
Under review as a conference paper at ICLR 2022

EVADE : EVENT-BASED VARIATIONAL THOMPSON
SAMPLING FOR MODEL-BASED REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Posterior Sampling for Reinforcement Learning (PSRL) is a well-known algo-
rithm that augments model-based reinforcement learning (MBRL) algorithms with
Thompson sampling. PSRL maintains posterior distributions of the environment
transition dynamics and the reward function to procure posterior samples that are
used to generate data for training the controller. Maintaining posterior distributions
over all possible transition and reward functions for tasks with high dimensional
state and action spaces is intractable. Recent works show that dropout used in con-
junction with neural networks induce variational distributions that can approximate
these posteriors. In this paper, we propose Event-based Variational Distributions
for Exploration (EVaDE), variational distributions that are useful for MBRL, es-
pecially when the underlying domain is object-based. We leverage the general
domain knowledge of object-based domains to design three types of event-based
convolutional layers to direct exploration, namely the noisy event interaction layer,
the noisy event weighting layer and the noisy event translation layer respectively.
These layers rely on Gaussian dropouts and are inserted in between the layers of the
deep neural network model to help facilitate variational Thompson sampling. We
empirically show the effectiveness of EVaDE equipped Simulated Policy Learning
(SimPLe) on a randomly selected suite of Atari games, where the number of agent
environment interactions is limited to 100K.

1 INTRODUCTION

Model-Based Reinforcement Learning (MBRL) has recently gained popularity for tasks that allow
for a very limited number of interactions with the environment (Kaiser et al., 2020). These algorithms
use a model of the environment, that is learnt in addition to the policy, to improve sample efficiency
in several ways; these include generating artificial training examples (Kaiser et al., 2020; Sutton,
1991), assisting with planning (Nagabandi et al., 2017; Coulom, 2006; Williams et al., 2015; Curi
et al., 2020) and guiding policy search (Levine & Koltun, 2013; Chebotar et al., 2017). Additionally,
it is easier to incorporate inductive biases derived from the domain knowledge of the task for learning
the model, as the biases can be directly built into the transition and reward functions.

In this paper, we show how domain knowledge can also be used for designing exploration strategies
in MBRL. Model free agents explore the space of policies and value functions; MBRL agents, on the
other hand, explore the space of transition dynamics and reward functions. One method for exploring
the space of transition dynamics and reward functions is Posterior Sampling for Reinforcement
Learning (PSRL) (Strens, 2000; Osband & Van Roy, 2017), which uses the Thompson sampling
(Thompson, 1933) method of sampling the posterior of the model to explore other plausible models.
Maintaining the posterior is generally intractable and in practice, variational distributions are often
used as an approximation to the posterior (Aravindan & Lee, 2021; Wang & Zhou, 2020; Zhang et al.,
2019).

Traditionally, variational distributions are designed with two considerations in mind: inference and/or
sampling should be efficient with the variational distribution, and the variational distribution should
approximate the true posterior as accurately as possible. For MBRL, we propose to also design the

1

Under review as a conference paper at ICLR 2022

variational distribution to generate trajectories through parts of the state space that may potentially
give high returns, for the purpose of exploration.

In MBRL, trajectories are generated in the state space by running policies that are optimized against
the learned model. One way to generate useful exploratory trajectories, is to perturb the reward
function in the model so that a different part of the state space appears to contain high rewards,
causing the policy to direct the trajectories towards those states. Another method is to perturb the
reward function so that parts of the state space traversed by the current policy appear sub-optimal,
causing the policy to seek new trajectories.

We focus on problems where the underlying domain is object-based, i.e., domains where the reward
functions depend heavily on the locations of individual objects and interactions between objects,
which we call events. An example of such an object based task, is the popular Atari game Breakout.
In the game, the agent is rewarded when the ball hits a brick and will not lose a life as long as the
paddle successfully hits the ball, both of which can be described as an interaction between two objects.
The rewards are determined by the interactions between the ball and the bricks, the wall or the paddle.

For such domains, we present Event based Variational Distributions for Exploration (EVaDE), a set of
variational distributions that can help generate useful exploratory trajectories for deep convolutional
neural network models. EVaDE comprises three Gaussian dropout (Srivastava et al., 2014) based
convolutional layers, namely the noisy event interaction layer, the noisy event weighting layer and
the noisy event translation layer respectively. The noisy event interaction layer is designed to provide
perturbations to the reward function in states where multiple objects appear at the same location,
randomly perturbing the value of interactions between objects. The noisy event weighting layer is
designed to perturb the output of a convolutional layer at a single location; assuming that the output
of the convolutional filters capture events, this would upweight and downweight the reward associated
with these events randomly. The noisy event translation layer is designed to perturb trajectories
that go through ”narrow passages”; small translations can randomly perturb the returns from such
trajectories, causing the policy to explore different trajectories.

These EVaDE layers can be used as normal convolutional layers and can be inserted in between the
layers of the environment network models. When included in deep convolutional networks, noisy
event interaction layers, noisy event weighting layers and noisy event translation layers generate
perturbations on possible object interactions, on the importance of different events and on the
positional importance of objects/events respectively, through the dropout mechanism which induces
variational distributions over the model parameters (Srivastava et al., 2014; Gal & Ghahramani, 2016).

An interesting aspect of designing for exploration is that the variational distributions can be helpful
even if they are not designed to approximate the posterior well, as long as they assist in perturbing
the policy out of local optimums. After perturbing the policy, incorrect parts of the model will either
be corrected by data or left incorrect if they are irrelevant to optimal behaviour.

Finally, we approximate PSRL by equipping the environment models of Simulated Policy Learning
(SimPLe) (Kaiser et al., 2020) with EVaDE layers. We conduct experiments to compare EVaDE
equipped SimPLe (EVaDE-SimPLe) with various popular baselines on a suite of 12 randomly selected
Atari games. In the experiments conducted, all agents work in the low data regime, where the number
of interactions with the real environment is restricted to 100K. EVaDE-SimPLe agents achieve a
human normalized score of 0.78 on average in these games, which is 44% more than the mean score
of 0.54 achieved by a recent low data regime method, CURL (Laskin et al., 2020), and 52% more
than the mean score of 0.51 achieved by vanilla-SimPLe agents.

2 BACKGROUND AND RELATED WORK

Posterior sampling approaches like Thompson Sampling (Thompson, 1933) have been one of the
more popular methods used to balance the exploration exploitation trade-off. Exact implementations
of these algorithms have been shown to achieve near optimal regret bounds (Agrawal & Jia, 2017;
Jaksch et al., 2010). These approaches, however, work by maintaining a posterior distribution over all
possible environment models and/or action-value functions. This is generally intractable in practice.
Approaches that work by maintaining an approximated posterior distribution (Osband et al., 2016b;
Azizzadenesheli et al., 2018), or approaches that use bootstrap re-sampling to procure samples,
(Osband et al., 2016a; Osband & Van Roy, 2015) have achieved success in recent times.

2

Under review as a conference paper at ICLR 2022

Variational inference procures samples from distributions that can be represented efficiently while also
being easy to sample. These variational distributions are updated with observed data to approximate
the true posterior as accurately as possible. Computationally cost effective methods such as dropouts
have been known to induce variational distributions over the model parameters (Srivastava et al.,
2014; Gal & Ghahramani, 2016). Consequently, variational inference approaches that approximate
the posterior distributions required by Thompson sampling have gained popularity (Aravindan & Lee,
2021; Wang & Zhou, 2020; Urteaga & Wiggins, 2018; Xie et al., 2019).

Model-based reinforcement learning improves sample complexity at the computational cost of
maintaining and performing posterior updates to the learnt environment models. Neural networks
have been successful in modelling relatively complex and diverse tasks such as Atari games (Oh
et al., 2015; Ha & Schmidhuber, 2018). Over the past few years, variational inference has been used
to represent environment models, with the intention to capture environment stochasticity (Hafner
et al., 2019; Babaeizadeh et al., 2018; Gregor et al., 2019).

