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Abstract

Generating paired images and segmentation masks remains a core bottleneck in
data-scarce domains such as medical imaging and remote sensing, where manual
annotation is expensive, expertise-dependent, and ethically constrained. Existing
generative approaches typically handle image or mask generation in isolation and
offer limited control over spatial and semantic outputs. We introduce CoSimGen,
a diffusion-based framework for controllable simultaneous generation of images
and segmentation masks. CoSimGen integrates multi-level conditioning via (1)
class-grounded textual prompts enabling hot-swapping of input control, (2) spatial
embeddings for contextual coherence, and (3) spectral timestep embeddings for
denoising control. To enforce alignment and generation fidelity, we combine con-
trastive triplet loss between text and class embeddings with diffusion and adversarial
objectives. Low-resolution outputs (128 x 128) are super-resolved to 512 x 512,
ensuring high-fidelity synthesis. Evaluated across five diverse datasets, CoSimGen
achieves state-of-the-art performance in FID, KID, LPIPS, and Semantic-FID, with
KID as low as 0.11 and LPIPS of 0.53. Our method enables scalable, controllable
dataset generation and advances multimodal generative modeling in structured
prediction tasks.

1 Introduction

Creating large-scale paired datasets of images and segmentation masks is a major bottleneck in do-
mains like medical imaging [1]], geospatial analysis [2], autonomous driving [9], and surgical Al [22].
Manual annotation is costly, domain-specific, and often ethically constrained. While generative
models such as VAEs [18]], GANSs [[11]], and diffusion models [32} [14] have advanced image synthesis,
most methods generate either images [25, [17] or masks [19.[7], not both. Simultaneous image-mask
generation remains underexplored, especially with flexible, controllable conditioning—critical for
simulation, data augmentation, and rare-case modeling.

We present CoSimGen, a diffusion-based framework for Controllable Simultaneous image and
segmentation mask Generation. CoSimGen supports conditioning on either class labels or natural
language prompts and unifies multimodal control in a single generation process (Figure[I)). Built
upon a Conditional Denoising Diffusion Probabilistic Model (DDPM) with a U-Net backbone [29],
CoSimGen introduces two novel components: (/) Spectron: a spatio-spectral embedding fusion
module that injects class and timestep embeddings into the network. Here, class features are fused
spatially to guide object placement and structure; timestep embeddings are fused along channels
to model denoising dynamics; and (2) Textron: a text-grounded semantic conditioning module that
aligns class embeddings with language embeddings, enabling text prompts to be "hot-swapped" in
place of class labels during inference. Contrastive learning aligns the embedding spaces to achieve
this, as inspired by CLIP [24].
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Figure 1: CoSimGen generates paired image and segmentation mask from a class or text prompt.
Outputs are high-resolution, semantically aligned, and spatially coherent.

The training objective combines three losses: diffusion loss for denoising, contrastive triplet loss
for text-label alignment, and adversarial loss for realism. We first generate low-resolution outputs
(128 x 128) and super-resolve them to (512 x 512), maintaining fidelity and semantic alignment
between image and mask. CoSimGen is evaluated on five diverse datasets—CholecSeg8k [15]],
BTCV [10], Cityscapes [6], PASCAL VOC [8], and MBRSC [16]]—spanning surgical, medical,
urban, natural, and satellite imagery domains. We use Fréchet Inception Distance (FID) [13l],
Kernel Inception Distance (KID) [4], Inception VGG Distance (VGG-D), Learned Perceptual Image
Patch Similarity (LPIPS) [34], and Semantic FID (sFID) [3] to assess image quality and semantic
realism. For mask-image alignment fidelity, we use sFID and Positive Predictive Value (PPV).
CoSimGen outperforms strong baselines across all metrics and datasets. It enables controllable,
high-resolution, semantically consistent generation of annotated data, offering a scalable alternative
to manual labeling. Our approach is especially valuable in high-stakes domains like surgical training
and medical diagnosis, where precise region-level control is essential. Furthermore, CoSimGen can
serve as a generative pretraining tool, supporting domain adaptation and low-resource learning setups.

By introducing a general-purpose, controllable framework for paired data generation, CoSimGen
addresses fundamental challenges in structured prediction and multimodal generative modeling—core
areas of interest in multi-modal generative Al integrating vision and language modeling.

