

000 001 002 003 004 005 STRONG CORRELATIONS INDUCE CAUSE ONLY PRE- 006 DICTIONS IN TRANSFORMER TRAINING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 We revisit when Transformers can prioritize causes over spurious effects by view-
028 ing the problem through data correlation strength and the implicit regularization
029 of gradient descent. We identify a phenomenon called Correlation Crowding-
030 Out (CCO) arising from the training dynamics of Transformers. Specifically, un-
031 der strongly correlated causal features, gradient descent filters out spurious cues
032 and converges to a predictor that relies almost exclusively on the causes. The-
033oretically, using a simplified Transformer model trained on data from a mini-
034 mal causal chain, we introduce a Dominant-coordinate condition that character-
035 izes when CCO arises and explain its mechanism as a coupling of “occupation”
036 and “crowding-out”. “Occupation” denotes the rapid growth of weights aligned
037 with the dominant causal direction while non-dominant directions remain small.
038 “Crowding-out” denotes the attention logits align with separation directions favor-
039 ing the causal branch, suppressing descendants. We provide convergence guaran-
040 tees for both the optimization trajectory and generalization. Our empirical results
041 on simulated and real examples across various tasks including vision and natu-
042 ral language demonstrate the procedure. Together, these results show that, under
043 suitable conditions, standard training alone can induce cause only prediction.
044
045
046
047
048
049
050
051

1 INTRODUCTION

052 Whether data-driven models can extract causal invariances from observational data and thereby de-
053 liver robust predictions has long been a central hope in AI (Pearl, 2009; Peters et al., 2016; Arjovsky
054 et al., 2019; Schölkopf et al., 2021; Fan et al., 2024). Yet models trained by empirical risk min-
055 imization are often prone to shortcut learning (Geirhos et al., 2020; Shah et al., 2020; Ye et al.,
056 2024), indiscriminately exploiting any correlation, including spurious cues unrelated to the true
057 causal mechanisms (Sagawa et al., 2020a; Qiu et al., 2023). This pattern is widely documented
058 across modalities and tasks (Geirhos et al., 2018; McCoy et al., 2020; Li et al., 2023b). The rise
059 of Transformers and LLMs sharpens this tension: these systems can sometimes rely on shallow ar-
060 tifacts (Bender et al., 2021; Tang et al., 2023; Du et al., 2023; Varma et al., 2024; Jin et al., 2024;
061 Gui & Ji, 2025), yet they also produce answers that appear strikingly logical and robust in certain
062 scenarios (Brown et al., 2020; Wei et al., 2022; Kojima et al., 2022; Yuan et al., 2024). Recent theory
063 offers partial clues for why Transformers sometimes appear causal, but does not yet answer the cause
064 only generalization question. On stylized in-context tasks, Transformers trained on Markov Chain
065 sequences can recover parent sets and estimate transition probabilities in-context (Edelman et al.,
066 2024; Nichani et al., 2024; D’Angelo et al., 2025). These results suggest how attention might recon-
067 struct graph edges from observational sequences, but they rely on designed ICL setups rather than
068 generic pipelines with spurious features and do not show when spurious information is suppressed
069 at both train and test time. In parallel, large margin analyses show that gradient descent (GD) pushes
070 query-key parameters toward max-margin separators (Tarzanagh et al., 2023; Ataee Tarzanagh et al.,
071 2023; Vasudeva et al., 2024). While this suggests separation can emerge during training, it does not
072 characterize how such separation filters out spurious features or yields cause only risk guarantees.
073 This landscape motivates a basic question:

074 *When and through what mechanism can Transformer training produce predictors
075 that rely on causes while ignoring spurious effects?*

054 We answer this by uncovering and analyzing Correlation Crowding-Out (CCO). CCO is a training
 055 phenomenon in which, under a uniform dominance gap where a causal feature is more strongly
 056 associated with the target than any competing spurious feature, GD drives Transformer to progres-
 057 sively suppress spurious features and converge to a predictor that relies almost exclusively on the
 058 causal feature. Crucially, the dominance condition does not require spurious features to be weak:
 059 many can remain highly correlated with the target and may even surpass non-dominant causal coor-
 060 dinates. What matters is a persistent margin favoring the dominant causal direction.

061 Remarkably, strong causal correlation in the data *alone* does not guarantee cause only prediction for
 062 generic estimators. In Example 25, even under a dominance gap, population least squares retains a
 063 constant fraction of a spurious feature. Thus, CCO is not a corollary of data dominance; it hinges
 064 on optimization induced implicit regularization that actively crowds out spurious features. This
 065 occurs without explicit invariance penalties (Arjovsky et al., 2019; Shapiro, 2017; Fan et al., 2024)
 066 or multi-environment training (Peters et al., 2016; Fan et al., 2024; Xu et al., 2024).

067 Our perspective complements existing analyses of correlation driven learning dynamics. Prior work
 068 has shown that neural networks exhibit a simplicity bias, often preferring features that are highly
 069 correlated with the label or easier to fit (Belkin et al., 2019; Moayeri et al., 2022; Morwani et al.,
 070 2023; Qiu et al., 2023; Xue et al., 2023; Yang et al., 2024). When spurious features are more
 071 predictive or less complex, they tend to dominate early training, delaying or even entirely inhibiting
 072 the learning of causal features (Shah et al., 2020; Yang et al., 2024). These studies underscore that
 073 correlation strength and feature complexity critically shape learning trajectories, and they reinforce
 074 the notion that deep models are vulnerable to superficial shortcuts. In contrast, we focus on the
 075 opposite regime: when the causal features themselves dominate in predictiveness. We formalize
 076 CCO as the mirror image of shortcut learning. Intuitively, if a causal feature explains the target with
 077 overwhelming strength, the model has little incentive to rely on weaker spurious cues.

078 Building on this premise, we demonstrate CCO empirically and provide a theoretical account of
 079 its mechanism. To theoretically understand this behavior, we analyze a simplified two-layer Trans-
 080 former trained on data from a causal chain ($x \rightarrow y \rightarrow z$) generative process. Our theory provides a
 081 Dominant-Coordinate Condition on the data, which quantifies how strong the x - y correlation must
 082 be for CCO to occur. Under this condition, the training dynamics unfold in two coupled phases.
 083 In the first “occupation” phase, within the Transformer’s feed-forward sublayer, the weight vector
 084 that aligns with the dominant causal coordinate in x grows rapidly to a stable magnitude, while
 085 weights in other directions remain small. This expansion makes the causal direction salient and es-
 086 tablishes it as the primary signal driving the predictions. Next comes the “crowding-out” phase: the
 087 Transformer’s attention mechanism gradually shifts its query-key alignment toward the max-margin
 088 separator between the transformed causal and spurious features (roughly, $\hat{x} - \hat{z}$). Consequently, the
 089 attention weights concentrate almost entirely on the causal x branch, effectively gating out the spu-
 090 rious z branch. Through this two-phase process, GD steers the model toward a cause only solution
 091 without any specialized regularization for invariance.

092 By elucidating the mechanism behind CCO, we contributes a more nuanced perspective on Trans-
 093 former’s generalization: while spurious shortcuts are a serious and pervasive concern, there exist
 094 regimes in which strong causal signals can turn GD into an ally for causal learning. In such regimes,
 095 the implicit regularization of GD yield cause only generalization, even in the absence of multiple
 096 training environments or explicit causal objectives.

097 1.1 OUR CONTRIBUTION

- 098 • We introduce and formalize the new phenomenon CCO.
- 099 • We elucidate CCO’s mechanism with both theory and experiments.

101 2 RELATED WORK

102 **Spurious Correlations and Invariance Learning.** Across vision, language, and ERM-trained
 103 deep models including modern Transformers and LLMs—readily latch onto shortcut cues and spu-
 104 rious correlations, leading to brittle generalization under shift (Geirhos et al., 2018; 2020; Zhou
 105 et al., 2021; Du et al., 2021; Tang et al., 2023; Du et al., 2023; Yuan et al., 2024). A major theo-
 106 retical response is invariance learning: instead of trusting raw correlations, one seeks mechanisms
 107

stable across environments. Two canonical frameworks are Invariant Causal Prediction (Peters et al., 2016; Meinshausen et al., 2016), which tests for subsets of covariates that render the conditional law of the target invariant across interventions or environments, and Invariant Risk Minimization (Arjovsky et al., 2019), which encourages representations that admit a single optimal classifier across environments. Both lines have spurred extensive follow-ups and critiques clarifying assumptions, identifiability, and practical limitations (Ghassami et al., 2017; Heinze-Deml et al., 2018; Pfister et al., 2019; Rothenhäusler et al., 2019; 2021; Rosenfeld et al., 2021; Lin et al., 2022b; Kamath et al., 2021; Lu et al., 2021a; Zhou et al., 2022; Lin et al., 2022a). In parallel, distributionally robust optimization offers a complementary lens by minimizing worst-case (group) risk under distributional shifts (Shapiro, 2017; Sagawa et al., 2020a; Duchi & Namkoong, 2021; Gao et al., 2024). More recently, Environment-Invariant Linear Least Squares and variants show that, when cross-environment heterogeneity is sufficiently strong, a regularized least-squares estimator can recover invariant features with generalization guarantees while quantifying heterogeneity (Fan et al., 2024; Gu et al., 2024; Xu et al., 2024; Gu et al., 2025). Most invariance methods posit either explicit regularizer or environment partitions; comparatively less is known about when standard GD on a Transformer will, by its own dynamics, yield an cause only predictor. Our work targets precisely this gap.

Implicit Bias. Implicit bias refers to the tendency of (S) GD, even without explicit regularization, to select solutions with special structure and generalization properties, widely regarded as a key to the success of over-parameterized models. Such as for logistic regression, (S)GD converges in direction to the max-margin classifier (Soudry et al., 2018; Ji & Telgarsky, 2019; Wu et al., 2025; Cai et al., 2025); in over-parameterized linear models, (S)GD can display benign overfitting (Zou et al., 2021; Wu et al., 2022), double descent (Lu et al., 2023; Zhang et al., 2025), and scaling laws (Bordelon et al., 2024; Lin et al., 2024); and for quadratically parameterized models, (S)GD implicitly favors low-complexity solutions and exhibits incremental learning (Li et al., 2018; Vaskevicius et al., 2019; Woodworth et al., 2020; HaoChen et al., 2021; Li et al., 2021; Jin et al., 2023; Xu et al., 2024). Turning to Transformers, a growing theory literature dissects how attention evolves under GD. For single-head ViTs, GD is shown to concentrate attention on label-relevant tokens, yielding progressively sparse maps (Jelassi et al., 2022; Li et al., 2023a). These results clarify which inputs receive mass under training induced anisotropy, but they are agnostic to causal structure. On stylized in-context tasks, Transformers trained on Markov chain sequences learn the set of parent tokens and estimate transition probabilities in-context; related mechanistic work on induction heads explains how attention circuits implement dependency tracking and copying behaviors (Lu et al., 2021b; Olsson et al., 2022; Li et al., 2023c; Edelman et al., 2024; Nichani et al., 2024; D’Angelo et al., 2025). These analyses are posed in designed ICL setups and do not address under generic training with spurious descendants when and why GD yields a cause only predictor. A complementary line shows that GD on attention pushes query–key parameters toward max-margin separators, establishing that separation can emerge during training; yet this does not identify which side of the margin corresponds to causal versus spurious directions, nor when separation suffices for cause only generalization (Tarzanagh et al., 2023; Ataee Tarzanagh et al., 2023; Vasudeva et al., 2024).

3 CCO: A PHENOMENOLOGY IN TRANSFORMER TRAINING

CCO refers to a training phenomenon in Transformers whereby, if there exists a dominant causal feature whose association with the target exceeds that of any competing spurious feature by a uniform gap, GD learns a predictor that progressively suppresses spurious features and relies almost exclusively on the causal one. Crucially, this dominance condition does not require spurious features to be weak: many can remain highly correlated with the target and some may even surpass non-dominant causal features. What matters is a persistent gap favoring the dominant causal direction.

CCO unfolds through two coupled effects:

(I) Occupation (early rise): within representation and prediction layers (e.g., embeddings, feed-forward blocks, attention heads), weights aligned with a dominant, highly predictive causal feature grow rapidly to a stable, large scale, while spurious features aligned directions remain small, rendering the causal signal salient to the optimizer.

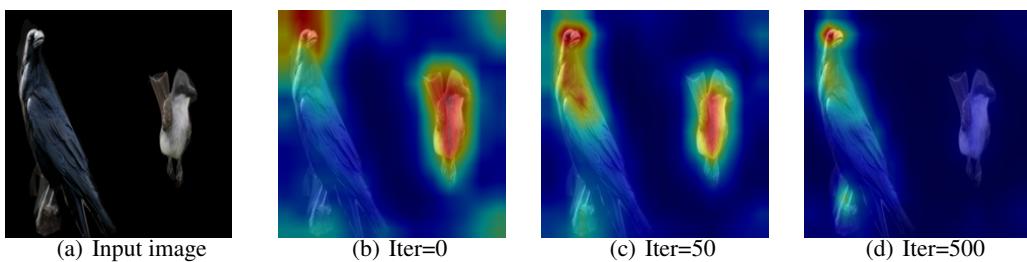


Figure 1: This figure shows how attention shifts during ViT training on a foreground–foreground causal disentanglement task. (a) is the input image. Early in training (b, iter 0), attention is diffuse across left bird (cause feature) and right bird (spurious feature). As training proceeds (c, iter 50), attention weight rises on the left bird illustrating the occupation phase. By (d, iter 500), attention is concentrated almost entirely on the left bird, with the right bird and background receiving near zero weight, illustrating the crowding-out phase.

(II) Crowding-out (attention selection): multi-head attention progressively aligns its logits with separation directions that prefer causal over spurious features (e.g., larger query-key margins for causal tokens), concentrates attention mass on causal features, and suppresses spurious features.

We verify the above phenomenon in Fig 1. When training ViT to predict the label of background, the attention map first show a rapid growth in the background in the occupation stage, while the attention on birds remain small growth. Then in the crowding-out stage, the attention allocated to the background significantly surpasses the attention to the bird, with the bird’s attention appearing very faint in the attention map.

3.1 WHY CCO ARISES

(I) Intrinsic strong causal correlation: CCO emerges when the data exhibits a property whereby the correlation between a causal feature and the target is consistently stronger than that of any spurious feature. This is common rather than contrived: many real datasets can be viewed as mixtures of latent environments in which causal–target relationships remain relatively stable, whereas spurious features oscillate across environments. When pooled, these oscillations destructively interfere, reducing spurious–target correlation relative to causal–target correlation. Equivalently, causal features concentrate stable signal, while spurious features disperse unstable variance, making the dominant causal direction statistically more salient.

(II) Implicit regularization of GD in Transformers: early strong-signal directions (Occupation) steer gradients toward causal features, inducing a directional bias in the learned representation. Attention then transduces this bias into selection (Crowding-out), assigning higher weight to causal features and down-weighting spurious ones, thereby approaching an invariant, cause only solution without explicit invariance penalties.

3.2 STRONG CAUSAL CORRELATION ALONE DOESN’T ENSURE CAUSE ONLY

It is important to stress that strong causal correlation in the data does *not* by itself *alone* guarantee cause only prediction for generic estimators. In Example 25, we show that even under a dominant causal correlation, population linear regression retains a constant fraction of the spurious features, remaining using spurious features to predict noise. This demonstrates two points: (a) strong causal alignment alone does not ensure spurious suppression; and (b) CCO is *not* a trivial corollary of data dominance but instead relies on the *implicit regularization* induced by Transformers and GD.

4 THEORETICALLY ANALYSIS OF CORRELATION CROWDING-OUT

4.1 PROBLEM SETUP

We provide a theoretical explanation for CCO by analyzing a specialized Transformer module trained on data generated by the causal chain $\mathbf{x} \rightarrow \mathbf{y} \rightarrow \mathbf{z}$. When the dominant feature of \mathbf{x} exhibits

216 sufficiently strong association with y , the implicit regularization of GD leads the learned predictor
 217 to filter out \mathbf{z} and rely almost exclusively on \mathbf{x} .
 218

219 **4.1.1 DATA GENERATIVE PROCESS**
 220

221 We consider the causal chain $\mathbf{x} \rightarrow y \rightarrow \mathbf{z}$, where $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$ are vector covariates and $y \in \mathbb{R}$ is a
 222 scalar response. The response y is a sparse quadratic signal in \mathbf{x} :

$$223 \quad y = \mathbf{x}^\top (\mathbf{w}^*)^{\odot 2} + \epsilon, \quad (1)$$

225 with noise $\epsilon \perp \mathbf{x}$, $\mathbb{E}[\epsilon] = 0$, and $\text{Var}(\epsilon) = \sigma^2$. The descendant \mathbf{z} depends on y via an L -Lipschitz
 226 function $f : \mathbb{R} \rightarrow \mathbb{R}^d$ and additive noise $\xi \in \mathbb{R}^d$,
 227

$$228 \quad \mathbf{z} = f(y) + \xi, \quad \xi \perp y. \quad (2)$$

229 We assume the moment and boundedness conditions:
 230

$$231 \quad \mathbf{H} := \mathbb{E}[\mathbf{x}\mathbf{x}^\top] = \begin{bmatrix} a & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{d-1} \end{bmatrix}, \quad \mathbb{E}[\mathbf{x} + \mathbf{z}] = \zeta, \quad \text{Var}(\mathbf{x} + \mathbf{z}) = \Sigma, \quad (3)$$

234 and almost surely $\sup_{1 \leq j \leq d} |\mathbf{x}_j| \leq B_{\mathbf{x}}$, $|\epsilon| \leq B_\epsilon$, $\sup_{1 \leq j \leq d} |\xi_j| \leq B_\xi$, $\sup_{1 \leq j \leq d} |\mathbf{z}_j^i| \leq$
 235 $\|f(0)\|_\infty + L(rB_{\mathbf{x}} + B_\epsilon) + B_\xi := B_{\mathbf{z}}$. The ground truth \mathbf{w}^* is sparse and binary: $\mathbf{w}_j^* \in \{0, 1\}$,
 236 $\mathbf{w}_1^* = 1$, and $|\text{supp}(\mathbf{w}^*)| \leq r$. We observe i.i.d. samples $\{(\mathbf{x}^i, y^i, \mathbf{z}^i)\}_{i=1}^n$ from $(\mathbf{x}, y, \mathbf{z})$.
 237

238 The chain $\mathbf{x} \rightarrow y \rightarrow \mathbf{z}$ is a minimal DAG that captures the key trade-off behind CCO: a causal
 239 parent \mathbf{x} that determines y , versus a spurious descendant \mathbf{z} is induced by y . This reduction is pur-
 240 poseful and representative. For example, in sentiment analysis, content features $\mathbf{x} \rightarrow$ sentiment label
 241 or rating $y \rightarrow$ label derived auxiliary fields generated downstream \mathbf{z} (Gururangan et al., 2018). So
 242 that \mathbf{z} is a descendant induced spurious correlate of y while \mathbf{x} carries the causal signal.
 243

244 In this pattern, descendants furnish alluring but non invariant shortcuts, a phenomenon widely doc-
 245 umented across deep learning (Geirhos et al., 2020). By positing one dominant, highly y -predictive
 246 direction in \mathbf{x} while allowing \mathbf{z} to be strongly, yet non causally correlated with y . Thus, the
 247 $\mathbf{x} \rightarrow y \rightarrow \mathbf{z}$ pattern offers a principled, portable abstraction: it is simple enough for precise anal-
 248 ysis yet representative of broader scenarios where CCO is expected to emerge.
 249

250 **4.1.2 MODEL ARCHITECTURE**
 251

252 We adopt a two-key attention architecture and augment inputs with fixed positional encodings
 253 $\mathbf{s}_1, \mathbf{s}_2 \in \mathbb{R}^M$:

$$254 \quad \tilde{\mathbf{x}}^i = \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{x}^i \end{bmatrix}, \quad \tilde{\mathbf{z}}^i = \begin{bmatrix} \mathbf{s}_2 \\ \mathbf{z}^i \end{bmatrix} \in \mathbb{R}^{M+d}.$$

255 We parameterize the *query* as the gating vector $\mathbf{q}^t := \tilde{\mathbf{v}}^t \in \mathbb{R}^{M+d}$, take the *keys* as $\mathbf{k}_x^i := \tilde{\mathbf{x}}^i$ and
 256 $\mathbf{k}_z^i := \tilde{\mathbf{z}}^i$, and the *values* as $\mathbf{v}_x^i := \tilde{\mathbf{x}}^i$ and $\mathbf{v}_z^i := \tilde{\mathbf{z}}^i$.
 257

258 **Two-key Attention.** Define the logits

$$259 \quad \ell_{x,i}^t = (\mathbf{q}^t)^\top \mathbf{k}_x^i, \quad \ell_{z,i}^t = (\mathbf{q}^t)^\top \mathbf{k}_z^i,$$

260 and weights

$$261 \quad \alpha_{x,i}^t = \frac{e^{\ell_{x,i}^t}}{e^{\ell_{x,i}^t} + e^{\ell_{z,i}^t}}, \quad \alpha_{z,i}^t = 1 - \alpha_{x,i}^t.$$

262 By softmax translation invariance,
 263

$$264 \quad \alpha_{x,i}^t = \sigma((\mathbf{q}^t)^\top (\mathbf{k}_x^i - \mathbf{k}_z^i)) = \sigma((\tilde{\mathbf{v}}^t)^\top (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i)) =: p_i^t.$$

265 The attention output (per sample) is
 266

$$267 \quad \hat{\mathbf{h}}^{i,t} = \alpha_{x,i}^t \mathbf{v}_x^i + \alpha_{z,i}^t \mathbf{v}_z^i = p_i^t \tilde{\mathbf{x}}^i + (1 - p_i^t) \tilde{\mathbf{z}}^i.$$

270 **Algorithm 1** GD on the two-key attention model

271
272 1: **Input:** $\{(\mathbf{x}^i, y^i, \mathbf{z}^i)\}_{i=1}^n$, encodings $\mathbf{s}_1, \mathbf{s}_2$, stepsizes $\{\eta_t\}, \{\beta_t\}$, initialization scale α , iterations
273 T .
274 2: **Positional Encoding:** $\tilde{\mathbf{x}}^i = \begin{bmatrix} \mathbf{s}_1 \\ \mathbf{x}^i \end{bmatrix}, \tilde{\mathbf{z}}^i = \begin{bmatrix} \mathbf{s}_2 \\ \mathbf{z}^i \end{bmatrix}$.
275 3: **Init:** $\tilde{\mathbf{w}}^0 = \begin{bmatrix} \mathbf{0} \\ \alpha \mathbf{I}_d \end{bmatrix}, \tilde{\mathbf{v}}^0 = \mathbf{0}_{M+d}$.
276 4: **for** $t = 0, 1, \dots, T-1$ **do**
277 5: **for** $i = 1$ **to** n **do**
278 6: $p_i^t \leftarrow \sigma((\tilde{\mathbf{v}}^t)^\top (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i)), \hat{y}^{i,t} \leftarrow (p_i^t \tilde{\mathbf{x}}^i + (1 - p_i^t) \tilde{\mathbf{z}}^i)^\top (\tilde{\mathbf{w}}^t)^{\odot 2}, r_i^t \leftarrow \hat{y}^{i,t} - y^i$
279 7: $\tilde{\mathbf{w}}^{t+1} \leftarrow \tilde{\mathbf{w}}^t - \frac{\eta_t}{n} \sum_{i=1}^n r_i^t (p_i^t \tilde{\mathbf{x}}^i + (1 - p_i^t) \tilde{\mathbf{z}}^i) \odot \tilde{\mathbf{w}}^t$
280 8: $\tilde{\mathbf{v}}^{t+1} \leftarrow \tilde{\mathbf{v}}^t - \frac{\beta_t}{n} \sum_{i=1}^n r_i^t p_i^t (1 - p_i^t) (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i)^\top ((\tilde{\mathbf{w}}^t)^{\odot 2}) (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i)$
281 9: **Return:** $(\tilde{\mathbf{w}}^{t+1}, \tilde{\mathbf{v}}^{t+1})$.

285
286
287 **Squared-parameter Head and Loss.** We predict with a quadratic parameterization feed-forward
288 layer:

289
290 $\hat{y}^{i,t} = (\hat{\mathbf{h}}^{i,t})^\top (\tilde{\mathbf{w}}^t)^{\odot 2} = \sum_{j=1}^{M+d} (\tilde{\mathbf{w}}_j^t)^2 \hat{\mathbf{h}}_j^{i,t}, \quad \mathcal{L}_n(\tilde{\mathbf{w}}, \tilde{\mathbf{v}}) = \frac{1}{2n} \sum_{i=1}^n (\hat{y}^i - y^i)^2$.
291
292

293 This quadratic parameterization feed-forward layer can be seen as a special diagonal neural network,
294 essentially a position wise FFN that provides anisotropic multiplicative gains and thus retains feature
295 learning capacity through the attention mixed representation. This parameterization can be further
296 generalized by $\hat{y}^{i,t} = (\hat{\mathbf{h}}^{i,t})^\top ((\tilde{\mathbf{w}}^{+,t})^{\odot 2} - (\tilde{\mathbf{w}}^{-,t})^{\odot 2})$.
297

298 GD on the two-key attention model is summarized in Algorithm 1.

299 Our module is exactly a single-head dot-product attention applied per sample with two keys/values,
300 one for the cause path and one for the descendant path. It is the special case of a Transformer attention
301 block where W_Q, W_K, W_V are identity projections, so the query is the learned gating direction
302 $\tilde{\mathbf{v}}$, and the two tokens are $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{z}}$. This reduction keeps the softmax competition geometry and
303 the value mixing mechanism intact while stripping away projection layers that would obscure the
304 optimization dynamics. The quadratic parameterization head is a diagonal, position wise FFN that
305 provides nonnegative per-coordinate gains. Studying this minimal attention-FFN pair is theoreti-
306 cally meaningful: it isolates the allocation dynamics behind the implicit bias we analyze, preserving
307 the key nonlinearities (softmax and multiplicative gains) that produce CCO.