SimPLe (Kaiser et al., 2020) is one of the first algorithms to use MBRL to train agents to play
video games from images. It is also perhaps the closest to EVaDE, as it not only employs an
iterative algorithm to train its agent, but also uses an additional convolutional network assisted by an
autoregressive LSTM based RNN to approximate the posterior of the hidden variables in the stochastic
model. Thus, similar to existing methods (Hafner et al., 2019; Babaeizadeh et al., 2018; Gregor et al.,
2019), these variational distributions are used for the purpose of handling environment stochasticity
rather than improving exploration. To the contrary, EVaDE-SimPLe is an approximation to PSRL, that
uses a Gaussian dropout induced variational distribution over deterministic reward functions solely for
the purpose of exploration. Unlike SimPLe, which uses the stochastic model to generate trajectories
to train its agent, EVaDE-SimPLe agents optimize for a deterministic environment model sampled
from the variational distribution. Moreover, with EVaDE, these variational distributions are carefully
designed so as to explore different object interactions, importance of events and positional importance
of objects/events, that we hypothesize are beneficial for learning good policies in object-based tasks.

3 EVENT BASED VARIATIONAL DISTRIBUTIONS FOR EXPLORATION

Event-based Variational Distributions for Exploration (EVaDE) consist of a set of variational dis-
tribution designs, each induced by a noisy convolutional layer. These convolutional layers can be
inserted after any intermediate hidden layer in deep convolutional neural networks to help us construct
approximate posteriors over the model parameters to produce samples from relevant parts of the
model space. EVaDE convolutional layers use Gaussian multiplicative dropout to draw samples
from the variational approximation of the posterior. Posterior sampling is done by multiplying
each parameter, θienv, of these EVaDE layers by a perturbation drawn from a Gaussian distribution,
N (1, (σienv)

2). These perturbations are sampled by leveraging the reparameterization trick (Kingma
et al., 2015; Salimans et al., 2017; Plappert et al., 2018; Fortunato et al., 2018) using a noise sample
from the standard Normal distribution, N (0, 1), as shown in Equation 1. The variance corresponding
to each parameter, (σienv)

2, is trained jointly with the model parameters θenv .

θ̃ienv ← θienv(1 + σienvε
i); εi ∼ N (0, 1) (1)

When the number of agent-environment interactions is limited, the exploration strategy employed by
the agent is critical. In object-based domains, rewards and penalties are often sparse and occur when
objects interact. Hence, the agent needs to experience most of the events in order to learn a good
environment model. Generating trajectories that contain events is hence a reasonable exploration
strategy. Additionally, a very common issue with training using a very few number of interactions is
that the agent may often get stuck in a local optima, prioritising an event, which is relatively important,
but may not lead to an optimal solution. Generating potentially high return alternate trajectories that
do not include that event is another reasonable exploration strategy.

With these exploration strategies in mind, we introduce three EVaDE layers, namely the noisy event
interaction layer, the noisy event weighting layer and the noisy event translation layer. All the three
layers are constructed with the hypothesis that the channels of the outputs of intermediate layers of
deep convolutional neural networks either capture object positions, or events (interaction of multiple
objects detected by multi-layer composition of the networks).

3

Under review as a conference paper at ICLR 2022

(a) (b) (c)

Figure 1: (a) This image shows one noisy event interaction filter acting on an input with c channels.
Here f is an m×m noisy convolutional filter, which acts upon input patches at the same location
across different channels, noisily altering the value of events captured at those locations.(b) This
image shows how the filters of the noisy event weighting layer weight the input channels. The filters
f1, f2, f3 and fc randomly upweight and downweight the events captured by the channels c1, c2, c3
and cc respectively. The white entries of the filter are entries that are set to zero, while the rest are
trainable noisy model parameters. (c) The noisy event translation filter. The filters f1, f2, f3 and fc
noisily translate events/objects captured by the channels c1, c2, c3 and cc respectively. The white
entries of the filter are entries that are set to zero, while the rest are trainable noisy model parameters.
Gaussian multiplicative dropout is applied to all the non-zero parameters of all filters.

3.1 NOISY EVENT INTERACTION LAYER

The noisy event interaction layer is designed with the motivation of increasing the variety of events
experienced by the agent. This layer consists of noisy convolutional filters, each having a dimension
ofm×m×c, where c is the number of input channels to the layer. Every filter parameter is multiplied
by a Gaussian perturbation as shown in Equation 1. The filter dimension, m, is a hyperparameter that
can be set so as to capture objects within a small m×m patch of an input channel. Assuming that the
input channels capture the positions of different objects, a filter that combines the c input channels
locally captures the local object interaction within the m×m patch. By perturbing the filter, different
combinations of interactions can be captured; if the filter is used as part of the reward function, it will
correspondingly reward different interactions depending on the perturbation. The policy optimized
for different perturbed reward functions is likely to generate trajectories that contain different events.
Note that convolutional filters are equivariant, so the same filter will detect the event anywhere in the
image and can result in trajectories that include the event at different positions in the image.

We describe the filter in more detail. Every output pixel of the filter, yki,j , representing (i, j)th pixel
of the kth output channel, can be computed as shown in Equation 2. Here x is the input to the layer
with c input channels, Pxl

i,j
is the m ×m patch (represented as a matrix) centred around xli,j , the

(i, j)th pixel of the lth input channel, θ̃lk is the lth channel of the kth noisy convolutional filter, � the
Hadamard product operator, and 1m is an m dimensional column vector whose every entry is 1.

yki,j =

c∑
l=0

1Tm
(
θ̃lk � Pxl

i,j

)
1m (2)

Figure 1a shows how this filter is applied over the channels of the input.

3.2 NOISY EVENT WEIGHTING LAYER

Overemphasis on certain events is possibly one of the main causes due to which agents converge to
sub-optimal policies in object based tasks. Hence, it would be useful to easily be able to increase
as well as decrease the importance of an event. For this filter, we assume that each input channel is
already detecting an event and design a variational distribution over model parameters that directly
up-weights or down-weights the events captured by different input channels.

This layer can be implemented with the help of c 1 × 1 noisy convolutional filters (each having
a dimension of 1 × 1 × c as shown in Figure 1b), where c is the number of input channels. We
denote the lth element of the kth filter in the layer as θlk. To implement per channel noisy weighting,
we set every θkk as a trainable model parameter, which has a Gaussian dropout variance parameter

4

Under review as a conference paper at ICLR 2022

associated with it to facilitate noisy weighting as shown in Equation 1. All other weights, i.e., θlk
when l 6= k are set to 0. Thus each noisy event weighting layer has c trainable model parameters and
c trainable Gaussian dropout parameters. A pictorial representation of how this layer acts on its input
is presented in Figure 1b.

Every output yki,j , corresponding to the (i, j)th pixel of the kth output channel, can be computed
using Equation 3, where θ̃kk is the noisy scaling factor for the kth input channel.

yki,j = θ̃kkx
k
i,j (3)

We expect that inducing such a variational distribution that up-weights or downweights events
randomly helps the agents learn from different events that are randomly emphasised by different
model samples drawn from the distribution. This may eventually help them in escaping local optima
caused by overemphasis of certain events.

3.3 NOISY EVENT TRANSLATION LAYER

In object based domains, an agent often has to perform a specific sequence of actions to successfully
gain some rewards and may be penalized heavily for deviation from the sequence. We refer to
the specific sequence of actions as a ”narrow passage”. A small translation of the positions of the
environment or other objects will often cause the agent to be unsuccessful. When random translations
of obstacles, events or boundaries are performed within the reward function, the optimized policy
may select a different trajectory, possibly allowing it to escape from a locally optimal trajectory. We
thus design the noisy event translation layer to induce a variational distribution over such model
posteriors that can sample a variety of translations of relevant objects.

The noisy soft-translation on an input with c channels, is performed with the help of c convolutional
filters, each having a dimension of m×m× c. These filters compute a noisy weighted sum of the
corresponding input pixel and the pixels near it to effect a noisy translation of the channel. Similar
to the noisy event weighting layer, each filter of the noisy event translation layer acts on one input
channel. To achieve this, every parameter except the parameters of the kth channel of the kth filter,
θkk (which has a dimension of m×m), and their corresponding dropout variances, is set to 0, for all
k. Moreover in the channel θkk , only the middle column and row contain trainable parameters. Figure
1c shows a detailed pictorial representation of this structure of the filters. A random translation of up
to n pixels of the input can be achieved by using a (2n+ 1)× (2n+ 1) noisy event translation layer.

