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ABSTRACT

We revisit when Transformers can prioritize causes over spurious effects by view-
ing the problem through data correlation strength and the implicit regularization
of gradient descent. We identify a phenomenon called Correlation Crowding-
Out (CCO) arising from the training dynamics of Transformers. Specifically, un-
der strongly correlated causal features, gradient descent filters out spurious cues
and converges to a predictor that relies almost exclusively on the causes. The-
oretically, using a simplified Transformer model trained on data from a mini-
mal causal chain, we introduce a Dominant-coordinate condition that character-
izes when CCO arises and explain its mechanism as a coupling of “occupation”
and “crowding-out”. “Occupation” denotes the rapid growth of weights aligned
with the dominant causal direction while non-dominant directions remain small.
“Crowding-out” denotes the attention logits align with separation directions favor-
ing the causal branch, suppressing descendants. We provide convergence guaran-
tees for both the optimization trajectory and generalization. Our empirical results
on simulated and real examples across various tasks including vision and natu-
ral language demonstrate the procedure. Together, these results show that, under
suitable conditions, standard training alone can induce cause only prediction.

1 INTRODUCTION

Whether data-driven models can extract causal invariances from observational data and thereby de-
liver robust predictions has long been a central hope in Al (Pearl, 2009; |Peters et al.,|2016;|Arjovsky
et al., |2019; Scholkopf et al., [2021} |[Fan et al., 2024). Yet models trained by empirical risk min-
imization are often prone to shortcut learning (Geirhos et al.| [2020; [Shah et al., |2020; |Ye et al.,
2024), indiscriminately exploiting any correlation, including spurious cues unrelated to the true
causal mechanisms (Sagawa et al.l 2020a; |Q1u et al., [2023). This pattern is widely documented
across modalities and tasks (Geirhos et al., 2018 [McCoy et al.| [2020; [Li et al., 2023b). The rise
of Transformers and LLMs sharpens this tension: these systems can sometimes rely on shallow ar-
tifacts (Bender et al, 2021} [Tang et al., [2023; |Du et al., [2023; |Varma et al., [2024; [Jin et al., 2024;
Gui & Ji, 2023)), yet they also produce answers that appear strikingly logical and robust in certain
scenarios (Brown et al.L[2020; Wei et al.,2022;|Kojima et al.,2022; |Yuan et al., 2024). Recent theory
offers partial clues for why Transformers sometimes appear causal, but does not yet answer the cause
only generalization question. On stylized in-context tasks, Transformers trained on Markov Chain
sequences can recover parent sets and estimate transition probabilities in-context (Edelman et al.,
2024; Nichani et al.,[2024; D’ Angelo et al., 2025)). These results suggest how attention might recon-
struct graph edges from observational sequences, but they rely on designed ICL setups rather than
generic pipelines with spurious features and do not show when spurious information is suppressed
at both train and test time. In parallel, large margin analyses show that gradient descent (GD) pushes
query—key parameters toward max-margin separators (Tarzanagh et al.| 2023 |Ataee Tarzanagh et al.,
2023} Vasudeva et al., 2024). While this suggests separation can emerge during training, it does not
characterize how such separation filters out spurious features or yields cause only risk guarantees.
This landscape motivates a basic question:

When and through what mechanism can Transformer training produce predictors
that rely on causes while ignoring spurious effects?
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We answer this by uncovering and analyzing Correlation Crowding-Out (CCO). CCO is a training
phenomenon in which, under a uniform dominance gap where a causal feature is more strongly
associated with the target than any competing spurious feature, GD drives Transformer to progres-
sively suppress spurious features and converge to a predictor that relies almost exclusively on the
causal feature. Crucially, the dominance condition does not require spurious features to be weak:
many can remain highly correlated with the target and may even surpass non-dominant causal coor-
dinates. What matters is a persistent margin favoring the dominant causal direction.

Remarkably, strong causal correlation in the data alone does not guarantee cause only prediction for
generic estimators. In Example 23] even under a dominance gap, population least squares retains a
constant fraction of a spurious feature. Thus, CCO is not a corollary of data dominance; it hinges
on optimization induced implicit regularization that actively crowds out spurious features. This
occurs without explicit invariance penalties (Arjovsky et al.l 2019} [Shapirol 2017} [Fan et al., [2024)
or multi-environment training (Peters et al., 2016} |[Fan et al.| 2024} Xu et al., [2024).

Our perspective complements existing analyses of correlation driven learning dynamics. Prior work
has shown that neural networks exhibit a simplicity bias, often preferring features that are highly
correlated with the label or easier to fit (Belkin et al.l [2019; [Moayeri et al., 2022; [Morwani et al.,
2023; Q1u et al., 2023} |Xue et al., 2023 |Yang et al., 2024). When spurious features are more
predictive or less complex, they tend to dominate early training, delaying or even entirely inhibiting
the learning of causal features (Shah et al.| 2020; [Yang et al., 2024). These studies underscore that
correlation strength and feature complexity critically shape learning trajectories, and they reinforce
the notion that deep models are vulnerable to superficial shortcuts. In contrast, we focus on the
opposite regime: when the causal features themselves dominate in predictiveness. We formalize
CCO as the mirror image of shortcut learning. Intuitively, if a causal feature explains the target with
overwhelming strength, the model has little incentive to rely on weaker spurious cues.

Building on this premise, we demonstrate CCO empirically and provide a theoretical account of
its mechanism. To theoretically understand this behavior, we analyze a simplified two-layer Trans-
former trained on data from a causal chain (x — y — z) generative process. Our theory provides a
Dominant-Coordinate Condition on the data, which quantifies how strong the x-y correlation must
be for CCO to occur. Under this condition, the training dynamics unfold in two coupled phases.
In the first “occupation” phase, within the Transformer’s feed-forward sublayer, the weight vector
that aligns with the dominant causal coordinate in x grows rapidly to a stable magnitude, while
weights in other directions remain small. This expansion makes the causal direction salient and es-
tablishes it as the primary signal driving the predictions. Next comes the “crowding-out” phase: the
Transformer’s attention mechanism gradually shifts its query-key alignment toward the max-margin
separator between the transformed causal and spurious features (roughly, X — z). Consequently, the
attention weights concentrate almost entirely on the causal x branch, effectively gating out the spu-
rious z branch. Through this two-phase process, GD steers the model toward a cause only solution
without any specialized regularization for invariance.

By elucidating the mechanism behind CCO, we contributes a more nuanced perspective on Trans-
former’s generalization: while spurious shortcuts are a serious and pervasive concern, there exist
regimes in which strong causal signals can turn GD into an ally for causal learning. In such regimes,
the implicit regularization of GD yield cause only generalization, even in the absence of multiple
training environments or explicit causal objectives.

1.1 OUR CONTRIBUTION

* We introduce and formalize the new phenomenon CCO.

* We elucidate CCO’s mechanism with both theory and experiments.

2 RELATED WORK

Spurious Correlations and Invariance Learning. Across vision, language, and ERM-trained
deep models including modern Transformers and LLMs—readily latch onto shortcut cues and spu-
rious correlations, leading to brittle generalization under shift (Geirhos et al., 2018} [2020; Zhou
et al., 2021} Du et al.l [2021}; [Tang et al.| 2023 Du et al., 2023} [Yuan et al.,|2024). A major theo-
retical response is invariance learning: instead of trusting raw correlations, one seeks mechanisms
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stable across environments. Two canonical frameworks are Invariant Causal Prediction (Peters et al.}
2016; Meinshausen et al.,[2016J)), which tests for subsets of covariates that render the conditional law
of the target invariant across interventions or environments, and Invariant Risk Minimization (Ar-
jovsky et al.| 2019), which encourages representations that admit a single optimal classifier across
environments. Both lines have spurred extensive follow-ups and critiques clarifying assumptions,
identifiability, and practical limitations (Ghassami et al., [2017; Heinze-Deml et al.| 2018; |Pfister,
et al., 2019; Rothenhausler et al.| [2019; [2021; [Rosenfeld et al.l [2021; [Lin et al., 2022b} [Kamath
et al.,2021; Lu et al.|[2021a;|Zhou et al.| 2022} [Lin et al., [2022a)). In parallel, distributionally robust
optimization offers a complementary lens by minimizing worst-case (group) risk under distributional
shifts (Shapiro} 2017} [Sagawa et al.,|2020a}; |Duchi & Namkoong, [2021}; |Gao et al.,|2024). More re-
cently, Environment-Invariant Linear Least Squares and variants show that, when cross-environment
heterogeneity is sufficiently strong, a regularized least-squares estimator can recover invariant fea-
tures with generalization guarantees while quantifying heterogeneity (Fan et al) 2024} |Gu et al.,
20245 Xu et al., 2024} |Gu et al., [2025). Most invariance methods posit either explicit regularizer
or environment partitions; comparatively less is known about when standard GD on a Transformer
will, by its own dynamics, yield an cause only predictor. Our work targets precisely this gap.

Implicit Bias. Implicit bias refers to the tendency of (S) GD, even without explicit regularization,
to select solutions with special structure and generalization properties, widely regarded as a key
to the success of over-parameterized models. Such as for logistic regression, (S)GD converges in
direction to the max-margin classifier (Soudry et al.|, 2018} |Ji & Telgarsky, 2019; Wu et al., 2025;
Cai et al. [2025); in over-parameterized linear models, (S)GD can display benign overfitting (Zou
et al.l 20215 |Wu et al., 2022), double descent (Lu et al., 2023; [Zhang et al., |2025), and scaling
laws (Bordelon et al.| 2024; |Lin et al., [2024)); and for quadratically parameterized models, (S)GD
implicitly favors low-complexity solutions and exhibits incremental learning (Li et al., 2018];|Vaske-
vicius et al., [2019; Woodworth et al., [2020; HaoChen et al., 20215 L1 et al., [2021; Jin et al.l 2023}
Xu et al.,[2024). Turning to Transformers, a growing theory literature dissects how attention evolves
under GD. For single-head ViTs, GD is shown to concentrate attention on label-relevant tokens,
yielding progressively sparse maps (Jelassi et al.|[2022; |L1 et al.|[2023a). These results clarify which
inputs receive mass under training induced anisotropy, but they are agnostic to causal structure. On
stylized in-context tasks, Transformers trained on Markov chain sequences learn the set of parent
tokens and estimate transition probabilities in-context; related mechanistic work on induction heads
explains how attention circuits implement dependency tracking and copying behaviors (Lu et al.,
2021b; |Olsson et al., 2022; |Li et al., 2023c; [Edelman et al., 2024; [Nichani et al.| [2024} D’ Angelo
et al.; 2025). These analyses are posed in designed ICL setups and do not address under generic
training with spurious descendants when and why GD yields a cause only predictor. A complemen-
tary line shows that GD on attention pushes query—key parameters toward max-margin separators,
establishing that separation can emerge during training; yet this does not identify which side of the
margin corresponds to causal versus spurious directions, nor when separation suffices for cause only
generalization (Tarzanagh et al., 2023} |Atace Tarzanagh et al.,|2023; |Vasudeva et al.| 2024)).