308 The distinct fixed encodings $\mathbf{s}_1 \neq \mathbf{s}_2$ attach branch identity to keys and values and inject a sample-
309 independent margin $(\tilde{\mathbf{v}}^t)^\top (\mathbf{s}_1 - \mathbf{s}_2)$ into the logit difference. When \mathbf{x}_i and \mathbf{z}_i are weakly separated
310 early in training, the offset $(\tilde{\mathbf{v}}^t)^\top (\mathbf{s}_1 - \mathbf{s}_2)$ prevents the gate from collapsing to 1/2 and ensures a
311 non-degenerate gradient, thereby guaranteeing identifiability of branches and stable training dynam-
312 ics. This mirrors the role of positional embeddings in Transformers.

313 4.1.3 DOMINANT-COORDINATE CONDITION.
314

315 We characterize which patterns of strong correlation are sufficient for CCO to emerge. The two
316 conditions below formalize (i) a population-level dominance of one causal coordinate and (ii) a
317 per-sample margin along that coordinate.

318 Define $s_j := \mathbb{E}[(\mathbf{x}^\top (\mathbf{w}^*)^{\odot 2}) (\mathbf{x}_j + \mathbf{z}_j)]$ measures the cross-moment between response y and the
319 combined coordinate $\mathbf{x}_j + \mathbf{z}_j$. The adjustment $\mu_j := \mathbb{E}[\epsilon(\mathbf{x}_j + \mathbf{z}_j)]$ accounts for noise leakage.
320 $s_j^{\text{eff}} := s_j + \mu_j$ is the effective signal which governs the drift of gradient updates. We also write
321 $m_j := \mathbb{E}[(\mathbf{x}_j + \mathbf{z}_j)^2] = \Sigma_{jj} + \zeta_j^2$ and $m_{kj} := \mathbb{E}[(\mathbf{x}_k + \mathbf{z}_k)(\mathbf{x}_j + \mathbf{z}_j)] = \Sigma_{kj} + \zeta_k \zeta_j$ which capture
322 the second-moment scales of the combined features.

323 **Condition 1.** The effective signal satisfies that $s_1^{\text{eff}} > \frac{2m_1}{15} + \max_{j>1} (4 |s_j^{\text{eff}}| + \frac{m_{1j}}{8})$.

324 Condition 1 requires effective signal the dominant feature is sufficiently strong to exceed that of other
 325 competitor by a uniform gap. The assumption is mild, it allows strong descendant induced correlations
 326 on other coordinates but prevents the dominant causal direction from being overwhelmed.
 327 Under Condition 1, the GD dynamics preferentially amplify the squared weight on the dominant
 328 coordinate, creating the occupancy that initiates CCO.

329 **Condition 2.** *There exist constant $\tau_1, \tau_2 > 0$ such that for every sample $i = 1, \dots, n$:* (i) *Nontrivial*
 330 *gap:* $|\mathbf{x}_1^i - \mathbf{z}_1^i| \geq \tau$. (ii) *Sign stability:* $\text{sgn}(\mathbf{x}_1^i - \mathbf{z}_1^i) = \text{sgn}(\mathbf{x}_1^i)$. (iii) *Dominant-coordinate*
 331 *margin lower bound:* $\frac{3}{4}|\mathbf{x}_1^i| \geq r B_{\mathbf{x}} + B_{\epsilon} + \tau_2$.

333 In combination with Condition 1, Condition 2 guarantees that GD on the gate parameter $\tilde{\mathbf{v}}^t$ towards
 334 the max-margin solution on $\{\tilde{\mathbf{x}}_i - \tilde{\mathbf{z}}_i\}_{i=1}^n$ drives $p_i^t \rightarrow 1$ and thereby squeezes out the descendant
 335 branch. In short, Condition 1 ensures occupancy, whereas Condition 2 ensures crowding out, com-
 336 pleting the CCO mechanism.

337 These two conditions are satisfiable in bounded, Lipschitz settings. Importantly, as detailed in Ex-
 338 ample 26, they do not exclude the empirically relevant regime where some non-dominant causal
 339 coordinates are less correlated with y than descendant coordinates: it can happen that for some
 340 $j > 1$ with $\mathbf{w}_j^* = 1$, $\text{Cov}(\mathbf{x}_j, y) < \text{Cov}(\mathbf{z}_j, y)$.

342 MAIN RESULT

343 We next formalize when and how CCO emerges in our two-key attention model. Under the
 344 Dominant-coordinate condition, the first theorem provides a mechanistic account of CCO during
 345 training. The second theorem provides a generalization guarantee: with high probability, the learned
 346 predictor filters out the descendant \mathbf{z} , relies almost exclusively on the causal \mathbf{x} , and attains test risk
 347 near the cause only level.

348 **Theorem 1** (CCO’s Mechanism). *Under Condition 1 and Condition 2, consider GD with initial-
 349 ization scale $\alpha = \frac{\sqrt{\sigma^2 \log d/n}}{d^3}$ and the following stepsize schedule: (i) For $1 \leq t \leq T_1^* :=$
 350 $\min\{t \in \mathbb{N} : \mathbf{w}_1^t \geq \frac{1}{4}\}$, set $\eta_t \equiv \eta$ and $\beta_t \equiv 0$. (ii) For $T_1^* < t \leq T_1^* + T_2^*$, with
 351 $T_2^* \asymp \exp\left(\sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\epsilon})^2}\right)$, set $\eta_t \equiv 0$ and $\beta_t \equiv \beta$. (iii) For $T_1^* + T_2^* < t \leq$
 352 $T_1^* + T_2^* + T_3^* =: T^*$, set $\eta_t \equiv \eta$ and $\beta_t \equiv 0$ with $T_3^* \asymp \frac{1}{\eta} \log\left(\frac{n}{\sigma^2 \log(d)}\right)$. Then, with
 353 probability at least $1 - \frac{1}{d^2}$, the squared-parameter head satisfies*

$$357 \quad |\mathbf{w}_i^{T^*} - \mathbf{w}_i^*| \lesssim \frac{\sigma \sqrt{\log d}}{\sqrt{n}} \text{ for } i \in \text{supp}(\mathbf{w}^*), \quad |\mathbf{w}_i^{T^*} - \mathbf{w}_i^*| \lesssim \frac{1}{d} \text{ for } i \notin \text{supp}(\mathbf{w}^*).$$

358 *Meanwhile, the query (gating) iterate $\mathbf{q}^t = \tilde{\mathbf{v}}^t$ obeys $\tilde{\mathbf{v}}^t = \hat{\mathbf{u}} \log t + \rho^t$, where $\hat{\mathbf{u}}$ is the max-
 359 margin solution on $\{\tilde{\mathbf{x}}_i - \tilde{\mathbf{z}}_i\}_{i=1}^n$ and ρ^t a bounded residual. Consequently, $p_i^{T^*} \geq 1 - \frac{1}{d^2}$ for all
 360 $1 \leq i \leq n$.*

361 This theorem explains the mechanism by which CCO arises during optimization. Under the
 362 dominant-coordinate condition, the dominant causal direction becomes visible to GD: the gate’s
 363 gradient aligns with the separation direction $(\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i)$ and tracks a max-margin ray with a logarith-
 364 mically diverging norm, so the attention weight concentrates on the \mathbf{x} -branch. As the gate filters out
 365 the descendant branch, the squared-parameter head fits the ground-truth weights \mathbf{w}^* up to the error
 366 on active coordinates and a $1/d$ tail on inactive ones.

367 **Role of Positional Encodings.** Distinct fixed encodings $\mathbf{s}_1 \neq \mathbf{s}_2$ attach branch identity and in-
 368 troduce a sample-independent margin in the gate logit, $(\tilde{\mathbf{v}}^t)^\top (\mathbf{s}_1 - \mathbf{s}_2)$. This symmetry breaking
 369 enables the two-key attention to identify the dominant feature and drive the attention weights to
 370 select the branch associated with it, thereby catalyzing CCO.

371 **Theorem 2** (Generalization of CCO). *For an independent test triple $(\mathbf{x}, y, \mathbf{z})$, there exists an event
 372 Ω with $\Pr(\Omega) \geq 1 - \frac{8 \sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\mathbf{z}})^2}}{\|\mathbf{s}\|_2 \sqrt{n}} - \sqrt{\frac{2 \ln(2d^2)}{n}}$, such that conditioned on Ω ,*

$$373 \quad p^{T^*} = \sigma((\tilde{\mathbf{v}}^{T^*})^\top (\tilde{\mathbf{x}}^{T^*} - \tilde{\mathbf{z}}^{T^*})) \geq 1 - \frac{1}{d^2} \quad \text{and} \quad \mathbb{E}\left[\left| \mathcal{L} - \frac{\sigma^2}{2} \right| \mid \Omega\right] \lesssim \frac{r \sigma^2 \log d}{n}.$$

With high probability (strengthened when $\|s\|_2^2 \asymp d$), the learned gate continues to prefer the causal branch on test distribution, i.e., p^{T^*} is bounded away from 0 and close to 1. Moreover, the test loss approaches the cause only noise floor $\sigma^2/2$ at rate $O(r\sigma^2 \log d/n)$, indicating that the predictor essentially relies on \mathbf{x} while filtering out \mathbf{z} on the test distribution.

Theorem 2 controls generalization when train and test share the same data distribution. We next show that the same CCO predictor remains robust under test time shifts that perturb $y \rightarrow z$.

Corollary 1 (Robust generalization under $y \rightarrow \mathbf{z}$ shifts). At test time, change the $y \rightarrow \mathbf{z}$ mechanism so that $\mathbf{z}' = f'(y) + \xi'$ and assume $\sup_j |\mathbf{z}'_j| \leq B_{\mathbf{z}'}$. There exists an event Ω with $\Pr(\Omega) \geq 1 - \frac{8\sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\mathbf{z}'})^2}}{\|\mathbf{s}\|_2\sqrt{n}} - \sqrt{\frac{2\ln(2d^2)}{n}}$, such that conditioned on Ω ,

$$p^{T^*} = \sigma((\tilde{\mathbf{v}}^{T^*})^\top (\tilde{\mathbf{x}}^{T^*} - \tilde{\mathbf{z}}', T^*)) \geq 1 - \frac{1}{d^2}, \mathbb{E} \left[\left| \mathcal{L}_{(\mathbf{x}, y, \mathbf{z}')}(\tilde{\mathbf{w}}^{T^*}, \tilde{\mathbf{v}}^{T^*}) - \frac{\sigma^2}{2} \right| \mid \Omega \right] \lesssim \frac{r \sigma^2 \log d}{n}.$$

5 FURTHER DISCUSSION

Positioning of CCO. CCO arises under purely correlational training with single environment, no environment labels, and no explicit invariance regularizers. Yet when a dominant causal correlation is present and GD’s implicit bias takes hold, the learned predictor moves beyond correlation toward causation: it increasingly relies on causal features while largely discounting spurious correlates. Meanwhile, multi-environment invariance methods also seek causally aligned predictors, but they pursue this goal by explicitly leveraging cross environment heterogeneity.

When Can Transformers Learn Causation?

CCO offers a concrete path to cause only behavior under standard Transformer training, but it is not unique, and its assumptions need not always hold. In practice, Transformers/LLMs frequently exploit shortcuts and spurious cues (Bender et al., 2021; Du et al., 2023; Tang et al., 2023; Jin et al., 2024). CCO also has limits: it benefits from a strong causal correlation; when spurious cues are comparably strong or plentiful, single environment ERM may still lean on them. In this regime, multi-environment invariance learning that explicitly leverages heterogeneity remains essential for causal generalization.

Practical Insights. CCO suggests actionable insights for training: (i) amplify causal alignment in data to widen the dominant causal gap; (ii) employ mild attention sparsity or large step schedules to accentuate strong features. These steps do not enforce invariance, but they increase the likelihood that standard training will self select a cause only solution when the data permit.

6 EXPERIMENTS

6.1 SIMULATED EXPERIMENTS

We realize the GD on the two-key attention model in Algorithm 1 and present the simulation result in this section. We consider the case where the data are generated from the same causal chain $\mathbf{x} \rightarrow \mathbf{y} \rightarrow \mathbf{z}$. The structural assignment for each variable is defined as $\mathbf{x} \sim \mathcal{N}(\sigma \mathbf{I}_d, \mu_x)$, $\mathbf{y} = \mathbf{x}^\top (\mathbf{w}^*)^{\odot 2} + \epsilon$, $\mathbf{z} = \mathbf{C}\mathbf{y} + \boldsymbol{\xi}$, where $\epsilon, \boldsymbol{\xi}$ are independent standard normal distributed and we set \mathbf{w}^* as an all-ones vector. The results are shown in Fig 3. We calculate the weight $p_{x,i}^t$ and display its average across the batch $\bar{p}_x^t = \frac{1}{n} \sum_i p_{x,i}^t$. We then run GD for 5000 iterations with batchsize $n = 64$, and the dimension of data $d \in \{5, 10\}$. We can see that \bar{p}_x^t increases rapidly to 1 in all cases in the first 100 iterations corresponding to the occupation phase, while in the crowding out stage \bar{p}_x^t remains at 1, while \mathbf{w} slowly decreases to the minimum value.

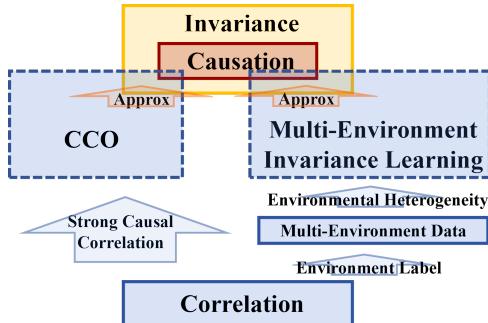


Figure 2: Positioning of CCO.

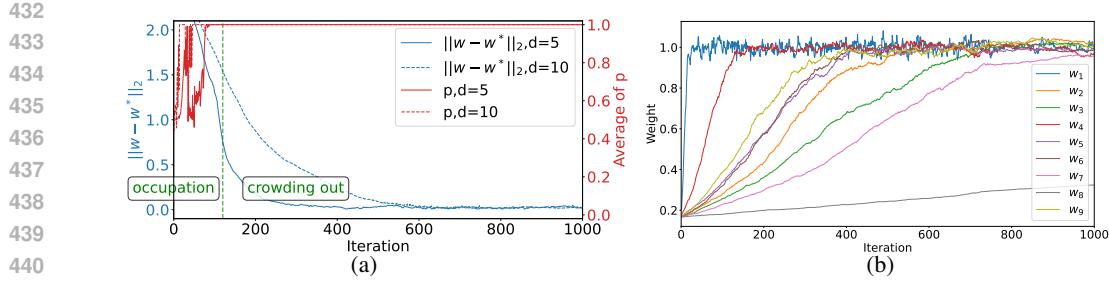


Figure 3: Simulation results for the GD on the two-key attention model. (a): the curve of $\|w - w^*\|_2$ and the average of p with $d \in \{5, 10\}$. (b): the first component of w quickly reaches its optimum during occupation phase, while the other components slowly approach their optima during the crowding-out phase.

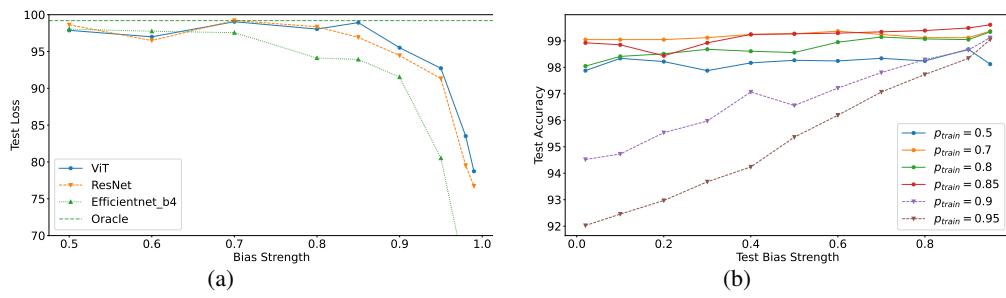


Figure 4: Experiments on waterbirds dataset. (a): The test accuracy with bias strength $p_{\text{test}} = 0.02$ bias strengths on DeiT-Small, ResNet34 and EfficientNet-B4 trained across a full sweep of training bias strengths from 0.5 to 0.99. Oracle is the accuracy on no-biased test data using DeiT-Small trained without bias. (b): The test accuracy with bias strength p_{test} sweeping from 0.02 to 0.99 on DeiT-Small trained across a full sweep of training bias strengths from 0.5 to 0.95.

6.2 EXPERIMENTS ON REAL DATA

Experiments on Vision Task. We consider an image object classification task on the birds. The target is to classify water birds ($Y = 1$) and land birds ($Y = 0$ in the CUB dataset (Wah et al., 2011)). To eliminate confounding due to foreground–background asymmetry altogether, we introduced a setting where one bird species on the left side serves as the true target label y and another bird species on the right side acts as the spurious bias z , both appearing in the foreground. We set the bias strength in the train dataset to 0.9, i.e. $p_{\text{train}} = P(z = y|y) = 0.9$. This ensures that any observed attention shift cannot be attributed to low-level feature quality differences (e.g., texture richness or semantic complexity) between foreground and background.

The results in Fig 1 consistently show that the cause features progressively occupy and crowds out the spurious features (whether background or another bird). We find that the attention map on the left bird raise rapidly in the first 50 iterations, while the attention map on the right side seldom changes, illustrating the occupation phase. By iter 500, attention is concentrated almost entirely on the left side, with the bird on the right side receiving near zero weight, marking crowding-out. These findings confirm that the observed behavior reflects genuine optimization-driven cause preference not artifacts of feature disparity.

We conducted fair experiments on Waterbirds using DeiT-Small (from timm with ImageNet pretraining) alongside ResNet34 and EfficientNet-B4 (from torchvision, also pretrained, with comparable about 20M parameter counts), training all models for 1,000 epochs at a learning rate of 1e-4 across a full sweep of bias strengths from 0.5 to 0.99. As shown in the Fig 4 (a), DeiT-Small maintains significantly higher accuracy at strong bias levels (e.g., 0.9), demonstrating that Transformers can better capture the underlying causal signal—left side bird type—despite overwhelming spurious correlations with right bird, suggesting an advantage over CNNs in leveraging stronger semantic features when spurious cues dominate.

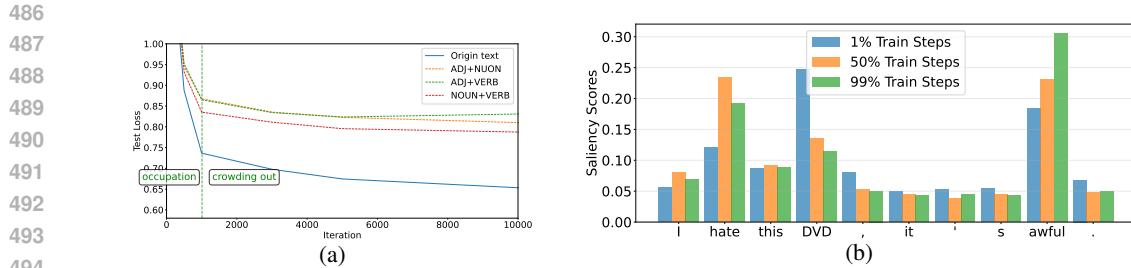


Figure 5: Experiment results on natural language task. (a): the test loss when mask the noun, adj, verb or their combination in the text. (b): the saliency scores of each token when input "I hate this DVD, it's awful." to the model at 1%, 50%, 99% of the training steps.

We also added out-of-distribution (OOD) test experiments in Fig 4 (b). We constructed a waterbird dataset with a base spurious correlation of varying training bias strengths p_{train} , measuring test accuracy on OOD data where the test bias strengths $p_{\text{test}} \in [0, 1]$. The curve reveals that when $p_{\text{train}} \geq 0.9$, test accuracy drops as bias increases, indicating that the model fails to learn the invariant causal feature (bird type) and instead relies heavily on the spurious background cue. However, once $p_{\text{train}} \leq 0.85$, test accuracy rises significantly and remains high (above 95%), which is the hallmark of CCO: the model effectively crowd out the spurious features and learn the cause only prediction. Therefore, when the spurious correlation is under the threshold, transformer can obtain a cause only predictor which exhibits robust generalization at test time.

Experiments on Natural Language Task. We conduct the sentiment classification task on the Amazon reviews dataset (He & McAuley, 2016) which consists of reviews from amazon. Here $Y \in \{1, 2, 3, 4, 5\}$ represents the reviewer's rating, X denotes the associated adjectives and verbs, and Z indicates the nouns related to the product itself. We finetune the bert-base-uncased model Devlin et al. (2019) for 50k steps, employing the Adam optimizer Kingma (2014) with a learning rate of 1e-5. When constructing the test data, we mask the noun, adj, verb or their combination in the text. As shown in Fig 5 (a), test loss with masked NOUN+VERB decay rapidly corresponding to the occupation phase. We also observe a final upward trend in the test loss with masked ADJ+VERB, indicating that the attention allocated to NOUNs is being crowded out by cause features. Fig 5 (b) display the saliency scores computed by the gradients of target class score relative to input embeddings, which show which tokens most influence the model's decision. The result indicates that the cause features (hate, awful) crowds out the spurious features during the training process.

7 CONCLUSION

In this paper, we identify a new training phenomenon for Transformers training dynamics called CCO, showing that strong causal alignment in the data, coupled with the implicit regularization of GD, can drive the model toward cause only prediction. We demonstrate CCO empirically and develop a theoretical account of its two phase mechanism (occupation and crowding-out). While not the only route to causal generalization, CCO offers a concrete answer to when and through what dynamics standard Transformer training can suppress spurious features and rely almost exclusively on causal ones. The results spark that: amplifying causal alignment in data and designing training procedures that accentuate causal signals can make Transformers more likely to learn causally grounded predictors.

540 8 ETHICS STATEMENT
541542 Our paper complies with the ICLR Code of Ethics.
543544 REFERENCES
545546 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
547 *arXiv preprint arXiv:1907.02893*, 2019.549 Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
550 selection in attention mechanism. In *Neural Information Processing Systems*, 2023.551 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
552 learning practice and the classical bias-variance trade-off. *Proceedings of the National Academy
553 of Sciences*, 116(32):15849–15854, 2019.555 Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
556 dangers of stochastic parrots: Can language models be too big? In *Proceedings of the 2021 ACM
557 Conference on Fairness, Accountability, and Transparency*, pp. 610–623, 2021.558 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
559 laws. In *International Conference on Machine Learning*, 2024.561 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
562 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
563 few-shot learners. In *Neural Information Processing Systems*, 2020.564 Yuhang Cai, Kangjie Zhou, Jingfeng Wu, Song Mei, Michael Lindsey, and Peter L Bartlett. Implicit
565 bias of gradient descent for non-homogeneous deep networks. *arXiv preprint arXiv:2502.16075*,
566 2025.567 Francesco D’Angelo, Francesco Croce, and Nicolas Flammarion. Selective induction heads: How
568 Transformers select causal structures in context. In *International Conference on Learning Repre-
569 sentations*, 2025.571 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
572 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
573 the North American chapter of the association for computational linguistics: human language
574 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.575 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
576 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
577 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
578 arXiv:2010.11929*, 2020.580 Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu,
581 Tong Sun, and Xia Hu. Towards interpreting and mitigating shortcut learning behavior of NLU
582 models. In *Proceedings of the 2021 Conference of the North American Chapter of the Association
583 for Computational Linguistics: Human Language Technologies*, pp. 915–929, 2021.584 Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. Shortcut learning of large language
585 models in natural language understanding. *Communications of the ACM*, 67(1):110–120, 2023.587 John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
588 tionally robust optimization. *The Annals of Statistics*, 49(3):1378–1406, 2021.589 Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, and Surbhi Goel. The evo-
590 lution of statistical induction heads: In-context learning markov chains. In *Neural Information
591 Processing Systems*, 2024.593 Jianqing Fan, Cong Fang, Yihong Gu, and Tong Zhang. Environment invariant linear least squares.
The Annals of Statistics, 52(5):2268–2292, 2024.

594 Ragnar Frisch and Frederick V Waugh. Partial time regressions as compared with individual trends.
 595 *Econometrica: Journal of the Econometric Society*, pp. 387–401, 1933.
 596

597 Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributionally robust optimization and
 598 variation regularization. *Operations Research*, 72(3):1177–1191, 2024.