2 Related Work

Image generation from single to multimodal synthesis. Generative modeling has progressed from
VAE:s [18] and GANSs [12] to diffusion models [14, 28], which now dominate high-fidelity image
synthesis. Conditional GANs like Pix2Pix [[17] and StyleGAN variants introduced structure via
paired inputs or style codes. Diffusion-based methods, such as DALL-E [25], Imagen [30], and
Surgical Imagen [23]], enabled text-to-image synthesis with improved realism, but focus primarily on
single-modality outputs.

Segmentation and data synthesis. To overcome annotation bottlenecks in segmentation tasks, works
like Text4Seg [[19] and SegGen [[7] generate segmentation masks from text. Yet, they decouple image
and mask generation or lack generalizability. Medical approaches such as HVAE [5] generate paired
data but offer limited control and domain scope.

Paired image-mask generation. SimGen [3]] and DiffuMask [33]] explore joint generation of image
and mask, but are either domain-restricted or conditionally limited. OVDiff [21]] relies on fixed
vocabularies for segmentation post-generation. Prior work lacks a unified, controllable model for
simultaneous image-mask synthesis across domains. Our work addresses this gap with fine-grained
conditionality, enabling scalable, multimodal generation from text or class vectors.
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Figure 2: Architecture of CoSimGen for conditional generation of paired image-mask.

3 Methods

Our goal is to generate paired images and semantic segmentation masks, guided by user input
prompts, for synthetic data creation and educational purposes. To achieve this, we propose a
Controllable Simultaneous Image-Mask Generator (CoSimGen), a diffusion-based framework that
utilizes contrastive learning to seamlessly condition generation on text or class labels, ensuring
precise alignment between images and masks in a unified process.

3.1 Task Formalization

Let D = {(X;,yi)}, where X; € RO*HXW represents an image, and y; € {0, 1}77>W is the
corresponding segmentation mask. The mask y; contains the segmented objects, which are associated
with class labels from C = {cy, ¢a, ..., cx }. The conditioning vector c; is derived from the mask y;
and encodes the present classes. Alternatively, a text prompt t; can be provided as a caption of the
image, limited to describing only the objects present in the segmentation mask. The task is to train a
model M that generates image-mask pairs (X7 y) simultaneously, conditioned on the class labels
¢ and/or the text prompt t, such that the generated segmentation mask ¥ aligns with the generated
image X and both are similar to real samples from D. The goal is to maximize the likelihood of
generating paired data that closely resembles real samples, conditioned on the class labels or the
textual description of the segmented objects.

3.2 Model Architecture

The proposed CoSimGen is built on a denoising diffusion process that iteratively refines noisy
inputs into clean, coherent, paired image-mask samples. As illustrated in Fig. 2] the architecture
comprises three main modules: (a) a low-resolution (LR) generator that establishes semantic
alignment between the image, segmentation mask, and conditioning input prompt, (b) a conditioning
mechanism that integrates text/class and timestep embeddings to enable flexible, user-controllable
generation, and (c) a super-resolution (SR) module that upscales the LR coarse outputs into high-
resolution (HR) spatial dimensions while preserving alignment and fidelity.

3.2.1 Low-Resolution Image-Mask Generation

CoSimGen employs a U-Net [29] diffusion backbone that leverages a Conditional Denoising Diffusion
Probabilistic Model (DDPM) [14]]. The U-Net consists of an encoder U,,. and decoder U e
connected via two residual skip connections at each level and trained to denoise a noisy input X; over
multiple timesteps t. The U-Net is conditioned on semantic (class or text) and timestep embeddings
via the mechanisms defined in Sec.[3.2.2] enabling the model to adaptively align its features with
both context and noise-level information, guiding the network to produce class-consistent outputs
during denoising. This backbone takes as input:

1. A noisy input X, representing a corrupted image-mask pair at diffusion step ¢
2. A binary class mask M € {0, 1}¢, indicating the queried classes

3. A text prompt Zg, e.g., “A photo of {class}”
4. The timestep value ¢, representing the current noise level.



107

108
109

110
111
112
113

114
115

116
117

118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136

137
138

Feature Map
g1 3 Rechou

Semantic information
in spatial axis

- :
: \ Jegstive loss \
oo : Text Embedding
information : .
in spectral : Text prompt: Embedding
axis. H )

*A photo of {classes}' Network 1 p.,,,.,ve loss

T — roe :
Text Embedding: €. : — -
© Class vector: Embeddi I:I -
!!!!! : mbedding
F———— F : 101,234.]1 ~ | Network2
Class Embedding: £, :

Ro1 :
[— : Class Mask: Random
: [u 1,01,...1] .

