88 62.46 60.23 57.98 54.69
AGG 65.49 62.59 46.15 42.78 48.29 44.31 44.48 40.67 51.10 47.58 69.45 63.28 43.51 42.15 50.26 46.89 61.87 56.31 56.27 52.15
MLDG Li et al. (2018a) 66.91 63.11 45.65 41.76 48.37 42.71 44.29 42.22 51.30 47.45 71.33 69.22 43.19 41.78 48.73 45.37 61.28 58.22 56.13 53.64
PAR Wang et al. (2020b) 65.78 61.25 46.21 42.54 50.11 46.33 45.39 43.65 51.87 48.44 70.88 67.47 44.62 42.65 49.34 45.72 60.23 57.11 56.26 53.23
FC Li et al. (2019b) 65.59 60.48 45.23 44.22 49.23 45.89 45.32 44.45 51.34 48.76 71.29 66.29 41.22 40.67 47.72 44.41 59.33 55.67 54.89 51.76
RSC Huang et al. (2020) 64.43 61.39 45.61 43.71 48.60 42.65 45.76 42.71 51.10 47.61 72.77 66.34 42.27 41.43 48.32 45.59 62.41 57.26 56.44 52.65
CuMix Mancini et al. (2020a) 66.21 63.76 46.72 45.59 50.54 45.78 46.38 45.33 52.46 50.11 72.10 67.52 45.88 43.74 52.22 47.22 62.33 58.33 58.13 54.20
Fish Shi et al. (2021) 65.82 62.29 47.66 46.52 50.11 45.53 45.54 43.33 52.28 49.41 74.43 66.89 42.65 44.45 52.31 46.71 64.76 58.73 58.53 54.19
Disentanglement Zhang et al. (2022) 63.27 61.86 48.65 45.39 50.53 43.22 46.72 45.76 52.29 49.05 71.29 68.83 45.38 41.59 50.16 42.71 65.66 60.33 58.12 53.36
Mixstyle Zhou et al. (2021) 66.11 63.19 46.72 46.22 49.75 46.19 46.62 46.87 52.30 50.61 76.56 70.56 47.81 45.66 54.97 47.24 61.80 61.96 60.23 56.35
DAML Shu et al. (2021) 69.18 64.65 48.22 47.71 49.87 47.22 46.87 46.78 53.53 51.59 73.98 69.88 46.49 45.62 53.34 47.72 64.22 59.23 59.51 55.61
DAML + OpenMax Bendale & Boult (2016a) 68.24 66.51 46.43 46.18 52.49 47.00 47.43 47.71 53.64 51.85 75.77 71.38 48.51 47.49 55.61 49.69 65.49 62.77 61.34 57.83

ODG-NET 73.42 69.93 51.89 51.56 53.44 52.75 50.21 50.14 57.24 56.09 78.56 75.75 50.52 50.22 57.81 52.62 68.94 65.33 63.85 60.98

(2017), (3) Multi-Dataset Shu et al. (2021). In addition, we introduce the experimental setup of ODG for two ad-
ditional DG datasets, namely VLCS Fang et al. (2013) and Digits-DG Zhou et al. (2020b) in this paper. For our
closed-set DG experiment, we also utilize the large-scale DomainNet Peng et al. (2019).
Implementation details: To ensure clarity, we use a ResNet-18 based backbone He et al. (2016) for Fo consistently,
while we adopt standard architectures per benchmark for closed-DG tasks, following established literature Zhou et al.
(2020b). Our attention modules (Ad, Ao) are composed of a pair of spatial and spectral attention modules, imple-
mented using the query-key-value processing-based approach Han et al. (2022). In total, ODG-NET comprises 48
million parameters for S = 3, and the training stage requires 65 GFLOPS.
Training protocol and model selection. We employ a standardized training protocol across all datasets. During each
training iteration, we first optimize Eq. 8 using the Adam optimizer Kingma & Ba (2014), with a learning rate of 2e−4
and betas of (0.5, 0.99). We then minimize Eq. 9 using Adam with a learning rate of 2e − 2 and betas of (0.9, 0.99).
Our batch size is typically set to 64, and we train for 30 epochs, except for DomainNet, where we use a batch size of
128 and train for 40 epochs. We follow a cross-validation approach, holding out 10% of samples per domain and using
held-out pseudo-open-set validation samples obtained through cumix Mancini et al. (2020b), that the model has not
seen to select the best-performing model. In this regard, the mixup samples do not have a clear semantic meaning as
they are generated by randomly combining two images. Hence, they can be considered representative open samples.
We further consider β = 0.5 to put W as a soft constraint in LGAN. A large β instigates the generation of ambiguous
images in order to make them different from D.
Evaluation protocol. For ODG experiments, we report the top-1 accuracy for closed-set samples (Acc) and the H-
score for closed and open samples. For closed-set DG experiments, we consider the top-1 performance. We report the
mean ± std. over three runs.