599 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
 600 Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias im-
 601 proves accuracy and robustness. In *International Conference on Learning Representations*, 2018.

602 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
 603 Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature
 604 Machine Intelligence*, 2(11):665–673, 2020.

605 AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Kun Zhang. Learning causal
 606 structures using regression invariance. In *Neural Information Processing Systems*, 2017.

607 Yihong Gu, Cong Fang, Peter Bühlmann, and Jianqing Fan. Causality pursuit from heterogeneous
 608 environments via neural adversarial invariance learning. *arXiv preprint arXiv:2405.04715*, 2024.

609 Yihong Gu, Cong Fang, Yang Xu, Zijian Guo, and Jianqing Fan. Fundamental computational lim-
 610 its in pursuing invariant causal prediction and invariance-guided regularization. *arXiv preprint
 611 arXiv:2501.17354*, 2025.

612 Shurui Gui and Shuiwang Ji. Mitigating spurious correlations in LLMs via causality-aware post-
 613 training. *arXiv preprint arXiv:2506.09433*, 2025.

614 Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
 615 Noah A Smith. Annotation artifacts in natural language inference data. In *Proceedings of the
 616 2018 Conference of the North American Chapter of the Association for Computational Linguis-
 617 tics: Human Language Technologies, Volume 2 (Short Papers)*, 2018.

618 Jeff Z HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit
 619 bias of the noise covariance. In *Conference on Learning Theory*, 2021.

620 Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
 621 with one-class collaborative filtering. In *proceedings of the 25th international conference on
 622 world wide web*, pp. 507–517, 2016.

623 Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
 624 nonlinear models. *Journal of Causal Inference*, 6(2):20170016, 2018.

625 Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision Transformers provably learn spatial structure.
 626 In *Neural Information Processing Systems*, 2022.

627 Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
 628 *Conference on Learning Theory*, 2019.

629 Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon Shaolei Du, and Jason D Lee. Understanding incre-
 630 mental learning of gradient descent: A fine-grained analysis of matrix sensing. In *International
 631 Conference on Machine Learning*, 2023.

632 Zhijing Jin, Jiarui Liu, Zhiheng LYU, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona T.
 633 Diab, and Bernhard Schölkopf. Can large language models infer causation from correlation? In
 634 *International Conference on Learning Representations*, 2024.

635 Pritish Kamath, Akilesh Tangella, Danica Sutherland, and Nathan Srebro. Does invariant risk mini-
 636 mization capture invariance? In *International Conference on Artificial Intelligence and Statistics*,
 637 2021.

638 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 639 2014.

640 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 641 language models are zero-shot reasoners. In *Neural Information Processing Systems*, 2022.

648 Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vi-
 649 sion Transformers: Learning, generalization, and sample complexity. In *International Conference*
 650 *on Learning Representations*, 2023a.

651

652 Jiangyuan Li, Thanh Nguyen, Chinmay Hegde, and Ka Wai Wong. Implicit sparse regularization:
 653 The impact of depth and early stopping. In *Neural Information Processing Systems*, 2021.

654 Yicong Li, Xiang Wang, Junbin Xiao, Wei Ji, and Tat-Seng Chua. Transformer-empowered invariant
 655 grounding for video question answering. *IEEE Transactions on Pattern Analysis and Machine*
 656 *Intelligence*, 2023b.

657

658 Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
 659 matrix sensing and neural networks with quadratic activations. In *Conference on Learning Theory*,
 660 2018.

661 Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do Transformers learn topic structure: Towards a
 662 mechanistic understanding. In *International Conference on Machine Learning*, pp. 19689–19729.
 663 PMLR, 2023c.

664

665 Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter Bartlett, and Jason D. Lee. Scaling laws in linear
 666 regression: Compute, parameters, and data. In *Neural Information Processing Systems*, 2024.

667 Yong Lin, Hanze Dong, Hao Wang, and Tong Zhang. Bayesian invariant risk minimization. In
 668 *Computer Vision and Pattern Recognition*, 2022a.

669

670 Yong Lin, Shengyu Zhu, Lu Tan, and Peng Cui. Zin: When and how to learn invariance without
 671 environment partition? In *Neural Information Processing Systems*, 2022b.

672 Chaochao Lu, Yuhuai Wu, José Miguel Hernández-Lobato, and Bernhard Schölkopf. Nonlinear
 673 invariant risk minimization: A causal approach. *arXiv preprint arXiv:2102.12353*, 2021a.

674

675 Haoye Lu, Yongyi Mao, and Amiya Nayak. On the dynamics of training attention models. In
 676 *International Conference on Learning Representations*, 2021b.

677

678 Weihao Lu, Haobo Zhang, Yicheng Li, Manyun Xu, and Qian Lin. Optimal rate of kernel regression
 679 in large dimensions. *arXiv preprint arXiv:2309.04268*, 2023.

680 R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
 681 heuristics in natural language inference. In *Annual Meeting of the Association for Computational*
 682 *Linguistics*, 2020.

683

684 Nicolai Meinshausen, Alain Hauser, Joris M Mooij, Jonas Peters, Philip Versteeg, and Peter
 685 Bühlmann. Methods for causal inference from gene perturbation experiments and validation.
 686 *Proceedings of the National Academy of Sciences*, 113(27):7361–7368, 2016.

687 Mazda Moayeri, Sahil Singla, and Soheil Feizi. Hard imagenet: Segmentations for objects with
 688 strong spurious cues. In *Neural Information Processing Systems*, 2022.

689

690 Depen Morwani, Jatin Batra, Prateek Jain, and Praneeth Netrapalli. Simplicity bias in 1-hidden layer
 691 neural networks. In *Neural Information Processing Systems*, 2023.

692

693 Eshaan Nichani, Alex Damian, and Jason D. Lee. How Transformers learn causal structure with
 694 gradient descent. In *International Conference on Machine Learning*, 2024.

695

696 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 697 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
 698 heads. *arXiv preprint arXiv:2209.11895*, 2022.

699

700 Judea Pearl. Causal inference in statistics: An overview. 2009.

701 Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant pre-
 702 diction: Identification and confidence intervals. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 78(5):947–1012, 2016.

702 Niklas Pfister, Peter Bühlmann, and Jonas Peters. Invariant causal prediction for sequential data.
 703 *Journal of the American Statistical Association*, 114(527):1264–1276, 2019.
 704

705 GuanWen Qiu, Da Kuang, and Surbhi Goel. Complexity matters: Dynamics of feature learning in
 706 the presence of spurious correlations. In *NeurIPS 2023 Workshop on Mathematics of Modern*
 707 *Machine Learning*, 2023.

708 Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant risk mini-
 709 mization. In *International Conference on Learning Representations*, 2021.
 710

711 Dominik Rothenhäusler, Peter Bühlmann, and Nicolai Meinshausen. Causal dantzig. *The Annals of*
 712 *Statistics*, 47(3):1688–1722, 2019.

713 Dominik Rothenhäusler, Nicolai Meinshausen, Peter Bühlmann, and Jonas Peters. Anchor regres-
 714 sion: Heterogeneous data meet causality. *Journal of the Royal Statistical Society Series B: Statis-*
 715 *tical Methodology*, 83(2):215–246, 2021.
 716

717 Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
 718 neural networks. In *International Conference on Learning Representations*, 2020a.

719 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 720 neural networks for group shifts: On the importance of regularization for worst-case generaliza-
 721 tion. *International Conference on Learning Representations*, 2020b.
 722

723 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 724 Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. *Proceedings of*
 725 *the IEEE*, 109(5):612–634, 2021.

726 Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
 727 pitfalls of simplicity bias in neural networks. In *Neural Information Processing Systems*, 2020.
 728

729 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo-*
 730 *rithms*. Cambridge university press, 2014.

731 Alexander Shapiro. Distributionally robust stochastic programming. *SIAM Journal on Optimization*,
 732 27(4):2258–2275, 2017.
 733

734 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
 735 plicit bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):
 736 1–57, 2018.

737 Ruixiang Tang, Dehan Kong, Longtao Huang, et al. Large language models can be lazy learn-
 738 ers: Analyze shortcuts in in-context learning. In *Findings of the Association for Computational*
 739 *Linguistics: ACL 2023*, pp. 4645–4657, 2023.
 740

741 Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
 742 as support vector machines. In *NeurIPS 2023 Workshop on Mathematics of Modern Machine*
 743 *Learning*, 2023.

744 Maya Varma, Jean-Benoit Delbrouck, Zhihong Chen, Akshay Chaudhari, and Curtis Langlotz. Ravl:
 745 Discovering and mitigating spurious correlations in fine-tuned vision-language models. In *Neural*
 746 *Information Processing Systems*, 2024.
 747

748 Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal
 749 sparse recovery. In *Neural Information Processing Systems*, 2019.

750 Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence
 751 rates for self-attention. *arXiv preprint arXiv:2402.05738*, 2024.
 752

753 Roman Vershynin. High-dimensional probability, 2009.
 754

755 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

756 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
 757 Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
 758 models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Neural*
 759 *Information Processing Systems*, 2022.

760 Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
 761 Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
 762 *Conference on Learning Theory*, 2020.

763 Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iterate risk
 764 bounds of SGD with decaying stepsize for overparameterized linear regression. In *International*
 765 *Conference on Machine Learning*, 2022.

766 Jingfeng Wu, Peter Bartlett, Matus Telgarsky, and Bin Yu. Benefits of early stopping in gradient
 767 descent for overparameterized logistic regression. *arXiv preprint arXiv:2502.13283*, 2025.

768 Yang Xu, Yihong Gu, and Cong Fang. The implicit bias of heterogeneity towards invariance: A
 769 study of multi-environment matrix sensing. In *Neural Information Processing Systems*, 2024.

770 Yihao Xue, Siddharth Joshi, Eric Gan, Pin-Yu Chen, and Baharan Mirzasoleiman. Which features
 771 are learnt by contrastive learning? On the role of simplicity bias in class collapse and feature
 772 suppression. In *International Conference on Machine Learning*, 2023.

773 Yu Yang, Eric Gan, Gintare Karolina Dziugaite, and Baharan Mirzasoleiman. Identifying spuri-
 774 ous biases early in training through the lens of simplicity bias. In *International Conference on*
 775 *Artificial Intelligence and Statistics*, 2024.

776 Wenqian Ye, Guangtao Zheng, Xu Cao, Yunsheng Ma, and Aidong Zhang. Spurious correlations in
 777 machine learning: A survey. *arXiv preprint arXiv:2402.12715*, 2024.

778 Yu Yuan, Lili Zhao, Kai Zhang, Guangting Zheng, and Qi Liu. Do LLMs overcome shortcut learn-
 779 ing? an evaluation of shortcut challenges in large language models. In *Conference on Empirical*
 780 *Methods in Natural Language Processing*, 2024.

781 Haihan Zhang, Weicheng Lin, Yuanshi Liu, and Cong Fang. Learning curves of stochastic gradient
 782 descent in kernel regression. In *International Conference on Machine Learning*, 2025.

783 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
 784 million image database for scene recognition. *IEEE transactions on pattern analysis and machine*
 785 *intelligence*, 40(6):1452–1464, 2017.

786 Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham Neubig. Examining and combating spurious
 787 features under distribution shift. In *International Conference on Machine Learning*, 2021.

788 Xiao Zhou, Yong Lin, Weizhong Zhang, and Tong Zhang. Sparse invariant risk minimization. In
 789 *International Conference on Machine Learning*, 2022.

790 Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Benign overfitting
 791 of constant-stepsize SGD for linear regression. In *Conference on Learning Theory*, 2021.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

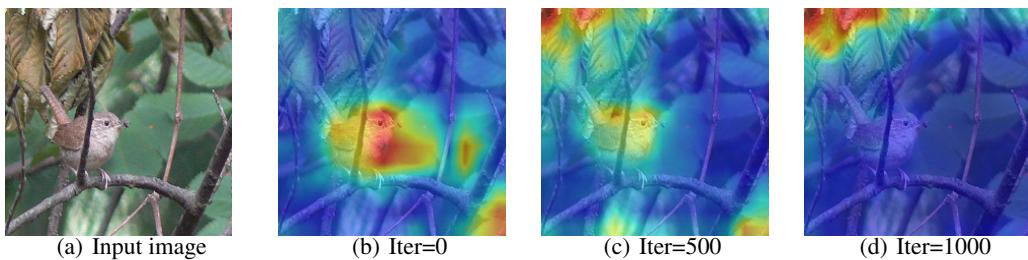


Figure 6: This figure shows how attention shifts during ViT training on a background-label (target) task. (a) is the input image. Early in training (b, iter 0), attention is diffuse across background (causal feature) and bird (spurious feature). As training proceeds (c, iter 500), attention weight rises on the background illustrating the occupation phase. By (d, iter 1000), attention is concentrated almost entirely on the background, with the bird receiving near zero weight, marking crowding-out.

A APPENDIX

A.1 USE OF LLMs

We used LLMs for language polishing.

A.2 ADDITIONAL EXPERIMENT

Background-label (target) task. We consider an image object classification task on the background with birds. The target is to classify water environment ($\hat{Y} = 1$) and land environment ($\hat{Y} = 0$). We generate datasets by combining the bird images in the CUB dataset (Wah et al., 2011) and the background images in the Places dataset (Zhou et al., 2017) using specific probabilities, which is similar to the waterbird setting in Sagawa et al. (2020b) with different target. We set the pixels related to birds as z and place 70% of all water birds against a water background and 70% of all land birds against a land background, generating a dataset with 30k images. We then train the vision Transformer model (Dosovitskiy et al., 2020) using the dataset, fixing the input image size to 224, with patch size set to 16, learning rate set to 1e-4, and batch size set to 16. The results are displayed in Fig 6. Initially, attention grows rapidly in the background with only a slight increase on the bird. Later, during crowding-out, the map is rapidly dominated by background attention, while the bird’s attention becomes very faint.

Sensitive of sign-stability. In order to empirically verify how sensitive our mechanism is to mild violations of sign-stability, we consider the image object classification task on the background with birds. The target is to classify water bird ($\hat{Y} = 1$) and land bird ($\hat{Y} = 0$). We generate datasets by combining the bird images in the CUB dataset (Wah et al., 2011) and the background images in the Places dataset (Zhou et al., 2017) using specific probabilities. But here we flip the label \hat{Y} with probability p_{flip} :

$$\hat{Y} = \begin{cases} 1 - Y, & \text{with probability } p_{\text{flip}}, \\ Y, & \text{with probability } 1 - p_{\text{flip}}. \end{cases}$$

We also place p_{train} of all water birds against a water background and p_{train} of all land birds against a land background, generating a dataset with 30k images. We then train the vision Transformer model using the dataset, fixing the input image size to 224, with patch size set to 16, learning rate set to 1e-4, and batch size set to 16. As shown in Fig 7, we scan the p_{flip} from 0 to 0.5, and find that when $p_{\text{flip}} = 0.2$, the crowding-out behavior can still be observed in the model with the accuracy reaches over 90%, proving that the mechanism is sign-stable. When $p_{\text{flip}} \leq 0.15$, the test accuracy remains robust across different bias strengths, indicating that CCO is still effective and the model is able to learn invariant cause only prediction.

CCO boundary conditions. To empirically characterize the boundary conditions of CCO, we introduce controlled cause-predictive correlation by flipping the true bird class label Y with probability p_{flip} in a Waterbirds-like setup, where water birds and land birds are composited onto matching backgrounds with strength p_{train} (measuring spurious-predictive correlation). As shown in Fig 7, when $p_{\text{flip}} \leq 0.3$ in (a) or $p_{\text{flip}} \leq 0.05$ in (b), the Vision Transformer maintains high and stable

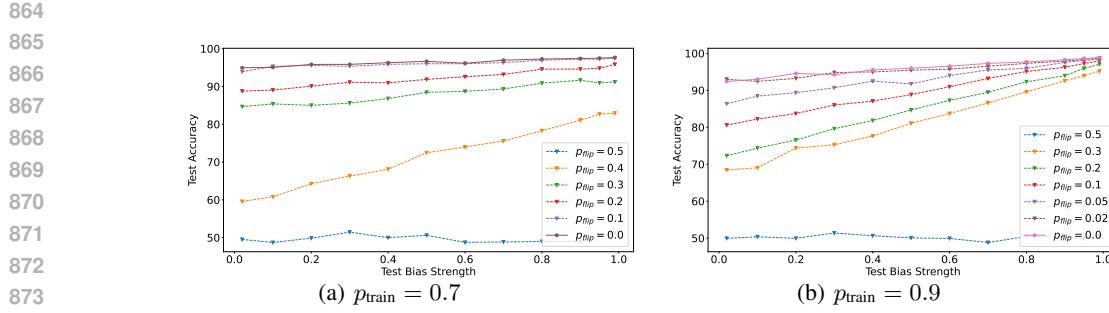


Figure 7: Test Accuracy on Deit-Small trained across a full sweep of label flip probability p_{flip} from 0 to 0.5 with p_{train} fixed to 0.7 and 0.9. We sweep the test bias strength p_{test} from 0.02 to 0.99.

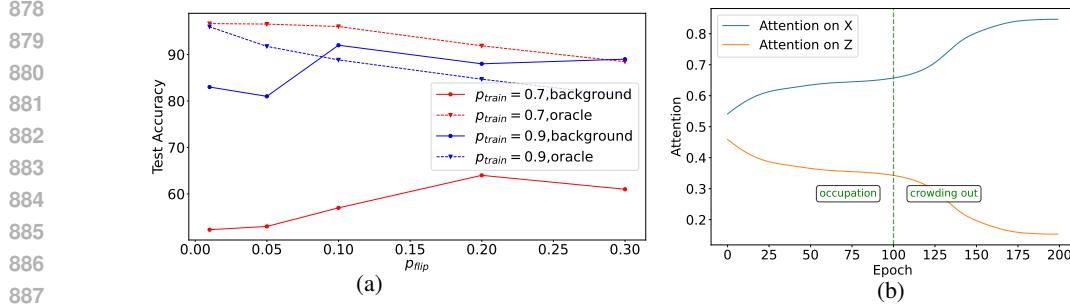


Figure 8: (a): Test accuracy of Deit-Small trained on dataset with various p_{flip} and p_{train} on the bird classification task. The background curves show test accuracy on the background dataset without bird. The oracle curves show test accuracy on the dataset with $p_{\text{test}} = 0.5$. (b): The dynamic of attention weight for x, z during training in simulation on standard transformer.

test accuracy across varying bias strengths, and its attention concentrates on the bird rather than the background—evidence that CCO is active and the model learns an invariant predictor based on the cause features x . Even at $p_{\text{flip}} = 0.2$ in Fig 7(a), the model still achieves over 90% accuracy and exhibits crowding-out behavior, demonstrating robustness to mild violations of sign-stability. However, as p_{flip} increases further toward 0.4 or 0.5, the performance deteriorates sharply, indicating that CCO collapses once the correlation gap falls below a critical threshold. These results establish that CCO operates effectively when the cause-predictive correlation remains sufficiently stronger than the spurious one, defining a practical boundary beyond which the mechanism no longer reliably emerges.

Generalization effects of spurious-dominant correlation. We test the accuracy of ViT on the background dataset without bird in a specular setting with dominant correlations between y and z , and weaker ones between x and y . The results are shown in Fig 8 (a). When the correlation between y and z in the dataset is strong, we observe a specular result: the model achieves high accuracy on the background-only test set, indicating that it primarily relies on features associated with z for prediction. In contrast, when the correlation between y and z is relatively weaker compared to the correlation between x and y , the model’s accuracy on the background-only test set becomes very low. In this regime, the CCO mechanism emerges: the model’s attention focuses predominantly on cause features x , effectively crowding out those spurious features z .

Image classification on CelebA. We conduct our experiment on the classification task on CelebA dataset and the discussion on NLP task can be found in response to weakness-2. This classification task aims to predict the presence of a beard from CelebA images, where the target label is spuriously correlated with gender. We trained ResNet-34, EfficientNet-B4, and DeiT-Small with comparable parameter counts on this dataset under standard settings, using the AdamW optimizer with a learning rate of 1e-4.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972

Table 1: The accuracy of ResNet-34, EfficientNet-B4, and DeiT-Small on train dataset and test dataset including (1) (Test Set 1) masking out facial regions, and (2) (Test Set 2) masking out everything except the facial regions.

Model	Train Accuracy	Test Set 1 Accuracy (↓)	Test Set 2 Accuracy (↑)
Deit-small	0.987	0.552	0.893
ResNet-34	0.992	0.577	0.861
EfficientNet-B4	0.979	0.573	0.802

Table 2: The loss of BERT trained on datasets with various $P(z | y)$. The table shows the loss on train dataset and test dataset including (1) (Oracle Test): z and y are independent, $P(z | y) = 0.5$, and (2) (Biased Test): $P(z | y) = 0.02$.

$P(z y)$	Final Train Loss	Oracle Test Loss (↓)	Biased Test Loss (↓)
0.5	0.64	0.61	0.65
0.9	0.62	0.65	0.68
0.95	0.67	0.77	0.87

In the test set, we evaluated two masking conditions based on the bounding box (bbox) annotations provided by the dataset: (1) (Test Set 1) masking out facial regions, and (2) (Test Set 2) masking out everything except the facial regions and the result are shown in Tab 1. On Test Set 2, DeiT-Small outperformed both ResNet-34 and EfficientNet-B4, indicating the CCO mechanism of crowding out spurious features for accurate beard prediction. The performance gap observed on Test Set 2, where only facial regions are visible, underscores that when the dataset contains strong but misleading associations (like gender bias), DeiT-Small leverages its capacity to attend to all parts of the image equally and identify the most predictive elements—the beard itself—thus achieving higher accuracy. This supports the hypothesis that under certain conditions, particularly those involving complex spurious correlations, Transformers exhibit a robustness and adaptability that enables them to focus on invariant cause only prediction, enhancing their generalization capabilities on unseen data.

Controllable Spuriousness evaluation in NLP task. We construct NLP evaluation settings where the degree of spurious correlation is known and controllable. When ground-truth labels y are available and the data-generating process allows intervention, we can deliberately manipulate the association between a potentially spurious variable z (e.g., the name of item) and the label y . By sampling instances according to a fixed conditional distribution $P(z | y) = p$, we can break or calibrate the spurious link between z and y .

The Amazon reviews dataset provide the label of scores which is the target y and the name of item, which is a measurement of z . Varying p across experimental conditions allows systematic study of how model behavior changes with the strength of the z - y association. The table shows the final test loss of BERT under various p , where BERT remains lower test loss when $p = 0.9$, demonstrating that transformers can pick up the stronger causal signal in NLP data.

Simulation on standard transformer. We conduct simulation experiments on standard multi-token transformer. We take a two-token $\mathbf{X} = [\mathbf{x}, \mathbf{z}]$ as the input, and the causal chain is $\mathbf{x} \rightarrow y \rightarrow \mathbf{z}$, where $\mathbf{x}, \mathbf{z} \in \mathbb{R}^d$ are vector covariates. We set

$$y = \mathbf{x}^\top \mathbf{w}_x + \epsilon, \quad \mathbf{z} = \mathbf{w}_z y + \xi$$

Here ϵ and ξ are both Gaussian random vectors, with variances of 0.1 and 1, respectively. We set $\mathbf{w}_x = \mathbf{1}_d$, $\mathbf{w}_z = 0.1 \cdot \mathbf{1}_d$. We then train a 2-layer standard multi-token Transformer with a learning rate of 1e-3 and the dynamic of attention weight for \mathbf{x}, \mathbf{z} during training is shown in Fig 8. The attention weight curve demonstrates that the model initially assigns comparable attention to both the cause X and its effect Z , but shows a two-stage shifts focus toward X while sharply suppressing attention to Z . This "occupation" and "crowding out" behavior aligns with the CCO mechanism. Consequently, the model learns to rely on direct evidence rather than attending to indirect, spurious predictive pathway.

972 A.3 PROOF OF THEOREM 1
973

974 The proof of Theorem 1 in three stages. In Stage 1, we show that the squared-parameter FFN rapidly
975 amplifies the weight on the dominant causal coordinate while keeping all other coordinates small.
976 In Stage 2, GD on the gate parameter $\tilde{\mathbf{v}}^t$ towards the max-margin solution on $\{\tilde{\mathbf{x}}_i - \tilde{\mathbf{z}}_i\}_{i=1}^n$ drives
977 $p_i^t \rightarrow 1$ and thereby squeezes out the descendant branch. Finally, in Stage 3, after the descendant z
978 is nearly excluded, the squared-parameter FFN recovers the sparse ground truth.