Equation 4 shows how yki,j , the (i, j)th output pixel of the kth channel, is computed. Here, Pxk
i,j

is a

m×m patch centred at (i, j)th pixel of the kth input channel, θ̃kk is the kth channel of the kth noisy
convolutional filter, � the Hadamard product operator, and 1m is an m dimensional column vector
where all the entries are 1.

yki,j = 1Tm
(
θ̃kk � Pxk

i,j

)
1m (4)

3.4 REPRESENTATIONAL CAPABILITIES OF EVADE EQUIPPED NETWORKS

Ideally, adding EVaDE layers would not cause the network to be unable to represent the true model,
even if the layers are added for exploration purposes and do not accurately approximate the posterior.
Theorem 1 below states that this is indeed the case.

Theorem 1. Let n be any neural network. For any convolutional layer l, let mi(l)× ni(l)× ci(l)
and mo(l) × no(l) × co(l) denote the dimensions of its input and output respectively. Then, any
function that can be represented by n can also be represented by any network ñ ∈ Ñ , where Ñ is
the set of all neural networks that can be constructed by adding any combination of EVaDE layers to
n, provided that, for every EVaDE layer l̃ added, l̃ uses a stride of 1, mi(l̃) ≤ mo(l̃), ni(l̃) ≤ no(l̃)
and ci(l̃) ≤ co(l̃).

Proof. The proof follows from the fact that every EVaDE layer l̃i that is added is capable of repre-
senting the identity transformation. A detailed proof is presented in Appendix B.

5

Under review as a conference paper at ICLR 2022

Figure 2: The network architecture of the environment model used to train EVaDE-SimPLe agents.

If the added EVaDE layers results in variational distributions that poorly approximate the posterior,
performance can indeed be poorer. But with enough data, the correct model should still be learnable
since it is representable, as long as the optimization does not get trapped in a poor local optimum.

3.5 APPROXIMATE PSRL WITH EVADE EQUIPPED SIMULATED POLICY LEARNING

Simulated Policy Learning (SimPLe) (Kaiser et al., 2020) is an iterative model based reinforcement
learning algorithm, wherein the environment model learnt is used to generate artificial episodes to
train the agent policy. In every iteration, the SimPLe agent first interacts with the real environment
using its current policy. After being trained on the set of all collected interactions, the models of
the transition and reward functions are then used as a substitute to the real environment to train the
policy of the agent to be followed by it in its next interactions with the real environment. PSRL
(Strens, 2000; Osband & Van Roy, 2017), which augments MBRL with Thompson sampling, has
a very similar iterative structure as that of SimPLe. However, instead of maintaining a single
environment model, PSRL maintains a posterior distribution over all possible environment models
given the interactions experienced by the agent with the real environment. The agent then optimizes a
policy for an environment model sampled from this posterior distribution. This policy is used in its
real environment interactions of the next iteration. EVaDE equipped SimPLE approximates PSRL,
by maintaining an approximate posterior distribution of the reward function with the help of the
variational distributions induced by the three EVaDE layers.

Being an approximation of PSRL, EVaDE-SimPLe agent has the same iterative training structure
where it interacts with the real environment using its latest policy to collect interactions, learns a
transition model and an approximate posterior over the reward model parameters by jointly optimizing
the environment model parameters θenv and the Gaussian dropout parameters of the reward model,
σrew, with the help of supervised learning and then optimizes its policy with respect to an environment
characterized by the learnt transition function and a reward model sample that is procured from the
posterior with the help of Gaussian dropout as shown in Equation 1. This policy is then used by the
agent to procure more training interactions in the next iteration.

4 EXPERIMENTS

We use a randomly selected suite of 12 Atari games to carry out our experiments. The test suite
contains games with easy exploration such as Kangaroo, RoadRunner and Seaquest as well as
BankHeist, Frostbite and Qbert, which are hard exploration games (Bellemare et al., 2016).

4.1 NETWORK ARCHITECTURE

In our experiments we use the network architecture of the deterministic world model introduced in
Kaiser et al. (2020) to train the environment models of the SimPLe agents, but do not augment it
with the convolutional inference network and the autoregressive LSTM unit. We provide a more
detailed description of the network architecture in Appendix D. Readers are also referred to Kaiser
et al. (2020) for more details.

6

Under review as a conference paper at ICLR 2022

The architecture of the environment model used by EVaDE agents is shown in Figure 2. This model
is very similar to the one used by SimPLe agents, except that it has a combination of a 3× 3 noisy
event translation layer, a noisy event weighting layer and a 1×1 noisy event interaction layer inserted
before the fifth and sixth de-convolutional layers. The final de-convolutional layer acts as a noisy
event interaction filter when computing the reward, while it acts as a normal de-convolutional layer
while predicting the next frame. Sharing weights between layers allows us to achieve this. We insert
EVaDE layers in a way that it perturbs only the reward function and not the transition dynamics.

We reuse the network architecture proposed in Kaiser et al. (2020) to train the policies in both
the SimPLe and EVaDE-SimPLe agents using Proximal Policy Optimization (PPO) (Schulman
et al., 2017). We disable the Bernoulli dropout while training EVaDE-SimPLe agents. All the other
hyperparameters used for training the policy network and environment are the same as the ones used
in Kaiser et al. (2020).

4.2 EXPERIMENTAL DETAILS

The training regimen that we use to train all the agents is the same and is structured similarly to
the the setup used by Kaiser et al. (2020). As in Kaiser et al. (2020), the agents, initialized with a
random policy, collect 6400 real environment interactions before starting the first training iteration. In
every subsequent iteration, every agent trains its environment model with its collection of real world
interactions, refines its policy by interacting with the environment model, if it is a vanilla-SimPLe
agent, or a transition model and a reward model sampled from the approximate posterior, if it is an
EVaDE-SimPLe agent, and then collects more interactions with this refined policy.

PSRL regret bounds scale linearly with the length of an episode experienced by the agent in every
iteration (Osband et al., 2013). Shorter horizons, however, run the risk of the agent not experiencing
anything relevant before episode termination. To balance these factors, we set the total number
of iterations to 30, instead of 15. We allocate an equal number of environment interactions to
each iteration, resulting in 3200 agent-environment interactions per iteration. The total number of
interactions that each SimPLe and EVaDE-SimPLe agent procures (about 102K) is similar to SimPLe
agents trained in Kaiser et al. (2020), which allocates double the number of interactions per iteration,
but trains for only 15 iterations. To disambiguate between the different SimPLe agents, we refer to the
SimPLe agents trained in our paper and Kaiser et al. (2020) as SimPLe(30) and SimPLe respectively
from here on.

We try to keep the training schedule of EVaDE-SimPLe and SimPLe(30) similar to the training
schedule of the deterministic model in Kaiser et al. (2020) so as to keep the comparisons fair. We
train the environment model for 45K steps in the first iteration and 15K steps in all subsequent
iterations. Policy training is done with the help of 16 parallel PPO agents, which collect a batch of
50 environment interactions from the learnt model. In every iteration these parallel agents collect
z ∗ 1000 batches of interactions, where z = 1 in all iterations except iterations 8, 12, 23 and 27 where
z = 2 and in iteration 30, where z = 3. The policy is also trained when the agent interacts with
the real environment. However, the effect of these interactions on the policy (numbering 102K) is
minuscule when compared to the 28.8M transitions experienced by the agent when interacting with
the learnt environment model.

4.3 RESULTS

We train three independent runs of SimPLe(30) and EVaDE-SimPLe agents for every game in the 12
game test suite. We report the average scores achieved by these agents in Table 1 (the standard errors
of these runs are given in Table 2) along with the scores achieved by the baselines SimPLe (Kaiser
et al., 2020), CURL (Laskin et al., 2020), OverTrained Rainbow (Kielak, 2020) and Data-Efficient
Rainbow (van Hasselt et al., 2019). For each baseline, we report the number of games in which they
score more (or less) than EVaDE-SimPLe, which are counted as wins (or losses) for the baseline.
We also report the mean Human Normalized Scores (HNS) achieved by all agents. Additionally,
we include some visualizations that help us understand the functionality of the EVaDE layers in
Appendix E.3.

EVaDE-SimPLe agents achieve the highest score in 5 of the 12 games in the test suite, outperforming
every baseline in at least 8 games. Moreover, the effectiveness of the three noisy convolutional filters

7

Under review as a conference paper at ICLR 2022

Table 1: Comparison of the mean scores achieved by EVaDE-SimPLe and SimPLe(30) agents with
different baselines when the number of agent-environment interactions are restricted to 100K.