4.1 Results on open DG tasks

Baselines. Our baseline method, AGG, involves merging the source domains with different label sets and training a
unified classifier on all the classes. In comparison, we evaluate the performance of ODG-NET against traditional DG
methods that are less sensitive to label changes between different source domains, as outlined in Shu et al. (2021).
These include state-of-the-art meta-learning-based and augmentation-based DG methods Li et al. (2018a; 2019a);
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Table 3: Comparative analysis for Multi-Dataset on ODG. (In %)

Methods Clipart Real Painting Sketch Avg

Acc H-score Acc H-score Acc H-Score Acc H-score Acc H-score

AGG 29.78 34.06 65.33 64.72 44.30 51.04 27.59 35.41 41.75 46.31
MLDG Li et al. (2018a) 29.66 35.11 65.37 54.40 44.04 50.53 26.83 34.57 41.48 43.65
FC Li et al. (2019b) 29.91 35.42 64.77 63.65 44.13 50.07 28.56 34.10 41.84 45.81
Epi-FCR Li et al. (2019a) 27.70 37.62 60.31 64.95 39.57 50.24 26.76 33.74 38.59 46.64
PAR Wang et al. (2020b) 29.29 39.99 64.09 62.59 42.36 46.37 30.21 39.96 41.49 47.23
RSC Huang et al. (2020) 27.57 34.98 60.36 60.02 37.76 42.21 26.21 30.44 37.98 41.91
CuMix Mancini et al. (2020a) 30.03 40.18 64.61 65.07 44.37 48.70 29.72 33.70 42.18 46.91
Fish Shi et al. (2021) 32.78 35.42 65.43 67.77 45.37 48.81 32.35 32.45 43.98 46.11
Disentanglement Zhang et al. (2022) 28.76 33.33 64.48 64.44 42.29 50.05 30.65 35.87 41.54 45.92
Mixstyle Zhou et al. (2021) 30.03 40.18 64.61 65.07 44.37 48.70 29.72 33.70 42.18 46.91
DAML Shu et al. (2021) 37.62 44.27 66.54 67.80 47.80 52.93 34.48 41.82 46.61 51.71
DAML Shu et al. (2021) + OpenMax Bendale & Boult (2016a) 38.55 45.51 66.87 68.89 48.51 53.12 35.61 42.56 47.38 52.52

ODG-NET 40.75 47.54 69.49 71.22 50.11 55.39 37.58 44.10 49.48 54.56
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Figure 3: (a) Depiction of the generated pseudo-open-set samples by ODG-NET. (b) Depiction of the pseudo-stylized
images (columns 2-4) generated by ODG-NET concerning the input images mentioned in column 1. (c) Results of
the intermediate images showing the transition between a pair of domain/label. We show two intermediate images for
both cases.

Mancini et al. (2020a); Zhou et al. (2021); Shi et al. (2021); Rame et al. (2022), heterogeneous DG Li et al. (2019b),
and methods that produce discriminative and generic embedding spaces Wang et al. (2020b); Huang et al. (2020);
Zhang et al. (2022). As per Shu et al. (2021), we employ a confidence-based classifier for our competitors. Here,
a sample is classified as unknown if the class probabilities are below a predefined threshold. Alternatively, we also
compare against the only existing ODG technique, DAML Shu et al. (2021) and consider a variant where we combine
DAML with Openmax Bendale & Boult (2016b) based OSR.