979 A.3.1 STAGE 1
980

981 **Theorem 3.** Let $T_1^* = \min \{t \in \mathbb{N} : \mathbf{w}_1^t \geq \frac{1}{4}\}$. Under Condition 1, suppose the step sizes satisfy
982 $\eta_t \equiv \eta < \frac{1}{2(|s_1^{\text{eff}}| + \frac{m_1}{32})}$, and $\beta_t \equiv 0$, and the initialization scale is $\alpha = \frac{\sqrt{\sigma^2 \log d/n}}{d^3}$. Then with
983 probability at least $1 - \frac{1}{d^2}$, the iterate $\tilde{\mathbf{w}}^{T_1^*} = \begin{bmatrix} \mathbf{0} \\ \mathbf{w}_1^{T_1^*} \end{bmatrix}$ satisfies $\frac{1}{4} \leq \mathbf{w}_1^{T_1^*} \leq \frac{1}{2}$ and $|\mathbf{w}_j^{T_1^*}| \leq$
984 $\frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ for $j > 1$.
985

986 *Proof of Theorem 3.* Throughout Stage 1 we set $\beta_t \equiv 0$, hence $\tilde{\mathbf{v}}^t \equiv \mathbf{0}$ for all $1 \leq t \leq T_1^*$. With the
987 two-key attention, this implies $p_i^t = \sigma(0) = \frac{1}{2}$ for every sample $1 \leq i \leq n$ and iteration $1 \leq t \leq T_1^*$.
988 By the structure of the squared-parameter head, $\tilde{\mathbf{w}}^t$ keeps the form $\tilde{\mathbf{w}}^t = \begin{bmatrix} \mathbf{0} \\ \mathbf{w}_1^t \end{bmatrix}$.
989

990 The update of \mathbf{w}^t satisfies
991

$$992 \mathbf{w}^{t+1} = \mathbf{w}^t - \frac{\eta}{n} \sum_{i=1}^n \left(\frac{1}{2} (\mathbf{x}^i + \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} - (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} - \epsilon_i \right) (\mathbf{x}^i + \mathbf{z}^i) \odot \mathbf{w}^t. \quad (4)$$

993 We analyze non-dominant coordinates ($j > 1$) and the dominant coordinate ($j = 1$) in turn.
994

995 By the definition of T_1^* , we have $\mathbf{w}_1^t < 1/4$, for $t < T_1^*$. We now prove for $j > 1$ and $1 \leq t \leq$
996 $\left\lceil \frac{\log(d^3/4(\sqrt{\sigma^2 \log d/n}))}{\log(1+\eta\kappa)} \right\rceil \wedge T_1^*$, $\kappa = \frac{15}{16}s_1^{\text{eff}} - \frac{m_1}{32}$, $|\mathbf{w}_j^{T_1^*}| \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ holds by induction.
997

998 The update for coordinate $j > 1$ is
999

$$1000 \mathbf{w}_j^{t+1} = \mathbf{w}_j^t - \frac{\eta}{2} \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}_1^i + \mathbf{z}_1^i)(\mathbf{x}_j^i + \mathbf{z}_j^i) \right] (\mathbf{w}_1^t)^2 (\mathbf{w}_j^t) + \eta \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} (\mathbf{x}_j^i + \mathbf{z}_j^i) \right] \mathbf{w}_j^t \\ 1001 + \eta \left[\frac{1}{n} \sum_{i=1}^n \epsilon^i (\mathbf{x}_j^i + \mathbf{z}_j^i) \right] \mathbf{w}_j^t - \frac{\eta}{2n} \sum_{i=1}^n \sum_{k=2}^d (\mathbf{x}_k^i + \mathbf{z}_k^i)^2 (\mathbf{w}_k^t)^2 (\mathbf{x}_j^i + \mathbf{z}_j^i) \mathbf{w}_j^t.$$

1002 Separating population terms from sampling deviations gives the multiplicative form
1003

$$1004 \mathbf{w}_j^{t+1} = \mathbf{w}_j^t + \eta \left(s_j^{\text{eff}} - \frac{m_{1j}}{2} (\mathbf{w}_1^t)^2 \right) (\mathbf{w}_j^t) + \eta \Delta_j^t, \quad (5)$$

1005 where Δ_j^t is expressed as the following:
1006

$$1007 \Delta_j^t = -\frac{1}{2} \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}_1^i + \mathbf{z}_1^i)(\mathbf{x}_j^i + \mathbf{z}_j^i) - m_{1j} \right] (\mathbf{w}_1^t)^2 (\mathbf{w}_j^t) \\ 1008 + \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} (\mathbf{x}_j^i + \mathbf{z}_j^i) - s_j \right] \mathbf{w}_j^t + \left[\frac{1}{n} \sum_{i=1}^n \epsilon^i (\mathbf{x}_j^i + \mathbf{z}_j^i) - \mu_j \right] \mathbf{w}_j^t \\ 1009 - \frac{1}{2n} \sum_{i=1}^n \sum_{k=2}^d (\mathbf{x}_k^i + \mathbf{z}_k^i)^2 (\mathbf{w}_k^t)^2 (\mathbf{x}_j^i + \mathbf{z}_j^i) \mathbf{w}_j^t.$$

1010 By Lemma 6 (concentration) and boundedness, using $\mathbf{w}_1^t < \frac{1}{4}$ and the inductive hypothesis $|\mathbf{w}_j^t| \leq$
1011 $\frac{\sqrt{\sigma^2 \log d/n}}{d^2}$, we obtain
1012

$$1013 |\Delta_j^t| \leq (\phi_2 + \phi_\epsilon) |\mathbf{w}_j^t| + \frac{\phi_1}{32} |\mathbf{w}_j^t| + \frac{B_{\mathbf{x}+\mathbf{z}}^3}{2d^2} |\mathbf{w}_1^t| = e_j |\mathbf{w}_j^t|, \quad (6)$$

1026 where $e_j = \mathcal{O}(d^{-2})$ and, for large d , $|e_j| \leq \frac{1}{4} \max_{j>1} (|s_j^{\text{eff}}| + \frac{m_{1j}}{32})$. Combining equation 5 and
 1027 equation 6,

$$\begin{aligned} 1028 \frac{|\mathbf{w}_j^{t+1}|}{|\mathbf{w}_j^t|} &\leq 1 + \eta \left(\max_{j>1} \left(|s_j^{\text{eff}}| + \frac{m_{1j}}{32} \right) + e_j \right) \\ 1029 &\leq 1 + \eta \left(\frac{5}{4} \max_{j>1} \left(|s_j^{\text{eff}}| + \frac{m_{1j}}{32} \right) \right). \end{aligned} \quad (7)$$

1033 By the above inequality, $|\mathbf{w}_j^{t+1}|$ can be bounded by
 1034

$$\begin{aligned} 1035 |\mathbf{w}_j^{t+1}| &\stackrel{(1)}{\leq} \left(1 + \eta \left(\frac{5}{4} \max_{j>1} \left(|s_j^{\text{eff}}| + \frac{m_{1j}}{32} \right) \right) \right) |\mathbf{w}_j^t| \\ 1036 &\stackrel{(2)}{\leq} \left(1 + \eta \left(\frac{5}{4} \max_{j>1} \left(|s_j^{\text{eff}}| + \frac{m_{1j}}{32} \right) \right) \right)^{\left\lceil \frac{\log(d^3/4(\sqrt{\sigma^2 \log d/n}))}{\log(1+\eta\kappa)} \right\rceil \wedge T_1^*} \frac{\sqrt{\sigma^2 \log d/n}}{d^3} \\ 1037 &\leq \left(1 + \eta \left(\frac{5}{4} \max_{j>1} \left(|s_j^{\text{eff}}| + \frac{m_{1j}}{32} \right) \right) \right)^{\left\lceil \frac{\log(d^3/4(\sqrt{\sigma^2 \log d/n}))}{\log(1+\eta\kappa)} \right\rceil} \frac{\sqrt{\sigma^2 \log d/n}}{d^3} \\ 1038 &\stackrel{(3)}{\leq} \frac{\sqrt{\sigma^2 \log d/n}}{d^2}. \end{aligned} \quad (8)$$

1046 where (1) uses equation 7, (2) uses $\alpha = \frac{\sqrt{\sigma^2 \log d/n}}{d^3}$ and (3) uses Condition 1.
 1047

1048 Therefore, by induction, for all $j > 1$ and all $1 \leq t \leq \left\lceil \frac{\log(d^2/4)}{\log(1+\eta\kappa)} \right\rceil \wedge T_1^*$, we have $|\mathbf{w}_j^t| \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$.
 1049

1050 We then prove for $j = 1$ and $1 \leq t \leq \left\lceil \frac{\log(d^2/4)}{\log(1+\eta\kappa)} \right\rceil \wedge T_1^*$, $\mathbf{w}_1^{t+1} \geq (1 + \eta\kappa)\mathbf{w}_1^t$, where $\kappa =$
 1051 $\frac{15}{16}s_1^{\text{eff}} - \frac{m_1}{32}$.
 1052

1053 The update for \mathbf{w}_1^{t+1} is given by
 1054

$$\begin{aligned} 1055 \mathbf{w}_1^{t+1} &= \mathbf{w}_1^t - \frac{\eta}{2} \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}_1^i + \mathbf{z}_1^i)^2 \right] (\mathbf{w}_1^t)^3 + \eta \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} (\mathbf{x}_1^i + \mathbf{z}_1^i) \right] \mathbf{w}_1^t \\ 1056 &\quad + \eta \left[\frac{1}{n} \sum_{i=1}^n \epsilon^i (\mathbf{x}_1^i + \mathbf{z}_1^i) \right] \mathbf{w}_1^t - \frac{\eta}{2n} \sum_{i=1}^n \sum_{j=2}^d (\mathbf{x}_j^i + \mathbf{z}_j^i)^2 (\mathbf{w}_j^t)^2 (\mathbf{x}_1^i + \mathbf{z}_1^i) \mathbf{w}_1^t. \end{aligned}$$

1060 Separate expectations and deviations, we have
 1061

$$\begin{aligned} 1062 \mathbf{w}_1^{t+1} &= \mathbf{w}_1^t + \eta \left(s_1^{\text{eff}} \mathbf{w}_1^t - \frac{m_1}{2} (\mathbf{w}_1^t)^3 \right) + \eta \Delta_1^t, \\ 1063 \Delta_1^t &= -\frac{1}{2} \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}_1^i + \mathbf{z}_1^i)^2 - m_1 \right] (\mathbf{w}_1^t)^3 + \left[\frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} (\mathbf{x}_1^i + \mathbf{z}_1^i) - s_1 \right] \mathbf{w}_1^t \\ 1064 &\quad + \left[\frac{1}{n} \sum_{i=1}^n \epsilon^i (\mathbf{x}_1^i + \mathbf{z}_1^i) - \mu_1 \right] \mathbf{w}_1^t - \frac{1}{2n} \sum_{i=1}^n \sum_{j=2}^d (\mathbf{x}_j^i + \mathbf{z}_j^i)^2 (\mathbf{w}_j^t)^2 (\mathbf{x}_1^i + \mathbf{z}_1^i) \mathbf{w}_1^t. \end{aligned}$$

1070 By Lemma 6 and boundedness,
 1071

$$1072 |\Delta_1^t| \leq (\phi_2 + \phi_\epsilon) |\mathbf{w}_1^t| + \frac{\phi_1}{2} |\mathbf{w}_1^t|^3 + \frac{B_{\mathbf{x}+\mathbf{z}}^3}{2} \sum_{j=2}^d (\mathbf{w}_j^t)^2 |\mathbf{w}_1^t|. \quad (9)$$

1076 Since for $j > 1$, $|\mathbf{w}_j^t| \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ and $0 < \mathbf{w}_1^t \leq 1/2$, we have $\sum_{j=2}^d (\mathbf{w}_j^t)^2 \leq 1/d$. Hence by
 1077 equation 9,
 1078

$$1079 \frac{\mathbf{w}_1^{t+1}}{\mathbf{w}_1^t} \geq 1 + \eta \left(s_1^{\text{eff}} - \phi_2 - \phi_\epsilon - \frac{B_{\mathbf{x}+\mathbf{z}}^3}{2d} - \frac{m_1 + \phi_1}{32} \right) \geq 1 + \eta \kappa,$$

1080 This implies that for $1 \leq t \leq \left\lceil \frac{\log(d^3/4(\sqrt{\sigma^2 \log d/n}))}{\log(1+\eta\kappa)} \right\rceil \wedge T_1^*$, $\mathbf{w}_1^t \geq (1+\eta\kappa)^t \frac{\sqrt{\sigma^2 \log d/n}}{d^3}$. Therefore,
 1081 we obtain that $\left\lceil \frac{\log(d^3/4(\sqrt{\sigma^2 \log d/n}))}{\log(1+\eta\kappa)} \right\rceil \wedge T_1^* = T_1^*$. Then we have $|\mathbf{w}_j^{T_1^*}| \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ for $j > 1$
 1082 and $\mathbf{w}_1^{T_1^*-1} \leq \frac{1}{4}$. Then,
 1083

$$\frac{\mathbf{w}_1^{t+1}}{\mathbf{w}_1^t} \leq 1 + \eta \left(s_1^{\text{eff}} + \phi_2 + \phi_\epsilon + \frac{B_{\mathbf{x}+\mathbf{z}}^3}{2d} + \frac{m_1 + \phi_1}{32} \right). \quad (10)$$

1084 Since η satisfies $\eta \left(s_1^{\text{eff}} + \phi_2 + \phi_\epsilon + \frac{B_{\mathbf{x}+\mathbf{z}}^3}{2d} + \frac{m_1 + \phi_1}{32} \right) \leq 1$, we have $\mathbf{w}_1^{T_1^*} \leq \frac{1}{2}$.
 1085

1086 Consequently, we obtain $\frac{1}{4} \leq \mathbf{w}_1^{T_1^*} \leq \frac{1}{2}$ and $|\mathbf{w}_j^{T_1^*}| \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ for $j > 1$.
 1087 \square

1088 The lemmas required for the Theorem 3 are listed below.
 1089

1090 **Lemma 4.** For any $1 \leq i \leq n$ and $1 \leq j \leq d$, $|\mathbf{z}_j^i| \leq \|f(0)\|_\infty + L(rB_{\mathbf{x}} + B_\epsilon) + B_\xi := B_{\mathbf{z}}$.
 1091

1092 *Proof of Lemma 4.* Because $\mathbf{w}^* \in \{0, 1\}^d$ and $|\text{supp}(\mathbf{w}^*)| \leq r$,
 1093

$$|(\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2}| = \left| \sum_{j \in \text{supp}(\mathbf{w}^*)} \mathbf{x}_j^i \right| \leq \sum_{j \in \text{supp}(\mathbf{w}^*)} |\mathbf{x}_j^i| \leq r B_{\mathbf{x}}. \quad (11)$$

1094 Together with $|\epsilon^i| \leq B_\epsilon$,
 1095

$$|y^i| = |(\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} + \epsilon^i| \leq r B_{\mathbf{x}} + B_\epsilon. \quad (12)$$

1096 For any coordinate $1 \leq j \leq d$,
 1097

$$|f_j(y^i)| \leq |f_j(0)| + |f_j(y^i) - f_j(0)| \leq |f_j(0)| + \|f(y^i) - f(0)\|_\infty \leq |f_j(0)| + L|y^i|. \quad (13)$$

1098 Taking \sup_j and using equation 12 yields
 1099

$$\|f(y^i)\|_\infty \leq \|f(0)\|_\infty + L(rB_{\mathbf{x}} + B_\epsilon). \quad (14)$$

1100 By the triangle inequality,
 1101

$$|\mathbf{z}_j^i| = |f_j(y^i) + \xi_j^i| \leq |f_j(y^i)| + |\xi_j^i| \leq \|f_j(y^i)\|_\infty + B_\xi.$$

1102 Combining with equation 13 gives
 1103

$$|\mathbf{z}_j^i| \leq \|f(0)\|_\infty + L(rB_{\mathbf{x}} + B_\epsilon) + B_\xi,$$

1104 and thus $\|\mathbf{z}^i\|_\infty \leq B_{\mathbf{z}}$ almost surely.
 1105 \square

1106 **Lemma 5** (Bernstein inequality for bounded distributions (Theorem 2.9.5, Vershynin (2009))). Let
 1107 $\{\xi_i\}_{i=1}^n$ be independent, $\mathbb{E}\xi_i = 0$, $|\xi_i| \leq M$ a.s., and $\text{Var}(\xi_i) \leq v$. Then for any $t > 0$,

$$\Pr \left(\left| \frac{1}{n} \sum_{i=1}^n \xi_i \right| \geq t \right) \leq 2 \exp \left(- \frac{nt^2}{2v + \frac{2}{3}Mt} \right),$$

1108 hence with probability $\geq 1 - \delta$,

$$\left| \frac{1}{n} \sum_{i=1}^n \xi_i \right| \leq \sqrt{\frac{2v \log(2/\delta)}{n}} + \frac{2M \log(2/\delta)}{3n}. \quad (B1)$$

1134 **Lemma 6.** Define $B_{\mathbf{x}+\mathbf{z}} := B_{\mathbf{x}} + B_{\mathbf{z}}$. For any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the
 1135 following hold simultaneously for all $1 \leq j \leq d$:

$$1137 \max_{1 \leq k, j \leq d} \left| \frac{1}{n} \sum_{i=1}^n ((\mathbf{x}_k^i + \mathbf{z}_k^i)(\mathbf{x}_j^i + \mathbf{z}_j^i) - m_{kj}) \right| \leq \phi_1 := 2B_{\mathbf{x}+\mathbf{z}}^2 \left(\sqrt{\frac{2 \log(6d/\delta)}{n}} + \frac{2 \log(6d/\delta)}{3n} \right),$$

$$1140 \max_{1 \leq j \leq d} \left| \frac{1}{n} \sum_{i=1}^n ((\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2}) (\mathbf{x}_j^i + \mathbf{z}_j^i) - s_j \right| \leq \phi_2 := r B_{\mathbf{x}} B_{\mathbf{x}+\mathbf{z}} \left(\sqrt{\frac{2 \log(6d/\delta)}{n}} + \frac{2 \log(6d/\delta)}{3n} \right),$$

$$1143 \max_{1 \leq j \leq d} \left| \frac{1}{n} \sum_{i=1}^n \epsilon^i (\mathbf{x}_j^i + \mathbf{z}_j^i) - \mu_j \right| \leq \phi_\epsilon := B_\epsilon B_{\mathbf{x}+\mathbf{z}} \left(\sqrt{\frac{2 \log(6d/\delta)}{n}} + \frac{2 \log(6d/\delta)}{3n} \right),$$

1146 where $B_{\mathbf{x}+\mathbf{z}} := B_{\mathbf{x}} + B_{\mathbf{z}}$ and the factor $\log(6d/\delta)$ accounts for a union bound over d coordinates
 1147 and the three families.

1149 *Proof of Lemma 6.* For fixed $1 \leq k, j \leq d$, set $\Xi_i^{(1)} := (\mathbf{x}_k^i + \mathbf{z}_k^i)(\mathbf{x}_j^i + \mathbf{z}_j^i) - m_{kj}$. Then $|\Xi_i^{(1)}| \leq$
 1150 $M_2 := 2B_{\mathbf{x}+\mathbf{z}}^2$ and $\text{Var}(\Xi_i^{(1)}) \leq v_2 := M_2^2$. Applying Bernstein and union-bounding over j with
 1151 probability $\geq 1 - \delta/3$,

$$1153 \max_j \left| \frac{1}{n} \sum_{i=1}^n ((\mathbf{x}_j^i + \mathbf{z}_j^i)^2 - m_j) \right| \leq \phi_1,$$

1156 where

$$1157 \phi_1 := 2B_{\mathbf{x}+\mathbf{z}}^2 \left(\sqrt{\frac{2 \log(6d/\delta)}{n}} + \frac{2 \log(6d/\delta)}{3n} \right).$$

1160 Let $S_i := (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2}$ and $\Xi_i^{(2)} := S_i(\mathbf{x}_j^i + \mathbf{z}_j^i) - s_j$. Since $(\mathbf{w}^*)^{\odot 2} \in \{0, 1\}^d$ with support size
 1161 $\leq r$, $|S_i| \leq r B_{\mathbf{x}}$, hence $|\Xi_i^{(2)}| \leq M_M := r B_{\mathbf{x}} B_{\mathbf{x}+\mathbf{z}}$ and $\text{Var}(\Xi_i^{(2)}) \leq v_M := M_M^2$. Bernstein
 1162 union bound gives with probability at least $\geq 1 - \delta/3$

$$1164 \max_j \left| \frac{1}{n} \sum_{i=1}^n ((\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2})(\mathbf{x}_j^i + \mathbf{z}_j^i) - s_j \right| \leq \phi_2,$$

1167 with

$$1168 \phi_2 := r B_{\mathbf{x}} B_{\mathbf{x}+\mathbf{z}} \left(\sqrt{\frac{2 \log(6d/\delta)}{n}} + \frac{2 \log(6d/\delta)}{3n} \right).$$

1171 Let $\Xi_i^{(\epsilon)} := \epsilon^i (\mathbf{x}_j^i + \mathbf{z}_j^i) - \mu_j$. Then $|\Xi_i^{(\epsilon)}| \leq M_\epsilon := B_\epsilon B_{\mathbf{x}+\mathbf{z}}$ and $\text{Var}(\Xi_i^{(\epsilon)}) \leq v_\epsilon := M_\epsilon^2$. Bernstein
 1172 plus union bound yields with probability $\geq 1 - \delta/3$

$$1175 \max_j \left| \frac{1}{n} \sum_{i=1}^n \epsilon^i (\mathbf{x}_j^i + \mathbf{z}_j^i) - \mu_j \right| \leq \phi_\epsilon,$$

1178 where

$$1179 \phi_\epsilon := B_\epsilon B_{\mathbf{x}+\mathbf{z}} \left(\sqrt{\frac{2 \log(6d/\delta)}{n}} + \frac{2 \log(6d/\delta)}{3n} \right).$$

1181 \square

1183 A.3.2 STAGE 2

1185 **Notation and max-margin solution.** Set $\mathbf{s} := \mathbf{s}_1 - \mathbf{s}_2$ and define

$$1187 \mathbf{u} := \begin{bmatrix} \mathbf{s} \\ \mathbf{x} - \mathbf{z} \end{bmatrix} \in \mathbb{R}^{M+d}, \quad \|\mathbf{u}\|_2 \leq \sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\mathbf{z}})^2} \text{ a.s.}$$

1188 Let $\{\mathbf{u}^i\}_{i=1}^n$ be the samples from \mathbf{u} and consider the empirical ℓ_2 max-margin separator
1189

$$1190 \hat{\mathbf{u}} \in \arg \min_{\mathbf{w} \in \mathbb{R}^{M+d}} \frac{1}{2} \|\mathbf{w}\|_2^2 \text{ s.t. } (\mathbf{u}^i)^\top \mathbf{w} \geq 1, \quad i = 1, \dots, n.$$

1192 Its empirical margin is $\gamma_{\text{emp}} := 1/\|\hat{\mathbf{u}}\|_2$. Let $\mathcal{S} \subseteq [n]$ be the support set with $(\mathbf{u}^i)^\top \hat{\mathbf{u}} = 1$ for $i \in \mathcal{S}$.
1193 By the KKT conditions there exist multipliers $\alpha_i \geq 0$, nonzero only on \mathcal{S} , such that
1194

$$1195 \hat{\mathbf{u}} = \sum_{i \in \mathcal{S}} \alpha_i \mathbf{u}^i.$$

1197 **Lemma 7.** Define $\mathbf{u}_{\text{sep}} := \begin{bmatrix} \mathbf{s}/\|\mathbf{s}\|_2^2 \\ \mathbf{0} \end{bmatrix}$. For every i , $(\mathbf{u}^i)^\top \mathbf{u}_{\text{sep}} = 1$, hence \mathbf{u}_{sep} satisfies all margin
1198 constraints and separates the sample from the origin with margin 1. Since $\hat{\mathbf{u}}$ minimizes $\|\mathbf{u}\|_2$ over
1199 the feasible set, $\|\hat{\mathbf{u}}\|_2 \leq \|\mathbf{u}_{\text{sep}}\|_2 = 1/\|\mathbf{s}\|_2$, and thus
1200

$$1202 \gamma_{\text{emp}} = \frac{1}{\|\hat{\mathbf{u}}\|_2} \geq \|\mathbf{s}\|_2.$$

1204 *Proof of Lemma 7.* Since $\mathbf{u}^i = [\mathbf{s}; \mathbf{x}^i - \mathbf{z}^i]$ and $\mathbf{u}_{\text{sep}} = [\mathbf{s}/\|\mathbf{s}\|_2^2; \mathbf{0}]$, $(\mathbf{u}^i)^\top \mathbf{u}_{\text{sep}} = \mathbf{s}^\top (\mathbf{s}/\|\mathbf{s}\|_2^2) = 1$.
1205 Thus \mathbf{u}_{sep} is feasible and the norm bound follows. \square
1206

1207 By the properties established in Lemma 9, each sample gradient can be written as $\nabla \ell_i(\tilde{\mathbf{v}}^t) =$
1208 $\nabla \phi_i(\tilde{\mathbf{v}}^\top \mathbf{u}^i)$. Each ϕ_i is monotonically decreasing to zero, $C_{\phi''}$ -smooth, and has a (C_i, μ_i) tight
1209 exponential tail. Hence, in Phase II the implicit bias of GD drives the direction toward the ℓ_2 max-
1210 margin solution while the norm diverges, which forces the gate weight p_i^t to converge to one. We
1211 formalize this as the following Theorem 8. The proof follows Soudry et al. (2018, Thm. 9), with
1212 minor adaptations to handle sample dependent ϕ_i and the dominant coordinate condition.
1213