3 CCO: A PHENOMENOLOGY IN TRANSFORMER TRAINING

CCO refers to a training phenomenon in Transformers whereby, if there exists a dominant causal fea-
ture whose association with the target exceeds that of any competing spurious feature by a uniform
gap, GD learns a predictor that progressively suppresses spurious features and relies almost exclu-
sively on the causal one. Crucially, this dominance condition does not require spurious features to be
weak: many can remain highly correlated with the target and some may even surpass non-dominant
causal features. What matters is a persistent gap favoring the dominant causal direction.

CCO unfolds through two coupled effects:

(I) Occupation (early rise): within representation and prediction layers (e.g., embeddings, feed-
forward blocks, attention heads), weights aligned with a dominant, highly predictive causal feature
grow rapidly to a stable, large scale, while spurious features aligned directions remain small, ren-
dering the causal signal salient to the optimizer.
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(b) Iter=0 (c) Iter=50 (d) Iter=500
Figure 1: This figure shows how attention shifts during ViT training on a foreground—foreground
causal disentanglement task. (a) is the input image. Early in training (b, iter 0), attention is diffuse
across left bird (cause feature) and right bird (spurious feature). As training proceeds (c, iter 50),
attention weight rises on the left bird illustrating the occupation phase. By (d, iter 500), attention is
concentrated almost entirely on the left bird, with the right bird and background receiving near zero
weight, illustrating the crowding-out phase.

(a) Input image

(II) Crowding-out (attention selection): multi-head attention progressively aligns its logits with sep-
aration directions that prefer causal over spurious features (e.g., larger query-key margins for causal
tokens), concentrates attention mass on causal features, and suppresses spurious features.

We verify the above phenomenon in Fig|l] When training ViT to predict the label of background,
the attention map first show a rapid growth in the background in the occupation stage, while the
attention on birds remain small growth. Then in the crowding-out stage, the attention allocated to
the background significantly surpasses the attention to the bird, with the bird’s attention appearing
very faint in the attention map.

3.1 WHY CCO ARISES

(D) Intrinsic strong causal correlation: CCO emerges when the data exhibits a property whereby the
correlation between a causal feature and the target is consistently stronger than that of any spurious
feature. This is common rather than contrived: many real datasets can be viewed as mixtures of
latent environments in which causal-target relationships remain relatively stable, whereas spurious
features oscillate across environments. When pooled, these oscillations destructively interfere, re-
ducing spurious—target correlation relative to causal-target correlation. Equivalently, causal features
concentrate stable signal, while spurious features disperse unstable variance, making the dominant
causal direction statistically more salient.

(II) Implicit regularization of GD in Transformers: early strong-signal directions (Occupation) steer
gradients toward causal features, inducing a directional bias in the learned representation. Attention
then transduces this bias into selection (Crowding-out), assigning higher weight to causal features
and down-weighting spurious ones, thereby approaching an invariant, cause only solution without
explicit invariance penalties.

3.2 STRONG CAUSAL CORRELATION ALONE DOESN’T ENSURE CAUSE ONLY

It is important to stress that strong causal correlation in the data does not by itself alone guarantee
cause only prediction for generic estimators. In Example we show that even under a dominant
causal correlation, population linear regression retains a constant fraction of the spurious features,
remaining using spurious features to predict noise. This demonstrates two points: (a) strong causal
alignment alone does not ensure spurious suppression; and (b) CCO is not a trivial corollary of data
dominance but instead relies on the implicit regularization induced by Transformers and GD.

4 THEORETICALLY ANALYSIS OF CORRELATION CROWDING-OUT

4.1 PROBLEM SETUP

We provide a theoretical explanation for CCO by analyzing a specialized Transformer module
trained on data generated by the causal chain x — y — z. When the dominant feature of x exhibits
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sufficiently strong association with y, the implicit regularization of GD leads the learned predictor
to filter out z and rely almost exclusively on x.

4.1.1 DATA GENERATIVE PROCESS

We consider the causal chain x — y — z, where x,z € R¢ are vector covariates and y € R is a
scalar response. The response y is a sparse quadratic signal in x:

y=x" (W) +¢ (1)

with noise € | x, E[¢] = 0, and Var(e¢) = o2. The descendant z depends on y via an L-Lipschitz
function f : R — R and additive noise £ € R,

z=f(y)+& €Ly )

We assume the moment and boundedness conditions:

a 0

H:= E[XXT] = {0 I,

}, Ex+z]=¢, Var(x+z)=2%, 3)

and almost surely sup; ;<4 [X;| < Bx, |e|] < Be, supi<;<ql&i] < Be, supi<j<y ’z§| <
[ (0)]lo + L (rBx + Be) + Bg := By. The ground truth w* is sparse and binary: w3 € {0, 1},
wi =1, and [supp(w*)| < r. We observe i.i.d. samples { (x’,y",2") }\_, from (x,y,z).

The chain x — y — z is a minimal DAG that that captures the key trade-off behind CCO: a causal
parent x that determines y, versus a spurious descendant z is induced by y. This reduction is pur-
poseful and representative. For example, in sentiment analysis, content features x — sentiment label
or rating y — label derived auxiliary fields generated downstream z (Gururangan et al., 2018). So
that z is a descendant induced spurious correlate of y while x carries the causal signal.

In this pattern, descendants furnish alluring but non invariant shortcuts, a phenomenon widely doc-
umented across deep learning (Geirhos et al.| 2020). By positing one dominant, highly y-predictive
direction in x while allowing z to be strongly, yet non causally correlated with y. Thus, the
x — y — z pattern offers a principled, portable abstraction: it is simple enough for precise anal-
ysis yet representative of broader scenarios where CCO is expected to emerge.

4.1.2 MODEL ARCHITECTURE

We adopt a two-key attention architecture and augment inputs with fixed positional encodings
M
S1,82 € R™:

~ S ~ S
XL = |: %L:| s Z7’ = |:Z%:| ERM+d.

We parameterize the query as the gating vector q' := v! € RMT4, take the keys as k; := x" and
k! :=z", and the values as v, :=x"and v} :=z".

Two-key Attention. Define the logits
fi,l = (qt)Tk;7 gtz,z = (qt)Tkzia

and weights
Zt
t e t
O‘x,i = ot . ot o
e x,i + e =i

By softmax translation invariance,

o =o((a) (k; — k1)) = o(v) T (X" —2")) = pi.

The attention output (per sample) is
h't =al;vi+al;vi=p/x'+(1-p})z".
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Algorithm 1 GD on the two-key attention model

1: Input: {(x,y%, z")}_,, encodings sy, o, stepsizes {1, }, {3; }, initialization scale «, iterations

2: Positional Encoding: X' = Ls:?} 7= Eﬂ .

3 Tnit: W0 — Ogd V0= 0 sa

4: fort=0,1,..., T —1do
5: fori =1tondo

P o (W4T (" = 21). 5 e (R4
Wil et - %Z?ll(pLx-l-l— z)
8 el By a1 —ph) (' 2T (W9)°?) (& - 2)

9: Return: (witl vttty

L- ) D)W e gy

e

Squared-parameter Head and Loss. We predict with a quadratic parameterization feed-forward
layer:

n

M+d
i P - - C _ 1 i
g = (00 (W)= 3T (WO Law ) = Yy
j=1

=1

This quadratic parameterization feed-forward layer can be seen as a special diagonal neural network,
essentially a position wise FFN that provides anisotropic multiplicative gains and thus retains feature
learning capacity through the attention mixed representation. This parameterization can be further

generalized by ¢ = (hit)" ((‘;V+,t)®2 _ (Gv—=t)®2)_
GD on the two-key attention model is summarized in Algorithm I]

Our module is exactly a single-head dot-product attention applied per sample with two keys/values,
one for the cause path and one for the descendant path. It is the special case of a Transformer atten-
tion block where W¢, Wi, Wy are identity projections, so the query is the learned gating direction
v, and the two tokens are x and z. This reduction keeps the softmax competition geometry and
the value mixing mechanism intact while stripping away projection layers that would obscure the
optimization dynamics. The quadratic parameterization head is a diagonal, position wise FFN that
provides nonnegative per-coordinate gains. Studying this minimal attention—FFN pair is theoreti-
cally meaningful: it isolates the allocation dynamics behind the implicit bias we analyze, preserving
the key nonlinearities (softmax and multiplicative gains) that produce CCO.

The distinct fixed encodings s; # so attach branch identity to keys and values and inject a sample-
independent margin (v*) " (s; — sy) into the logit difference. When x; and z; are weakly separated
early in training, the offset (V*) T (s; — so) prevents the gate from collapsing to 1/2 and ensures a
non-degenerate gradient, thereby guaranteeing identifiability of branches and stable training dynam-
ics. This mirrors the role of positional embeddings in Transformers.

4.1.3 DOMINANT-COORDINATE CONDITION.

We characterize which patterns of strong correlation are sufficient for CCO to emerge. The two
conditions below formalize (i) a population-level dominance of one causal coordinate and (ii) a
per-sample margin along that coordinate.

Define s; := E[(x" (w*)®?) (x; + z,)| measures the cross-moment between response y and the
combined coordinate x; + z;. The adjustment p; := E[e(x; + z;)] accounts for noise leakage.
s?ﬁ := s; + p; is the effective signal which governs the drift of gradient updates. We also write
mj 1= ]E[(Xj + Zj)2] = Ejj + <j2 and Mij = E[(Xk + Zk)(Xj + Zj)} = Ekj + Ck‘CJ which capture
the second-moment scales of the combined features.