Game SimPLe SimPLe(30) CURL OTRainbow Eff. Rainbow EVaDE-SimPLe

BankHeist 34.2 51.9 131.6 182.1 51 236.3
BattleZone 4031.2 4823 14870 4060.6 10124.6 10427
Breakout 16.4 19.8 4.9 9.84 1.9 25.6

CrazyClimber 62583.6 39591 12146.5 21327.8 16185.3 61949
DemonAttack 208.1 98.6 817.6 711.8 508 145.5

Frostbite 236.9 257.4 1181.3 231.6 866.8 262.1
JamesBond 100.5 255.2 471 112.3 301.6 187.5
Kangaroo 51.2 385 872.5 605.4 779.3 1181

Krull 2204.8 4460 4229.6 3277.9 2851.5 5406
Qbert 1288.8 3753 1042.4 509.3 1152.9 3069

RoadRunner 5640.6 2886 5661 2696.7 9600 8915
Seaquest 683.3 402.3 384.5 286.92 354.1 737.3

Vs EVaDE (W/L) 10L,2W 10L,2W 8L,4W 11L,1W 8L,4W -

HNS 0.36 0.51 0.54 0.31 0.38 0.78

Table 2: Scores (mean ± 1 standard error) of SimPLE agents when equipped with all three EVaDE
filters individually and when equipped with all filters. All scores are averaged over three independent
training runs.

Game SimPle (30) Inter. Layer Weight. Layer Trans. Layer EVaDE-SimPLe

BankHeist 51.9±40.6 94.8±50.6 194.1±22.4 168.5 ± 26.4 236.3 ± 57.6
BattleZone 4823±1098 6375 ± 2580 6146±1565 5761 ± 705 10427 ± 530
Breakout 19.8±0.8 19.5 ± 5.5 19.3 ± 9.4 19.3 ±2.7 25.6 ± 4.9

CrazyClimber 39591±13350 59440±1441 71624±3115 63612±2980 61949±4594
DemonAttack 98.6±22.1 146.3 ±41.6 143.9 ± 6.2 99.4 ± 19.7 145.5 ± 22.3

Frostbite 257.4±2.8 246.8±4.9 256±3.1 263± 2.7 262.1 ± 6.3
JamesBond 255.2±8.2 126±81 161.5 ± 86.2 170.8 ± 104.1 187.5 ± 43
Kangaroo 385±301 1640±940 277.1 ± 54.8 1075± 529 1181±142

Krull 4460±826 3790±1200 4300 ±543 4752 ± 1727 5406±255
Qbert 3753±376 1975± 983 936 ±263 2959 ± 906 3069 ± 997

RoadRunner 2886±1214 7909±860 5064 ± 1268 8365±2150 8915 ± 314
Seaquest 402.3±8.6 590 ± 154.5 452.9 ± 199 702.7 ±76.9 737.3 ± 101.5

HNS 0.51 0.58 0.6 0.68 0.78

to improve exploration can be empirically verified as EVaDE-SimPLe manages to attain higher mean
scores than SimPLe(30) in 10 of the 12 games, even though both methods follow the same training
routine. EVaDE-SimPLe also scores a mean HNS of 0.78, which is 44% higher than the score of
0.54 achieved by the best performing baseline, CURL, and 52% more than the mean HNS of 0.51
achieved by SimPLe(30). Additionally, EVaDE-SimPLe agents also surpass the human performances
(Brittain et al., 2019) in the games of CrazyClimber, RoadRunner and Krull.

4.4 ABLATION STUDIES

We also conduct ablation studies by equipping SimPLe(30) with just one of the three EVaDE layers to
ascertain whether all of them aid in exploration. We do this by just removing the other two layers from
the EVaDE environment network model (see Figure 2). Note that when the noisy event interaction
filter is removed, Gaussian multiplicative dropout is not applied to the sixth de-convolutional layer.

The mean scores achieved when SimPLe(30) is equipped with only the noisy event interaction layer,
the noisy event weighting layer or the noisy event translation layer individually along with the scores
of SimPLe(30) and EVaDE-SimPLe are presented in Table 2.

8

Under review as a conference paper at ICLR 2022

0 5 10 15 20 25
Iterations

0

50

100

150

200

250

300

350

S
co

re

BankHeist

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

2000

4000

6000

8000

10000

12000

S
co

re

BattleZone

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

5

10

15

20

25

S
co

re

Breakout

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

10000

20000

30000

40000

50000

60000

70000

S
co

re

CrazyClimber

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

60

80

100

120

140

160

180

200

S
co

re

DemonAttack

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

100

150

200

250

300

350

400

450

500

S
co

re

Frostbite

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

50

100

150

200

250

300

S
co

re

Jamesbond

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

0

200

400

600

800

1000

1200

1400

1600

S
co

re

Kangaroo

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

1000

2000

3000

4000

5000

6000

S
co

re

Krull

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

500

1000

1500

2000

2500

3000

3500

S
co

re

Qbert

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

0

2000

4000

6000

8000

S
co

re

RoadRunner

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

100

200

300

400

500

600

700

S
co

re

Seaquest

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

Figure 3: Learning curves of EVaDE-SimPLe agents, SimPLe(30) agents and agents which only add
one of the EVaDE layers.

It can be seen that individually, each filter achieves a higher HNS than SimPLe(30), thus indicating
that, on average, all the filters help in aiding exploration. Moreover, we see that with the exception of
the noisy event translation layer, the increase in HNS when the other two EVaDE layers are added
individually is not large. Looking at the learning curves presented in Figure 3, it can possibly be
said that an increase in scores of SimPLe(30) equipped with one of the EVaDE layers at a particular
iteration would mean an increase in scores of EVaDE-SimPLe, albeit in later iterations. This pattern
can clearly be seen in the games of BankHeist, Frostbite, Kangaroo, Krull and Qbert. This delay
in learning could possibly be attributed to the agent wasting its interaction budget exploring areas
suggested by one of the layers that is ineffective for that particular game. However, we hypothesise
that since all the layers provide different types of exploration, their combination is more often helpful
than wasteful. This is validated by the fact that EVaDE-SimPLe achieves a higher mean HNS than
any other agent in this study.

5 CONCLUSION

In this paper, we present Event-based Variational Distributions for Exploration (EVaDE), a set of
variational distributions over reward functions. EVaDE is composed of three noisy convolutional
layers, namely the noisy event interaction layer, the noisy event weighting layer and the noisy event
translation layer which are designed to generate trajectories through parts of the state space that
may potentially give high returns, especially in object-based domains. These layers can be inserted
in between the layers of the environment network models to induce variational distributions over
the model parameters that generate perturbations on object interactions, importance of events and
positional importance of objects/events through the dropout mechanism. Samples drawn from these
variational distributions are used to generate simulations to train the policy of a SimPLe agent.

We conduct experiments on a randomly selected test suite of 12 Atari games, where the agents are
only allowed 100K interactions with the real environment. EVaDE-SimPLe agents achieve a mean
human normalized score (HNS) of 0.78, which is 44 % and 52% more than the mean scores achieved
by CURL and vanilla-SimPLe agents respectively. EVaDE-SimPLe agents also manage to surpass
human performances in three games. We also find that each layer, when added individually to SimPLe
results in a higher mean HNS. Also, the three noisy convolutional layers complement each other well,
as EVaDE-SimPLe agents achieve higher mean HNS than agents which add only one noisy layer.

9

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We include the anonymized codebase that was used to conduct the experiments in the supplementary.
We also mention the scores achieved by the individual runs in Table 4 in the appendix. We expect the
mean scores of each EVaDE agent to fall within the range mentioned in Table 2.

REFERENCES

Shipra Agrawal and Randy Jia. Optimistic Posterior Sampling for Reinforcement Learning:
Worst-Case Regret Bounds. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf.

Siddharth Aravindan and Wee Sun Lee. State-Aware Variational Thompson Sampling for Deep
Q-Networks. In 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), pp. 124–132, 2021.

Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient Exploration
through Bayesian Deep Q-Networks. In 2018 Information Theory and Applications Workshop
(ITA), pp. 1–9. IEEE, 2018.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and Sergey Levine.
Stochastic Variational Video Prediction. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rk49Mg-CW.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying Count-Based Exploration and Intrinsic Motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Marc Brittain, Joshua R. Bertram, Xuxi Yang, and Peng Wei. Prioritized Sequence Experience Replay.
CoRR, abs/1905.12726, 2019. URL http://arxiv.org/abs/1905.12726.

Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey Levine. Path
Integral Guided Policy Search. In 2017 IEEE international conference on robotics and automation
(ICRA), pp. 3381–3388. IEEE, 2017.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Interna-
tional conference on computers and games, pp. 72–83. Springer, 2006.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient Model-Based Reinforcement Learn-
ing through Optimistic Policy Search and Planning. Advances in Neural Information Processing
Systems, 33, 2020.

Meire Fortunato, Mohammad Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband, Alex
Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell,
and Shane Legg. Noisy Networks for Exploration. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rywHCPkAW.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Karol Gregor, George Papamakarios, Frederic Besse, Lars Buesing, and Theophane Weber. Temporal
Difference Variational Auto-Encoder. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=S1x4ghC9tQ.

David Ha and Jürgen Schmidhuber. Recurrent World Models Facilitate Policy Evolution. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp.
2455–2467, 2018.

10

https://proceedings.neurips.cc/paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3621f1454cacf995530ea53652ddf8fb-Paper.pdf
https://openreview.net/forum?id=rk49Mg-CW
http://arxiv.org/abs/1905.12726
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=S1x4ghC9tQ

Under review as a conference paper at ICLR 2022

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning Latent Dynamics for Planning from Pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-Optimal Regret Bounds for Reinforcement
Learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model Based Reinforcement Learning
for Atari. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=S1xCPJHtDB.

Kacper Kielak. Importance of Using Appropriate Baselines for Evaluation of Data-Efficiency in
Deep Reinforcement Learning for Atari. CoRR, abs/2003.10181, 2020. URL https://arxiv.
org/abs/2003.10181.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local Reparam-
eterization Trick. In Proceedings of the 28th International Conference on Neural Information
Processing Systems-Volume 2, pp. 2575–2583, 2015.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive Unsupervised Repre-
sentations for Reinforcement Learning. In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020.

Sergey Levine and Vladlen Koltun. Guided Policy Search. In International conference on machine
learning, pp. 1–9. PMLR, 2013.

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural Network Dy-
namics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. CoRR,
abs/1708.02596, 2017. URL http://arxiv.org/abs/1708.02596.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-Conditional
Video Prediction Using Deep Networks in Atari Games. In Proceedings of the 28th International
Conference on Neural Information Processing Systems-Volume 2, pp. 2863–2871, 2015.

Ian Osband and Benjamin Van Roy. Bootstrapped Thompson Sampling and Deep Exploration. arXiv
preprint arXiv:1507.00300, 2015.

Ian Osband and Benjamin Van Roy. Why is Posterior Sampling Better than Optimism for Reinforce-
ment Learning? In International Conference on Machine Learning, pp. 2701–2710, 2017.

Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) Efficient Reinforcement Learning via
Posterior Sampling. In Advances in Neural Information Processing Systems, pp. 3003–3011, 2013.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep Exploration via
Bootstrapped DQN. In Advances in Neural Information Processing Systems, pp. 4026–4034,
2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and Exploration via Randomized
Value Functions. In Proceedings of the 33rd International Conference on Machine Learning-
Volume 48, pp. 2377–2386. JMLR. org, 2016b.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Exploration.
In International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ByBAl2eAZ.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution Strategies as a
Scalable Alternative to Reinforcement Learning. arXiv preprint arXiv:1703.03864, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

11

https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB
https://arxiv.org/abs/2003.10181
https://arxiv.org/abs/2003.10181
http://arxiv.org/abs/1708.02596
https://openreview.net/forum?id=ByBAl2eAZ
https://openreview.net/forum?id=ByBAl2eAZ
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2022

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Malcolm Strens. A Bayesian Framework for Reinforcement Learning. In International Conference
on Machine Learning, volume 2000, pp. 943–950, 2000.

Richard S Sutton. Dyna, an Integrated Architecture for Learning, Planning, and Reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

William R Thompson. On the Likelihood that One Unknown Probability Exceeds Another in View
of the Evidence of Two Samples. Biometrika, 25(3/4):285–294, 1933.

Iñigo Urteaga and Chris Wiggins. Variational Inference for the Multi-Armed Contextual Bandit. In
International Conference on Artificial Intelligence and Statistics, pp. 698–706. PMLR, 2018.

Hado van Hasselt, Matteo Hessel, and John Aslanides. When to
Use Parametric Models in Reinforcement Learning? In NeurIPS,
pp. 14322–14333, 2019. URL http://papers.nips.cc/paper/
9579-when-to-use-parametric-models-in-reinforcement-learning.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and
Jakob Uszkoreit. Tensor2Tensor for Neural Machine Translation. CoRR, abs/1803.07416, 2018.
URL http://arxiv.org/abs/1803.07416.

Zhendong Wang and Mingyuan Zhou. Thompson Sampling via Local Uncertainty. In Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 10115–10125. PMLR, 13–18 Jul 2020. URL http://proceedings.
mlr.press/v119/wang20ab.html.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model Predictive Path Integral control
Using Covariance Variable Importance Sampling. arXiv preprint arXiv:1509.01149, 2015.

Sirui Xie, Junning Huang, Lanxin Lei, Chunxiao Liu, Zheng Ma, Wei Zhang, and Liang Lin.
NADPEx: An On-Policy Temporally Consistent Exploration Method for Deep Reinforcement
Learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rkxciiC9tm.

Ruiyi Zhang, Zheng Wen, Changyou Chen, Chen Fang, Tong Yu, and Lawrence Carin. Scalable
Thompson Sampling via Optimal Transport. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 87–96. PMLR, 2019.

12

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://papers.nips.cc/paper/9579-when-to-use-parametric-models-in-reinforcement-learning
http://papers.nips.cc/paper/9579-when-to-use-parametric-models-in-reinforcement-learning
http://arxiv.org/abs/1803.07416
http://proceedings.mlr.press/v119/wang20ab.html
http://proceedings.mlr.press/v119/wang20ab.html
https://openreview.net/forum?id=rkxciiC9tm
https://openreview.net/forum?id=rkxciiC9tm

Under review as a conference paper at ICLR 2022

A EVADE-SIMPLE AS AN APPROXIMATION OF PSRL

We present the pseudocode of EVaDE-SimPLe in Algorithm 1. As mentioned in Section 3, an
EVaDE-SimPLe agent has the same iterative training structure as SimPLe and PSRL. Lines 6-10 of
the algorithm show the first step of each iteration where the agent interacts with the real environment
using its latest policy to collect interactions. The agent then updates its posterior distribution over the
environment model parameters by jointly optimizing the environment model parameters θenv which
include the parameters of the transition and reward function and the Gaussian dropout parameters
of the reward network σenv with the help of supervised learning (line 11). A sample from this
approximate posterior distribution is then acquired with the help of Gaussian dropout as shown in
lines 12-17 of the algorithm. As shown in the subsequent lines 19-26, the agent updates its policy
by optimizing the parameters of the policy network, θπ by interacting with this environment sample.
This optimized policy is used by the agent to procure more training interactions by interacting with
the real environment in the next iteration.

Algorithm 1 Approximate PSRL with EVaDE equipped Simulated Policy Learning

1: Initialize agent policy, environment model and dropout parameters θπ, θenv, σenv respectively
2: Initialize empty real environment interaction dataset Dreal ← {}
3: for iteration in 1 · · ·T do
4: s← ∅
5: while kreal real-world interactions not collected do . Interact with real environment
6: if s is terminal or ∅ then
7: Start new episode, initialize start state s
8: a ∼ Policy(s, θπ)
9: s′, r ← Interact Real World(s, a)

10: Dreal ← Dreal ∪ {(s, a, r, s′)}; s← s′

11: θenv, σenv ← Supervised Learn(θenv, σenv, Dreal) . Learn a variational posterior
12: for layer i in the environment model do . Draw a sample from the posterior
13: if i is an EVaDE layer then
14: Sample εi ∼ N(0, 1)

15: θ̃ienv ← θienv(1 + σienvε
i)

16: else
17: θ̃ienv ← θienv
18: s← ∅, Dsim ← ∅, steps← 0 . Train policy with environment sample
19: while ksim interactions not completed do
20: if s is terminal or ∅ then
21: Start new episode, initialize start state s
22: a ∼ Policy(s, θπ)
23: s′, r ← Interact Env Sample(θ̃env, s, a)
24: Dsim ← Dsim ∪ {(s, a, r, s′)}, s← s′, steps← steps + 1
25: if steps mod update frequency = 0 then
26: θπ ← Reinforcement Learn(θπ, Dsim)

27: return θπ

B PROOF OF THEOREM 1

We provide the proof for Theorem 1, which is restated below, in this section.