1214 **Theorem 8.** Let $T_2^* \asymp d^2/\sqrt{\sigma^2 \log d/n}$. Under Condition 2, suppose the step sizes satisfy $\eta_t = 0$,
1215 $\beta_t = \beta < \frac{n}{C_{\phi''} \sigma_{\max}(\mathbf{U})^2}$, where $C_{\phi''}$ is a constant defined in Lemma 9, there exists a bounded
1216 residual ρ^t such that

$$1217 \tilde{\mathbf{v}}^t = \hat{\mathbf{u}} \log t + \rho^t,$$

1218 and, in particular,

$$1219 \lim_{t \rightarrow \infty} \frac{\tilde{\mathbf{v}}^t}{\|\tilde{\mathbf{v}}^t\|_2} = \frac{\hat{\mathbf{u}}}{\|\hat{\mathbf{u}}\|_2}, \quad \min_i (\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i \sim \log t \rightarrow +\infty.$$

1222 Consequently, at $T_1^* + T_2^*$, $p_i^{T_1^* + T_2^*} = \sigma((\tilde{\mathbf{v}}^{T_1^* + T_2^*})^\top \mathbf{u}^i) \geq 1 - \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ for all i .
1223

1224 *Proof of Theorem 8.* We first prove that $\tilde{\mathbf{v}}^t$ can be expressed by $\tilde{\mathbf{v}}^t = \hat{\mathbf{u}} \log t + \rho^t$ with bounded
1225 ρ^t . Since $\rho^t = \mathbf{r}^t + \tilde{\mathbf{u}}$ and $\mathbf{r}^t = \tilde{\mathbf{v}}^t - \hat{\mathbf{u}} \log t - \tilde{\mathbf{u}}$, then

$$1227 \|\mathbf{r}^{t+1}\|^2 = \|\mathbf{r}^{t+1} - \mathbf{r}^t\|^2 + 2(\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t + \|\mathbf{r}^t\|^2. \quad (14)$$

1229 By Lemma 9 (A), we have $\phi'((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) < 0$. By the definition $\hat{\mathbf{u}}$, we have $\hat{\mathbf{u}}^\top \mathbf{u}^i \geq 1$. This implies
1230 $\hat{\mathbf{u}}^\top$

$$1231 \begin{aligned} \|\mathbf{r}^{t+1} - \mathbf{r}^t\|^2 &= \left\| -\beta \nabla \mathcal{L}(\tilde{\mathbf{v}}^t) - \hat{\mathbf{u}} \left(\log \left(1 + \frac{1}{t} \right) \right) \right\|^2 \\ 1232 &= \beta^2 \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|^2 + \|\hat{\mathbf{u}}\|^2 \left(\log \left(1 + \frac{1}{t} \right) \right)^2 + 2\beta \hat{\mathbf{u}}^\top \nabla \mathcal{L}(\tilde{\mathbf{v}}^t) \log \left(1 + \frac{1}{t} \right) \\ 1233 &\leq \beta^2 \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|^2 + \frac{1}{t^2} \|\hat{\mathbf{u}}\|^2, \end{aligned} \quad (15)$$

1238 By Lemma 9 (B) and Lemma 10, we have

$$1240 \sum_{t=0}^{\infty} \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|_2^2 = C_0 < \infty, \quad \lim_{t \rightarrow \infty} \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|_2 = 0. \quad (16)$$

1242 Therefore,

1243

$$1244 \|\mathbf{r}^{t+1} - \mathbf{r}^t\|^2 = o(1), \quad \sum_{t=T_1^*}^{\infty} \|\mathbf{r}^{t+1} - \mathbf{r}^t\|^2 = C_0 < \infty. \quad (17)$$

1245

1246 By Lemma 11, for $t > t_1$, $(\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t \leq C t^{-\min\{\theta, 1+0.5\mu_{\min}\}}$.

1247

1248 Thus,

1249

$$1250 \|\mathbf{r}^t\|^2 - \|\mathbf{r}^{t_1}\|^2 = \sum_{k=k_1}^{t-1} \|\mathbf{r}^{k+1} - \mathbf{r}^k\|^2 + 2(\mathbf{r}^{k+1} - \mathbf{r}^k)^\top \mathbf{r}^k$$

1251

$$1252 \leq C_0 + 2 \sum_{k=k_1}^{t-1} C k^{-\min\{\theta, 1+0.5\mu_{\min}\}}$$

1253

$$1254 < \infty.$$

1255

1256 This implies $\|\mathbf{r}^t\|$ is bounded and further $\|\rho^t\|$ is bounded.

1257

□

1259 In Stage 2, $\tilde{\mathbf{w}}^t \equiv \tilde{\mathbf{w}}^{T_1^*}$ is fixed and the gate updates $\tilde{\mathbf{v}}^t$ follow:

1260

$$1261 \tilde{\mathbf{v}}^{t+1} = \tilde{\mathbf{v}}^t - \frac{\beta}{n} \sum_{i=1}^n \nabla \ell_i(\tilde{\mathbf{v}}^t), \quad \tilde{\mathbf{v}}^{T_1^*} = \mathbf{0},$$

1262

$$1263 \nabla \ell_i(\tilde{\mathbf{v}}^t) := \left((p_i^t \mathbf{x}^i + (1-p_i^t) \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} - (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} - \epsilon_i \right)$$

1264

$$1265 \cdot (\mathbf{x}^i - \mathbf{z}^i)^\top \left(\mathbf{w}^{T_1^*} \right)^{\odot 2} p_i^t (1-p_i^t) (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i),$$

1266

1267 where $p_i^t = \sigma((\tilde{\mathbf{v}}^t)^\top (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i))$, and $\sigma(t) = \frac{1}{1+e^{-t}}$.

1268

1269

1270 $\nabla \ell_i(\tilde{\mathbf{v}}^t)$ can be further expressed as

1271

$$1272 \nabla \ell_i(\tilde{\mathbf{v}}^t) = \left(p_i^t \left((\mathbf{x}_1^i - \mathbf{z}_1^i) \left(\mathbf{w}_1^{T_1^*} \right)^2 + \zeta_1^i \right) - \mathbf{x}_1^i + c_1^i + \zeta_2^i \right)$$

1273

$$1274 \cdot \left((\mathbf{x}_1^i - \mathbf{z}_1^i) \left(\mathbf{w}_1^{T_1^*} \right)^2 + \zeta_1^i \right) p_i^t (1-p_i^t) (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i)$$

1275

$$1276 = \left(p_i^t \left((\mathbf{x}_1^i - \mathbf{z}_1^i)^2 \left(\mathbf{w}_1^{T_1^*} \right)^4 + \zeta_3^i \right) - (\mathbf{x}_1^i - c_1^i) (\mathbf{x}_1^i - \mathbf{z}_1^i) \left(\mathbf{w}_1^{T_1^*} \right)^2 + \zeta_4^i \right)$$

1277

$$1278 \cdot p_i^t (1-p_i^t) (\tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i),$$

1279

1280 where $\zeta_1^i, \zeta_2^i, \zeta_3^i, \zeta_4^i$ are small quantities, and c_1^i is a constant.

1281

$$1282 \zeta_1^i = \sum_{j=2}^d (\mathbf{x}_j^i - \mathbf{z}_j^i) \left(\mathbf{w}_j^{T_1^*} \right)^2, \quad \zeta_2^i = \left(\sum_{j=2}^d (\mathbf{z}_j^i) \left(\mathbf{w}_j^{T_1^*} \right)^2 \right),$$

1283

$$1284 \zeta_3^i = 2 (\mathbf{x}_1^i - \mathbf{z}_1^i) \left(\mathbf{w}_1^{T_1^*} \right)^2 \zeta_1^i + (\zeta_1^i)^2, \quad \zeta_4^i = (\mathbf{x}_1^i - \mathbf{z}_1^i) \left(\mathbf{w}_1^{T_1^*} \right)^2 \zeta_2^i - (\mathbf{x}_1^i - c_1^i) \zeta_1^i - \zeta_1^i \zeta_2^i,$$

1285

$$1286 c_1^i = \left(\mathbf{z}_1^i \left(\mathbf{w}_1^{T_1^*} \right)^2 - \sum_{j=2}^d (\mathbf{x}_j^i) (\mathbf{w}_j^*)^2 - \epsilon^i \right).$$

1287

1288

1289

1290

1291 Let $\phi_i(\tilde{\mathbf{v}}^\top \mathbf{u}^i) = \ell_i(\tilde{\mathbf{v}}^t)$ such that

1292

$$1293 \phi_i'(u) = \left(\sigma(u) \left((\mathbf{x}_1^i - \mathbf{z}_1^i)^2 \left(\mathbf{w}_1^{T_1^*} \right)^4 + \zeta_3^i \right) - (\mathbf{x}_1^i - c_1^i) (\mathbf{x}_1^i - \mathbf{z}_1^i) \left(\mathbf{w}_1^{T_1^*} \right)^2 + \zeta_4^i \right)$$

1294

$$1295 \cdot \sigma(u) (1 - \sigma(u)).$$

1296 Define

1297
$$\mathcal{L}(\tilde{\mathbf{v}}) := \frac{1}{n} \sum_{i=1}^n \phi_i(\tilde{\mathbf{v}}^\top \mathbf{u}^i), \quad \mathbf{u}^i := \tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i. \quad (21)$$

1298
1299

1300 Then $\nabla \mathcal{L}(\tilde{\mathbf{v}}) = \frac{1}{n} \sum_{i=1}^n \nabla \ell_i(\tilde{\mathbf{v}}^i)$ which is equal to the gradient of $\bar{\mathcal{L}}(\tilde{\mathbf{v}}) := \mathcal{L}(\tilde{\mathbf{v}}) - \inf_{\tilde{\mathbf{v}}} \mathcal{L}(\tilde{\mathbf{v}}) \geq 0$.
1301 Without loss of generality, we assume $\inf_{\tilde{\mathbf{v}}} \mathcal{L}(\tilde{\mathbf{v}}) = 0$.1302 Since $\mathbf{w}_1^{T_1^*} \in [1/4, 1/2]$ and $|\mathbf{w}_j^{T_1^*}| \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ for all $j > 1$. For each sample i , define and
1303 $|\mathbf{x}_j^i| \leq B_{\mathbf{x}}$, $|\mathbf{z}_j^i| \leq B_{\mathbf{z}}$, $|\epsilon^i| \leq B_\epsilon$ a.s. Then
1304

1305
$$|\zeta_1^i| \leq \frac{B_{\mathbf{x}} + B_{\mathbf{z}}}{d}, \quad |\zeta_2^i| \leq \frac{B_{\mathbf{z}}}{d}, \quad |\zeta_3^i| \leq \frac{C_3}{d}, \quad |\zeta_4^i| \leq \frac{C_4}{d},$$

1306
1307

1308 for explicit constants C_3, C_4 depending only on $(B_{\mathbf{x}}, B_{\mathbf{z}}, B_\epsilon)$.

1309 Let

1310
$$A_i^{(0)} := (\mathbf{x}_1^i - \mathbf{z}_1^i)^2 (\mathbf{w}_1^{T_1^*})^4, \quad B_{0,i} := (\mathbf{x}_1^i - \mathbf{c}_1^i) (\mathbf{x}_1^i - \mathbf{z}_1^i) (\mathbf{w}_1^{T_1^*})^2,$$

1311

1312 and absorb the small remainders into

1313
$$\zeta_5^i(u) := \sigma(u) \zeta_3^i + \zeta_4^i, \quad |\zeta_5^i(u)| \leq \frac{C_3 + C_4}{d} \quad \text{for all } u \text{ (since } 0 \leq \sigma(u) \leq 1).$$

1314

1315 Then the scalar driving term becomes

1316
$$\phi_i'(u) = (\sigma(u) A_i^{(0)} - B_{0,i} + \zeta_5^i(u)) \sigma(u) (1 - \sigma(u)), \quad \sigma(u) = \frac{1}{1 + e^{-u}}.$$

1317
1318

1319 **Lemma 9** (Properties of $\phi_i(u)$). $\phi_i(u)$ has the following properties:1320

- (A) **Monotonicity.** For all i and u , $\phi_i'(u) < 0$.
- (B) **Second-derivative control.** For all u , $|\phi_i''(u)| \leq C_{\phi''}$, hence

1324

1325
$$\|\nabla^2 \mathcal{L}(\tilde{\mathbf{v}})\|_{\text{op}} \leq \frac{C_{\phi''}}{n} \sigma_{\max}(\mathbf{U})^2, \quad \mathbf{U} := [\mathbf{u}^1, \dots, \mathbf{u}^n],$$

1326 where

1327
$$C_{\phi''} := \frac{1}{4} \left(\frac{5(B_{\mathbf{x}} + B_{\mathbf{z}})^2}{64} + \frac{1}{4} \left(B_{\mathbf{x}} + \frac{1}{4} \left(B_{\mathbf{x}} + \frac{B_{\mathbf{z}}}{4} + r B_{\mathbf{x}} + B_\epsilon \right) (B_{\mathbf{x}} + B_{\mathbf{z}}) + 1 \right) \right).$$

1328
1329

1330

- (C) **Exponential tails.** Let

1332
$$f_i(u) := -\phi_i'(u) = (B_{0,i} - \sigma(u) A_i^{(0)} - \zeta_5^i(u)) \sigma(u) (1 - \sigma(u)),$$

1333

1334 there exist $C_i > 0, \mu_i > 0$ and $u_{0,i}$ such that, for all $u > u_{0,i}$,

1335
$$C_i (1 - e^{-\mu_i u}) e^{-u} \leq f_i(u) \leq C_i (1 + e^{-\mu_i u}) e^{-u}.$$

1336

1337 *Proof of Lemma 9.* (A) Since $\mathbf{w}_1^{T_1^*} \in [1/4, 1/2]$, we have $1 - (\mathbf{w}_1^{T_1^*})^2 \geq 1 - (1/2)^2 = 3/4$. By
1338 Condition 2 (iii),

1340
$$|\Xi_i| \geq (1 - (\mathbf{w}_1^{T_1^*})^2) |\mathbf{x}_1^i| - |\mathbf{z}_1^i| - |\epsilon^i| \geq \frac{3}{4} |\mathbf{x}_1^i| - (r B_{\mathbf{x}} + B_\epsilon) \geq \tau_2.$$

1341

1342 Moreover, Condition 2 (iii) also implies $\text{sgn}(\Xi_i) = \text{sgn}(\mathbf{x}_1^i)$. By Condition 2 (i) and Condition 2
1343 (ii),

1344
$$|(\mathbf{x}_1^i - \mathbf{z}_1^i) \Xi_i| \geq |\mathbf{x}_1^i - \mathbf{z}_1^i| |\Xi_i| \geq \tau_1 \tau_2, \quad \text{sgn}((\mathbf{x}_1^i - \mathbf{z}_1^i) \Xi_i) = +1.$$

1345

1346 Therefore,

1347
$$B_{0,i} - A_i^{(0)} = (\mathbf{x}_1^i - \mathbf{z}_1^i) (\mathbf{w}_1^{T_1^*})^2 \Xi_i \geq \frac{1}{16} \tau_1 \tau_2.$$

1348

1349 When d is large enough,

1349
$$\sigma(u) A_i^{(0)} - B_{0,i} + \zeta_5^i(u) < \frac{\tau_1 \tau_2}{32} \quad (22)$$

1350

Therefore, for all $u \in \mathbb{R}$,

1351

$$\phi'_i(u) = (\sigma(u)A_i^{(0)} - B_{0,i} + \zeta_5^i(u)) \cdot \sigma(u)(1 - \sigma(u)) < 0.$$

1353

1354

1355

(B) Let $s := \sigma(u)$, $g(u) := s(1 - s) \in (0, 1/4]$. Define $h(u) := sA_i^{(0)} - B_{0,i} + \zeta_5^i(u)$. Noting $\zeta_5^i(u) = \sigma'(u)\zeta_3^i = g(u)\zeta_3^i$, we have

1356

1357

$$\phi''_i(u) = h'(u)g(u) + h(u)g'(u) = (A_i^{(0)} + \zeta_3^i)g(u)^2 + h(u)(1 - 2s)g(u).$$

1358

Hence

1359

1360

$$|\phi''_i(u)| \leq \frac{1}{4} \left(\frac{|A_i^{(0)} + \zeta_3^i|}{4} + |A_i^{(0)} + \zeta_3^i| + |B_{0,i}| + |\zeta_5^i(u)| \right) \leq C_{\phi''},$$

1361

1362

where, using $|\mathbf{x}_1^i - \mathbf{z}_1^i| \leq B_{\mathbf{x}} + B_{\mathbf{z}}$ and $\mathbf{w}_1^{T_1^*} \in [1/4, 1/2]$,

1363

1364

$$|A_i^{(0)} + \zeta_3^i| \leq \frac{(B_{\mathbf{x}} + B_{\mathbf{z}})^2}{16} + \frac{C_3}{d}, \quad |B_{0,i}| \leq \frac{1}{4} \left(B_{\mathbf{x}} + \frac{B_{\mathbf{z}}}{4} + r B_{\mathbf{x}} + B_{\epsilon} \right) (B_{\mathbf{x}} + B_{\mathbf{z}}),$$

1365

and thus one can take the explicit bound

1366

1367

1368

$$C_{\phi''} := \frac{1}{4} \left(\frac{5(B_{\mathbf{x}} + B_{\mathbf{z}})^2}{64} + \frac{1}{4} \left(B_{\mathbf{x}} + \frac{1}{4} \left(B_{\mathbf{x}} + \frac{B_{\mathbf{z}}}{4} + r B_{\mathbf{x}} + B_{\epsilon} \right) (B_{\mathbf{x}} + B_{\mathbf{z}}) + \frac{C_3 + C_4}{d} \right) \right).$$

1369

Consequently, for the Phase-II scalar objective

1370

1371

1372

$$\mathcal{L}(\tilde{\mathbf{v}}) = \frac{1}{n} \sum_{i=1}^n \ell_i(\tilde{\mathbf{v}}) = \frac{1}{n} \sum_{i=1}^n \phi_i(\tilde{\mathbf{v}}^\top \mathbf{u}^i), \quad \mathbf{u}^i := \tilde{\mathbf{x}}^i - \tilde{\mathbf{z}}^i.$$

1373

1374

Let $\mathbf{U} := [\mathbf{u}^1, \mathbf{u}^2, \dots, \mathbf{u}^n] \in \mathbb{R}^{(M+d) \times n}$.

1375

1376

1377

$$\nabla^2 \mathcal{L}(\tilde{\mathbf{v}}) = \frac{1}{n} \sum_{i=1}^n \phi''_i(\tilde{\mathbf{v}}^\top \mathbf{u}^i) \mathbf{u}^i (\mathbf{u}^i)^\top = \frac{1}{n} \mathbf{U} \mathbf{D}(\tilde{\mathbf{v}}) \mathbf{U}^\top,$$

1378

1379

$$\mathbf{D}(\tilde{\mathbf{v}}) := \text{diag}(\phi''_1(\tilde{\mathbf{v}}^\top \mathbf{u}^1), \dots, \phi''_n(\tilde{\mathbf{v}}^\top \mathbf{u}^n)).$$

1380

1381

1382

$$\|\nabla^2 \mathcal{L}(\tilde{\mathbf{v}})\|_{\text{op}} \leq \frac{1}{n} \|\mathbf{U}\|_{\text{op}}^2 \|\mathbf{D}(\tilde{\mathbf{v}})\|_{\text{op}} \leq \frac{C_{\phi''}}{n} \sigma_{\max}(\mathbf{U})^2.$$

1383

(C) Let

1384

1385

1386

$$f_i(u) := -\phi'_i(u) = (B_{0,i} - \sigma(u)A_i^{(0)} - \zeta_5^i(u))\sigma(u)(1 - \sigma(u)), \quad \sigma(u) = \frac{1}{1 + e^{-u}}.$$

1387

Set

1388

$$C_i := B_{0,i} - A_i^{(0)} - \zeta_3^i - \zeta_4^i, \quad D_i := A_i^{(0)} + \zeta_3^i.$$

1389

1390

Assuming the dominance condition ensures $C_i > 0$ and, for d large, $D_i \geq 0$ (since $A_i^{(0)} > 0$ and $|\zeta_3^i| = O(1/d)$).

1391

1392

Expanding at $e^{-u} \rightarrow 0$,

1393

1394

$$f_i(u) = C_i e^{-u} + \underbrace{(D_i - 2C_i)}_{=: a_i} e^{-2u} + \underbrace{(3C_i - 3D_i)}_{=: b_i} e^{-3u} + O(e^{-4u}).$$

1395

Factor $C_i e^{-u}$:

1396

1397

1398

$$f_i(u) = C_i e^{-u} \left(1 + \underbrace{\frac{a_i}{C_i} e^{-u} + \frac{b_i}{C_i} e^{-2u} + O(e^{-3u})}_{\text{small for large } u} \right).$$

1399

1400

1401

Choosing $u > u_{0,i}$ and $\mu_i > 0$ such that $\frac{|a_i|}{C_i} e^{-u} + \frac{|b_i|}{C_i} e^{-2u} \leq e^{-\mu_i u}$ absorbs all higher orders into the single factor $(1 \pm e^{-\mu_i u})$. Then, we have for all $u > u_{0,i}$,

1402

1403

$$C_i(1 - e^{-\mu_i u})e^{-u} \leq f_i(u) \leq C_i(1 + e^{-\mu_i u})e^{-u}.$$

□

1404 Denote $C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}_i) = \alpha_i$. Let $\mathbf{r}^t = \tilde{\mathbf{v}}^t - \hat{\mathbf{u}} \log t - \tilde{\mathbf{u}}$, then $\rho^t = \mathbf{r}^t + \tilde{\mathbf{u}}$.

1405
 1406 **Lemma 10** (Soudry et al. (2018, Lemma 10)). *Consider GD updates $\tilde{\mathbf{v}}^{t+1} = \tilde{\mathbf{v}}^t - \beta \nabla \mathcal{L}(\tilde{\mathbf{v}}^t)$. If*
 1407 $\beta < \frac{n}{C_\phi'' \sigma_{\max}(\mathbf{U})^2}$, *then the GD sequence satisfies*

1408
 1409
$$\sum_{t=0}^{\infty} \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|_2^2 < \infty, \quad \lim_{t \rightarrow \infty} \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|_2 = 0.$$

1410
 1411
 1412 **Lemma 11.** Define $\mu_{\min} = \min_{1 \leq i \leq n} \mu_i$. There exists constant C and t_1 , such that for $t > t_1$,
 1413 $(\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t \leq C t^{-\min\{\theta, 1+0.5\mu_{\min}\}}$, $\theta = \arg \min_{i \notin \mathcal{S}} \mathbf{u}^\top \mathbf{u}^i > 1$.

1414
 1415
 1416 *Proof of Lemma 11.* Since under our setting each sample's scalar loss $\phi_i(u)$ satisfies that $-\phi'_i(u)$
 1417 has an exponential tail, Soudry et al. (2018, Lemma 11) yields this lemma.

1418
 1419
 1420
$$(\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t = \left(-\beta \nabla \mathcal{L}(\tilde{\mathbf{v}}^t) - \hat{\mathbf{u}} \left(\log \left(1 + \frac{1}{t} \right) \right) \right)^\top \mathbf{r}^t$$

 1421
 1422
$$= \underbrace{\hat{\mathbf{u}}^\top \mathbf{r}^t \left[\frac{1}{t} - \log \left(1 + \frac{1}{t} \right) \right]}_{(A_1)} - \underbrace{\frac{\beta}{n} \sum_{i \notin \mathcal{S}} \phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) (\mathbf{u}^i)^\top \mathbf{r}^t}_{A_2}$$

 1423
 1424
 1425
 1426
$$- \underbrace{\frac{\beta}{n} \sum_{i \in \mathcal{S}} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) \right] (\mathbf{u}^i)^\top \mathbf{r}^t}_{A_3}$$

 1427
 1428
 1429

1430 Denote by $\mathbf{X}_{\mathcal{S}}$ the matrix whose columns are the support vectors, and let \mathbf{P} be the orthogonal
 1431 projection onto the subspace spanned by these support vectors. Then $\mathbf{P}\hat{\mathbf{u}} = \hat{\mathbf{u}}$.

1432 For A_1 , firstly, the following shows that $\hat{\mathbf{u}}^\top \mathbf{r}^t = o(t)$. Lemma 10 shows that
 1433 $\lim_{t \rightarrow \infty} \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|_2 = 0$.