Condition 1. The effective signal satisfies that s§T > 2m1 + max;s1 (4 fs"ﬁ| + m“)
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Condition[T|requires effective signal the dominant feature is sufficiently strong to exceed that of other
competitor by a uniform gap. The assumption is mild, it allows strong descendant induced corre-
lations on other coordinates but prevents the dominant causal direction from being overwhelmed.
Under Condition [T} the GD dynamics preferentially amplify the squared weight on the dominant
coordinate, creating the occupancy that initiates CCO.

Condition 2. There exist constant T1, T2 > 0 such that for every sample i = 1, ..., n: (i) Nontrivial
gap: |x{ —zY| > 7. (ii) Sign stability: sgm(x’1 — zll) = sgn(xll). (iii) Dominant-coordinate
margin lower bound: %’xﬂ > r By + Be + 1.

In combination with Condition Condition guarantees that GD on the gate parameter v ¢ towards
the max-margin solution on {X; — z;}_, drives p! — 1 and thereby squeezes out the descendant
branch. In short, Condition [T|ensures occupancy, whereas Condition 2] ensures crowding out, com-
pleting the CCO mechanism.

These two conditions are satisfiable in bounded, Lipschitz settings. Importantly, as detalied in Ex-
ample they do not exclude the empirically relevant regime where some non-dominant causal
coordinates are less correlated with y than descendant coordinates: it can happen that for some
J > lwithwy =1, Cov(x;,y) < Cov(z;,y).

4.2 MAIN RESULT

We next formalize when and how CCO emerges in our two-key attention model. Under the
Dominant-coordinate condition, the first theorem provides a mechanistic account of CCO during
training. The second theorem provides a generalization guarantee: with high probability, the learned
predictor filters out the descendant z, relies almost exclusively on the causal x, and attains test risk
near the cause only level.

Theorem 1 (CCO’s Mechanism). Under Condition[I)and Condition [2} consider GD with initial-
ization scale o = 7”023;gd/n and the following stepsize schedule: (i) For 1 < t < Ty :=
min{t € N : wi > 1} setn, = nand B, = 0. (ii) For Ty < t < Ty + T3, with
Ty = exp <\/||s||§+d(Bx+Bg)2>, setm, = 0and B = B. (iii) For TF + T} < t <
Ty + T3 +TF = T% setn, = nand f; = 0 with T] = %m%m). Then, with

probability at least 1 — d—g, the squared-parameter head satisfies

0'\/10@ . * * *
< 7 fori € supp(w™), ‘wf —w
Meanwhile, the query (gating) iterate * = v obeys v = 1 logt + p!, where 01 is the max-
margin solution on {X; — Zi}?zl and p' a bounded residual. Consequently, piT* >1- % for all
1<i<n.

T* *
Wi —W;

1
< 3 fori ¢ supp(w™).

This theorem explains the mechanism by which CCO arises during optimization. Under the
dominant-coordinate condition, the dominant causal direction becomes visible to GD: the gate’s
gradient aligns with the separation direction (X* — z*) and tracks a max-margin ray with a logarith-
mically diverging norm, so the attention weight concentrates on the x-branch. As the gate filters out
the descendant branch, the squared-parameter head fits the ground-truth weights w* up to the error
on active coordinates and a 1/d tail on inactive ones.

Role of Positional Encodings. Distinct fixed encodings s; # so attach branch identity and in-
troduce a sample-independent margin in the gate logit, (v?)' (s; — s2). This symmetry breaking
enables the two-key attention to identify the dominant feature and drive the attention weights to
select the branch associated with it, thereby catalyzing CCO.

Theorem 2 (Generalization of CCO). For an independent test triple (X,y, z), there exists an event

Qwith Pr(Q) > 1— 8 Vsl +d (Bxt Ba)? \/mnffp), such that conditioned on Q,

ISl vir
* * * * 1 2 21
P =) —2")) 21— and EHE—UQ ‘Q]gmnogd.
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With high probability (strengthened when [|s||3 < d), the learned gate continues to prefer the causal
branch on test distribution, i.e., pT* is bounded away from 0 and close to 1. Moreover, the test loss
approaches the cause only noise floor 02/2 at rate O(r o2 logd/n), indicating that the predictor
essentially relies on x while filtering out z on the test distribution.

Theorem [2] controls generalization when train and test share the same data distribution. We next
show that the same CCO predictor remains robust under test time shifts that perturb y — z.

Corollary 1 (Robust generalization under y — z shifts). At test time, change the y — z mechanism
so that z' = [f'(y) + &' and assume sup; |z};| < By There exists an event Q with Pr(Q) >

1_ 8\/lIsl3+d (Bx+B,)? \/21n(2d2)
lIsll2v/n n

, such that conditioned on €,

* o ok ok 1 oo 0'2
pT =U((VT )T(XT -z T )) > 1_ﬁ’ EH E(xyy’z/)(wT ,vT )— =

’Q < ro?logd
~ n °

5 FURTHER DISCUSSION

Positioning of CCO. CCO arises under purely correlational training with single environment, no
environment labels, and no explicit invariance regularizers. Yet when a dominant causal correlation
is present and GD’s implicit bias takes hold, the learned predictor moves beyond correlation toward
causation: it increasingly relies on causal features while largely discounting spurious correlates.
Meanwhile, multi-environment invariance methods also seek causally aligned predictors, but they
pursue this goal by explicitly leveraging cross environment heterogeneity.

When Can Transformers Learn Causation?
CCO offers a concrete path to cause only behav- Invariance

ior under standard Transformer training, butitis |~ __Causation_ | | ____
not unique, and its assumptions need not always

s i
hold. In practice, Transformers/LLMs frequently i Approx E i D/:[pplrto.xE . ¢ i
exploit shortcuts and spurious cues (Benderetal, i  CCO i j v EsAvironment |
2021; Du et al} 2023; Tang et all, 2023 Jin et al, toveooooocoeeo } | Invariance Learning,
2024). CCO also has limits: it benefits from a Environmental Heterogeneity
strong causal correlation; when spurious cues are Strong Causal | Multi-Environment Data_ |
comparably strong or plentiful, single environ- EnvironmentEabel
ment ERM may still lean on them. In this regime, C .

orrelation

multi-environment invariance learning that ex-
plicitly leverages heterogeneity remains essential
for causal generalization.

Figure 2: Positioning of CCO.

Practical Insights. CCO suggests actionable insightss for training: (i) amplify causal alignment
in data to widen the dominant causal gap; (ii) employ mild attention sparsity or large step schedules
to accentuate strong features. These steps do not enforce invariance, but they increase the likelihood
that standard training will self select a cause only solution when the data permit.

6 EXPERIMENTS

6.1 SIMULATED EXPERIMENTS

We realize the GD on the two-key attention model in Algorithm[T]and present the simulation result
in this section. We consider the case where the data are generated from the same causal chain
x — y — z. The structural assignment for each variable is defined as x ~ N(oly, ), y =
x! (W*)®2 + €, z = Cy+ &, where ¢, £ are independent standard normal distributed and we set
w* as an all-ones vector. The results are shown in Fig We calculate the weight pfm and display

its average across the batch p!, = % > p;l We then run GD for 5000 iterations with batchsize

n = 64, and the dimension of data d € {5,10}. We can see that p’, increases rapidly to 1 in all cases
in the first 100 iterations corresponding to the occupation phase, while in the crowding out stage p,
remains at 1, while w slowly decreases to the minimum value.
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Figure 3: Simulation results for the GD on the two-key attention model. (a): the curve of ||w —
w*||2 and the average of p with d € {5,10}. (b): the first component of w quickly reaches its
optimum during occupation phase, while the other components slowly approach their optima during
the crowding-out phase.
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Figure 4: Experiments on waterbirds dataset. (a): The test accuracy with bias strength piey = 0.02
bias strengths on DeiT-Small, ResNet34 and EfficientNet-B4 trained across a full sweep of training
bias strengths from 0.5 to 0.99. Oracle is the accuracy on no-biased test data using DeiT-Small
trained without bias. (b): The test accuracy with bias strength pse sweeping from 0.02 to 0.99 on
DeiT-Small trained across a full sweep of training bias strengths from 0.5 to 0.95.

6.2 EXPERIMENTS ON REAL DATA

Experiments on Vision Task. We consider an image object classification task on the birds. The
target is to classify water birds (Y = 1) and land birds (Y = 0 in the CUB dataset (Wah et al.,[2011])).
To eliminate confounding due to foreground-background asymmetry altogether, we introduced a
setting where one bird species on the left side serves as the true target label y and another bird
species on the right side acts as the spurious bias z, both appearing in the foreground. We set the
bias strength in the train dataset to 0.9, i.e. prin = P(2z = y|y) = 0.9. This ensures that any
observed attention shift cannot be attributed to low-level feature quality differences (e.g., texture
richness or semantic complexity) between foreground and background.

The results in Fig[I] consistently show that the cause features progressively occupy and crowds out
the spurious features (whether background or another bird). We find that the attention map on the
left bird raise rapidly in the first 50 iterations, while the attention map on the right side seldom
changes, illustrating the occupation phase. By iter 500, attention is concentrated almost entirely on
the left side, with the bird on the right side receiving near zero weight, marking crowding-out. These
findings confirm that the observed behavior reflects genuine optimization-driven cause preference
not artifacts of feature disparity.

We conducted fair experiments on Waterbirds using DeiT-Small (from timm with ImageNet pretrain-
ing) alongside ResNet34 and EfficientNet-B4 (from torchvision, also pretrained, with comparable
about 20M parameter counts), training all models for 1,000 epochs at a learning rate of 1e-4 across a
full sweep of bias strengths from 0.5 to 0.99. As shown in the Fig[](a), DeiT-Small maintains signif-
icantly higher accuracy at strong bias levels (e.g., 0.9), demonstrating that Transformers can better
capture the underlying causal signal—left side bird type—despite overwhelming spurious correla-
tions with right bird, suggesting an advantage over CNNs in leveraging stronger semantic features
when spurious cues dominate.
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Figure 5: Experiment results on natural language task. (a): the test loss when mask the noun, adj,
verb or their combination in the text. (b): the saliency scores of each token when input "I hate this
DVD, it’s awful." to the model at 1%, 50%, 99% of the training steps.