Theorem. Let n be any neural network. For any convolutional layer l, let mi(l)× ni(l)× ci(l) and
mo(l)× no(l)× co(l) denote the dimensions of its input and output respectively. Then, any function
that can be represented by n can also be represented by any network ñ ∈ Ñ , where Ñ is the set
of all neural networks that can be constructed by adding any combination of EVaDE layers to n,
provided that, for every EVaDE layer l̃ added, l̃ uses a stride of 1, mi(l̃) ≤ mo(l̃), ni(l̃) ≤ no(l̃) and
ci(l̃) ≤ co(l̃).

13

Under review as a conference paper at ICLR 2022

B.1 NOTATIONS

NEURAL NETWORKS

Any function f represented by a k-layer neural network n is an ordered composition of the functions
f1, f2, · · · , fk computed by its layers N1, N2, · · ·Nk respectively, i.e., f = fk ◦ fk−1 ◦ · · · f1.

CONVOLUTIONAL LAYERS

Any m×n convolutional layer l has a total of m×n× ci(l)× co(l) learnable parameters, where ci(l)
and co(l) are the number of channels in the input and output of the layer respectively. The parameters
of any convolutional layer l can be partitioned into co(l) filters, where each filter has m× n× ci(l)
parameters, and is responsible for computing one output channel.

We denote the set of parameters of any convolutional layer by θ. We denote the set of parameters of
the kth filter by θk, and the parameters of the lth channel of this filter by θlk. We denote the (i, j)th

parameter of the lth channel of the kth filter by θl,i,jk . For noisy convolutional layers, we have a
learnable Gaussian dropout parameter attached to every parameter of the convolutional layer (see
Equation 1). We use σk, σlk and σl,i,jk to denote the dropout parameters of the kth filter, the lth

channel of the kth filter and the (i, j)th parameter of the lth channel of the kth filter respectively.

STRIDES

A stride is a hyperparameter of a convolutional layer, that determines the number of pixels of the
input that each convolutional filter moves, to compute the next output pixel.

B.2 IMPLICATIONS OF THE CONSTRAINTS IN THEOREM 1

Theorem 1 states that every EVaDE layer l̃ added uses a stride of 1 and satisfies the constraints
mi(l̃) ≤ mo(l̃), ni(l̃) ≤ no(l̃) and ci(l̃) ≤ co(l̃). This means that for any inserted EVaDE layer, every
output dimension is at least as large as its corresponding input dimension. This eventually implies that
for every EVaDE layer, all input and output dimensions match, i.e., mi(l̃) = mo(l̃), ni(l̃) = no(l̃)

and ci(l̃) = co(l̃).

To see why, let us assume that the EVaDE layers l̃j , · · · l̃k are inserted, in order, in between the
layers Ni and Ni+1 of a neural network n. As Ni and Ni+1 are two consecutive layers of n, we
must have mi(Ni+1) = mo(Ni), ni(Ni+1) = no(Ni) and ci(Ni+1) = co(Ni). This implies that
the dimensions of the input to layer l̃j match the dimensions of the output of the layer l̃k, i.e.,
mi(l̃j) = mo(l̃k), ni(l̃j) = no(l̃k) and ci(l̃j) = co(l̃k). However, under the constraints imposed in
Theorem 1, every output dimension is greater than or equal to its corresponding input dimension for
every EVaDE layer. Thus, matching the output dimensions of l̃k with the input dimensions of l̃j is
only possible if the input and output dimensions match for every EVaDE layer l̃j , · · · l̃k that is added.

With the above implications, the constraint of using a stride of 1, forces SAME padding for every
EVaDE layer, and also ensures that patches centred around every (i, j)th pixel of every channel in
the input are used to compute the outputs. This is an important implication that will help us prove the
claims that all EVaDE layers can represent the identity transformation.

B.3 CLAIMS

We prove the three following claims by construction, i.e., showing that there is a combination of
parameters using which these layers can perform the identity transformation.

Claim 1. The noisy event interaction layer can represent the identity transformation.

Proof. Let us assume an m ×m noisy event interaction layer. With the help of the observations
made in the previous section, we are ensured of using patches centred around every input xli,j ∀i, j, l
and the constraints also ensure that the number of filters in this layer is equal to the number of input
channels.

14

Under review as a conference paper at ICLR 2022

The identity transformation can be achieved with the following parameter assignments.

• The dropout parameter σl,i,jk corresponding to every convolutional layer parameter θl,i,jk is
set to zero.

• The layer parameter corresponding to the central entry of the kth layer of the kth convolu-
tional filter, i.e., θk,d

m
2 e,d

m
2 e

k is set to 1 ∀k.

• All other convolutional layer parameters are set to 0.

As stated in Equation 2, the event interaction layer computes the outputs yki,j ∀i, j, k using the
following equation.

yki,j =

c∑
l=0

1Tm
(
θ̃lk � Pxl

i,j

)
1m

Applying the above parameter assignments, we get yki,j = xki,j , as the only non-zero parameter in the
kth filter, that is set to 1, aligns with xki,j . This is the required identity transformation.

Claim 2. The noisy event weighting layer can represent the identity transformation.

Proof. The noisy event weighting layer uses c 1× 1 convolutional filters, where c is the number of
input channels. Consequently, θkk , is just a single trainable parameter instead of a grid of trainable
parameters as in the other two EVaDE layers.

The identity transformation can be achieved with the following parameter assignments.

• The dropout parameter σlk corresponding to every convolutional layer parameter θlk is set to
zero.

• The layer parameter corresponding to the kth layer of the kth convolutional filter, i.e., θkk is
set to 1 ∀k.

• All other convolutional layer parameters are set to 0.

This is a valid assignment, as the only parameters set to 1 are trainable, while the other parameters
are forced to be set to 0 by construction (see Section 3.2).

As stated in Equation 3, the event interaction layer computes every output yki,j using the following
equation.

yki,j = θ̃kkx
k
i,j

Setting θkk = 1 and σkk = 0 ∀k, yields yki,j = xki,j ∀i, j, k , which is the identity transformation
required.

Claim 3. The noisy event translation layer can represent the identity transformation.

Proof. In this case, we can use the parameter assignments as stated in the proof of Claim 1 to produce
an identity transformation. This is possible, since we construct the noisy event translation layer
with the same structure of an m ×m convolutional layer with the number of filters equalling the
number of input channels. Moreover, the only non-zero parameter (which is set to 1) in the kth filter,
θ
k,dm2 e,d

m
2 e

k is in the middle row and middle column of its kth channel, making it a valid assignment
for the noisy event translation layer (see Section 3.3).

As stated in Equation 4, the event interaction layer computes every output yki,j using the following
equation.

yki,j = 1Tm
(
θ̃kk � Pxk

i,j

)
1m

15

Under review as a conference paper at ICLR 2022

As in the case with the noisy event interaction layer, substituting these assignments, we get yki,j =
xki,j ∀i, j, k , which is the identity transformation required.

B.3.1 PROOF OF THEOREM 1

We have to prove that all elements from Ñ , the set of neural networks that can be constructed
by adding any combination of EVaDE layers to the neural network n, can represent the functions
represented by k-layered neural network n.

Let ñ be a general element from Ñ , that adds the EVaDE layers l̃1, l̃2, · · · ˜lm, in order, after the
layers Ni1 , Ni2 , · · ·Nim of the neural network n, where ij−1 ≤ ij ≤ ij+1 ;∀2 ≤ j ≤ m − 1 and
i1 ≥ 0, im ≤ k. Adding an EVaDE layer after N0 refers to it being added after the input layer and
before the first layer of n. Note that more than one EVaDE layer can be added after any layer Nj of n.

Also, let f1, f2, · · · fk be the functions computed by the layers N1, N2, · · · , Nk of n respectively.
Thus the function represented by n is f = fk ◦ fk−1 ◦ · · · f1.