Permmallon
Timestep Embedding: &;

@) : ()

Figure 3: Conditioning mechanisms used in CoSimGen showing: (a) Spectron: spatio-spectral
embedding fusion for semantic and temporal conditioning, and (b) Textron: contrastive alignment for
interchangeable class/text conditioning.

3.2.2 Conditioning Mechanisms

Text encoder. The text encoder &£, processes input text Z, using a frozen sentence transformer [27],
followed by projection layers that embed it into a D-dimensional space: Zem, € RV P = £,(Z,, 1)

Class encoder. Given a binary class mask M € {0, 1}¢, the class encoder £, multiplies M with
a learnable weight matrix W, € R*? effectively selecting the active class embeddings and sums
across classes: Creyy = Z;‘Zl M, W _[i, :]. The Cyey passes through a series of linear transformations
projecting it into a D-dimensional class embedding: Cepp € RYP = £.(M; 6¢,)

Timestep encoder. The timestep encoder £ maps scalar timestep ¢ into a D-dimensional embedding
via sinusoidal positional encoding followed by MLP projections: Tepp € RYD = &(t, 0¢,)

These conditional embeddings (Zemb, Cemb, Temp) are intuitively injected into the model via two
approaches which we proposed in this work:

(a) Spatio-spectral embedding fusion (Spectron): In traditional generative models, conditioning
feedback is applied by direct concatenation along the latent space or by adding conditions to
feature maps along the channel axis. Diffusion models often follow a similar approach, where
the conditional embeddings and timestep embeddings are introduced by adding them to the
channel axis of the feature maps. While effective, this approach does not fully exploit the
semantic richness of the conditional embeddings.

To bridge this gap, we introduce Spectron (Fig.[3p), a strategy that injects conditions into feature
maps at all resolutions, allowing for a more intuitive conditioning process. Recognizing that
class conditions, such as the class embedding Cep, represent a semantic understanding of the
image and mask, we propose spatially embedding this information. This semantic representation
governs the shape, outline, and textures within the generated image and mask. Therefore, it
is intuitively powerful to apply the semantic conditional vectors along the spatial dimensions,
thereby spatially conditioning the features f at each resolution i:

f’ ,spatial __ _ fl + Cemb (1)

cond

where f? : Re*hixwi and CZ . : RYMXwi thus adding the conditional embedding in the
spatial dimension.
The timestep embedding Ty, by contrast, encodes the noisiness of the input, and the noise
level is assumed to affect all channels uniformly and equally. Hence, it becomes intuitive to
apply the timestep conditioning along the channel dimension of the noisy feature maps, thereby
spectrally conditioning the features f at each resolution i:

fZ ,spectral __ _ fz ,spatial + Temb (2)

cond cond

where fi5Petiel . Reixhixws gpq i Reix1%1 By combining these two perspectives, Spatio-
Spectral Feature Mixing enables both semantic and temporal feedback, allowing U to generate
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features that are spatially aligned with the condition semantics and spectrally aligned with the
temporal noise level. This dual conditioning mechanism ensures that the U-Net captures a deep
alignment between the class condition and timestep information across all spatial and spectral
dimensions, enhancing the model’s generative capabilities.