We also added out-of-distribution (OOD) test experiments in Fig [Z_f] (b). We constructed a water-
bird dataset with a base spurious correlation of varying training bias strengths pyi,, measuring test
accuracy on OOD data where the test bias strengths pey € [0,1]. The curve reveals that when
Purain > 0.9, test accuracy drops as bias increases, indicating that the model fails to learn the invari-
ant causal feature (bird type) and instead relies heavily on the spurious background cue. However,
once puain < 0.85, test accuracy rises significantly and remains high (above 95%), which is the
hallmark of CCO: the model effectively crowd out the spurious features and learn the cause only
prediction. Therefore, when the spurious correlation is under the threshold, transformer can obtain
a cause only predictor which exhibits robust generalization at test time.

Experiments on Natural Language Task. We conduct the sentiment classification task on the
Amazon reviews dataset (He & McAuley, [2016) which consists of reviews from amazon. Here
Y € {1,2,3,4,5} represents the reviewer’s rating, X denotes the associated adjectives and verbs,
and Z indicates the nouns related to the product itself. We finetune the bert-base-uncased model
Devlin et al.|(2019) for 50k steps, employing the Adam optimizer Kingma, (2014) with a learning
rate of le-5. When constructing the test data, we mask the noun, adj, verb or their combination in the
text. As shown in Fig[5|(a), test loss with masked NOUN+VERB decay rapidly corresponding to the
occupation phase. We also observe a final upward trend in the test loss with masked ADJ+VERB,
indicating that the attention allocated to NOUNSs is being crowded out by cause features. Fig [3]
(b) display the saliency scores computed by the gradients of target class score relative to input
embeddings, which show which tokens most influence the model’s decision. The result indicates
that the cause features (hate, awful) crowds out the spurious features during the training process.

7 CONCLUSION

In this paper, we identify a new training phenomenon for Transformers training dynamics called
CCO, showing that strong causal alignment in the data, coupled with the implicit regularization of
GD, can drive the model toward cause only prediction. We demonstrate CCO empirically and de-
velop a theoretical account of its two phase mechanism (occupation and crowding-out). While not
the only route to causal generalization, CCO offers a concrete answer to when and through what
dynamics standard Transformer training can suppress spurious features and rely almost exclusively
on causal ones. The results spark that: amplifying causal alignment in data and designing train-
ing procedures that accentuate causal signals can make Transformers more likely to learn causally
grounded predictors.

10
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(a) Input image ] (b) Iter=0 (c) Iter=500 (d) Iter=1000
Figure 6: This figure shows how attention shifts during ViT training on a background-label (target)
task. (a) is the input image. Early in training (b, iter 0), attention is diffuse across background
(causal feature) and bird (spurious feature). As training proceeds (c, iter 500), attention weight rises
on the background illustrating the occupation phase. By (d, iter 1000), attention is concentrated
almost entirely on the background, with the bird receiving near zero weight, marking crowding-out.

A APPENDIX

A.1 USE oF LLMs

We used LLMs for language polishing.

A.2 ADDITIONAL EXPERIMENT

Background-label (target) task.We consider an image object classification task on the background
with birds. The target is to classify water environment (Y = 1) and land environment (Y = 0).
We generate datasets by combining the bird images in the CUB dataset and the
background images in the Places dataset (Zhou et al.| 2017) using specific probabilities, which is
similar to the waterbird setting in [Sagawa et al.| (2020b) with different target. We set the pixels
related to birds as z and place 70% of all water birds against a water background and 70% of all
land birds against a land background, generating a dataset with 30k images. We then train the vision
Transformer model (Dosovitskiy et al., 2020) using the dataset, fixing the input image size to 224,
with patch size set to 16, learning rate set to le-4, and batch size set to 16. The results are displayed
in Fig|6] Initially, attention grows rapidly in the background with only a slight increase on the bird.
Later, during crowding-out, the map is rapidly dominated by background attention, while the bird’s
attention becomes very faint.

Sensitive of sign-stability. In order to empirically verify how sensitive our mechanism is to mild
violations of sign-stability, we consider the image object classification task on the background with
birds. The target is to classify water bird (Y = 1) and land bird (Y = 0). We generate datasets
by combining the bird images in the CUB dataset [201T) and the background images in
the Places dataset using specific probabilities. But here we flip the label Y with
probability pyip:

Y =

- 1-Y, with probability pgp,
Y, with probability 1 — pgip.

We also place py.in Of all water birds against a water background and py.i, of all land birds against a
land background, generating a dataset with 30k images. We then train the vision Transformer model
using the dataset, fixing the input image size to 224, with patch size set to 16, learning rate set to
le-4, and batch size set to 16. As shown in Figm, we scan the pg;p from 0 to 0.5, and find that when
prip = 0.2, the crowding-out behavior can still be observed in the model with the accuracy reaches
over 90%, proving that the mechanism is sign-stable. When pgi, < 0.15, the test accuracy remains
robust across different bias strengths, indicating that CCO is still effective and the model is able to
learn invariant cause only prediction.

CCO boundary conditions. To empirically characterize the boundary conditions of CCO, we intro-
duce controlled cause-predictive correlation by flipping the true bird class label Y with probability
prip in a Waterbirds-like setup, where water birds and land birds are composited onto matching
backgrounds with strength py,in (measuring spurious-predictive correlation). As shown in Fig[7}
when pgip < 0.3 in (a) or pgi, < 0.05 in (b), the Vision Transformer maintains high and stable
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Figure 8: (a): Test accuracy of Deit-Small trained on dataset with various pg;, and pg,in on the bird
classification task. The background curves show test accuracy on the background dataset without
bird. The oracle curves show test accuracy on the dataset with pes = 0.5. (b): The dynamic of
attention weight for x, z during training in simulation on standard transformer.

test accuracy across varying bias strengths, and its attention concentrates on the bird rather than the
background—evidence that CCO is active and the model learns an invariant predictor based on the
cause features x. Even at pgi; = 0.2 in Fig a), the model still achieves over 90% accuracy and
exhibits crowding-out behavior, demonstrating robustness to mild violations of sign-stability. How-
ever, as pyip increases further toward 0.4 or 0.5, the performance deteriorates sharply, indicating that
CCO collapses once the correlation gap falls below a critical threshold. These results establish that
CCO operates effectively when the cause-predictive correlation remains sufficiently stronger than
the spurious one, defining a practical boundary beyond which the mechanism no longer reliably
emerges.

Generalization effects of spurious-dominant correlation. We test the accuracy of ViT on the
background dataset without bird in a specular setting with dominant correlations between y and z,
and weaker ones between x and y. The results are shown in Fig[§](a). When the correlation between
y and z in the dataset is strong, we observe a specular result: the model achieves high accuracy
on the background-only test set, indicating that it primarily relies on features associated with z for
prediction. In contrast, when the correlation between y and z is relatively weaker compared to the
correlation between x and y, the model’s accuracy on the background-only test set becomes very
low. In this regime, the CCO mechanism emerges: the model’s attention focuses predominantly on
cause features x, effectively crowding out those spurious features z.

Image classification on CelebA. We conduct our experiment on the classification task on CelebA
dataset and the discussion on NLP task can be found in response to weakness-2. This classification
task aims to predict the presence of a beard from CelebA images, where the target label is spuriously
correlated with gender. We trained ResNet-34, EfficientNet-B4, and DeiT-Small with comparable
parameter counts on this dataset under standard settings, using the AdamW optimizer with a learning
rate of le-4.
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Table 1: The accuracy of ResNet-34, EfficientNet-B4, and DeiT-Small on train dataset and test
dataset including (1) (Test Set 1) masking out facial regions, and (2) (Test Set 2) masking out every-
thing except the facial regions.

Model \ Train Accuracy Test Set 1 Accuracy (}) Test Set 2 Accuracy (1)
Deit-small 0.987 0.552 0.893
ResNet-34 0.992 0.577 0.861

EfficientNet-B4 0.979 0.573 0.802

Table 2: The loss of BERT trained on datasets with various P(z | y). The table shows the loss on
train dataset and test dataset including (1) (Oracle Test): z and y are independent, P(z | y) = 0.5,
and (2) (Biased Test): P(z | y) = 0.02.

P(z|y) | Final Train Loss  Oracle Test Loss (})  Biased Test Loss ({)

0.5 0.64 0.61 0.65
0.9 0.62 0.65 0.68
0.95 0.67 0.77 0.87

In the test set, we evaluated two masking conditions based on the bounding box (bbox) annotations
provided by the dataset: (1) (Test Set 1) masking out facial regions, and (2) (Test Set 2) masking out
everything except the facial regions and the result are shown in Tab[I] On Test Set 2, DeiT-Small
outperformed both ResNet-34 and EfficientNet-B4, indicating the CCO mechanism of crowding out
spurious features for accurate beard prediction. The performance gap observed on Test Set 2, where
only facial regions are visible, underscores that when the dataset contains strong but misleading
associations (like gender bias), DeiT-Small leverages its capacity to attend to all parts of the image
equally and identify the most predictive elements—the beard itself—thus achieving higher accuracy.
This supports the hypothesis that under certain conditions, particularly those involving complex
spurious correlations, Transformers exhibit a robustness and adaptability that enables them to focus
on invariant cause only prediction, enhancing their generalization capabilities on unseen data.

Controllable Spuriousness evaluation in NLP task. We construct NLP evaluation settings where
the degree of spurious correlation is known and controllable. When ground-truth labels y are avail-
able and the data-generating process allows intervention, we can deliberately manipulate the associ-
ation between a potentially spurious variable z (e.g., the name of item) and the label y. By sampling
instances according to a fixed conditional distribution P(z | y) = p, we can break or calibrate the
spurious link between z and y.

The Amazon reviews dataset provide the label of scores which is the target ¢y and the name of item,
which is a measurement of z. Varying p across experimental conditions allows systematic study of
how model behavior changes with the strength of the z—y association. The table shows the final test
loss of BERT under various p, where BERT remains lower test loss when p = 0.9, demonstrating
that transformers can pick up the stronger causal signal in NLP data.