Quantitative and qualitative analysis. Tables 1-3 present a performance comparison of ODG-NET with the literature
on five datasets. Our method consistently outperforms others in terms of Acc and H-score for all domain combinations
and the average leave-one-out case where all the domains except one are used during training and the model is validated
on the held-out target domain. For example, on PACS, ODG-NET achieves an Acc of 68.80% and an H-score of
55.81%, surpassing the previous best of DAML+OpenMax which obtained 65.23% and 52.15%, respectively. Our
method outperforms Shu et al. (2021) by ≈ 3% for Office-Home and ≈ 5% for VLCS and Digits-DG in H-score. For
the challenging and large-scale Multi-dataset, ODG-NET achieves an Acc of 49.48% and an H-score of 54.56%, which
is an improvement of more than 3% than Shu et al. (2021). Visually, the T-SNE Van der Maaten & Hinton (2008) Fig.
4(a) confirms the discriminative and domain-independent nature of the semantic space given the augmented source
data.
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(a) (b) (c) (d)

Figure 4: (a) T-SNE of real and cGAN synthesized images in the semantic feature space Fb
o for PACS dataset. (b)

Accuracy comparison between ODG-NET and Cumix Mancini et al. (2020a) based pseudo-open sample generation.
(c) Accuracy comparison between ODG-NET and Mixstyle Zhou et al. (2021) and L2A-OT Zhou et al. (2020b) based
closed-set sample generation. (d) The Frećhet distance Dowson & Landau (1982) between real data and the closed
and pseudo-open images generated, with and without the consideration of W in LGan.

Moreover, we present a collection of synthetically created images produced by our novel ODG-NET. As illustrated
in Figure 3, (a) displays the generated pseudo-open-set examples, while (b) exhibits the pseudo-stylized pictures
(columns 2-4) derived from their corresponding input images (column 1). This comparison highlights the evident
transformation from the original input images to the synthesized pseudo images. Additionally, in (c), we demonstrate
two aspects: first, the variation in artistic style of the input image, such as from sketch to painting; second, the
combined shift in both style and label, exemplified by the transition from a "dog" class image to a "bag" class image.

Table 4: Results of PACS, VLCS, Office-Home, Digits-DG and DomainNet datasets under close-set DG. (In %)

Methods PACS VLCS Office-Home Digits-DG DomainNet

CCSA Motiian et al. (2017) 79.40 70.20 64.90 74.50 -
SFA-A Li et al. (2021c) 81.70 74.00 - 79.60 -
MetaReg Balaji et al. (2018) 81.70 - - - 43.62
MixStyle Zhou et al. (2021) 83.70 - 65.50 - 34.0
JiGen Carlucci et al. (2019) 80.51 73.19 61.20 76.20 -
SagNet Wu et al. (2019) 83.25 - 62.34 - 40.30
RSC Huang et al. (2020) 85.15 75.43 63.12 - 38.90
DDAIG Zhou et al. (2020a) 83.10 - 65.50 77.58 -
L2A-OT Zhou et al. (2020b) 82.80 - 65.60 78.10 -
FACT Xu et al. (2021) 84.51 - 66.56 81.55 -
STEAM Chen et al. (2021) 86.60 - 66.80 83.13 -
Style Neo. Kang et al. (2022) 85.47 - 65.89 - 44.60
Liu et al. Liu et al. (2021) - 76.48 67.85 80.02 -
MMD-AAE Li et al. (2018b) 77.00 72.30 62.70 74.60 -
Cross-Grad Shankar et al. (2018) 80.70 - 64.40 75.83 -
MASF Dou et al. (2019) 81.03 74.11 - - -
EISNet Wang et al. (2020a) 82.15 74.65 - - -
MetaVIB Du et al. (2020) - 74.54 - - -
DGER Zhao et al. (2020) - 74.38 - - -
MixUp Zhang et al. (2017) - - - - 39.20
DMG Chattopadhyay et al. (2020) - - - - 43.63
SWAD Cha et al. (2021) 88.10 79.10 70.60 - 46.50
Fish Shi et al. (2021) 85.50 77.80 68.60 - 42.70
DAML Shu et al. (2021) 82.70 72.95 67.71 79.89 -

ODG-NET 90.66 79.85 72.92 86.75 50.16

4.2 Results on closed DG tasks

In the context of closed-set DG tasks, we compare the performance of ODG-NET against the existing literature, focus-
ing on supervised pre-training methods that use meta-learning, regularization, and domain augmentation techniques
Zhou et al. (2020b; 2021); Chen et al. (2021); Kang et al. (2022); Chattopadhyay et al. (2020); Xu et al. (2021); Shu
et al. (2021); Shi et al. (2021); Du et al. (2020); Zhao et al. (2020), among others.