(b) Text-grounded class conditioning (Textron): While class embeddings C.p, can condition

image and mask generation independently, , they lack the flexibility to allow inference on
text inputs directly. To address this, Textron aligns class embeddings with their corresponding
text embeddings during training, enabling the model to accept either class or text embeddings
interchangeably during inference. This is achieved by learning a shared embedding space where
class and text representations are closely aligned.
Conventional generative models condition on text by learning a similarity metric between text
and generated image features. While effective for evaluating alignment, this approach does
not enable direct substitution (or "hot-swapping") of class embeddings with text embeddings
during inference. Textron overcomes this limitation by introducing a contrastive triplet loss
(Eq.[3) that explicitly aligns class and text embeddings. Given a text embedding Zcms (anchor),
the corresponding class embedding C.,, (positive), and a mismatched class embedding Cepp,
(negative), the loss is defined as:

Etriplet = max (07 ||Zemb - (—jemb”2 - ||Zemb - Cemb||2 + Oé) (3)

This objective encourages the model to reduce the distance between matched text-class pairs
while pushing apart mismatched ones, with margin « controlling the separation. As illustrated
in Fig. [3(b), the text embedding Zemy serves as the anchor; the corresponding class embedding
Cemp is used as the positive, and a randomly selected class embedding Cemb forms the negative.
By minimizing this loss, the model learns a unified embedding space where class and text
representations are close, enabling the class encoder to be replaced with a text encoder during
inference. This design allows the model to leverage the semantic richness of natural language,
supporting flexible and efficient text-grounded generation.

3.2.3 Super-Resolution Module

Upscaling strategy. To enhance visual fidelity, the coarse outputs X; g € R6*128%128 are passed to
a super-resolution model (SR). We adopt an Efficient Sub-Pixel CNN (ESPCNN) [31]] as the SR
with an upscale factor of 2.

Training objective. During training, Gaussian noise is added to the ground-truth low-resolution
input:

X =Xfg +6  SR(X{R) = Xf € RO
The SR model is trained progressively from 128 x 128 — 256 x 256 — 512 x 512, supporting
multi-scale inference.

4 Experiments

Datasets. We evaluate on five diverse segmentation datasets: Cityscapes [6], PASCAL VOC [8],
MBRSC [16], BTCV [10], and CholecSeg8k [15], covering general, remote sensing, radiology, and
surgical domains. To enhance class separability, segmentation masks are mapped to a uniformly
spaced Fibonacci RGB (F-RGB) space using a golden angle transformation.

Implementation. CoSimGen is trained at 128 x 128 resolution, with a residual U-Net backbone
(d = 64, multipliers 1 : 8). A separate super-resolution module (SR) scales outputs to 2562 and
5122. We use Adam optimizer (Ir=2 x 10~4, batch size 24), PyTorch mixed-precision training, and
NVIDIA H100 GPUs running for under 72 training hours.

Loss Functions. CoSimGen is optimized using a combination of noise prediction, alignment,
adversarial, and perceptual objectives. The core diffusion model minimizes a conditional noise
reconstruction loss L, guided by timestep ¢, text embedding Ty, and class embedding Cepp.
To enforce semantic alignment, we introduce a triplet loss Lyiple: that attracts Temp to Cemp and
repels it from a negative class embedding. Realism of generated image-mask pairs is encouraged
via an adversarial loss £,4, against a frozen discriminator. For high-resolution refinement, a super-
resolution loss Lgr minimizes a weighted combination of MSE and perceptual loss. The full objective
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Figure 4: Qualitative comparisons of generated image-mask pairs (low-resolution outputs)

is: LcosimGen = Laifr + Luiplet + B - Laav + Lsr. We provide detailed formulations for each loss
component in Appendix.

Baselines. Given the novel challenge of entangled generation of image-mask pairs, we evaluate both
regression-based and adversarial generative approaches. For adversarial methods, we adapt classical
frameworks, including TGAN [26] and Pix2PixGAN [17], to handle dual outputs. As a regression-
based baseline, we employ a conditional convolutional Variational Autoencoder (CVAE) [18] with
joint image-mask reconstruction. All baselines are tuned for fairness across datasets. While re-
cent generative models have shown strong results in single-modality settings (e.g., image-only or
segmentation-only), directly applying them to the coupled image-mask generation task proves non-
trivial. We observed that such models require extensive architectural modifications to jointly handle
continuous and discrete modalities—often reducing them to their foundational counterparts. Thus,
our baseline comparisons focus on principled, extensible variants of standard models, reflecting a fair
and interpretable benchmark for CoSimGen.