Simulation on standard transformer. We conduct simulation experiments on standard multi-token
transformer. We take a two-token X = [x, z] as the input, and the causal chain is x — y — z, where
x,z € R? are vector covariates. We set

y=xw,+e, z=wy+¢

Here € and ¢ are both Gaussian random vectors, with variances of 0.1 and 1, respectively. We set
w, = 14, w, = 0.1-1,. We then train a 2-layer standard multi-token Transformer with a learning
rate of le-3 and the dynamic of attention weight for x, z during training is shown in Fig[§] The
attention weight curve demonstrates that the model initially assigns comparable attention to both the
cause X and its effect Z, but shows a two-stage shifts focus toward X while sharply suppressing
attention to Z. This "occupation" and "crowding out" behavior aligns with the CCO mechanism.
Consequently, the model learns to rely on direct evidence rather than attending to indirect, spurious
predictive pathway.
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A.3 PROOF OF THEOREM[I]

The proof of Theorem|[T]in three stages. In Stage 1, we show that the squared-parameter FEN rapidly
amplifies the weight on the dominant causal coordinate while keeping all other coordinates small.
In Stage 2, GD on the gate parameter v! towards the max- margm solution on {X; — z;}._, drives
p — 1 and thereby squeezes out the descendant branch. Finally, in Stage 3, after the descendant z
is nearly excluded, the squared-parameter FFN recovers the sparse ground truth.

A.3.1 STAGE 1

Theorem 3. Let T} = min {t eN:wi> i} Under Condition |l| suppose the step sizes satisfy

\/o2logd .
%g/n, Then with

N =N < ==y, and B¢ = 0, and the initialization scale is o =
2([s+52)

. . _ 0 . Ty Ty
probability at least 1 — d%, the iterate Wi = {WTY ] satisfies i < w;t < % and |Wj1 | <

VoElogd/n g s 1.

Proof of Theorem 3] Throughout Stage 1 we set 8 = 0, hence v¢ = 0 forall 1 < ¢ < Ty. With the
two-key attention, this implies p! = ¢(0) = 1 for every sample 1 < 7 < n anditeration 1 < ¢ < T7}.

By the structure of the squared-parameter head, w' keeps the form w! = [“?t ] .
1

The update of w! satisfies

witl =wl — % <; (x" + zi)T (wt)®2 - (xi)T (w2 — q) (x'+z')ow. @
i—1

We analyze non-dominant coordinates (5 > 1) and the dominant coordinate (j = 1) in turn.

By the defination of T}, we have w! < 1/4, for t < T}. We now prove for j > land 1 < ¢ <

3
Fog(d /4y 21Ogd/n))w ATy, k= o857 — 22, |w; | < Mo losd/n logd/n holds by induction.

Tog(1+7r) 1651 32

The update for coordinate j > 11is

witt = wh = DI LYo} +20) (x5 +20) | (wh)Awh) + [ 2 0 () T (W) P2, + 25 | w
i=1 i=1
+77[%Zei(x§+z }wt——zz X}, + 23,)% (W) (% + z))w)
i=1 i=1 k=2
Separating population terms from sampling deviations gives the multiplicative form

T (why?) (wh) +n AL 5)

t+1 t
W _Wj+77(s§ 2

J

where A§ is expressed as the following:

1

3= RS ) ) -7

i=1
1 ¢ i\ T (o x\O2 (i i t 1 ¢ wi
+ EZ(X) (Ww*) 77 (%) +25) —s5 | Wi+ EZ — | W;
i=1 im1
1 n d ) ) )
,%ZZ XkJer };) (x§+z;-)w§-.

i=1 k=2
By Lemma@ (concentration) and boundedness, using w! < % and the inductive hypothesis |w§| <

\/o2logd/n .
dif/, we obtain

¢1 B:3c z
Aj] < (@2t @) Wil + o5 Wil + st wil = ejlwil, (©6)

19



Under review as a conference paper at ICLR 2026

where e; = O(d™?) and, for large d, |e;| < } max;~y (|s57] + "5

equation 6]

11). Combining equation [5|and

wi!

| eff
‘Vflt| 1—|—77(max(’s | + 32)—1—6])

/ 5 (7
eff ml]
< 1+7)<4max(’s |+ 3 ))
By the above inequality, |w§-+1| can be bounded by
M) 5 my;
t+1 ff 1j t
il (1 o (4 mae (|s5] + 32))) [w;l
log(d3/4(v/o2 log d/n)) *
(140 (2 max (’se.ff! + mlj) [ Vo?logd/n
- 4 j>1 7 32 d3 ®)

log(d3 /4(y/o2 log d/n))

< (1 +1 (5 max (\seﬂ + m“))) [ et W Vo logd/n

d3

42
where (1) uses equation (2) uses a = 7“#;“/71 and (3) uses Condition

Therefore, by induction, forall j > landall1 < ¢ < [%—‘ AT, we have |w§\ < 7”(72;@/".

We then prove for j = land 1 < ¢ < [%—‘ ATy, w t“ > (1 + nk)w!, where k =
15 ceff _ my
1651 32

The update for w§+1 is given by

n n
n 4 i g
P = IS 2 (w300 (W) R + ) wh
i=1 i=1
n " n d
£330t +a)|wh = oE 3D+ )R (wh) ) + 2w
Py i=1 j=2

Separate expectations and deviations, we have

m
witt = wi 4 (siTwi = H(wh)?) A

1 1 " i i\2 3 1 - i T £\ ©2
M= g | 2 i) —m1] ()" + |5 22 6T () i i) ] 5
1 n 1 n d ) )
+ - Zﬂ(x’l +z}) — ,ullwli ~ 5 ZZ (x; +z;») (W§) (x} +23) wi.
i=1 i=1 j=2
By Lemma|§| and boundedness,
& By
t 1 xX+z t t
AT < (62400 Wil + S IwifP + =52 (w))? [wi. )
j=2
Since for j > 1, |wf| < 7“72(1;561/” and 0 < w} < 1/2, we have Z?ZQ(W§)2 < 1/d. Hence by
equation 9]
t4+1
- 21+n(s‘iff—¢ — Qe — *“—mlﬂbl) > 141k,
wi 32
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3
This implies that for 1 < ¢ < Fog(d /lié(vlii]f)g d/n))—‘ ATy, wi > (1 +nn)t7“72$gd/n. Therefore,

3 /2 . * /52
we obtain that Fog(d /lié(linf)g’ d/n))—‘ ATF = T7. Then we have |W;TF1 | < %gd/n forj > 1
and vvlTlt1 < 1. Then,

t+1
wi

8 my + @1
< 1 (Cf‘f . Bx+z )
wi S +n(si + P2+ P + 552 +732

(10)

. . B3 *
Since 7 satisfies n(s‘fﬁ + o2+ ¢ + 275+ mls‘g‘m) < 1, we have wipl < %

. * * o2logd )
Consequently, we obtain i < WTI < % and |W;TF1 | < %g/n for j > 1.

The lemmas required for the Theorem [3]are listed below.
Lemmad. Foranyl <i<nandl1 < j <d, z;‘ <||f(0)||o + L(rBx + Be) + Be := B,.

Proof of Lemma[d] Because w* € {0,1}¢ and |[supp(w*)| < r,

|(Xi)T(W*)®2’ :‘ Z xi| < Z x!| < rBx. (11

Jj€supp(w*) Jj€Esupp(w*)

Together with |el| < B.,
'l = | (x') (W9 +¢€| < rBg+ B (12)
For any coordinate 1 < j < d,

1O < 150+ £ = £HO] < 1HO+ 1) = FO0)llss < [£0)[+ LIyl
Taking sup, and using equation yields
1F @) e < 11£(0)lloe + L (rBx + Be). (13)
By the triangle inequality,
25| = | f;(") + &1 < [+ 1€ < 11f5) ]l + Be.
Combining with equation |13|gives
25| < 1/ (0)]loo + L (rBx + Be) + Be,

and thus ||z'||.o < B, almost surely.

O

Lemma 5 (Bernstein inequality for bounded distributions ( Theorem 2.9.5, |Vershynin|(2009))). Let
{&}71 be independent, E¢; = 0, |&;| < M a.s., and Var(§;) < v. Then for any t > 0,

p 1zn:§ >t <2e nt
r| [— i xp| ———— |,
n = = - P 2v—|—%Mt

hence with probability > 1 — 6,

1 n
E;&

2vlog(2/90) n 2M log(2/9)
n 3n '

<

(BI)
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Lemma 6. Define Byi, := Bx + B, For any § € (0,1), with probability at least 1 — 0, the
Sfollowing hold simultaneously for all 1 < j < d:

1 — P 2log(6d/d) ~ 2log(6d/d)
lgnliiéd o ; ((Xk +23,) (X +2) — mkj) < 1= 2Bx+z< " + 3 )
1 < T o2y i 2log(6d/6) = 2log(6d/d)
max, ;;((ﬂ (W*)%) (xj +25) — sj| < ¢2:= 7 Bx Bxis ( T :
I i 4 4 2log(6d/5)  2log(6d/6)
- 1l iy | o< =
1??§d n ;E (o +25) = 1| < o Be Byt ( n + 3n ’

where By, := Bx + By, and the factor log(6d/0) accounts for a union bound over d coordinates
and the three families.

Proof of Lemmal6] For fixed 1 < k,j < d, set = "( ) = (x} +2z¢) (X! + z;) — my;. Then |EZ(-1)\ <

M, := 2BZ., and Var(_i ) < vy = M3. Applylng Bernstein and union-bounding over j with
probability > 1 — /3,

1 n
- - <
maxn§<x —|—z) m]> o1,
where
2log(6d/d 2log(6d/o
o (D o)
Let 5; := (x*) T (w*)®2 and 2% := Si(xi +2!) — s;. Since (w*)®? € {0, 1} with support size
< r, |S;| < rBy, 252)| < My := rBxBxi, and Var(EEM)) < vy = MZ. Bernstein
union bound gives with probability at least > 1 — §/3
max - _1 )(xj—f—zj) sj| < ¢,
with

b e B B ( 210g(nfid/5) . 2log3(id/5)> |

Let EEE) i= €'(x} +2%) — p;. Then \”(E | < M, := BBy, and Var(EEe)) < v, := M?2. Bernstein
plus union bound yields with probability > 1 —§/3

n

1 o )
Ly ) -

i=1

max
J

S ¢€a

where

e = Be Bx z
¢ + n 3n

/

2log(6d/9) | 2log(6d/5)>

A.3.2 STAGE?2

Notation and max-margin solution. Sets := s; — sy and define

S
wim [0, € R full < ISl d (B B2
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Let {u’}? ; be the samples form u and consider the empirical £, max-margin separator

N . 1 ; .
u € arg min §HWH§ st. (u)Tw >1, i=1,...,n.