1434
 1435
 1436
$$\hat{\mathbf{u}}^\top \mathbf{r}^t = \hat{\mathbf{u}}^\top \left(\tilde{\mathbf{v}}^{T_1^*} - \beta \sum_{s=T_1^*}^t \nabla \mathcal{L}(\tilde{\mathbf{v}}^s) - \hat{\mathbf{u}} \log t - \tilde{\mathbf{u}} \right)$$

 1437
 1438
 1439
$$\leq \hat{\mathbf{u}}^\top \left(\tilde{\mathbf{v}}^{T_1^*} - \hat{\mathbf{u}} \log t - \tilde{\mathbf{u}} \right) - \beta t \min_{T_1^* \leq s \leq t} \hat{\mathbf{u}}^\top \nabla \mathcal{L}(\tilde{\mathbf{v}}^s) = o(t)$$

 1440

1441 Then A_1 can be bounded from above by:

1442
 1443
$$\hat{\mathbf{u}}^\top \mathbf{r}^t \left[\frac{1}{t} - \log \left(1 + \frac{1}{t} \right) \right] \leq \max [\hat{\mathbf{u}}^\top \mathbf{r}^t, 0] \left[\frac{1}{t} - \log \left(1 + \frac{1}{t} \right) \right]$$

 1444
 1445
$$\leq \max [\hat{\mathbf{u}}^\top \mathbf{P}\mathbf{r}^t, 0] t^{-2}$$

 1446
 1447
$$\leq \begin{cases} \|\hat{\mathbf{u}}\| \epsilon_1 t^{-2}, & \text{if } \|\mathbf{P}\mathbf{r}^t\| \leq \epsilon_1 \\ o(t^{-1}), & \text{if } \|\mathbf{P}\mathbf{r}^t\| > \epsilon_1 \end{cases}$$

 1448

1449 By Lemma 9, we have $\phi'_i(u) < 0$. Then,

1450
 1451
$$\hat{\mathbf{u}}^\top \nabla \mathcal{L}(\tilde{\mathbf{v}}) = \frac{1}{n} \sum_{i=1}^n \phi_i(\hat{\mathbf{u}}^\top \tilde{\mathbf{v}}) \hat{\mathbf{u}}^\top \tilde{\mathbf{v}} < 0.$$

 1452
 1453

1454 This implies that $\mathcal{L}(\tilde{\mathbf{v}})$ does not have finite critical points $\tilde{\mathbf{v}}$. With $\lim_{t \rightarrow \infty} \|\nabla \mathcal{L}(\tilde{\mathbf{v}}^t)\|_2 = 0$, we
 1455 have $\lim_{t \rightarrow +\infty} (\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i = +\infty$. By Lemma 9, there exists $t_1 > 0$ such that for $t > t_1$ and $i \in [n]$,

1456
 1457
$$C_i (1 - e^{-\mu_i(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i}) e^{-(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i} \leq -\phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) \leq C_i (1 + e^{-\mu_i(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i}) e^{-(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i}. \quad (27)$$

 1458

1458 For A_2 , when $t > t_1$, $|\phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i)| \leq 2 \exp(-(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i)$.
 1459

$$\begin{aligned}
1460 & -\frac{\beta}{n} \sum_{i \notin \mathcal{S}} \phi_i'(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i (\mathbf{u}^i)^\top \mathbf{r}^t \leq -\frac{\beta}{n} \sum_{i \notin \mathcal{S}: (\mathbf{u}^i)^\top \mathbf{r}^t \geq 0} \phi_i'(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i (\mathbf{u}^i)^\top \mathbf{r}^t \\
1461 & \leq \frac{\beta}{n} \sum_{i \notin \mathcal{S}: (\mathbf{u}^i)^\top \mathbf{r}^t \geq 0} 2 \exp(-(\mathbf{u}^i)^\top \mathbf{r}^t) (\mathbf{u}^i)^\top \mathbf{r}^t \\
1462 & = \frac{2\beta}{n} \sum_{i \notin \mathcal{S}: (\mathbf{u}^i)^\top \mathbf{r}^t \geq 0} t^{-(\mathbf{u}^i)^\top \tilde{\mathbf{u}}} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i - (\mathbf{u}^i)^\top \mathbf{r}^t) (\mathbf{u}^i)^\top \mathbf{r}^t \\
1463 & \leq \frac{2\beta}{n} \sum_{i \notin \mathcal{S}: (\mathbf{u}^i)^\top \mathbf{r}^t \geq 0} t^{-(\mathbf{u}^i)^\top \tilde{\mathbf{u}}} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) \\
1464 & \leq 2\beta \exp\left(-\min_{1 \leq i \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^i\right) t^{-\theta}.
\end{aligned} \tag{28}$$

For A_3 , the proof is divided into two cases $(\mathbf{u}^i)^\top \mathbf{r}^t \geq 0$ and $(\mathbf{u}^i)^\top \mathbf{r}^t < 0$.

1476 If $(\mathbf{u}^i)^\top \mathbf{r}^t \geq 0$, for $t > t_1$, by equation 27,

$$\begin{aligned}
& -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi_i'(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq \frac{\beta C_i}{n} t^{-1} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) \left[(1 + t^{-\mu_i} \exp(-\mu_i \tilde{\mathbf{u}}^\top \mathbf{u}^i)) \exp(-(\mathbf{u}^i)^\top \mathbf{r}^t) - 1 \right] (\mathbf{u}^i)^\top \mathbf{r}^t.
\end{aligned} \tag{29}$$

1483 (1) If $0 \leq (\mathbf{u}^i)^\top \mathbf{r}^t \leq t^{-0.5\mu_i}$,

$$\begin{aligned}
& - \frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi_i'(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq \frac{\beta C_i}{n} \exp\left(-(1+\mu_i) \min_{1 \leq i \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^i\right) t^{-1-0.5\mu_i} \\
& \leq \frac{\beta C_i}{n} \exp\left(-(1+\mu_i) \min_{1 \leq i \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^i\right) t^{-1-0.5\mu_{\min}}.
\end{aligned} \tag{30}$$

1493 (II) If $(\mathbf{u}^i)^\top \mathbf{r}^t > t^{-0.5\mu_i}$ we have

$$\begin{aligned}
& -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi'_i(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq \frac{\beta C_i}{n} t^{-1} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) \left[(1 + t^{-\mu_i} \exp(-\mu_i \tilde{\mathbf{u}}^\top \mathbf{u}^i)) \exp(-t^{-0.5\mu_i}) - 1 \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq \frac{\beta C_i}{n} t^{-1} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) \left[(1 + t^{-\mu_i} \exp(-\mu_i \tilde{\mathbf{u}}^\top \mathbf{u}^i)) (1 - t^{-0.5\mu_i} + t^{\mu_i}) - 1 \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq \frac{\beta C_i}{n} t^{-1} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) \left[t^{-\mu_i} \exp(-\mu_i \tilde{\mathbf{u}}^\top \mathbf{u}^i) (1 - t^{-0.5\mu_i} + t^{\mu_i}) - t^{-0.5\mu_i} + t^{\mu_i} \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq 0. \quad (t > t_2^i)
\end{aligned} \tag{31}$$

(III) If $(\mathbf{u}^i)^\top \mathbf{r}^t > \epsilon_2$, consider $t_3^i > t_2^i$ such that $t_3^i > \exp(\min_{1 \leq j \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^j) (e^{0.5\epsilon_2} - 1)^{-\frac{1}{\mu_i}}$. Then we have

$$\begin{aligned}
& -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi_i'(\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\
& \leq \frac{\beta C_i}{n} \exp\left(-\max_{1 \leq j \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^j\right) (1 - e^{-0.5\epsilon_2}) \epsilon_2 t^{-1}.
\end{aligned} \tag{32}$$

1512 If $(\mathbf{u}^i)^\top \mathbf{r}^t < 0$, still consider three case. (I) If $-t^{-0.5\mu_i} \leq (\mathbf{u}^i)^\top \mathbf{r}^t < 0$, since $-\phi'_i > 0$, we have

$$\begin{aligned} 1514 \quad & -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) \right] (\mathbf{u}^i)^\top \mathbf{r}^t \leq \frac{\beta C_i}{n} \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) |(\mathbf{u}^i)^\top \mathbf{r}^t| \\ 1515 \quad & \leq \frac{\beta C_i}{n} \exp(-\max_{1 \leq j \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^j) t^{-1-0.5\mu_i} \\ 1516 \quad & \leq \frac{\beta C_i}{n} \exp(-\max_{1 \leq j \leq n} \tilde{\mathbf{u}}^\top \mathbf{u}^j) t^{-1-0.5\mu_{\min}}. \\ 1517 \quad & \end{aligned} \quad (33)$$

1518 (II) If $(\mathbf{u}^i)^\top \mathbf{r}^t < -t^{-0.5\mu_i}$, for $t > t_1$,

$$\begin{aligned} 1523 \quad & -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) \right] (\mathbf{u}^i)^\top \mathbf{r}^t \\ 1524 \quad & \leq \frac{\beta C_i}{n} t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} \left[1 - e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \left(1 - \left(t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \right)^{\mu_i} \right) \right] |(\mathbf{u}^i)^\top \mathbf{r}^t| \\ 1525 \quad & \end{aligned} \quad (34)$$

1527 We then show that there exists $t_4^i > t_3^i$ such that for $t > t_4^i$ the right hand of the above inequality is
1528 negative. Since $\left(t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \right)^{\mu_i} = \exp \left(-\mu_i (\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i \right) \rightarrow 0$, there exists $t_5^i > t_3^i$ such
1529 that for $t > t_5^i$, $\left(t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \right)^{\mu_i} < \frac{1}{2}$. If $e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \geq 3$, then

$$1532 \quad e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \left(1 - \left(t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \right)^{\mu_i} \right) \geq 1.5 > 1. \quad (35)$$

1533 If $e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} < 3$, then

$$\begin{aligned} 1536 \quad & e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \left(1 - \left(t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \right)^{\mu_i} \right) \\ 1537 \quad & > e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \left(1 - \left(3t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} \right)^{\mu_i} \right) \\ 1538 \quad & \geq \left(1 + t^{-0.5\mu_i} \right) \left(1 - t^{-\mu_i} \left(3e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} \right)^{\mu_i} \right) \\ 1539 \quad & \geq 1 + t^{-0.5\mu_i} - t^{-\mu_i} \left(3e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} \right)^{\mu_i} - t^{-1.5\mu_i} \left(3e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} \right)^{\mu_i}. \\ 1540 \quad & \end{aligned} \quad (36)$$

1543 By taking $t_4^i > t_3^i$ such that for $t > t_4^i$, equation 35 and equation 36 larger than 1, we can obtain that

$$1545 \quad -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) \right] (\mathbf{u}^i)^\top \mathbf{r}^t < 0. \quad (37)$$

1547 (III) If $(\mathbf{u}^i)^\top \mathbf{r}^t < -t^{-0.5\mu_i}$, there exists $t_5^i > t_4^i$ such that for $t > t_5^i$,

$$1549 \quad e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \left(1 - \left(t^{-1} e^{-\tilde{\mathbf{u}}^\top \mathbf{u}^i} e^{-(\mathbf{u}^i)^\top \mathbf{r}^t} \right)^{\mu_i} \right) \geq 1.5. \quad (38)$$

1551 Then there exists constant c_1 such that

$$1552 \quad -\frac{\beta}{n} \left[\frac{1}{t} C_i \exp(-\tilde{\mathbf{u}}^\top \mathbf{u}^i) + \phi'_i((\tilde{\mathbf{v}}^t)^\top \mathbf{u}^i) \right] (\mathbf{u}^i)^\top \mathbf{r}^t < -c_1 t^{-1}. \quad (39)$$

1555 Finally, consider $t > t_2 := \max_{1 \leq i \leq n} t_5^i$: If $\|\mathbf{P}\mathbf{r}^t\| > \epsilon_1$, then

$$1557 \quad \max_{i \in \mathcal{S}} |(\mathbf{u}^i)^\top \mathbf{r}^t|^2 \geq \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} |(\mathbf{u}^i)^\top \mathbf{P}\mathbf{r}^t|^2 = \frac{1}{|\mathcal{S}|} \|\mathbf{X}_{\mathcal{S}}^\top \mathbf{P}\mathbf{r}^t\|^2 \geq \frac{1}{|\mathcal{S}|} \sigma_{\min}^2(\mathbf{X}_{\mathcal{S}}) \epsilon_1^2. \quad (40)$$

1559 Let $\epsilon_2 = \sqrt{|\mathcal{S}|^{-1} \sigma_{\min}^2(\mathbf{X}_{\mathcal{S}}) \epsilon_1}$, then there exists $i \in \mathcal{S}$ such that $|(\mathbf{u}^i)^\top \mathbf{r}^t| \geq \epsilon_2$. By equation 32,
1560 equation 39 and equation 25, we can obtain that there exists $c_2 > 0$, such that for $t > t_2$,

$$1562 \quad (\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t \leq -c_2 t^{-1} + o(t^{-1}). \quad (41)$$

1564 Then there exists $t_3 > t_2$ such that for $t > t_3$,

$$1565 \quad (\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t \leq 0 \leq C t^{-\min\{\theta, 1+0.5\mu_{\min}\}}. \quad (42)$$

1566 If $\|\mathbf{Pr}^t\| > \epsilon_1$, then by equation 30, equation 31, equation 33, and equation 34, there exists $c_3 > 0$
 1567 such that for $t > t_2$, we have
 1568

$$(1569) \quad (\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t \leq c_3 t^{-\min\{\theta, 1+0.5\mu_{\min}\}}. \quad (43)$$

1570 Taking $C = c_3$ and $t_1 = t_4$, we obtain that for $t > t_1$, $(\mathbf{r}^{t+1} - \mathbf{r}^t)^\top \mathbf{r}^t \leq C t^{-\min\{\theta, 1+0.5\mu_{\min}\}}$.
 1571 \square
 1572
 1573
 1574
 1575
 1576
 1577
 1578

1579 A.3.3 STAGE 3

1580 After Stage 2, we have with probability at least $1 - \mathcal{O}(\frac{1}{d^2})$, $\tilde{\mathbf{w}}^{T_2^*} = \begin{bmatrix} \mathbf{0} \\ \mathbf{w}^{T_2^*} \end{bmatrix}$ satisfies $\frac{1}{4} \leq \mathbf{w}_1^{T_2^*} \leq \frac{1}{2}$,
 1581 for $j \in S \setminus \{1\}$, $\frac{\sqrt{\sigma^2 \log d/n}}{d^3} \leq \mathbf{w}_j^{T_2^*} \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$, and for $j \in S^c$, $\mathbf{w}_j^{T_2^*} \leq \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$. Moreover,
 1582 the gate iterate $\tilde{\mathbf{v}}^t$ satisfies $p_i^{T_1^* + T_2^*} = \sigma((\tilde{\mathbf{v}}^{T_1^* + T_2^*})^\top \mathbf{u}^i) \geq 1 - \frac{\sqrt{\sigma^2 \log d/n}}{d^2}$ for all i . We now show
 1583 that, in Stage 3 with $T_3^* \asymp \frac{1}{\eta} \log\left(\frac{n}{\sigma^2 \log(d/n)}\right)$, and $T^* = T_1^* + T_2^* + T_3^*$, GD yields $\tilde{\mathbf{w}}^{T^*} = \begin{bmatrix} \mathbf{0} \\ \mathbf{w}^{T^*} \end{bmatrix}$,
 1584 $\|\mathbf{w}_S^{T^*} - 1\|_\infty \lesssim \sqrt{\frac{\sigma^2 \log d}{n}}$, $\|\mathbf{w}_{S^c}^{T^*}\|_\infty \lesssim \frac{\sqrt{\sigma^2 \log d/n}}{d}$. Since Stage 3 freezes the gate, $\tilde{\mathbf{v}}^{T^*}$ remains
 1585 at its Stage 2 form: $\tilde{\mathbf{v}}^{T^*} = \hat{\mathbf{u}} \log T_2^* + \rho^{T_2^*}$, where $\hat{\mathbf{u}}$ is the max-margin solution on $\{\tilde{\mathbf{x}}_i - \tilde{\mathbf{z}}_i\}_{i=1}^n$,
 1586 $\rho^{T_2^*}$ a bounded residual, and $T_2^* \asymp d^2 / \sqrt{\sigma^2 \log d/n}$. This completes the proof of Theorem 1. The
 1587 Stage 3 bounds follow by combining Lemma 12 and Lemma 13.
 1588

1589 As a preparatory step, we provide a recursion expression of \mathbf{w}^t in Stage 3, which will be used
 1590 repeatedly in the proof. The update of \mathbf{w}^t in Stage 3 takes the form:
 1591

$$(1592) \quad \mathbf{w}^{t+1} = \mathbf{w}^t \left[\mathbf{1}_d - \frac{\eta}{n} \sum_{i=1}^n \left((\mathbf{x}^i)^\top (\mathbf{w}^t)^{\odot 2} - (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} \right. \right. \\ \left. \left. - (\mathbf{x}^i)^\top (\mathbf{w}^*)^{\odot 2} - \epsilon_i \right) \cdot \left(\mathbf{x}^i - (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) \right) \right]. \quad (44)$$

1593
 1594 Collecting the small factors involving $(1 - p_i^{T_2^*})$ yields:
 1595

$$(1596) \quad \mathbf{w}^{t+1} = \mathbf{w}^t \odot \left[\mathbf{1}_d - \eta \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top ((\mathbf{w}^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) - \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i \epsilon_i \right. \right. \\ \left. \left. - \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} \right. \right. \\ \left. \left. - \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i)^\top ((\mathbf{w}^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) \right. \right. \\ \left. \left. + \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) \epsilon_i \right. \right. \\ \left. \left. - \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*})^2 (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} \right) \right]. \quad (45)$$

1620 We then decompose \mathbf{w}^t over the support of \mathbf{w}^* . Let $\text{supp}(\mathbf{w}^*) = S$, with $|S| = r$. Define
1621 $\mathbf{w}_S^t = \mathbf{w}^t \odot \mathbf{1}_S$, $\mathbf{w}_{S^c}^t = \mathbf{w}^t \odot \mathbf{1}_{S^c}$. Then we define,
1622

$$\begin{aligned}
1623 \quad \mathbf{r}^t &= \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top - \mathbf{H} \right) \left((\mathbf{w}_S^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2} \right), \\
1624 \\
1625 \quad \mathbf{e}^t &= \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top (\mathbf{w}_{S^c}^t)^{\odot 2} - \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i \epsilon_i - \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} \right. \\
1626 \\
1627 &\quad - \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i)^\top ((\mathbf{w}^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) + \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) \epsilon_i \\
1628 \\
1629 &\quad \left. - \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*})^2 (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} \right). \\
1630 \\
1631 \\
1632 \\
1633 \\
1634 \\
1635 \quad \text{Then the dynamic of } \mathbf{w}^t \text{ can be expressed as} \\
1636 \\
1637 \quad \mathbf{w}^{t+1} = \mathbf{w}^t \odot \left[\mathbf{1}_d - \eta \mathbf{H} \left((\mathbf{w}_S^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2} \right) - \mathbf{r}^t + \mathbf{e}^t \right]. \\
1638 \\
1639 \quad \text{With } \mathbf{H} = \text{diag}(a, 1, \dots, 1), \text{ let } c = a \text{ for } j = 1 \text{ and } c = 1 \text{ for } j > 1. \text{ Since } (\mathbf{w}_j^*)^2 = \mathbf{w}_j^* \in \{0, 1\}, \\
1640 \\
1641 \quad \text{If } j \in S : \quad \mathbf{w}_j^{t+1} = \mathbf{w}_j^{t+1} \left(1 - \eta \left(c (\mathbf{w}_j^{t+1})^2 - c - \mathbf{r}_t - \mathbf{e}_t \right) \right), \\
1642 \\
1643 \quad \text{If } j \notin S : \quad \mathbf{w}_j^{t+1} = \mathbf{w}_j^t (1 + \eta (\mathbf{r}_t + \mathbf{e}_t)). \\
1644 \\
1645 \quad \text{Lemma 12. Define } B_1 := C_1 r \sqrt{\frac{\log(dr)}{n}} \text{ and } B_2 := C_2 \sqrt{\frac{\sigma^2 \log(dr)}{n}}, \text{ for absolute constants } C_1 > 0. \\
1646 \quad \text{Assume the step size } 0 < \eta \leq \frac{1}{8a(1+B_1)}. \text{ Set the phase lengths} \\
1647 \\
1648 \quad T_4^* := \left\lceil \frac{5}{4\eta} \log \left(\frac{\max\{a(\mathbf{w}_j^{T_2^*})^2, 1\}}{5a B_1} \right) \right\rceil + \left\lceil \frac{5}{4\eta} \right\rceil, \quad T_5^* := \left\lceil \frac{5}{4\eta} \log \left(\frac{B_1}{B_2} \right) \right\rceil, \quad T_3^* := T_4^* + T_5^*. \\
1649 \\
1650 \\
1651 \quad \text{Then, with probability at least } 1 - \frac{1}{d^2}, \text{ the following statements hold. For all } t \leq T_2^* + T_3^*, \\
1652 \\
1653 \quad \forall j \in S : 0 \leq \mathbf{w}_j^t \leq 1 + B_1, \quad \forall j \in S^c : \mathbf{w}_j^t \leq \frac{1}{d} \sqrt{\frac{\sigma^2 \log d}{n}}. \\
1654 \\
1655 \\
1656 \quad \text{Proof of Lemma 12. Define the inductive property } \mathsf{P}(t) \text{ for } t \geq T_2^*: \\
1657 \\
1658 \quad \mathsf{P}(t) : \forall s \in [T_2^*, t], \forall j \in S : 0 \leq \mathbf{w}_j^s \leq 1 + B_1, \forall s \in [T_2^*, t], \forall j \in S^c : \mathbf{w}_j^s \leq d^{-1} \sqrt{\sigma^2 \log d/n}. \\
1659 \\
1660 \quad \text{Base case holds by initialization. Assuming } \mathsf{P}(t), \text{ with concentration Lemma 14 15 16 17 18 19} \\
1661 \quad \text{and 20 we bound} \\
1662 \quad \|\mathbf{r}^t\|_\infty \leq 2L_r r \leq \frac{1}{2} B_1, \quad \|\mathbf{e}^t\|_\infty \leq \frac{1}{2} B_1, \\
1663 \\
1664 \quad \text{hence } \|\mathbf{r}^t - \mathbf{e}^t\|_\infty \leq B_1. \text{ By Lemma 21 with } B = B_1 \text{ and the stepsize, we have } 0 \leq \mathbf{w}_j^{t+1} \leq 1 + B_1 \\
1665 \quad \text{for } j \in S. \text{ For } j \in S^c, \\
1666 \quad \mathbf{w}_j^{t+1} \leq (1 + \eta B_1) \mathbf{w}_j^t \Rightarrow \mathbf{w}_j^{T_2^* + \tau} \leq e^{\eta B_1 \tau} \mathbf{w}_j^{T_2^*}. \\
1667 \\
1668 \quad \text{Since } T_3^* := T_4^* + T_5^* \text{ satisfies} \\
1669 \\
1670 \quad T_3^* \leq \left\lceil \frac{1}{\eta B_1} \log \left(\frac{d \sqrt{\sigma^2 \log d/n}}{\mathbf{w}_{\max, S^c}^{T_2^*}} \right) \right\rceil, \\
1671 \\
1672 \quad \text{then } \mathbf{w}_j^{T_2^* + \tau} \leq d^{-1} \sqrt{\sigma^2 \log d/n} \text{ for all } \tau \leq T_3^*. \text{ Thus } \mathsf{P}(t+1) \text{ holds. By induction, the claim} \\
1673 \quad \text{holds. } \square
\end{aligned} \tag{46}$$

1674

1675 **Lemma 13.** For all $t \geq T_2^* + T_4^*$ and all $j \in S$,

1676

$$|\mathbf{w}_j^t - 1| \leq 5B_1.$$

1677

If $n \gtrsim \sigma^2 r^2 \log^3(dr)$, then for all $t \geq T_2^* + T_4^* + T_5^* = T_2^* + T_3^*$ and all $j \in S$,

1678

$$|\mathbf{w}_j^t - 1| \leq 5B_2.$$

1680

1681 *Proof of Lemma 13.* Fix $j \in S$ and $x_t := c(\mathbf{w}_j^t)^2$, $c \in \{a, 1\}$, $\gamma = 1/4$, $\gamma_w = \gamma/2 = 1/8$. When
1682 $\mathbf{w}_j^t \leq 1 - \gamma_w$,

1683

$$\mathbf{w}_j^{t+1} = \mathbf{w}_j^t \left(1 + \eta(c(1 - (\mathbf{w}_j^t)^2) - b_t)\right),$$

1684

1685 with $|b_t| \leq B_1$. Since $1 - (\mathbf{w}_j^t)^2 \geq 15/64$, assuming $B_1 \leq 11/64$ yields $c(1 - (\mathbf{w}_j^t)^2) - b_t \geq 11/64$,
1686 hence $\mathbf{w}_j^{t+1} \geq (1 + \eta \cdot 11/64)\mathbf{w}_j^t$. From $\mathbf{w}_j^{T_2^*} \in [1/4, 1/2]$, in at most
1687

1688

$$T(B_1) \leq \left\lceil \frac{64}{11\eta} \log \frac{1 - \gamma_w}{\mathbf{w}_j^{T_2^*}} \right\rceil \leq \frac{33}{\eta}$$

1689

1690 steps we have $\mathbf{w}_j^t \geq 1 - \gamma_w$, i.e., $|x_t - c| \leq \gamma$. Then by Lemma 22 (with $B = B_1$),
1691

1692

$$|x_{t+1} - c| \leq (1 - \kappa\eta)|x_t - c| + \beta c\eta B_1, \quad \kappa = \frac{2}{3}, \quad \beta = 2.1,$$

1693

1694 and whenever $|x_t - c| \geq \Lambda c B_1$ with $\Lambda \geq 2\beta/\kappa$ ($\Lambda = 7$),
1695

1696

$$|x_{t+1} - c| \leq (1 - \frac{\kappa}{2}\eta)|x_t - c|.$$

1697 Hence after

1698

$$T_4^* \leq \left\lceil \frac{5}{4\eta} \log \frac{|x_{T_2^*} - c|}{5cB_1} \right\rceil + \left\lceil \frac{5}{4\eta} \right\rceil$$

1699

1700 iterations, $|x_t - c| \leq 5cB_1$, which implies $|\mathbf{w}_j^t - 1| \leq 5B_1$.