Let f̃1, f̃2, · · · f̃m be the functions computed by the EVaDE layers l̃1, l̃2, · · · ˜lm respectively. Thus the
function computed by ñ is f̃ = fk ◦ fk−1 ◦ · · · ◦ f̃m ◦ fim · · · ◦ f̃1 ◦ fi1 ◦ · · · f1. As all f̃1, f̃2, · · · f̃m
can learn to represent the identity transformation, f̃ can learn to represent f . This implies that ñ can
represent any function represented by n.

C VARIATIONAL DISTRIBUTIONS USING DROPOUTS

Variational methods are used to approximate inference and/or sampling when using intractable
posterior distributions. These methods work by using variational distributions that facilitate easy
sampling and/or inference, while approximating the true posterior as closely as possible.

These methods require the user to define two distributions, the prior p(θ), and the variational
distribution q(θ). Given a set of training samples D = (X,Y), where X is the set of input samples
and Y the set of corresponding labels, variational methods work to minimize the KL-divergence
between the learnt variational distribution q(θ) and the true posterior p(θ|D). This is equivalent to
maximizing the Evidence Lower Bound (ELBO) as shown below.

KL(q(θ), p(θ|D)) =

∫
q(θ) log

q(θ)

p(θ|D)
dθ

Now,

p(θ|D) =p(θ|X,Y) =
p(θ)p(X,Y |θ)
p(X,Y)

=
p(θ)p(Y |X, θ)p(X|θ)

p(X,Y)

=
p(θ)p(Y |X, θ)p(X)

p(X,Y)
;

Substituting the value for p(θ|D),

KL(q(θ), p(θ|D)) =

∫
q(θ)

[
log

q(θ)p(X,Y)

p(θ)p(Y |X, θ)p(X)

]
dθ

=

∫
q(θ) log

q(θ)

p(θ)p(Y |X, θ)
dθ +

∫
q(θ) log

P (X,Y)

P (X)
dθ

=

∫
q(θ) log

q(θ)

p(θ)p(Y |X, θ)
dθ + log

P (X,Y)

P (X)

=

∫
q(θ) log

q(θ)

p(θ)
dθ −

∫
q(θ) log p(Y |X, θ)dθ + log

P (X,Y)

P (X)

= KL(q(θ), p(θ))−
∫
q(θ) log p(Y |X, θ)dθ + log

P (X,Y)

P (X)

16

Under review as a conference paper at ICLR 2022

Since P (X,Y) and P (X) are constants with respect to θ, the set of parameters that minimize
KL(q(θ), p(θ|D)) are the same as the ones that maximize the ELBO, i.e.,

argmin
θ

KL(q(θ), p(θ|D)) = argmax
θ

∫
q(θ) log p(Y |X, θ)dθ −KL(q(θ), p(θ))

C.1 DROPOUTS AS VARIATIONAL DISTRIBUTIONS

Gal & Ghahramani (2016) introduces the usage of dropout as a mechanism to induce variational
distributions, samples from which are used to approximate the ELBO. The first term of the ELBO
can be re-written as, ∫

q(θ)

N∑
i=1

log p(yi|xi, θ)dθ

where every (xi, yi) is a training example from D.

This integral can be approximated by averaging out the log-probabilities using several samples drawn
from the variational distribution q(θ) (Equation 5).

∫
q(θ)

N∑
i=1

log p(yi|xi, θ)dθ ≈
N∑
i=1

log p(yi|xi, θi); where θi ∼ q(θ) (5)

Neural networks that use different types of dropouts help us maintain variational distributions q(θ)
that approximate posteriors over deep Gaussian processes (Gal & Ghahramani, 2016; Kingma et al.,
2015). Procuring a sample from this posterior using q(θ) is easy, as a random dropped out network
corresponds to a sample from the posterior over these deep Gaussian processes.

D NETWORK ARCHITECTURES

In this section, we detail the network architectures used for training the environment models of
SimPLe (Kaiser et al., 2020) and EVaDe-SimPLe, and the policy network architectures used by both
the methods.

D.1 ENVIRONMENT NETWORK ARCHITECTURE

D.1.1 SIMPLE

In our experiments we use the network architecture of the deterministic world model introduced in
Kaiser et al. (2020) to train the environment models of the SimPLe agents, but do not augment it with
the convolutional inference network and the autoregressive LSTM unit.

Given four consecutive game frames and an action as input, the network jointly models the transition
and reward functions, as it predicts the next game frame and the reward using the same network. The
network consists of a dense layer, which outputs a pixel embedding of the stacked input frames. This
layer is followed by a stack of six 4× 4 convolutional layers, each with a stride of 2. These layers are
followed by six 4× 4 de-convolutional layers. For 1 ≤ i ≤ 5, the ith de-convolutional layers, take
in as input, the output of the previous layer, as well as the output of the 6− ith convolutional layer.
The last de-convolutional layer takes in as input the output of its previous layer and the dense pixel
embedding layer. An embedding of the action input is multiplied and added to the input channels of
every de-convolutional layer. The outputs from the last de-convolutional layer is passed through a
softmax function to predict the next frame. The outputs from the last de-convolutional layer is also
combined with the output of the last convolutional layer and then passed through a fully connected
layer with 128 units followed by the output layer to predict the reward.

D.1.2 EVADE-SIMPLE

The architecture of the environment model used by EVaDE agents is shown in Figure 2. This model
resembles the model of SimPLe agents until the fourth de-convolutional layer. All the stand-alone

17

Under review as a conference paper at ICLR 2022

EVaDE layers that we use, use a stride of 1 and SAME padding so as to keep the size of the inputs
and outputs of the layer same. As the EVaDE layers are added only to the reward function, we split
the network into two parts, one that predicts the next frame (the transition network) and one that
predicts the reward (the reward network) respectively. We denote the last two de-convolutional layers
in each part dt5, d

t
6 and dr5, d

r
6 respectively.

As shown in Figure 2, in the transition network, the outputs of the fourth de-convolutional layer and
the first convolutional layer are passed to dt5. dt6 takes in as inputs the outputs of dt5 and the pixel
embedding layer.

The reward network adds a combination of a 3 × 3 noisy event translation layer, a noisy event
weighting layer and a 1× 1 noisy event interaction layer which are inserted before both dr5 and dr6.
dr5 shares weights with dt5, and takes in the outputs of the previous event interaction layer and the first
convolutional layer as inputs. Likewise, dr6 shares weights with dt6, and takes in the outputs of the
previous event interaction layer and the pixel embedding layer as inputs. Moreover, we also apply
Gaussian multiplicative dropout to the weights of dr6, to make it act as an event interaction layer. As
with SimPLe agents, an embedding of the action input is multiplied and added to the input channels
of every de-convolutional layer (also shown in Figure 2).

The outputs of dt6 are passed through a softmax to predict the next frame, while the outputs of dr6 are
combined with the output of the last convolutional layer and passed through a fully connected layer
with 128 units followed by the output layer to predict the reward.

D.2 POLICY NETWORK

The policy network for both SimPLe and EvADE-SimPLe agents consists of two convolutional layers
followed by a hidden layer and an output layer. The inputs to the policy network are four consecutive
game frames, which are stacked and passed through two 5× 5 convolutional layers, both of which
use a stride of 2. These convolutional layers are followed by a fully connected layer with 128 hidden
units, which is followed by the output layer, that predicts the stochastic policy, i.e., the probabilities
corresponding to each valid action, and the value of the current state of the agent.

E EXPERIMENTAL DETAILS

E.1 HUMAN NORMALIZED SCORE

We use the human normalized scores from Brittain et al. (2019) as defined in Equation 6 to compare
our agents.

HNSagent =
Scoreagent − Scorerandom

Scorehuman − Scorerandom
(6)

where Scoreagent,Scorehuman and Scorerandom denote the scores achieved by agent being evaluated, a
human and an agent which acts with a random policy respectively.

We also list the baseline scores achieved by humans and random agents, as listed in Brittain et al.
(2019) in Table 3 for easy access.

E.2 MORE EXPERIMENTAL DETAILS

We present the scores achieved by all three independent runs of all agents trained in Table 4 . Figure
4 shows the learning curves as shown in Figure 3 with error bars equal to a width of 1 standard error
on each side.