Its empirical margin is Yemp := 1/|||2. Let S C [n] be the support set with (u?) Tt = 1fori € S.
By the KKT conditions there exist multipliers c; > 0, nonzero only on S, such that

u= Z a;u’.
€S
s/lIsl3 T , ,
Lemma 7. Define ugep = 0 . Forevery i, (u") ' ugep = 1, hence ugep, satisfies all margin

constraints and separates the sample from the origin with margin 1. Since G minimizes ||ul|2 over
the feasible set, || 0|2 < ||Usepll2 = 1/||8||2, and thus

Yemp = ”ﬁl”2 > |Isl2-

Proof of Lemmal[7} Since u’ = [s; x' —2z¢] and usep, = [s/]|s[13; 0], (u?) Tusep, = s (s/]|s]|3) = 1.
Thus ugep, is feasible and the norm bound follows. L]

By the properties established in Lemma E], each sample gradient can be written as V/{;(v!) =
ng)i({/—rui). Each ¢; is monotonically decreasing to zero, Cgv—smooth, and has a (C;, ;) tight
exponential tail. Hence, in Phase II the implicit bias of GD drives the direction toward the ¢ max-
margin solution while the norm diverges, which forces the gate weight p! to converge to one. We
formalize this as the following Theorem B} The proof follows [Soudry et al| (2018, Thm. 9), with
minor adaptations to handle sample dependent ¢; and the dominant coordinate condition.
Theorem 8. Let Ty = d?/\/o?logd/n. Under Condition suppose the step sizes satisfy n: = 0,
B =B < W, where Cy is a constant defined in Lemma E] there exists a bounded
residual p* such that
vt = alogt + p',

and, in particular,

vt a T

min(v’) Tu’ ~ logt — 4o0.

lim —— = —
t=oo V2 [[alle’
Consequently, at T} + 15, pT1*+T2‘* =o((vTtT)Tu?) > 1 — 7“7261;gd/n forall i.

%

Proof of Theorem|[8] We first prove that v * can be expressed by v! = u logt + p' with bounded
pt. Since p! =r' +aandr! = v? —1dlogt — u, then

e = e e 2 e ) "
By Lemmalgl (A), we have ¢ ((¥*) Tu’) < 0. By the definition 1, we have @™ u’ > 1. This implies
T

2

(R rtH2 = HﬁVE(f/t) —u <1og (1 + 1))

2
= B*[|VLE@)| + lla)® (log (1 + 1)) +280" VL) log (1 + 1) (15)

- L
<FIVLE| + 5 el

By Lemma[9|(B) and Lemma(I0] we have

STVEEY|S =Co < 00, lim [|[VLEFY]|, = 0. (16)
t=0

t—o0
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Therefore,
e = o). 3 [ = < a7
t=T}

T .
By Lemma fort > tq, (rHl — rt) rt < Ot~ min{0,14+0.50min}

Thus,

t—
L e e W [ e

k=k;
=1 . (18)
< Cy+2 Z C |~ min{0,140.5/1min}
k=k;
< o0.

This implies ||r?| is bounded and further || p?| is bounded.

O
In Stage 2, w' = w7 is fixed and the gate updates v* follow:
Gt — gt _ BN ST
v Zw vIT =0,
( pix’ + (1 - pt) )T (Wt)®2 _ (xi)T (w*)®2 = €i> (19)
02 N
(=) (W)l (1) (% -7
where pf = o ((v})" (X" —2%)),and  o(t) = =
V/;(v") can be further expressed as
. N2 o
vi) = (o (6 - ) (W) ) - xd v d 4 )
. ((xg ) (wff)Q n <{> P (- pt) (% — )
! ! (20)

7 (1—p§) (% —#),

where (i, ¢4, ¢4, ¢i are small quantities, and ¢! is a constant.

G=2(x—2) (W) ) d=(d-a) (wl) G- (xi-eh) ¢ - dd,
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Define
~__ln (T i P o i
L(V):= n;:1 gbZ(V u), u=x"—z" 21

Then VL(v) = L 3% | V4;(v') which is equal to the gradient of £(V) := L(V) — infg L(V) > 0.
Without loss of generality, we assume infy £(v) = 0.

Since wfl* € [1/4,1/2] and |WJTI*| < 7“72;;’56”” for all j > 1. For each sample ¢, define and
|x}| < Bx, |25 < Bg, |€'| < Bc as. Then

i B+ B i B i Cs i Cy
|C1| < Tz’ |C2| < 72’ |C3| < j? |C4| < Fv
for explicit constants C5, Cy depending only on (Bx, By, B).
Let ©) ) ) - , ) ) , T
A7 = () —2)? (W)Y Boa= (%) — ) (%) — 7)) (wy )2

and absorb the small remainders into

Gu) = o(u) s + ¢ G| <

Then the scalar driving term becomes

Cs+C
S0 ol (since 0 < o(u) < 1).

$i(u) = (o) ALY — Bo; + () o(w)(1—o(w), olu)=

Lemma 9 (Properties of ¢;(u)). ¢;(u) has the following properties:

* (A) Monotonicity. For all i and u, ¢};(u) < 0.

* (B) Second-derivative control. For all u, |9 (u)| < Cy, hence

C "
HVQﬁ(‘N’)HOP < %UmaX(U)% U:= [ul» aun]y
where
1 5(Bx JrBz)2 1 1 B,
Con =7 (64+4(Bx+4 (BerTJrerJrBE) (Bx + By) +1>.

e (C) Exponential tails. Let
filu) == =¢i(u) = (Boy — o(u) A — Ci(u)) o(u) (1 - o(u)),

there exist C; > 0, p; > 0 and uo ; such that, for all u > g ;,

C’i(l—eﬂ““)(f“ < filu) < Ci(lJre*’““)e*“.

Proof of Lemma([9] (A) Since wil € [1/4,1/2], we have 1 — (w11)2 > 1 — (1/2)2 = 3/4. By
Condition [2] (i),

= Ty i i i 3\ i
Bil > (1= (wi" )Pl = 19" = |€'] = JBi] = (nBx+ Be) > 7.

Moreover, Condition [2| (iii) also implies sgn(Z;) = sgn(x}). By Condition [2|(i) and Condition
(i),

(x) —21) Eil > 1) — 2] [Si] > mm, sgn((x) —21) E) = +1.
Therefore,
, . 1
By, — AEO) = (x] —z}) (wlT1 )22, 16 LT
When d is large enough,
o(u) A — Bos + Glw) < 22)
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Therefore, for all u € R,
@ (u) = (O’(U)AEO) — By + Cé(u)) . a(u)(l — a(u)) < 0.

(B) Let s i= a(u), g(u) i= 5(1 = s) € (0,1/4]. Define h(u) := sA”) — By + ¢i(u). Noting
(u) = o'(u) & = g(u) ¢4, we have
)

o (w) = ' (w) g(u) + h(u) g’ (w) = (A" +G) g(w)? + h(u) (1 = 25) g(u).
Hence ©
A7+ ¢ i i
6 (w)] < 4<'43'+|A§-°>+<g|+|Bo7i|+|c5<u>|> < Cy.
where, using |x! — zi| < By + B, and w ' € [1/4,1/2],
O i < BxtBa)® G5 oL B.
A0 +Gl < ST+ = [Boal < g (Ba+ E 7 Bat Be) (Be+ By).
and thus one can take the explicit bound
1 /5(Bx+B,)? 1 1 B, Cs + Cy
Cyr == (2221220 4 Z(Be+ - (Bx By +B.) (Bx + B,) + =—22).
¢ 4( 64 +4( +4( Tt +>(+)+ d
Consequently, for the Phase-II scalar objective
:1271:5»(\7):1?:@1)4(9%1') u =% -7
ni:l Z ni:l ' ’ . .
Let U:= [ul, u?, ..., u"] € RM+dxn,
e LS Ty wiginT L ATTT
== - Nu(w)" == UDW)U
) nZ@(V u') u'(u’) ~UDW)U,
D(¥) := dlag( 75T ul), ...,gbn(vTu”)).
1 - C 1"
IV2L@), < OIS IP@lop < =2 0max(V).
(C) Let
. 1
filw) = =dl(w) = (Bos — o)A = ) o) (1 = o), olw) = 3=

Set _ _ _

Ci == By, — AEO) — (3 — (4, D; := AEO) + G-
Assuming the dominance condition ensures C; > 0 and, for d large, D; > 0 (since AEO) > (0 and
(5] = O(1/d)).
Expanding at e™* — 0,

fi(u) = Cie ™™ 4 (D; — 2C;) €2 4+ (3C; — 3D;) e 3% + O(e™ ).
——— ————
=:a; =:b;

Factor Cje™":

filu) = Cie_"(l + g—ie_“ + %G_QH + 0(6_3“) )

small for large

Choosing u > ug,; and p; > 0 such that |a’| e "+ Ib ‘ e~ 2u < e7Hi% gbsorbs all higher orders into
the single factor (1 £ e~#i*). Then, we have for all u> Uo, i

Ci(L—eM)e™ < fi(u) < Ci(l+e")e™
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Denote C; exp (—u'u;) = a;. Letr! = v' — alogt — @, then p' =1’ + u.

Lemma 10 (|Soudry et al{(2018, Lemma 10)). Consider GD updates vi*!1 = vt — BVL(VY). If
B < W, then the GD sequence satisfies

. ~t
S VLG < i 9L

Hz =

Lemma 11. Define pimin = mini<;<y p; There exists constant C and t1, such that for t > ty,
T ; ) . ;
(r“r1 — rt) rt < Ot~ {0140 50min} 9 — arg min;g s u'u’ > 1.

Proof of LemmalIl] Since under our setting each sample’s scalar loss ¢;(u) satisfies that —¢/(u)
has an exponential tail, |Soudry et al.| (2018 Lemma 11) yields this lemma.

(et —pf) T pt = (—ﬁvavt) - (log (1 + 1)>)T rt
= [f oo (1 )] - S (@ T
(A1) Y
-2 Reemar) + o (7)) | @)

Az

(23)

Denote by X the matrix whose columns are the support vectors, and let P be the orthogonal
projection onto the subspace spanned by these support vectors. Then Pa = 1.