1701

1702 This implies $\|(\mathbf{w}_S^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2}\|_\infty \leq C_w B_1$. Therefore,

1703

$$\|\mathbf{r}^t\|_\infty \leq L_r r C_w B_1 \leq C_r \frac{\sigma^2 r^2 \log^2(dr)}{n} = B_2, \quad \|\mathbf{e}^t\|_\infty \leq C_e \sqrt{\frac{\sigma^2 \log d}{n}} \leq B_2.$$

1704

1705 By Lemma 21 with $B = B_2$, for $t \geq T_2^* + T_4^* + T_5^*$,

1706

$$T_5^* = \left\lceil \frac{5}{4\eta} \log \frac{B_1}{B_2} \right\rceil \Rightarrow |\mathbf{w}_j^t - 1| \leq 5B_2.$$

1707

1708

□

1709

1710 **Lemma 14.** Given vector \mathbf{u} supported on S , for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

1711

$$\left\| \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top - \mathbf{H} \right) \mathbf{u} \right\|_\infty \leq B_{\mathbf{x}}^2 \sqrt{\frac{2}{n} \log \left(\frac{2dr}{\delta} \right)} \cdot r \|\mathbf{u}\|_\infty.$$

1712

1713 *Proof of Lemma 14.* Fix $j \in [d]$. Then

1714

$$\left[\left(\frac{1}{n} \sum_i \mathbf{x}^i (\mathbf{x}^i)^\top - \mathbf{H} \right) \mathbf{u} \right]_j = \sum_{k \in S} \left(\frac{1}{n} \sum_i \mathbf{x}_j^i \mathbf{x}_k^i - \mathbb{E}[\mathbf{x}_j \mathbf{x}_k] \right) \mathbf{u}_k.$$

1715

1716 For each k , $\mathbf{x}_j^i \mathbf{x}_k^i \in [-B_{\mathbf{x}}^2, B_{\mathbf{x}}^2]$, so Hoeffding implies

1717

$$\Pr \left(\left| \frac{1}{n} \sum_i \mathbf{x}_j^i \mathbf{x}_k^i - \mathbb{E}[\mathbf{x}_j \mathbf{x}_k] \right| \geq t \right) \leq 2 \exp \left(- \frac{2nt^2}{(2B_{\mathbf{x}}^2)^2} \right).$$

1718

1719 A union bound over $(j, k) \in [d] \times S$ gives the uniform deviation. Hence,
1720

1721

1722

1723

$$\left| \left[\left(\frac{1}{n} \sum_i \mathbf{x}^i (\mathbf{x}^i)^\top - \mathbf{H} \right) \mathbf{u} \right]_j \right| \leq B_{\mathbf{x}}^2 \sqrt{\frac{2}{n} \log \left(\frac{2dr}{\delta} \right)} \sum_{k \in S} |\mathbf{u}_k| \leq B_{\mathbf{x}}^2 \sqrt{\frac{2}{n} \log \left(\frac{2dr}{\delta} \right)} \cdot r \|\mathbf{u}\|_\infty,$$

1724

1725 and taking the maximum over j yields the claim. □

1728 **Theorem 15.** Given $\mathbf{u} \in \mathbb{R}^d$, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$1730 \quad 1731 \quad \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top \mathbf{u} \right\|_\infty \leq \left[\max\{a, 1\} + B_{\mathbf{x}}^2 d \sqrt{\frac{2 \log(2d^2/\delta)}{n}} \right] \|\mathbf{u}\|_\infty.$$

1733 *Proof of Lemma 15.* Decompose

$$1735 \quad 1736 \quad \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top \mathbf{u} = \mathbf{H}\mathbf{u} + \left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top - \mathbf{H} \right) \mathbf{u}.$$

1738 Since $\mathbf{H} = \text{diag}(a, 1, \dots, 1)$,

$$1739 \quad \|\mathbf{H}\mathbf{u}\|_\infty \leq \max\{a, 1\} \|\mathbf{u}\|_\infty.$$

1741 For the deviation, define

$$1742 \quad 1743 \quad Y_{i,j} := \mathbf{x}_j^i (\mathbf{x}^i)^\top \mathbf{u} - \mathbb{E}[\mathbf{x}_j \mathbf{x}^\top \mathbf{u}], \quad \left[\left(\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i)^\top - \mathbf{H} \right) \mathbf{u} \right]_j = \frac{1}{n} \sum_{i=1}^n Y_{i,j}.$$

1745 The $Y_{i,j}$ are i.i.d., mean zero, and almost surely

$$1747 \quad 1748 \quad |Y_{i,j}| \leq |\mathbf{x}_j^i| \sum_{k=1}^d |\mathbf{x}_k^i| |\mathbf{u}_k| \leq B_{\mathbf{x}} \cdot (d B_{\mathbf{x}}) \|\mathbf{u}\|_\infty = B_{\mathbf{x}}^2 d \|\mathbf{u}\|_\infty.$$

1750 By Hoeffding's inequality,

$$1752 \quad 1753 \quad \Pr \left(\left| \frac{1}{n} \sum_{i=1}^n Y_{i,j} \right| \geq t \right) \leq 2 \exp \left(- \frac{n t^2}{2 B_{\mathbf{x}}^4 d^2 \|\mathbf{u}\|_\infty^2} \right).$$

1755 A union bound over $j = 1, \dots, d$ gives, with probability at least $1 - \delta$,

$$1757 \quad 1758 \quad \max_{1 \leq j \leq d} \left| \frac{1}{n} \sum_{i=1}^n Y_{i,j} \right| \leq B_{\mathbf{x}}^2 d \|\mathbf{u}\|_\infty \sqrt{\frac{2 \log(2d^2/\delta)}{n}}.$$

1759 Combining with the population bound yields the result. \square

1761 **Lemma 16.** For any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$1763 \quad 1764 \quad \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i \epsilon_i \right\|_\infty \leq B_{\mathbf{x}} B_\epsilon \sqrt{\frac{2}{n} \log \left(\frac{2d}{\delta} \right)}.$$

1766 *Proof of Lemma 16.* Apply Hoeffding coordinatewise and union bound over d coordinates. \square

1768 **Lemma 17.** Define $B_y := r B_{\mathbf{x}} + B_\epsilon$ and $B_{\mathbf{xz}} := B_{\mathbf{x}} + \|f(0)\|_\infty + L B_y + B_\xi$. Then, given $1769 \quad 1770 \quad \mathbf{u} \in \mathbb{R}^d$, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$1771 \quad 1772 \quad \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_S \right\|_\infty + \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_{S^c} \right\|_\infty \\ 1774 \quad 1775 \quad \leq B_{\mathbf{x}} B_{\mathbf{xz}} \left(1 + \sqrt{\frac{2 \log(4d/\delta)}{n}} \right) \left(r \|\mathbf{u}_S\|_\infty + (d-r) \|\mathbf{u}_{S^c}\|_\infty \right).$$

1776 Consequently, with $p_{\min} = \min_i p_i^{T_2^*}$,

$$1778 \quad 1779 \quad \left\| \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t)^{\odot 2} \right\|_\infty \\ 1780 \quad \leq (1 - p_{\min}) B_{\mathbf{x}} B_{\mathbf{xz}} \left(1 + \sqrt{\frac{2 \log(4d/\delta)}{n}} \right) \left(r \|(\mathbf{w}_S^t)^{\odot 2}\|_\infty + (d-r) \|(\mathbf{w}_{S^c}^t)^{\odot 2}\|_\infty \right).$$

1782 *Proof of Lemma 17.* By the model assumptions, $\|\mathbf{x}\|_\infty \leq B_{\mathbf{x}}$ almost surely. With $y = \mathbf{x}^\top (\mathbf{w}^*)^{\odot 2} + \epsilon$ and $\|\mathbf{x}\|_\infty \leq B_{\mathbf{x}}$, we have $|y| \leq rB_{\mathbf{x}} + B_\epsilon =: B_y$. Since $\mathbf{z} = f(y) + \boldsymbol{\xi}$ with f being L -Lipschitz and $\|\boldsymbol{\xi}\|_\infty \leq B_{\boldsymbol{\xi}}$, it follows that

$$1786 \quad \|\mathbf{z}\|_\infty \leq \|f(0)\|_\infty + L|y| + \|\boldsymbol{\xi}\|_\infty \leq \|f(0)\|_\infty + LB_y + B_{\boldsymbol{\xi}}.$$

1787 Hence $\|\mathbf{x} - \mathbf{z}\|_\infty \leq B_{\mathbf{x}} + \|f(0)\|_\infty + LB_y + B_{\boldsymbol{\xi}} =: B_{\mathbf{xz}}$.

1789 Fix any $j \in [d]$. For the j -th coordinate of $\frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_S$, we have

$$1791 \quad \left| \frac{1}{n} \sum_{i=1}^n \mathbf{x}_j^i ((\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_S) \right| \leq \frac{1}{n} \sum_{i=1}^n |\mathbf{x}_j^i| \|\mathbf{x}^i - \mathbf{z}^i\|_\infty \|\mathbf{u}_S\|_1 \leq B_{\mathbf{x}} B_{\mathbf{xz}} \|\mathbf{u}_S\|_1.$$

1794 Taking expectation shows the same bound for the population mean. For the centered fluctuations, define

$$1796 \quad Y_i^{(j,S)} := \mathbf{x}_j^i ((\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_S) - \mathbb{E}[\mathbf{x}_j^i ((\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_S)].$$

1798 Then $|Y_i^{(j,S)}| \leq 2 B_{\mathbf{x}} B_{\mathbf{xz}} \|\mathbf{u}_S\|_1$ almost surely, and by Hoeffding's inequality,

$$1800 \quad \Pr \left(\left| \frac{1}{n} \sum_{i=1}^n Y_i^{(j,S)} \right| \geq B_{\mathbf{x}} B_{\mathbf{xz}} \|\mathbf{u}_S\|_1 \sqrt{\frac{2 \log(2d/\delta)}{n}} \right) \leq \frac{\delta}{2d}.$$

1803 A union bound over $j \in [d]$ yields, with probability at least $1 - \delta/2$,

$$1805 \quad \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_S \right\|_\infty \leq B_{\mathbf{x}} B_{\mathbf{xz}} \left(1 + \sqrt{\frac{2 \log(2d/\delta)}{n}} \right) \|\mathbf{u}_S\|_1.$$

1808 Using $\|\mathbf{u}_S\|_1 \leq r \|\mathbf{u}_S\|_\infty$ completes the bound for the \mathbf{u}_S term. An identical argument with \mathbf{u}_{S^c} (and $\|\mathbf{u}_{S^c}\|_1 \leq (d-r) \|\mathbf{u}_{S^c}\|_\infty$) gives, with probability at least $1 - \delta/2$,

$$1811 \quad \left\| \frac{1}{n} \sum_{i=1}^n \mathbf{x}^i (\mathbf{x}^i - \mathbf{z}^i)^\top \mathbf{u}_{S^c} \right\|_\infty \leq B_{\mathbf{x}} B_{\mathbf{xz}} \left(1 + \sqrt{\frac{2 \log(2d/\delta)}{n}} \right) \|\mathbf{u}_{S^c}\|_1.$$

1813 A union bound over the two events replaces $\log(2d/\delta)$ by $\log(4d/\delta)$ and yields the first display.

1815 For the consequence, note $0 \leq 1 - p_{T_2^*} \leq (1 - p_{\min})$. Factoring this out and applying the first bound with $\mathbf{u} = (\mathbf{w}^t)^{\odot 2}$ (so $\mathbf{u}_S = (\mathbf{w}_S^t)^{\odot 2}$ and $\mathbf{u}_{S^c} = (\mathbf{w}_{S^c}^t)^{\odot 2}$) proves the second display. \square

1818 **Lemma 18.** *Under the same assumptions as Lemma 17, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$1820 \quad \left\| \frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i)^\top \mathbf{u}_S \right\|_\infty + \left\| \frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i)^\top \mathbf{u}_{S^c} \right\|_\infty \\ 1823 \quad \leq B_{\mathbf{x}} B_{\mathbf{xz}} \left(1 + \sqrt{\frac{2 \log(\frac{4d}{\delta})}{n}} \right) (r \|\mathbf{u}_S\|_\infty + (d-r) \|\mathbf{u}_{S^c}\|_\infty).$$

1826 Consequently, with $p_{\min} = \min_i p_i^{T_2^*}$,

$$1829 \quad \left\| \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i)^\top ((\mathbf{w}^t)^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) \right\|_\infty \\ 1831 \quad \leq (1 - p_{\min}) B_{\mathbf{x}} B_{\mathbf{xz}} \left(1 + \sqrt{\frac{2 \log(\frac{4d}{\delta})}{n}} \right) (r \|(\mathbf{w}_S^t)^{\odot 2} - (\mathbf{w}_S^*)^{\odot 2}\|_\infty + (d-r) \|(\mathbf{w}_{S^c}^t)^{\odot 2}\|_\infty).$$

1835 *Proof of Lemma 18.* Same proof as Lemma 17, exchanging the two factors. \square

1836 **Lemma 19.** Let $S_n := \frac{1}{n} \sum_{i=1}^n (\mathbf{x}^i - \mathbf{z}^i) \epsilon_i \in \mathbb{R}^d$. Then for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\begin{aligned} & \left\| \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) \epsilon_i \right\|_\infty \\ & \leq (1 - p_{\min}) \left(B_{\mathbf{xz}} \sigma + B_{\mathbf{xz}} \sqrt{\frac{2\sigma^2 \log(\frac{2d}{\delta})}{n}} + \frac{2}{3} B_{\mathbf{xz}} B_\epsilon \frac{\log(\frac{2d}{\delta})}{n} \right). \end{aligned}$$

1845 *Proof of Lemma 19.* Fix $j \in [d]$ and define $X_i^{(j)} := (\mathbf{x}_j^i - \mathbf{z}_j^i) \epsilon_i$. Since $\|\mathbf{x}^i - \mathbf{z}^i\|_\infty \leq B_{\mathbf{xz}}$ a.s., we
1846 have $|X_i^{(j)}| \leq B_{\mathbf{xz}} B_\epsilon$ and $\text{Var}(X_i^{(j)}) \leq B_{\mathbf{xz}}^2 \sigma^2$. Let $\mu_j := \mathbb{E}[X_i^{(j)}] = \mathbb{E}[(\mathbf{x}_j^i - \mathbf{z}_j^i) \epsilon_i]$. By Cauchy-
1847 Schwarz and the a.s. bound, $|\mu_j| \leq B_{\mathbf{xz}} \sigma$. Let $Y_i^{(j)} := X_i^{(j)} - \mu_j$, then $|Y_i^{(j)}| \leq |X_i^{(j)}| + |\mu_j| \leq$
1848 $B_{\mathbf{xz}}(B_\epsilon + \sigma)$ and $\text{Var}(Y_i^{(j)}) = \text{Var}(X_i^{(j)}) \leq B_{\mathbf{xz}}^2 \sigma^2$. By Bernstein's inequality, for any $t > 0$,
1849

$$\Pr \left(\left| \frac{1}{n} \sum_{i=1}^n Y_i^{(j)} \right| \geq t \right) \leq 2 \exp \left(- \frac{nt^2}{2B_{\mathbf{xz}}^2 \sigma^2 + \frac{2}{3} B_{\mathbf{xz}} (B_\epsilon + \sigma) t} \right).$$

1854 Choose $t = B_{\mathbf{xz}} \sigma \sqrt{\frac{2 \log(2d/\delta)}{n}} + \frac{2}{3} B_{\mathbf{xz}} (B_\epsilon + \sigma) \frac{\log(2d/\delta)}{n}$ and take a union bound over $j = 1, \dots, d$
1855 to obtain, with probability at least $1 - \delta$,

$$\left\| \frac{1}{n} \sum_{i=1}^n X_i^{(j)} \right\|_\infty \leq \|\mu\|_\infty + B_{\mathbf{xz}} \sigma \sqrt{\frac{2 \log(2d/\delta)}{n}} + \frac{2}{3} B_{\mathbf{xz}} (B_\epsilon + \sigma) \frac{\log(2d/\delta)}{n}.$$

1860 Since $\|\mu\|_\infty \leq B_{\mathbf{xz}} \sigma$ and $B_\epsilon + \sigma \leq 2B_\epsilon$, we have

$$\left\| \frac{1}{n} \sum_{i=1}^n X_i^{(j)} \right\|_\infty \leq B_{\mathbf{xz}} \sigma + B_{\mathbf{xz}} \sigma \sqrt{\frac{2 \log(2d/\delta)}{n}} + \frac{2}{3} B_{\mathbf{xz}} B_\epsilon \frac{\log(2d/\delta)}{n}.$$

1865 Finally, $0 \leq 1 - p_i^{T_2^*} \leq (1 - p_{\min})$ implies

$$\begin{aligned} & \left\| \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*}) (\mathbf{x}^i - \mathbf{z}^i) \epsilon_i \right\|_\infty \\ & \leq (1 - p_{\min}) \left[B_{\mathbf{xz}} \sigma + B_{\mathbf{xz}} \sigma \sqrt{\frac{2 \log(2d/\delta)}{n}} + \frac{2}{3} B_{\mathbf{xz}} B_\epsilon \frac{\log(2d/\delta)}{n} \right], \end{aligned}$$

1872 which completes the proof. □

1874 **Lemma 20.** Let $p_{\min} = \min_i p_i^{T_2^*}$. For any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\begin{aligned} & \left\| \frac{1}{n} \sum_{i=1}^n (1 - p_i^{T_2^*})^2 (\mathbf{x}^i - \mathbf{z}^i) (\mathbf{x}^i - \mathbf{z}^i)^\top (\mathbf{w}^t) \odot^2 \right\|_\infty \\ & \leq (1 - p_{\min})^2 B_{\mathbf{xz}}^2 \left(1 + \sqrt{\frac{2 \log(4d/\delta)}{n}} \right) \left(r \|(\mathbf{w}_S^t) \odot^2\|_\infty + (d - r) \|(\mathbf{w}_{S^c}^t) \odot^2\|_\infty \right). \end{aligned}$$

1882 *Proof of Lemma 20.* Apply the same argument as in Lemma 17. □

1883 Consider the scalar update

$$w^+ = G_{c,b}(w) := w(1 - \eta(cw^2 - c - b)), \quad c \geq 1, \quad |b| \leq B, \quad \eta > 0,$$

1887 and let $x := cw^2$, $T_b(x) := x(1 - \eta(x - (c + b)))^2$ (so $x^+ = T_b(x)$).

1888 **Lemma 21** (Invariance and monotonicity). *If $0 < \eta \leq \frac{1}{8c(1+B)^2}$, then for every $|b| \leq B$ the map
1889 $G_{c,b}$ is nondecreasing on $[0, 1 + B]$ and $G_{c,b}([0, 1 + B]) \subseteq [0, 1 + B]$.*

1890 *Proof of Lemma 21.* We have $G'_{c,b}(w) = 1 - \eta(3cw^2 - c - b)$. On $[0, 1+B]$, $\max(3cw^2 - c - b) \leq 3c(1+B)^2$, hence $G'_{c,b} \geq 0$ if $\eta \leq 1/[3c(1+B)^2]$, which is implied by $\eta \leq 1/[8c(1+B)^2]$. For invariance, note that $G_{c,b}(0) = 0$, and by monotonicity in both w and b ,

$$1894 \quad G_{c,b}(w) \leq G_{c,B}(1+B) = (1+B)\left(1 - \eta(c((1+B)^2 - 1) - B)\right) \leq 1+B,$$

1895 since $c((1+B)^2 - 1) - B \geq B > 0$ and $\eta(c((1+B)^2 - 1) - B) \leq 1$. Nonnegativity of the bracket
1896 is ensured because
1897

$$1898 \quad \min_{w \in [0, 1+B], |b| \leq B} \left(1 - \eta(cw^2 - c - b)\right) = 1 - \eta(c(1+B)^2 - c + B) \geq 0$$

1900 under $\eta \leq 1/[8c(1+B)^2]$. \square
1901

1902 **Lemma 22** (Local contraction with bounded noise). *Fix $\gamma \in (0, 1/4]$, assume $|b| \leq B$, $B \leq 1/8$
1903 and $\eta \leq 1/8$. If $|x - c| \leq \gamma$, then*

$$1904 \quad |x^+ - c| \leq (1 - \kappa\eta)|x - c| + \beta c\eta B, \quad \kappa = \frac{2}{3}, \quad \beta = 2.1.$$

1905 Moreover, if $|x - c| \geq \Lambda cB$ with $\Lambda \geq 2\beta/\kappa$ (e.g. $\Lambda = 7$), then
1906

$$1907 \quad |x^+ - c| \leq (1 - \frac{\kappa}{2}\eta)|x - c| \leq (1 - \frac{1}{3}\eta)|x - c|.$$

1908 Consequently,

$$1909 \quad t \geq \frac{2}{\kappa\eta} \log \frac{|x_0 - c|}{\Lambda cB} \Rightarrow |w_t - 1| \leq \Lambda B.$$

1912 *Proof of Lemma 22.* Let $y := x - (c + b)$. Then $T'_b(x) = (1 - \eta y)(1 - \eta y - 2\eta x)$. On $|x - c| \leq \gamma$,
1913 $|b| \leq B$, we have $|y| \leq \gamma + B \leq 3/8$ and $2x - |y| \geq 2(c - \gamma) - (\gamma + B) \geq 9/8$. Hence

$$1914 \quad |T'_b(x)| \leq (1 + \eta|y|)(1 - \eta(2x - |y|)) \leq 1 - ((2x - |y|) - |y|)\eta + |y|(2x - |y|)\eta^2.$$

1916 Using $(2x - |y|) - |y| \geq 2c - 4\gamma - 2B \geq 3/4$, $|y|(2x - |y|) \leq (3/8)(9/8) = 27/64$, and $\eta \leq 1/8$,
1917 we get $|T'_b(x)| \leq 1 - \frac{2}{3}\eta$. By the mean-value theorem, $|T_b(x) - T_b(c)| \leq (1 - \kappa\eta)|x - c|$ with
1918 $\kappa = 2/3$. Also $|T_b(c) - c| = |c(1 + \eta b)^2 - c| \leq 2c\eta B + c\eta^2 B^2 \leq 2.1 c\eta B$ for $\eta \leq 1/8$. Combining
1919 gives the first claim. If $|x - c| \geq \Lambda cB$, then

$$1920 \quad |x^+ - c| \leq \left(1 - \kappa\eta + \frac{\beta}{\Lambda}\eta\right)|x - c| \leq (1 - \frac{\kappa}{2}\eta)|x - c|$$

1922 whenever $\Lambda \geq 2\beta/\kappa$. This yields the second claim and the exponential-time bound. \square
1923

1924 A.4 PROOF OF THEOREM 2

1926 Recall $\hat{\mathbf{u}}$ be the max-margin solution on $\{\mathbf{u}^i\}_{i=1}^n$ and $\gamma_{\text{emp}} := 1/\|\hat{\mathbf{u}}\|_2$.

1927 **Lemma 23.** Fix $\varepsilon \in (0, 1)$ and $\delta \in (0, 1)$. With probability at least $1 - \delta$ over the training sample,
1928

$$1929 \quad \Pr_{\mathbf{u}}((\hat{\mathbf{u}})^\top \mathbf{u} > \varepsilon) \geq 1 - \frac{2\sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\mathbf{z}})^2}}{\|\mathbf{s}\|_2(1 - \varepsilon)\sqrt{n}} - \sqrt{\frac{2\ln(2/\delta)}{n}}.$$

1932 *Proof.* Let $\mathbf{U} = \{\mathbf{u}^1, \dots, \mathbf{u}^n\}$ be the training sample and $\mathbf{U}' = \{\mathbf{u}'^1, \dots, \mathbf{u}'^n\}$ be another i.i.d.
1933 samples.