Evaluation Protocols. We report Fréchet Inception Distance (FID) [13]], Kernel Inception Distance
(KID) [4], Learned Perceptual Image Patch Similarity (LPIPS) [34]], and Inception VGG Distance
(VGG-D) between real and generated images to assess visual realism. To evaluate mask-image
alignment and regional generation fidelity, we compute semantic FID (sFID) [3]], which extend the
traditional FID to class-specific image regions guided by generated masks. These metrics quantify
how well generated regions match target semantics. Further details on sFID are provided in Appendix.
Conditioning quality is measured via Positive Predictive Value (PPV) of queried classes in the
generated masks. For the super-resolution module SR, we evaluate reconstruction quality by training
on generated low- and high-resolution pairs and testing on low-resolution inputs.

5 Results

5.1 Image Quality

We evaluate the quality of generated image-mask pairs both qualitatively and quantitatively.
Fig.[] provides visual comparisons between CoSimGen and baseline models — CVAE, TGAN, and
Pix2PixGAN — across diverse datasets. CoSimGen consistently produces sharper, crisper, more
coherent images with structurally aligned masks, particularly excelling in datasets with ample training
data. This fidelity is especially evident in complex domains like surgical scenes and urban layouts,
where both visual detail and semantic alignment are critical.

While CVAE performs competitively on smaller datasets such as PASCAL VOC, reflecting its
advantage in low-data regimes, CoSimGen significantly outperforms all baselines on larger-scale
datasets, including Cityscapes, CholecSeg8k, MBRSC, and BTCV. This performance gap underscores
the scalability of CoSimGen, driven by its design to handle high-resolution structures and complex
spatial distributions.
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Table 1: Evaluation of the fidelity of the generated images across 3 datasets in comparison with the
baselines across four metrics: FID, KID, VGG distance, and LPIPS distance.

Model Pascal VOC MBRSC BTCV

FID KID VGG-D LPIPS-D FID KID VGG-D LPIPS-D FID KID VGG-D LPIPS-D
TGAN 348.19 0.29 221.53 0.77 394.86 0.27 113.09  0.72 394.05 0.53 146.31 0.60
Pix2PixGAN 348.05 0.30 22556  0.79 410.18 0.34 11794  0.70 284.60 0.36 152.80  0.54
CVAE 337.41 035 20497 0.76 326.16 0.27 106.79  0.70 192.21 0.19 144.84 045
CoSimGen (Ours) 206.29 0.20 227.64  0.74 203.67 0.11 11043 0.63 159.92 0.13 13935  0.53

Table 2: Comparative evaluation of the generated mask-image alignment in 4 datasets across two
metrics: semantic fréchet inception distance (sFID) and positive predicted value (PPV).

Model Cityscapes Pascal VOC MBRSC BTCV

sFID PPV sFID PPV sFID PPV sFID PPV
TGAN 345.29+39.21 0.68+0.08 348.21+54.32 0.98+0.02 435.12420.87 0.43+0.02 405.07+23.52 0.50+0.09
Pix2PixGAN 128.12+12.09 0.92+0.03 326.66:87.23 0.81+0.06 462.74+19.15 0.84+0.06 323.26+28.25 0.43+0.04
CVAE 204.27+9.82 0.86+0.10 381.53+£29.11 0.90+0.07 422.80+33.10 0.91+0.08 250.52+17.67 0.56+0.09
CoSimGen (Ours) 54.084+8.93  0.98+0.01 343.66£10.89 0.78+0.01 294.66-+12.20 0.87+0.00 198.74+5.68 0.35+0.00

The visual analysis in Fig. @ reveals key qualitative distinctions. TGAN and Pix2PixGAN, while
visually plausible in isolated cases, suffer from mode collapse, texture artifacts, and misaligned
masks. In contrast, CoSimGen preserves semantic boundaries with high fidelity, generating clinically
plausible, spatially consistent outputs. Compared to CVAE, CoSimGen offers crisper structural detail
and greater diversity in textures—especially visible in Cityscapes and surgical datasets.

Quantitative results in TableE]reinforce these findings. CoSimGen achieves the lowest FID, KID, and
LPIPS scores on four of the five datasets (MBRSC, BTCV, CholecSeg8k, Cityscapes), demonstrating
superior realism and perceptual quality. Notably, our model sets a new benchmark on BTCV and
MBRSC in both image quality and semantic fidelity. For radiology datasets, where accurate anatom-
ical delineation is essential, CoSimGen maintains high mask-image coherence—outperforming
adversarial models and matching or exceeding CVAE.