For A;, firstly, the following shows that a'r! = o(t). Lemma shows that
limy o0 | VL), = 0.

t
a'rf=al (v -8 > VL(V) —alogt— @
s=T} 24)

<a' ({sz—ﬁlogt—ﬁ) ft_min 4l VL") = o(t)

Ty <s<t

Then A; can be bounded from above by:

1 1 1 1
T T
a'rt L — log <1+t>} < max [a'r",0] L—log <1+t>}

< max [ATPrt, 0] t=2 (25)
il e, if [Pr] < e
o(t™h), if |Pr[| > e
By Lemma[9} we have ¢/(u) < 0. Then,
1 n
T - ST \ATe
L(v)=— i 0. 26
a VL(V) nzzzlqﬁ(u vja'v < (26)

This implies that £(¥) does not have finite critical points v. With lim;_ ||[VL(V?) H2 = 0, we
have lim;_, o (V) Tu’ = +0c. By Lemma@, there exists 1 > 0 such that for ¢ > 1 and ¢ € [n],

3

Ci(1— e M= (DT < g (3 Tul) < (14 e # )0 D T (97)
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For Ay, whent > t1,

¢ ((v)) Tu’)| < 2exp(— (/) Tw’).

,g Z¢Z( ({,t)T ui)(ui)'l'rt < 7@ Z @( ({,t)T ui)(ui)'l'rt

n -
¢S i¢S:(ui) Trt>0
> 2exp(—(u)Tr)(u) rf
i1¢S:(u?) Trt>0
Z t—(ui)Tﬁexp (_ﬁTui _ (ui)Trt) (ui)Trt

i¢S:(ut) Trt>0

Z t*(“i)TﬁeXp (—ﬁTui)

i¢S:(ut) Trt>0

< 2B exp (— min ﬁTui> 7.

IN

S

slg =g

<

1<i<n
. _ (28)
For A3, the proof is divided into two cases (u’) 'r* > 0 and (u?) Tr? < 0.
If (u’) Trt >0, fort > t1, by equation
1 ST ety T i i
- g LC’i exp(—a'u’) + ¢ (V') u )] (u’) Trt
o (29)
§&t*1 exp (—a'u’) [(L+ ¢t exp (—pa' u’)) exp (—(u’) ') — 1] (u') "r.
n
(I) If0 < (ui)Trt < t_0'5“'i,
]. : ’ . .
_E |:tCi exp(—a' u’) + ¢y ({’t)T ul)} (u)Trt
n
602’ s~ T g —1—0.5p;
< — . g O
<=~ exp (1+ ) nin 4 u t (30)
BC; c T\ —1—0.5pm;
< - : : Bphmin
== exp (T4 i) 1Iénilélnu u )t

(D If (u?) Trt > =05 we have

-2 [Feremama) +d((#) w7
S%t*l exp (—a'u’) [(L+¢ " exp (—pa'u’)) exp (—t %) — 1] (u’) "rf
<P oxp () (147 exp (- ) (1 6709 4 p) 1] ()T
S%fl exp (—0 u') [T exp (—p T w') (1 — ¢7000 i) — 7000 g p] () Tyt
<0.(t> 1)

(B
(D) If (u") "r" > €5, consider t§ > t} such that t} > exp (minj<j<, 0 u’) (252 — 1) =i,
Then we have

— B Ciexp(—a'u’) + ¢;( ({,t)—r uz) (u’L)Trt
n
s (32)
< nl exp(— Jax @ u’) (1—e %%2) et
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If (u?) Tr! < 0, still consider three case. (I) If —t=0-%# < (u?)Tr! < 0, since —¢; > 0, we have

1 ~T g Tty T i i i
e esp-aTut) + i (v) Tw) | ) Trt < P exp(aTut) ) |
< BCZ (— max a'u”)t 1705k
n 1<j<n
< pC (— max @' u”)t170-5Hmin
n 1<j<n
(33)
D) If (u?) Trt < —t7 054 fort > ty,
1 . / ) )
— é |:Cl eXp(—ﬁTuz) +¢z( ({,t)—ruz)] (uz)Trt
n |t (34)

SBCI t—le—ﬁTui |:1 _ e—(ui)Trt (1 _ (t—le—ﬁTuie—(ui)Trt)ui)} ’(ui)Trt‘

n

We then show that there exists t; > 4 such that for ¢ > t} the right hand of the above inequality is

=T i

negative. Since (t Lot we—(u i)Trt)M = exp (*Nz‘ )" ui) — 0, there exists t§ > t} such
that for ¢ > ¢%, (tile*ﬁTuie’(“i)Trt)m < % If e~ (@)™ > 3 then
@O (1 (e e Y S a5 5 0, (35)
If e_(“i)T"t < 3, then
e~ ()Tt (1 — (tile*ﬁT“ie*(“i)TrjM)
e (1 (31"
> (14 ¢705m) (1 e (3e*f‘T“i>M>

> 144705 — g (e ) gt (gemaTun)

(36)

By taking t} > t% such that for t > t¢, equation and equationlarger than 1, we can obtain that
—g EC’Z exp(—a'u’) + rj);( (fft)T ul)] () rt <0. 37
() If (u?) Trt < —¢=0-54i there exists t§ > ¢} such that for ¢ > t%,
@O (1 (el @)Y 5 s, (38)
Then there exists constant ¢; such that

A [beveotat ol ) )] ) < @

Flnally, consider ¢ > to := maxj<;<p t&: If ||Prt|| > €1, then

1 2 1
)Trt Tt 2 2
max g — [ XsPrt||” > =05, (Xs)€]. (40)
e | (u’ e \S| leS' ~ s | | S| !
Let e = 1/|S| 7" o2 ol (Xs)er, then there exists ¢ € S such that |( Trt’ > €. By equation

equation [39|and equatlon@ we can obtain that there exists co > 0, such that for ¢ > ¢o,
T
(r'—r") 1t < —cotT o(tTh). (41)
Then there exists t3 > to such that for ¢ > t3,

(rt+1 _ I_t)T vt <0< Ot~ min{014050min} (42)
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If |Prt|| > €, then by equation equation equation and equation there exists cg > 0
such that for ¢ > t5, we have

T i i
(K = rt) Tt < gy ¢ MO0 S} 43)

Taking C = c3 and t; = t4, we obtain that for ¢ > ¢y, (r'*1 — rt)T rt < ¢ ¢~ min{6,140.50min}

A.3.3 STAGE 3

After Stage 2, we have with probablity at least 1 — O(%), wlz = {Wg; } satisfies % < WTQ* <

1
2

. /o2 logd s \fo%logd , s \fo%logd
forj € S\ {1}, w < ij2 < %g/n, and for j € S¢, ij"’ < %g/n. Moreover,
TN o2 logd/n
the gate iterate v * satisfies p; AT =o((vIitTz)Tul) > 1~ Vorlogd/n

that, in Stage 3 with 75" =< % log (#g(dr)), and T* =T} +T5 + T35, GD yields wl™ = [wT*} ,

. 2 . Vo2 logd . - .
Wi —1]| . <&l |wh | < %g/n. Since Stage 3 freezes the gate, v? remains
[oe] n oo
atits Stage 2 form: vZ" = 1 log Ty + p’z, where 11 is the max-margin solution on {X; — Zi}

p™% abounded residual, and T} =< d?/+/c2logd/n. This completes the proof of Theorem The
Stage 3 bounds follow by combining Lemma[I2]and Lemma

As a preparatory step, we provide a recursion expression of w' in Stage 3, which will be used
repeatedly in the proof. The update of w in Stage 3 takes the form:

L [161 o %Z ((Xi)T(Wt)GQ .yl _p;&*)(xi . Zi)T(Wt)®2
= (44)
— (xh)T (W)@ — Ei) . (xi —qa —pl-T;)(xi B Zi))‘| .

Collecting the small factors involving (1 — piTZ*) yields:

t+1 _

- < Zx @2—(W*)®2)—lzxi6i
JZ L= pf ) xi(x' = 2) T (w)?
_fz (x' =) ()T (W2 = (W) (45)
4= Z (x' — 7)€
_;2(1—10?2*) X'~z ><x‘—zi>T<wt>®2>]-
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t

We then decompose w’ over the support of w*. Let supp (w*) = S, with |S| = r. Define
t

wh =w!®1g, wh. = w! © 1gc. Then we define,

f (1 H) ()"~ (w)°?).
el = <; in(xi)—r (WSc - = ZX € — — Z 1 — p?) Xi(xi — z")—r(wt)®2

n n

1 Z 1-— (x" —z')(x") T ((Ww")®? — (w")?) + 711 Z(l - T;) (x' —z%) ¢

n i=1
- %Z (1-p) (i —2)(x' —zi>T<wt>®2>.
(46)

Then the dynamic of w! can be expressed as
witt =wl o {1(1 -nH ((W?’;)®2 — (W*)®2) —r'+ et} . 47)
With H = diag(a,1,...,1),letc = afor j = 1 and ¢ = 1 for j > 1. Since (w})* = w7} € {0,1},
Ifjes: W§-+1 = W§-+1 (1 -n (c(wé“)2 —c—r1y —et)) ,

Ifj¢S W§+1:W§(1+n(rt+et)).

Lemma 12. Define By := C1 4/ log dr) and By := Cs y/ M, for absolute constants C; > 0.

Assume the step size 0 <17 < o (1+B - Set the phase lengths

5 max{a(w;? )21} 5 5 By
Ty = | —1 — T = | —log( =— Ty =17 +1T7.
4 {477 0%( 50 B, + m| 1 1 Og(Bg) , A3 4 +15

Then, with probability at least 1 — d%, the following statements hold. For allt < Ty + Ty,

1 2logd
VjESZOSW§§1+Bl, Vie S : w d\/m

Proof of Lemmal(I2] Define the inductive property P(¢) for ¢t > T5:

P(t): Vse[Iy,1],Vj€S: 0<w; <14By, Vse[I5,t],VjeS: wi <d'\/o2logd/n.

Base case holds by initialization. Assuming P(¢), with concerntration Lemma
and 20l we bound
HrtH < 2L r < lBla Het”OO S lBl7

hence ||r! —e!||. < B;. By Lemma.w1thB B and the stepsize, we have 0 < wit! <14 B,
for j € S. For j € §¢,

T3 T3
witt < (1+nB)wh = w; 2 FT < e T 2

J J

Since T3 := T + Ty satisfies

15 < [ ()

~ InB w

max,S¢

Lhelg WJT2 T < d71\/o%logd/n for all 7 < Tj. Thus P(¢ + 1) holds. By induction, the claig
olds.
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Lemma 13. Forallt > T; +T) andall j € S,
Wi —1| < 5By.