1934 Let $\bar{\varepsilon} = \varepsilon/\|\hat{\mathbf{u}}\|_2 = \varepsilon\gamma_{\text{emp}}$ and $\hat{\mathbf{v}} = \hat{\mathbf{u}}/\|\hat{\mathbf{u}}\|_2$. Define the ramp function at threshold $\bar{\varepsilon}$ and width
1935 $s > 0$:

$$1937 \quad \psi_{(\bar{\varepsilon}, s)}(t) := \begin{cases} 1, & t \leq \bar{\varepsilon}, \\ 1 - \frac{t - \bar{\varepsilon}}{s}, & \bar{\varepsilon} < t < \bar{\varepsilon} + s, \\ 0, & t \geq \bar{\varepsilon} + s. \end{cases}$$

1940 Then $\psi \in [0, 1]$ and is $1/s$ -Lipschitz. Set $s = \gamma_{\text{emp}} - \bar{\varepsilon} = \gamma_{\text{emp}}(1 - \varepsilon) > 0$. Since $\min_i \hat{\mathbf{v}}^\top \mathbf{u}^i =$
1941 $\gamma_{\text{emp}} \geq \bar{\varepsilon} + s$, the empirical ramp loss is zero:

$$1942 \quad \frac{1}{n} \sum_{i=1}^n \psi_{(\bar{\varepsilon}, s)}(\hat{\mathbf{v}}^\top \mathbf{u}^i) = 0, \quad (48)$$

1944 and $\mathbf{1}\{\hat{\mathbf{v}}^\top \mathbf{u} \leq \bar{\varepsilon}\} \leq \psi_{(\bar{\varepsilon}, s)}(\hat{\mathbf{v}}^\top \mathbf{u})$. Now apply the high-probability Rademacher uniform deviation
1945 bound (Shalev-Shwartz & Ben-David (2014), Theorem 26.5) to the loss $\ell = \psi_{(\bar{\varepsilon}, s)}$ (bounded by 1),
1946 over the linear class $\mathcal{F} = \{\mathbf{u} \mapsto \mathbf{v}^\top \mathbf{u} : \|\mathbf{v}\|_2 \leq 1\}$: with probability at least $1 - \delta$,
1947

$$1948 \quad \mathbb{E}[\ell(\hat{\mathbf{v}}^\top \mathbf{u})] \leq \frac{1}{n} \sum_{i=1}^n \ell(\hat{\mathbf{v}}^\top \mathbf{u}^i) + 2 \mathbb{E}_{\mathbf{U}'}[R(\ell \circ \mathcal{F} \circ \mathbf{U}')] + \sqrt{\frac{2 \ln(2/\delta)}{n}}.$$

1951 Using the contraction lemma (Shalev-Shwartz & Ben-David (2014), Lemma 26.9), $R(\ell \circ \mathcal{F} \circ \mathbf{U}') \leq$
1952 $\frac{1}{s} R(\mathcal{F} \circ \mathbf{U}')$. By the linear class Rademacher bound (Shalev-Shwartz & Ben-David (2014),
1953 Lemma 26.10), $R(\mathcal{F} \circ \mathbf{U}') \leq R/\sqrt{n}$ since $\|\mathbf{u}\| \leq R$ a.s. Because the empirical ramp loss is
1954 zero, we get

$$1955 \quad \mathbb{E}[\psi_{(\bar{\varepsilon}, s)}(\hat{\mathbf{v}}^\top \mathbf{u})] \leq \frac{2R}{s\sqrt{n}} + \sqrt{\frac{2 \ln(2/\delta)}{n}}.$$

1958 Finally, $\Pr(\hat{\mathbf{v}}^\top \mathbf{u} \leq \bar{\varepsilon}) \leq \mathbb{E}[\psi_{(\bar{\varepsilon}, s)}(\hat{\mathbf{v}}^\top \mathbf{u})]$ yields

$$1960 \quad \Pr((\hat{\mathbf{u}})^\top \mathbf{u} \leq \varepsilon) \leq \frac{2R}{\gamma_{\text{emp}}(1 - \varepsilon)\sqrt{n}} + \sqrt{\frac{2 \ln(2/\delta)}{n}},$$

1962 which implies the complementary lower bound for $\Pr((\hat{\mathbf{u}})^\top \mathbf{u} > \varepsilon)$. Combining with Lemma 7
1963 gives the explicit version. \square
1964

1965 Define

$$1967 \quad \mathbf{s} := \mathbf{s}_1 - \mathbf{s}_2, \quad \mathbf{u} := \begin{bmatrix} \mathbf{s} \\ \mathbf{x} - \mathbf{z} \end{bmatrix}, \quad \text{Rad} := \sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\mathbf{z}})^2}.$$

1969 Since with probability at least $1 - \mathcal{O}(1/d^2)$ the output at $T^* = T_1^* + T_2^* + T_3^*$ satisfies
1970

$$1971 \quad \tilde{\mathbf{v}}^{T^*} = \hat{\mathbf{u}} \log T_2^* + \boldsymbol{\rho}^{T_2^*}, \quad \|\boldsymbol{\rho}^{T_2^*}\|_2 = O(1), \quad T_2^* \asymp \frac{d^2}{\sqrt{\sigma^2 \log d/n}}.$$

1974 Moreover,

$$1976 \quad \tilde{\mathbf{w}}^{T^*} = \begin{bmatrix} \mathbf{0} \\ \mathbf{w}^{T^*} \end{bmatrix}, \quad \|\mathbf{w}_S^{T^*} - \mathbf{1}_S\|_\infty \lesssim \sqrt{\frac{\sigma^2 \log d}{n}}, \quad \|\mathbf{w}_{S^c}^{T^*}\|_\infty \lesssim \frac{\sqrt{\sigma^2 \log d/n}}{d}.$$

1978 Hence

$$1979 \quad \|(\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}\|_2^2 \lesssim r \frac{\sigma^2 \log d}{n}, \quad \|(\mathbf{w}^{T^*})^{\odot 2}\|_2^2 \leq r(1 + o(1)).$$

1982 Let $p = \sigma((\tilde{\mathbf{v}}^{T^*})^\top \mathbf{u})$ and, for $\tau \in (0, 1/2)$,

$$1983 \quad \Omega_\tau := \{p \geq 1 - \tau\}, \quad \kappa_\tau := \log \frac{1 - \tau}{\tau}.$$

1985 Choose $\varepsilon_\tau := (\kappa_\tau + C_\rho \text{Rad})/\log T_2^*$ with $|(\boldsymbol{\rho}^{T_2^*})^\top \mathbf{u}| \leq C_\rho \text{Rad}$ a.s.; then $\{\hat{\mathbf{u}}^\top \mathbf{u} \geq \varepsilon_\tau\} \subseteq \Omega_\tau$. By
1986 Lemma 23, with probability at least $1 - \delta$ over the training sample,
1987

$$1988 \quad \Pr(\Omega_\tau) \geq 1 - \frac{2 \text{Rad}}{\|\mathbf{s}\|_2(1 - \varepsilon_\tau)\sqrt{n}} - \sqrt{\frac{2 \ln(2/\delta)}{n}}. \quad (49)$$

1991 In particular, taking $\tau := c_\tau \sigma^2 \log d/(n d)$ and $\log T_2^* \geq 4C_\rho \text{Rad} + 2 \log(\frac{nd}{\sigma^2 \log d})$ gives $1 - \varepsilon_\tau \geq$
1992 $1/4 - o(1)$ and thus $\Pr(\Omega_\tau)$ close to one; moreover $p \geq 1 - \tau \geq 1 - \frac{1}{d^2}$.

1993 **Lemma 24.** Let $\Gamma_\tau := \lambda_{\max}(\mathbb{E}[(\mathbf{z} - \mathbf{x})(\mathbf{z} - \mathbf{x})^\top \mid \Omega_\tau]) \leq C_\Gamma d$, $C_\Gamma = (B_{\mathbf{x}} + B_{\mathbf{z}})^2$. Then
1994

$$1995 \quad \mathbb{E}\left[\left| \mathcal{L}(\tilde{\mathbf{w}}^{T^*}, \tilde{\mathbf{v}}^{T^*}) - \frac{\sigma^2}{2} \right| \mid \Omega_\tau\right] \\ 1996 \quad \leq \lambda_{\max}(\mathbf{H}) \|(\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}\|_2^2 + \tau^2 \Gamma_\tau \|(\mathbf{w}^{T^*})^{\odot 2}\|_2^2 + B_\epsilon \tau \sqrt{\Gamma_\tau} \|(\mathbf{w}^{T^*})^{\odot 2}\|_2.$$

1998 *Proof.* Let $\mu_x(\mathbf{x}) = \mathbb{E}[y \mid \mathbf{x}] = \mathbf{x}^\top (\mathbf{w}^*)^{\odot 2}$ and $\hat{y} = (p \tilde{\mathbf{x}} + (1-p) \tilde{\mathbf{z}})^\top (\tilde{\mathbf{w}}^{T^*})^{\odot 2}$. Then we have
1999
2000 $\hat{y} - \mu_x = \mathbf{x}^\top ((\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) + (1-p)g, \quad g = (\mathbf{z} - \mathbf{x})^\top (\mathbf{w}^{T^*})^{\odot 2}. \quad (50)$
2001

2002 Since $\epsilon \perp \mathbf{x}$, $\mathbb{E}[\epsilon] = 0$, we have

2003 $\mathcal{L} - \sigma^2/2 = \frac{1}{2} \mathbb{E}[(\hat{y} - \mu_x)^2] - \mathbb{E}[(\hat{y} - \mu_x)\epsilon]. \quad (51)$
2004

2005 Conditioning on Ω_τ (so $0 \leq 1-p \leq \tau$), we get

2006 $\mathbb{E}[(\hat{y} - \mu_x)^2 \mid \Omega_\tau] \leq 2((\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2})^\top \mathbf{H}((\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) + 2\tau^2 \mathbb{E}[g^2 \mid \Omega_\tau]$
2007
2008 $\leq 2\lambda_{\max}(\mathbf{H}) \|((\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2})\|_2^2 + 2\tau^2 \Gamma_\tau \|(\mathbf{w}^{T^*})^{\odot 2}\|_2^2.$

2009 For the cross term,

2010 $|\mathbb{E}[(\hat{y} - \mu_x)\epsilon \mid \Omega_\tau]| = |\mathbb{E}[(1-p)g\epsilon \mid \Omega_\tau]| \leq B_\epsilon \tau \mathbb{E}[|g| \mid \Omega_\tau] \leq B_\epsilon \tau \sqrt{\Gamma_\tau} \|(\mathbf{w}^{T^*})^{\odot 2}\|_2.$
2011

2012 Combining yields the claim. \square

2013 *Proof of Theorem 2.* Let $\Omega := \Omega_\tau$. The probability lower bound follows from equation 49 with
2014 ε_τ and the stated scale of T_2^* . Since $p^{T^*} \geq 1 - \tau \geq 1 - \frac{1}{d^2}$. Apply Lemma 24 and substitute
2015 $\|((\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2})\|_2^2 \lesssim r \frac{\sigma^2 \log d}{n}$, $\|(\mathbf{w}^{T^*})^{\odot 2}\|_2^2 \leq r$, $\Gamma_\tau \leq C_\Gamma d$, and $\tau \leq \frac{\sigma^2 \log d}{nd}$ to obtain the
2016 stated rate. \square

2017 *Proof of Corollary 1.* Define $\mathbf{u}' = \begin{bmatrix} \mathbf{s} \\ \mathbf{x} - \mathbf{z}' \end{bmatrix}$ and $\text{Rad}' := \sqrt{\|\mathbf{s}\|_2^2 + d(B_{\mathbf{x}} + B_{\mathbf{z}'})^2}$. Replicating
2018 the high-probability calibration of the gate (as in the proof of Theorem 2) with \mathbf{u} replaced by \mathbf{u}' and
2019 Rad by Rad' yields the event Ω with

2020 $\Pr(\Omega) \geq 1 - \frac{8 \text{Rad}'}{\|\mathbf{s}\|_2 \sqrt{n}} - \sqrt{\frac{2 \ln(2d^2)}{n}},$
2021

2022 on which $p^{T^*} = \sigma((\tilde{\mathbf{v}}^{T^*})^\top \mathbf{u}') \geq 1 - 1/d^2$.
2023

2024 For the risk, write $\hat{y} = (p^{T^*} \tilde{\mathbf{x}} + (1-p^{T^*}) \tilde{\mathbf{z}}')^\top (\tilde{\mathbf{w}}^{T^*})^{\odot 2}$ and $\mu_x(\mathbf{x}) = \mathbf{x}^\top (\mathbf{w}^*)^{\odot 2}$. Decompose (as
2025 in Lemma 24)

2026 $\hat{y} - \mu_x = \mathbf{x}^\top ((\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}) + (1-p^{T^*})g', \quad g' = (\mathbf{z}' - \mathbf{x})^\top (\mathbf{w}^{T^*})^{\odot 2}.$
2027

2028 Conditioned on Ω , we have $0 \leq 1 - p^{T^*} \leq 1/d^2$. Hence,
2029

2030 $\mathbb{E}[(\hat{y} - \mu_x)^2 \mid \Omega] \leq 2\lambda_{\max}(\mathbf{H}) \|(\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}\|_2^2 + 2\tau^2 \Gamma_\tau' \|(\mathbf{w}^{T^*})^{\odot 2}\|_2^2,$
2031

2032 where $\tau = 1/d^2$ and $\Gamma_\tau' := \lambda_{\max}(\mathbb{E}[(\mathbf{z}' - \mathbf{x})(\mathbf{z}' - \mathbf{x})^\top \mid \Omega]) \leq C_\Gamma' d$ with $C_\Gamma' = (B_{\mathbf{x}} + B_{\mathbf{z}'})^2$ by
2033 the envelope bounds. The cross term satisfies $|\mathbb{E}[(\hat{y} - \mu_x)\epsilon \mid \Omega]| \leq B_\epsilon \tau \sqrt{\Gamma_\tau'} \|(\mathbf{w}^{T^*})^{\odot 2}\|_2$.
2034

2035 Finally, substitute the parameter accuracies from Theorem 1: $\|(\mathbf{w}^{T^*})^{\odot 2} - (\mathbf{w}^*)^{\odot 2}\|_2^2 \lesssim r \sigma^2 \log d/n$
2036 and $\|(\mathbf{w}^{T^*})^{\odot 2}\|_2^2 \leq r(1 + o(1))$, to conclude
2037

2038 $\mathbb{E} \left[\left| \mathcal{L}_{(\mathbf{x}, y, \mathbf{z}')}(\tilde{\mathbf{w}}^{T^*}, \tilde{\mathbf{v}}^{T^*}) - \frac{\sigma^2}{2} \right| \mid \Omega \right] \lesssim \frac{r \sigma^2 \log d}{n}.$
2039

2040 \square

2041 **A.5 EXAMPLES**

2042 **Example 25** (Under Dominant-Coordinate Condition, population linear regression retains a constant
2043 fraction of \mathbf{z}). Let

2044 $y = \mathbf{x}_1 + \epsilon, \quad \mathbf{z}_1 = c y + \xi, \quad \mathbf{z}_j \equiv 0 \ (j \geq 2),$
2045

2046 with mutually independent coordinates and
2047

2048 $\text{Var}(\mathbf{x}_1) = a > 0, \quad \text{Var}(\mathbf{x}_j) = 1 \ (j \geq 2), \quad \text{Var}(\epsilon) = \sigma^2, \quad \text{Var}(\xi) = \sigma_\xi^2,$
2049

2052 and $\epsilon \perp (\mathbf{x}, \xi)$, $\xi \perp \mathbf{x}$. Consider the population linear regression problem
 2053

$$2054 \quad (\beta_{\mathbf{x}}^*, \beta_{\mathbf{z}}^*) \in \arg \min_{\beta_{\mathbf{x}}, \beta_{\mathbf{z}}} \mathbb{E}[(y - \beta_{\mathbf{x}}^\top \mathbf{x} - \beta_{\mathbf{z}}^\top \mathbf{z})^2].$$
 2055

2056 If $\sigma_\xi^2 > 0$, the unique solution is
 2057

$$2058 \quad \beta_{\mathbf{z},1}^* = \frac{c\sigma^2}{\sigma_\xi^2 + c^2\sigma^2}, \quad \beta_{\mathbf{z},j}^* = 0 \ (j \geq 2), \quad \beta_{\mathbf{x},1}^* = \frac{\sigma_\xi^2}{\sigma_\xi^2 + c^2\sigma^2}, \quad \beta_{\mathbf{x},j}^* = 0 \ (j \geq 2).$$
 2059

2060 Equivalently,
 2061

$$2062 \quad \hat{y} = \mathbf{x}_1 + \frac{c^2\sigma^2}{\sigma_\xi^2 + c^2\sigma^2} \epsilon + \frac{c\sigma^2}{\sigma_\xi^2 + c^2\sigma^2} \xi,$$
 2063

2064 so linear regression uses \mathbf{z}_1 to fit the residual noise ϵ with coefficient $c^2\sigma^2/(\sigma_\xi^2 + c^2\sigma^2)$, thereby
 2065 retaining a constant fraction of the \mathbf{z} component.

2066 Proof of Example 25. From $y = \mathbf{x}_1 + \epsilon$ and independence,
 2067

$$2068 \quad \text{Var}(y) = a + \sigma^2, \quad \text{Cov}(\mathbf{x}_1, y) = a, \quad \text{Cov}(\mathbf{x}_j, y) = 0 \ (j \geq 2).$$
 2069

2070 Moreover,
 2071

$$2072 \quad \mathbf{z}_1 = c\mathbf{x}_1 + \xi = c\mathbf{x}_1 + c\epsilon + \xi, \quad \mathbf{z}_j \equiv 0 \ (j \geq 2),$$
 2073

2074 so
 2075

$$2076 \quad \text{Cov}(\mathbf{x}_1, \mathbf{z}_1) = ca, \quad \text{Cov}(\mathbf{x}_j, \mathbf{z}_1) = 0 \ (j \geq 2), \quad \text{Var}(\mathbf{z}_1) = c^2(a + \sigma^2) + \sigma_\xi^2.$$
 2077

2078 The population projection is
 2079

$$2080 \quad \Pi_{y\mathbf{x}} = \Sigma_{\mathbf{xx}}^{-1} \Sigma_{\mathbf{xy}}.$$
 2081

2082 Since $y = \mathbf{x}_1 + \epsilon$ with $\epsilon \perp \mathbf{x}$, we have
 2083

$$2084 \quad \Pi_{y\mathbf{x}} = (1, 0, \dots, 0)^\top, \quad y' := y - \Pi_{y\mathbf{x}}^\top \mathbf{x} = \epsilon.$$
 2085

2086 Likewise, only $c\mathbf{x}_1$ in $\mathbf{z}_1 = c\mathbf{x}_1 + c\epsilon + \xi$ projects on \mathbf{x} , hence
 2087

$$2088 \quad \Pi_{\mathbf{z}_1\mathbf{x}} = \frac{\text{Cov}(\mathbf{x}_1, \mathbf{z}_1)}{\text{Var}(\mathbf{x}_1)} = \frac{ca}{a} = c, \quad \mathbf{z}'_1 := \mathbf{z}_1 - \Pi_{\mathbf{z}_1\mathbf{x}} \mathbf{x}_1 = c\epsilon + \xi,$$
 2089

2090 and $\mathbf{z}'_j \equiv 0$ for $j \geq 2$.
 2091

2092 Frisch-Waugh-Lovell Theorem (Frisch & Waugh, 1933) yields the \mathbf{z} -coefficients of the joint regression by regressing y' on \mathbf{z}' . Thus,
 2093

$$2094 \quad \beta_{\mathbf{z},1}^* = \frac{\text{Cov}(\mathbf{z}'_1, y')}{\text{Var}(\mathbf{z}'_1)} = \frac{\text{Cov}(c\epsilon + \xi, \epsilon)}{\text{Var}(c\epsilon + \xi)} = \frac{c\sigma^2}{c^2\sigma^2 + \sigma_\xi^2},$$
 2095

2096 and $\mathbf{z}'_j \equiv 0$ implies $\beta_{\mathbf{z},j}^* = 0$ for $j \geq 2$.
 2097

2098 The \mathbf{x} -only regression gives
 2099

$$2100 \quad \beta_{\mathbf{x},1}^{(\text{only-}\mathbf{x})} = 1, \quad \beta_{\mathbf{x},j}^{(\text{only-}\mathbf{x})} = 0 \ (j \geq 2).$$
 2101

2102 The joint coefficient equals the above minus what is explained via \mathbf{z}_1 :
 2103

$$2104 \quad \beta_{\mathbf{x},1}^* = \beta_{\mathbf{x},1}^{(\text{only-}\mathbf{x})} - \frac{\text{Cov}(\mathbf{x}_1, \mathbf{z}_1)}{\text{Var}(\mathbf{x}_1)} \beta_{\mathbf{z},1}^* = 1 - c\beta_{\mathbf{z},1}^* = \frac{\sigma_\xi^2}{\sigma_\xi^2 + c^2\sigma^2},$$
 2105

2106 and by symmetry $\beta_{\mathbf{x},j}^* = 0$ for $j \geq 2$.
 2107

2108 \square

2109 **Example 26.** Let $\mathbf{x}_1 \sim \text{Unif}([\underline{X}, \bar{X}] \cup [-\bar{X}, -\underline{X}])$ (symmetric, $\underline{X} > 0$), $\mathbf{x}_2 \sim \text{Unif}[-B, B]$,
 2110 $\epsilon \sim \text{Unif}[-E, E]$, $\xi_1 \sim \text{Unif}[-\Xi_1, \Xi_1]$, $\xi_2 \sim \text{Unif}[-\Xi_2, \Xi_2]$, all independent, and $\mathbf{x}_j \equiv 0$ for
 2111 $j \geq 3$. Let
 2112

$$2113 \quad y = \mathbf{x}_1 + \mathbf{x}_2 + \epsilon, \quad \mathbf{z}_1 = (1 - \kappa) y + \xi_1, \quad \mathbf{z}_2 = \alpha_2 y + \xi_2,$$
 2114

2115 with $0 < \kappa < 1$, $\alpha_2 > 0$. Set $B_{\mathbf{x}} := \max\{\bar{X}, B\}$ and $B_\epsilon := E$. Then:

2106 (1) Descendant stronger than a non-dominant causal coordinate. Since $\text{Var}(\mathbf{x}_2) = B^2/3$ and
 2107 $\text{Var}(y) =: V_y = \text{Var}(\mathbf{x}_1) + \text{Var}(\mathbf{x}_2) + \text{Var}(\epsilon)$,

$$2108 \quad \text{Cov}(\mathbf{x}_2, y) = \text{Var}(\mathbf{x}_2) = B^2/3, \quad \text{Cov}(\mathbf{z}_2, y) = \alpha_2 V_y.$$

2110 Hence for any $\alpha_2 > (B^2/3)/V_y$ we have $\text{Cov}(\mathbf{z}_2, y) > \text{Cov}(\mathbf{x}_2, y)$ even though \mathbf{x}_2 is causal.

2112 (2) Population dominance of coordinate 1 (Condition 1). Since

$$2113 \quad s_j = \mathbb{E}[y(\mathbf{x}_j + \mathbf{z}_j)], \quad \mu_j = \mathbb{E}[\epsilon(\mathbf{x}_j + \mathbf{z}_j)], \quad s_j^{\text{eff}} = s_j + \mu_j.$$

2115 Then

$$2116 \quad s_1^{\text{eff}} = \text{Var}(\mathbf{x}_1) + (1 - \kappa)\text{Var}(y) + (1 - \kappa)\text{Var}(\epsilon), \quad s_2^{\text{eff}} = \text{Var}(\mathbf{x}_2) + \alpha_2 \text{Var}(y) + \alpha_2 \text{Var}(\epsilon),$$

2118 and $s_j^{\text{eff}} = 0$ for $j \geq 3$. Because m_1, m_{1j} are bounded under our assumptions and s_2^{eff} is fixed by
 2119 (B, α_2, E, κ) , choosing $\text{Var}(\mathbf{x}_1)$ large enough (e.g., increasing \bar{X}) guarantees

$$2121 \quad s_1^{\text{eff}} > \frac{2m_1}{15} + \max_{j>1} \left(4|s_j^{\text{eff}}| + \frac{m_{1j}}{8} \right),$$

2123 i.e., Condition 1.

2125 (3) Per-sample margins (Condition 2). Since $\mathbf{x}_1 - \mathbf{z}_1 = \kappa \mathbf{x}_1 - (1 - \kappa)(\mathbf{x}_2 + \epsilon) - \xi_1$,

$$2126 \quad |\mathbf{x}_1 - \mathbf{z}_1| \geq \kappa |\mathbf{x}_1| - (1 - \kappa)(|\mathbf{x}_2| + |\epsilon|) - |\xi_1| \geq \kappa \underline{X} - (1 - \kappa)(B + E) - \Xi_1.$$

2128 Thus if $\kappa \underline{X} \geq (1 - \kappa)(B + E) + \Xi_1 + \tau_1$, then $|\mathbf{x}_1 - \mathbf{z}_1| \geq \tau_1$ a.s. Moreover, if $\kappa \underline{X} > (1 - \kappa)(B +$
 2129 $E) + \Xi_1$, then the sign of $\mathbf{x}_1 - \mathbf{z}_1$ equals the sign of \mathbf{x}_1 a.s. Finally, if $\frac{3}{4} \underline{X} \geq r B_{\mathbf{x}} + B_{\epsilon} + \tau_2$, then
 2130 $\frac{3}{4} |\mathbf{x}_1| \geq r B_{\mathbf{x}} + B_{\epsilon} + \tau_2$ a.s. Hence Condition 2 holds.

2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159