Overall, CoSimGen delivers state-of-the-art visual and semantic quality across a wide range of image
domains, capturing both global realism and fine-grained structural alignment. Additional samples
and visual comparisons are provided in the Appendix.

5.2 Image-Mask Alignment

Table [2| reports the alignment quality between generated images and segmentation masks across
five datasets, using Semantic FID (sFID) and Positive Predictive Value (PPV). CoSimGen achieves
the best sFID scores on Cityscapes, MBRSC, and BTCYV, confirming its strong ability to preserve
semantic consistency at the regional level. It also ranks second in PPV on MBRSC and BTCYV,
demonstrating reliable class-conditional generation. Performance on CholecSeg8k mirrors that on
Cityscapes, reaffirming CoSimGen’s alignment strength even in surgical domains with complex
spatial priors.

On Pascal VOC, CoSimGen lags behind, which we attribute to the dataset’s small size and high
variance. Interestingly, CVAE performs better in this low-resource setting, suggesting VAE-style
reconstruction is more stable when semantic structure is weakly represented. However, TGAN’s de-
ceptively high PPV stems from repetitive outputs—highlighting a trade-off between mask correctness
and sample diversity, which CoSimGen manages more effectively.

Across datasets, results indicate that CoSimGen scales better with data complexity and maintains
high semantic alignment under diverse conditions.

5.3 Input-Output Alignment

We assess alignment between input prompts and generated outputs using semantic FID (sFID), which
measures class-wise fidelity by comparing semantic regions of generated images to real ones. Lower
scores indicate both accurate class presence and precise spatial consistency. As reported in Table[2}
CoSimGen achieves substantially lower sFID across all datasets, confirming reliable grounding of
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Figure 5: Qualitative results showing text(class)-conditioned image-mask generation

generation in the prompted classes. Visualizations in Fig. [5] further support this: masks not only
include all requested classes, but their spatial layout reflects scene plausibility, which is also preserved
in the corresponding images. Unlike baselines, which often miss prompted classes or distort their
geometry, CoSimGen maintains both semantic and structural consistency. These results underscore
the model’s capacity to respect discrete mask structure while simultaneously generating continuous
images—an essential requirement for controllable, high-quality surgical data synthesis.

5.4 High-Resolution (HR) Outputs

The super-resolution (SR) images produced by ESPCNN [31], utilized in our proposed CoSimGen
framework, are compared with baseline outputs from SRGAN [20] on CholecSeg8K [13] and
BTCV [10] datasets. The results in Fig. [6| demonstrate that ESPCNN effectively captures high-
frequency details that SRGAN fails to reproduce. This distinction is particularly evident in the
sharper boundaries between textures, such as those of organs, bones, and blood vessels, highlighting
ESPCNN’s superior ability to preserve structural details. More results are provided in the Appendix.

Detailed ablation results analyzing the impact of CoSimGen’s core contributions, triplet loss for
text-grounded alignment and discriminator loss for fidelity regularization, along with their combined
effect, are provided in the Appendix to demonstrate their individual and complementary benefits.

5.5 Discussion

Our experiments reveal that models optimized with regression objectives exhibit greater stability
compared to those with adversarial objectives, particularly in tasks involving joint estimation of
continuous and discrete distribution pairs. In practice, we observed that adversarial models frequently
suffered from mode collapse, which undermines their reliability for such tasks. By contrast, regression-
based approaches minimize prediction error in a smoother optimization landscape, which contributes
to improved stability. We also found that incorporating adversarial loss as a regularizer in our model
introduced oscillatory behavior in early training stages, where generation quality fluctuates. However,
as training progresses, these oscillations diminishes, and generation quality stabilizes. This suggests
that adversarial loss, while beneficial as a regularizer, may require careful tuning to balance stability
with generation fidelity.