As shown in Table 4 for the five benchmark DG datasets, ODG-NET outperforms all comparative techniques in
the average leave-one-out DG evaluations, despite these techniques being designed explicitly for closed-set DG. We
observe an improvement of at least 3 − 4% across all datasets. For DomainNet, ODG-NET achieves an average
accuracy of 50.16%, which is 4% better than the previous state-of-the-art method SWAD Cha et al. (2021), likely due
to the more diversified training set on which ODG-NET is trained. Finally, in closed-set DG experiments, ODG-NET
outperforms DAML Shu et al. (2021) by a significant margin of at least 5 − 7%.
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Table 5: Model and loss ablation analysis on PACS & Office-Home datasets. (In %)

Model variants of ODG-NET
PACS Office-Home

Acc H-score Acc H-score

- w/o (Fim, Fv, Fy, Fη) 63.43 50.82 53.07 50.55
- w/o Ad and Ao 66.01 52.93 56.58 53.53
- w/o {Fs

l }S
s=1, but a common backbone for the source domains 63.73 51.53 53.14 50.50

- w/o Fd 64.98 52.09 55.55 52.69
- w/o Fd and {Fs

l }S
s=1 62.38 49.67 51.95 49.02

- w/o Entropy loss 66.81 53.15 57.35 54.36
- w/o Lcon 65.36 51.73 55.40 51.60
- w/o Lsem 64.74 51.12 54.57 51.11
- w/o Fd and {Fs

l }S
s=1 and Lsem 59.07 47.07 48.91 45.56

- with training Fo from scratch 65.96 52.86 56.38 53.33
- w/o W in LGAN 66.26 53.96 58.38 54.93

Sensitivity to noise variance
of GAN for synthesizing closed and pseudo-open samples

P cs
noise − N (0, 1); P os

noise − N (0, 1) 65.30 52.51 55.38 52.53
P cs

noise − N (0, 1); P os
noise − N (0, 2) 66.35 53.32 56.44 53.40

P cs
noise − N (0, 1); P os

noise − N (0, 3) 67.29 54.21 57.18 54.49
P cs

noise − N (0, 1); P os
noise − N (0, 4) 67.98 55.14 58.29 55.52

P cs
noise − N (0, 1); P os

noise − N (0, 10) 68.22 55.37 58.72 56.11
P cs

noise − N (0, 5); P os
noise − N (0, 5) 67.13 54.22 55.65 52.24

ODG-NET(P cs
noise − N (0, 1); P os

noise − N (0, 5)) 68.80 55.81 59.40 56.69

(a) (b)

Figure 5: (a) Frećhet distance between the source and target domains for the closed-set classes. (b) Openness analysis.

4.3 Ablation analysis

Model and loss ablation. In Table 5, we present the effects of different components of the ODG-NET model and the
loss functions for PACS and Office-Home datasets. We confirmed that embedding networks are crucial for learning
latent conditioning information in a meaningful way. The model without embedding layers resulted in a performance
drop of approximately 5 − 6% in the H-score. Similarly, attention modules helped to highlight the style and semantic
features better, and using (Ad, Ao) resulted in a 3−4% improvement in the H-score for both datasets. Additionally, we
experimented with using a common backbone for the source domains instead of {Fs

l }S
s=1. This approach significantly

reduced the H-score by 4% and 6% for both datasets, indicating the importance of multi-view features learned by the
domain-specific backbones.

Furthermore, Fd helped to discriminate the domain and semantic properties of Fel(x), and the omission of Fd reduced
performance by almost 5%. We also removed both Fd and the local classifiers {Fs