18

Under review as a conference paper at ICLR 2022

Table 3: Baseline human and random values used to calculate Human Normalized Scores

Game Human Score Random Score

BankHeist 753.1 14.2
BattleZone 37187.5 2360
Breakout 30.5 1.7

CrazyClimber 35829.4 10780.5
DemonAttack 1971 152.1

Frostbite 4334.7 65.2
JamesBond 302.8 29
Kangaroo 3035 52

Krull 2665.5 1598
Qbert 13455 163.9

RoadRunner 7845 11.5
Seaquest 42054.7 68.4

19

Under review as a conference paper at ICLR 2022

Table 4: Scores achieved by every independent run of every SimPLE agent and when equipped with
different EVaDE layers

Game SimPLe(30) Inter. Layer Weight. Layer Trans. Layer EVaDE-SimPLe

BankHeist
133.1 85 232.2 218.4 155.3
9.375 12.5 195.3 128.8 205.9
13.13 186.9 154.7 158.4 347.8

BattleZone
4156 1313 9250 4438 10844
6969 8031 4250 6000 9375
3344 9781 4938 6844 11063

Breakout
20.09 8.563 29.78 14.45 35.38
18.25 25.03 27.56 23.64 20.91
20.94 24.81 0.625 19.69 20.5

CrazyClimber
54569 57534 75300 69494 55194
51244 58522 74141 59838 59934
12959 62266 65431 61503 70719

DemonAttack
55.31 134.1 215.3 129.7 169.1
112.7 155.5 71.41 105.9 100.9
127.7 142.2 152.2 62.5 166.4

Frostbite
261.3 256.6 250 263.4 268.4
251.9 241.6 259.4 258.1 249.4
259.1 242.2 259.1 267.5 268.4

JamesBond
268.8 12.5 59.38 371.9 232.8
240.6 282.8 332.8 117.2 101.6
256.3 82.81 92.19 23.44 228.1

Kangaroo
987.5 3294 293.8 25 1144
56.25 1588 362.5 1481 956.3
112.5 37.5 175 1719 1444

Krull
5639 6124 5150 5548 5569
4873 3103 3290 7266 4906
2868 2142 4460 1443 5744

Qbert
3002 3935 516.4 1193 1082
4151 1133 1430 4190 3916
4106 857 873.4 3494 4208

RoadRunner
2793 8794 3034 5709 8666
831.3 8744 4763 6763 8541
5034 6188 7397 12622 9538

Seaquest
392.5 791.3 221.3 649.4 536.3
419.4 286.3 288.1 604.4 813.8
395 692.5 849.4 854.4 861.9

20

Under review as a conference paper at ICLR 2022

0 5 10 15 20 25
Iterations

0

100

200

300

400

500

S
co

re

BankHeist

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

2000

4000

6000

8000

10000

12000

14000

16000

18000

S
co

re

BattleZone

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

0

5

10

15

20

25

30

S
co

re

Breakout

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

10000

20000

30000

40000

50000

60000

70000

S
co

re

CrazyClimber

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

50

100

150

200

250

S
co

re

DemonAttack

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

100

200

300

400

500

600

700

S
co

re

Frostbite

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

0

50

100

150

200

250

300

350

S
co

re

Jamesbond

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

0

500

1000

1500

2000

S
co

re

Kangaroo

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

1000

2000

3000

4000

5000

6000

S
co

re

Krull

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

500

1000

1500

2000

2500

3000

3500

4000

S
co

re

Qbert

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

0

2000

4000

6000

8000

10000

S
co

re

RoadRunner

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

0 5 10 15 20 25
Iterations

100

200

300

400

500

600

700

800
S

co
re

Seaquest

SimPLe(30)

Weighting Layer

Interaction Layer

Translation Layer

EVaDE SimPLe

Figure 4: Learning curves of EVaDE-SimPLe agents, SimPLe(30) agents and agents which only add
one of the EVaDE layers with error bars of 1 standard error.

E.3 VISUALIZATIONS OF THE EVADE LAYERS

We present some visualizations of the input and output feature maps of the noisy event interaction
layer, the noisy event weighting layer and the noisy event translation layer. All these visualizations
were obtained from the final trained model, with the learned weights and variances.

In Figures 5 and 6 we show illustrations of an output feature map detecting interactions between the
right facing green-coloured enemy ships and the right facing blue-coloured divers given different
input images from the game of Seaquest. We also show two input feature maps, which seem to
capture the positions of these objects at the same locations. We observe that the pixels in the output
feature map in Figure 5 are brighter at the locations where the two objects are close to each other,
whereas in the same feature map these pixels are dimmer when the two objects are separated by some
distance (in Figure 6).

In Figures 7 and 8, we show two feature maps before and after passing them through a noisy event
weighting layer. The inputs for these visualizations were taken from the game of Breakout. The input
feature maps to the noisy event weighting layer seem to capture the bricks from the input image. The
output feature map in Figure 7 is an upweighted version of its input, as the pixels seem to be brighter.
On the other hand, the output feature map in Figure 8 seems to down-weight its input feature map, as
the pixels seem a lot dimmer. The weighting factors for the input-output pairs shown in Figures 7 and
8 are 1.93 and 0.57 respectively.

21

Under review as a conference paper at ICLR 2022

(a) Input Frame (b) Input Feature Map 1 (c) Input Feature Map 2 (d) Output Feature Map

Figure 5: This figure shows an output feature map(channel) that captures interactions between two
input feature maps when passed through the noisy event weighting layer. Here, the interaction
between the blue diver and the green enemy is captured in (d).

(a) Input Frame (b) Input Feature Map 1 (c) Input Feature Map 2 (d) Output Feature Map

Figure 6: This figure shows the same output feature map of the noisy event interaction layer as shown
in Figure 5, but when there is no interaction between the blue and green objects. The blue and green
objects in (a) are separated by some distance, and thus the interaction is not shown in (d).

(a) Input Frame (b) Input Feature Map (c) Output Feature Map

Figure 7: This figure shows an output feature map (channel) that up-weights the corresponding input
feature map when passed through the noisy event weighting layer.

22

Under review as a conference paper at ICLR 2022

(a) Input Frame (b) Input Feature Map (c) Output Feature Map

Figure 8: This figure shows an output feature map (channel) that down-weights the corresponding
input feature map when passed through the noisy event weighting layer.

(a) Input Frame (b) Input Feature Map (c) Output Feature Map

Figure 9: This figure shows the function of the noisy translation layer. The output feature map
translates the input pixels to its top, bottom, left and right to different degrees

In Figure 9, we show the input and output feature maps of a game state from Krull, before and after
passing it through a noisy event translation layer. The input feature map seems to capture different
objects from the input image. The translation effect in output feature map can be seen clearly as
every light pixel in the input seems to have lightened up the pixels to its top, bottom, left and right to
different degrees.

E.4 CODEBASE USED AND HYPERPARAMETERS

We build our SimPLe and EVaDE-SimPLe agents by utilizing the implementation of SimPLe agents
from Vaswani et al. (2018). To keep the comparison fair, we use the same hyperparameters as used by
Vaswani et al. (2018) to train all our agents. The codebase in Vaswani et al. (2018) uses an Apache
2.0 license, thus allowing for public use and extension of their codebase.

E.5 COMPUTATIONAL HARDWARE USED

We train our agents on a cluster of 4 NVIDIA RTX 2080 Ti GPUs with an Intel Xeon Gold 6240
CPU. The total time taken to train 3 independent runs of all 5 algorithms on the test suite of 12 games
was around 79 days and 20 hours.

23

	Introduction
	Background and Related Work
	Event Based Variational Distributions for Exploration
	Noisy Event Interaction Layer
	Noisy Event Weighting Layer
	Noisy Event Translation Layer
	Representational Capabilities of EVaDE equipped networks
	Approximate PSRL with EVaDE equipped Simulated Policy Learning

	Experiments
	Network Architecture
	Experimental Details
	Results
	Ablation Studies

	Conclusion
	EVaDE-SimPLe as an approximation of PSRL
	Proof of Theorem 1
	Notations
	Implications of the constraints in Theorem 1
	Claims
	Proof of Theorem 1

	Variational Distributions using Dropouts
	Dropouts as Variational Distributions

	Network Architectures
	Environment Network Architecture
	SimPLe
	EVaDE-SimPLe

	Policy Network

	Experimental Details
	Human Normalized Score
	More Experimental Details
	Visualizations of the EVaDE layers
	Codebase used and Hyperparameters
	Computational Hardware Used