5.6 Limitations

CoSimGen, like most diffusion-based generative models, is highly data-dependent. It requires
substantial amounts of annotated segmentation masks paired with class-specific text labels to perform
effectively. Our results show a noticeable drop in performance on datasets with limited samples, such
as PASCAL VOC, indicating that CoSimGen is optimized for high-fidelity generation in moderate
to large-scale data settings. While data augmentation techniques (e.g., random rotations and flips)
can partially mitigate this limitation in specific domains like satellite imagery, their applicability to
natural or medical scenes is limited. This highlights a key challenge: the need for more effective
augmentation strategies or lightweight adaptations of CoSimGen to make it viable for low-resource
and few-shot scenarios.
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Moreover, diffusion training is computationally intensive, which may restrict accessibility to users
without high-end compute resources. Developing more efficient variants of CoSimGen or integrating
it with faster approximation techniques could broaden its usability.

In terms of scope, all datasets used in this study lack identifiable human features. As such, we
were unable to evaluate the model’s behavior on data involving personally identifiable information.
Users should exercise caution when deploying CoSimGen in privacy-sensitive settings, as its privacy-
preserving capabilities remain unverified.

Although CoSimGen demonstrates strong input-output alignment and fidelity on curated benchmarks,
its generalizability to out-of-distribution prompts or unseen object categories has not been systemati-
cally evaluated, leaving open questions about robustness in more diverse real-world applications.

6 Conclusion

This work introduces CoSimGen, a novel diffusion-based framework for controllable simultaneous
image and segmentation mask generation. By addressing the critical challenges in existing generative
models, CoSimGen provides a unified solution for producing high-quality paired datasets with precise
control during generation. The model leverages text-grounded class conditioning, spatial-temporal
embedding fusion, and multi-loss optimization, enabling robust performance across applications
requiring spatial accuracy and flexibility. CoSimGen demonstrates state-of-the-art performance on
diverse datasets, making it a versatile tool for augmenting datasets, simulating rare scenarios, and
tackling domain-specific challenges. Its outputs offer a scalable alternative to manual annotation,
significantly reducing the time and resources required for dataset creation. Moreover, the generated
paired data serve as a ready source for pretraining models, given the framework’s ability to produce
an unlimited variety of high-fidelity, condition-adherent examples. Beyond its utility in dataset
augmentation, CoSimGen establishes a foundation for future research in multi-modal, multi-class,
and domain-adaptive generative frameworks. By bridging the gap between generative Al and
real-world applications, the framework addresses critical bottlenecks in precision-driven and privacy-
sensitive domains, advancing cross-domain Al research and deployment. CoSimGen represents a
significant step forward in enabling scalable, controllable data generation, unlocking new possibilities
for pretraining, robustness testing, and real-world impact.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions that we mentioned in the abstract and introduction are in the
paper’s analysis and experimental sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of the work in Section [5.3]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper contains no theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our proposed method is fully detailed in Section [3| while all hyperparmeters
used and training strategies are provided in Sectiondand Appendix

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Datasets use are publicly available, baseline models explored already open-
sourced codebases and the remainder of the code will be released on GitHub shortly after
this submission.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Some of these information are stated in the experiments section ] and the rest
are provided in the Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This is a generation task, we generated large number of samples which is
individually stochastic and randomly sample a subset in multiple rounds and report error
bars in Table 2]

Guidelines:

» The answer NA means that the paper does not include experiments.

¢ The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide information on the computer resources in Section 4}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have ensured that our research conforms to the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Societal impact is discussed in the Appendix.
Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We do not use controversial dataset and we positioned our model utility for
educational purpose.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all external sources of assets and we will include our asset license
permit in the README.md of the code.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our released code constitutes a new assets and will be well documented on
GitHub to complement the documentation provided by this paper.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not conduct crowdsourcing experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper did not invovle crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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740 * For initial submissions, do not include any information that would break anonymity (if

741 applicable), such as the institution conducting the review.

742 16. Declaration of LLM usage

743 Question: Does the paper describe the usage of LLMs if it is an important, original, or
744 non-standard component of the core methods in this research? Note that if the LLM is used
745 only for writing, editing, or formatting purposes and does not impact the core methodology,
746 scientific rigorousness, or originality of the research, declaration is not required.

747 Answer: [NA]

748 Justification: Development of the method and research do not involve LLMs.

749 Guidelines:

750 * The answer NA means that the core method development in this research does not
751 involve LLMs as any important, original, or non-standard components.

752 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
753 for what should or should not be described.
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