l }S
l=1 simultaneously, resulting in a

performance drop of over 6%. When we trained Fo from scratch instead of using a pre-trained ResNet-18 backbone,
we observed a performance drop of around 3%. The pre-trained ResNet-18 backbone is already rich in discriminative
information, which helps our DG tasks. Concerning the loss function of feature optimization, it is evident that both
the closed-set contrastive and open-space entropy regularizer assists in generating a more discriminative feature space.
The model without any of these losses or the full Lsem led to performance degradation by approximately 4%. Finally,
we removed the diversity regularization W in LGAN. Although, as per Fig. 4(d), W induces diversity in the generated
images, empirically, we observed a nominal change in the accuracy (1 − 1.5%) in the presence of W .
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Comparison of our augmentation with methods from the literature. Our augmentation technique enables more
controlled style and label mix-up, and we compared it against two types of augmentation techniques from the liter-
ature: existing style diversification approaches Zhou et al. (2020b; 2021) for closed-set classes, and Cumix Mancini
et al. (2020a), which performs random image mix-up so that the generated images can be a proxy for open-space. Our
results in Fig. 4(b)-4(c) demonstrate that ODG-NET performs better with our proposed augmentation. Our method
is interpolation-based, which allows us to generate more style primitives than Zhou et al. (2020b). Since our method
is image-based as opposed to the feature-based method of Zhou et al. (2021), we can handle the semantics better.
Similarly, for pseudo-open samples, we can generate more meaningful images with varied similarities to the closed
classes than the random mix-up of Mancini et al. (2020a).
Sensitivity to variances of P

os/cs
noise . In this experiment, we tune the σ parameter of P os

noise while fixing P cs
noise for FG.

As shown in Table 5, we observe that as we increase σ from 1 to 5, the model performance continuously improves from
52.51% to 55.81% for PACS and from 52.53% to 56.69% for Office-Home. With high variance, the open samples are
sparsely distributed, better covering the open space. However, the performance improvements are found to saturate
beyond σ = 5. On the other hand, increasing the variance of P cs

noise significantly affects the performance, leading to
a drop of at least 3%. This occurs because the generated images may deviate from the original semantic concepts,
degrading the quality of the generated images.
Frećhet distance for domain alignment. To assess the domain independence of Fb

o , we calculate the Frećhet distance
Dowson & Landau (1982) between the closed-set classes of the source and target domains for Office-Home, with the
target domain being Real-world. In Fig. 5(a), we show the Frećhet distance of the baseline AGG, DAML, and two
variants of ODG-NET, with and without the domain classifier Fd. The full ODG-NET produces the minimum Frećhet
distance, indicating that it performs the best domain alignment among the compared models. The model without Fd

performs poorly compared to the full ODG-NET, suggesting that the use of Fd helps disentangle features better, mak-
ing Fb

o less affected by domain properties and focus on shared components.
Sensitivity to number of target open classes. Since there is no restriction on the number of open classes in the
target domain, we are interested in assessing whether ODG-NET can handle different numbers of open classes during
inference. Here, we considered the average leave-one-out H-score for Office-Home and simulated three scenarios
with different numbers of open classes in the target: 10, 20, and 30. As shown in Figure 5(b), ODG-NET consis-
tently outperforms DAML Shu et al. (2021) by at least 3% for different openness factors. The entropy minimization
component of Lsem widens the gap between open and closed spaces, which is helpful in this regard. We validate this
by removing the entropy component of Lsem and re-running the experiments, in which case we find that performance
drops by 2 − 3%.
Performance comparison when the source domains have a disjoint set of classes. Here, we present a novel exper-
imental scenario in ODG, where the source domains have completely different sets of classes, and the target domain
consists of all the classes from the sources, plus previously unknown class samples. We compare the performance
of ODG-NET with that of DAML Shu et al. (2021) for this setup in Table 6. We find that ODG-NET outperforms
DAML by around 3%, demonstrating its robustness to extreme domain and label shifts within the source domains.

Table 6: Comparison between DAML Shu et al. (2021) and ODG-NET when the source domains have mutually
disjoint classes on Office-Home dataset in terms of H-score. (In %)

Domain Clipart RealWorld Product Art Average

DAMLShu et al. (2021) 40.12 58.72 54.85 47.25 50.23

ODG-NET 45.69 62.77 56.95 49.86 53.81

5 Takeaways

In this paper, we present ODG-NET, a solution to the challenging problem of open domain generalization. This task
combines domain generalization, open-set learning, and class imbalance in a common setting. One of the key features
of ODG-NET is the novel generative augmentation, which enables continuous domain and label conditional image
synthesis through interpolation of conditioning variables. This augmented training set is utilized to learn a discrimina-
tive and unbiased semantic space for an open-set classifier while minimizing the effects of domain-dependent artifacts.
In our experiments, ODG-NET achieves state-of-the-art performance for both open-set and closed-set domain gen-
eralization on six benchmark datasets. We plan to extend our evaluation to more safety-critical applications in the
future.
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