Ifn > o%r?log®(dr), then for all t > T + T + T = T + T and all j € S,
lwi —1] < 5B,.

Proof of Lemma[I3] Fix j € S and z; := c¢(w})?, ¢ € {a,1}, 7 = 1/4, 7, = 7/2 = 1/8. When
wh <1 =y,

wit = wh (1 (e(1 = (wh)) — b)),
with [b;] < Bj. Since 1—(w!)? > 15/64, assuming By < 11/64 yields ¢(1—(w")?)—b, > 11/64,

hence W;H > (1+mn-11/64)w}. From ij; € [1/4,1/2], in at most

64 1—fyw“<§
n

T(B <[71 !
(Bu) < | 17, Lo WP

steps we have W§- > 1 — s, 1€, |2t — ¢| < . Then by Lemma(with B = B)),

|xt+1_c| S(l_ﬁn”xt_c‘—’—ﬁanla K’:%a 62217
and whenever |z; — ¢| > AcBy with A > 28/k (A =T7),

|xer — ] < (1 — %77)|$t —¢|.

5 |z — ¢ 5
b T R bl
1= 4y ©8 5¢cB1 + 4n

iterations, |x; — ¢| < 5¢By, which implies \w§ — 1| <5B;.

Hence after

This implies ||(w4)®? — (w*)®?|| o < C,,By. Therefore,

2r2log?(d [ lond
||rt||oo S erCwBl S Cr w = BQ» ||et||oo S Ce % S B2~
n
By Lemma[21|with B = By, fort > Ty + T + 15,

5 B
T = [%mgB—j = |wh—1| < 5B,.

Lemma 14. Given vector u supported on S, for any 6 € (0, 1), with probability at least 1 — 0,
T 2 2dr
1 i\ T 2
1 —H) H < B24(/21 (—) [
G —m)ul < iy ios(55) il

Proof of Lemmal(l4} Fix j € [d]. Then

(330 6e)™ —H)u] =37 (3375}~ Bl

keS

For each k, x’x}, € [~ Bz, Bz], so Hoeffding implies

|

A union bound over (j, k) € [d] x S gives the uniform deviation. Hence,

[T —H)u] | < B2y 2 10a(4) 3 uil < B3/ 2 log(%) - rfull.
% kes

and taking the maximum over j yields the claim. O

L ixi 2nt?
1% “xix) — E[Xij]‘ > t) < 26Xp< - 72>

(2B3)
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Theorem 15. Given u € RY, for any § € (0, 1), with probability at least 1 — §,
1~
=% Tu| < | maxfa 1) + B2y 2l | .
i=1 e

Proof of Lemma[I3] Decompose

Since H = diag(a, 1,...,1),
[Hul|oc < max{a, 1} [luf/.

For the deviation, define

n
§ Yij.
i=1

S|

Vi 6w Bl xTu, [(23 x0T - ma]
=1

The Y; ; are i.i.d., mean zero, and almost surely

d
< 1 Y Ixil Jug] < Bx- (d Bx) |lullec = BX d |[ul|oc-
k=1

1Y,

By Hoeffding’s inequality,

Pr<‘izn:y,,j
=1

>t| <2 nt’
1) =R i)

A union bound over j = 1, ..., d gives, with probability at least 1 — 6,
- 2log(2d? /6
max [137Y;| < B2d|u|« 2log(2d2/6)
1<j<d I ™ = n
Combining with the population bound yields the result. O

Lemma 16. For any § € (0, 1), with probability at least 1 — §,

I 2 2d
Hfolei < B« B, 710g<—).
n P o) n 5
Proof of Lemma Apply Hoeffding coordinatewise and union bound over d coordinates. O

Lemma 17. Define By := rBx + Be and By, := Bx + ||f(0)||c + L By + Bg¢. Then, given
u € RY, for any 6 € (0,1), with probability at least 1 — 6,

n n
%in(xi —zi)TusH + %in(xi —z) uge
i=1 > i=1 >

< BB (14 2580 ) (g o + (d = 1) use | ).

*

Consequently, with pp,i, = min; p; *,

H% zn: (1 —PiT;) X (x — Zz‘)T(Wt)@QH

i=1

<(1 = Pinin) BBy (14 y/ L) (] (w) o + (d = 7)](whe)*? oo ).

oo
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Proof of Lemmal[I7} By the model assumptions, ||x||cc < Bx almost surely. Withy = x T (w*)®2+
€ and ||x||c < By, we have |y| < rBx + B. =: B,,. Since z = f(y) + £ with f being L-Lipschitz
and |[£]|cc < Bg, it follows that

[1Zlloc < W[ (O)llo + Llyl + [|€lloc < £ (0)lloc + LBy + Be.
Hence [|x — z[|oc < Bx + || f(0)|loc + LBy + Bg =: By,

Fix any j € [d]. For the j-th coordinate of 2 37" | x'(x’ — z')"ug, we have

Z\le 1" — 2'||oc [[us]|1 < BxBxa [[us]|1-
i=1

Taking expectation shows the same bound for the population mean. For the centered fluctuations,
define
7S i i i i i i
Yi(J ) = X, ((x' = z') ug) — E[x}((x' — ') ug)].

Then \Yi(j ’S)| < 2 By Bxz ||us||1 almost surely, and by Hoeffding’s inequality,
1 =G 2log(2d/§

Pr( 2NV > BBy fusls M) <
n n

i=1
A union bound over j € [d] yields, with probability at least 1 — 6/2,

%in(xi — Zi)TuSH S Bxsz (1 + 210g(jd/5)> ||US||1.
i=1 >

9
2d’

Using ||jus||1 < 7||us||s completes the bound for the ug term. An identical argument with uge
(and ||luge|l1 < (d — 7)||use<||o) gives, with probability at least 1 — §/2,

I3 xi(x ) us. <Bxsz(1+ 21%?”‘”) Jse -
i=1 >

A union bound over the two events replaces log(2d/d) by log(4d/d) and yields the first display.

For the consequence, note 0 < 1— piTZ* < (1= pmin ). Factoring this out and applying the first bound
with u = (w!)®2 (so ug = (wk)®% and ugse = (wh.)®?) proves the second display. O

Lemma 18. Under the same assumptions as Lemma forany § € (0,1), with probability at least

1-4,
%Z(xi —zh)(x") H %Z x' —z")(x") Tuge
i=1 i=1 >
4d
2log(—
BB | 14\ 2522 | (rlluslloc + (@ = 7)lJuse oo ).

*

. . T
Consequently, with ppin = min; p; ?,

n

IS (1 =p) (=2 T (w2 = (w2 |

i=1

o0

4d
2log(=5) % op!
(1= Poin) BB | 14\ 22522 | (7l w5)®% = (w5) 2w + (d = )| (W) oo ).

n

Proof of Lemma Same proof as Lemma|[I7} exchanging the two factors. O
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Lemma19. Let S, := 1 3" | (x' — z%) ¢; € R™ Then for any § € (0, 1), with probability at least
1-4,

%Z (1 _piT;)(Xi - Zi)éi

i=1

o0

202 log(%) + ZB B log(zéfd)

g(l - pmin) sz o+ sz n 3

Proof of Lemma[I9 Fix j € [d] and define X7 := (x/—2)) €. Since ||x* —2"[|oc < Byz as., we
have | X”)| < By, B. and Var(X”) < B2, 02. Let = E[XY] = E[(x; — z;j)e]. By Cauchy—
Schwarz and the a.s. bound, |u1;| < By, 0. Let Yim = Xi(J) — 5, then |Yi(j)| < |Xi(3)| + |p;] <

Byz (B + o) and Var(Yi(j)) = Var(XZ-(j)) < BZ,0?%. By Bemnstein’s inequality, for any ¢ > 0,

1< ) nt2
P 75 YV >t] <2 — )
r(”i_l i = >— eXp( 2B§Z02+§sz(Be+a)t>

Choose t = Bxz04/ %2[1/5) + %BXZ(B6 + U)W and take a union bound over j = 1,...,d
to obtain, with probability at least 1 — 6,

n

1 ©)
o X

i=1

< |[plloc + Bxzo

oo

21og(2 2 log(2
oa2/5) | 2 o loa(2d))
n 3 n

Since ||pt]|co < Bxzo and B, + 0 < 2B, we have

1 e (i 2log(2d/6) 2 log(2d/6
- ZX;J) < Byyo + Byyo M + ,szBew.
n . n 3 n
Finally, 0 <1 — pZT; < (1 — pmin) implies
1 ¢ Ty i i
|53 0 -pf) e —anel
i=1
21og(2 2 log(2
S(l - pmin) szU + szU M + 7szBe M] )
n 3 n
which completes the proof. O

Lemma 20. Let py,;, = min; p;’;. For any 6 € (0,1), with probability at least 1 — 0,

n

LY (1 -p) -2 - 2T (w2

=1
< (1= punin)? B, (14 /2 ) (1 (wh)*2) o+ (d = 1)l (W) 2 o).

Proof of Lemma Apply the same argument as in Lemma|[I7} O

o0

Consider the scalar update
wh = Gep(w) = w(l —nlcw? —c—b)), c>1, [b|<B, n>0,
and let x := cw?, Ty(z) := 2(1 — n(z — (c +b)))? (so 2T = Ty(x)).

Lemma 21 (Invariance and monotonicity). If0 < n < m,
Ge,b is nondecreasing on [0,1 + B] and G.;([0,1 + B]) € [0,1 + B].

then for every |b| < B the map
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Proof of Lemma[Z1} We have G, ,(w) = 1 —n(3cw? —c—b). On [0, 1+ B], max(3cw?® — ¢ —b) <
3¢(1 + B)?, hence G, , > 0if ) < 1/[3¢(1 4 B)?|, which is implied by n < 1/[8¢(1 + B)?]. For
invariance, note that G, ,(0) = 0, and by monotonicity in both w and b,

Gep(w) < Gep(1+B) = (1+ B)(1 —n(e((1+B)? 1) - B)) <14 B,

since ¢((1+ B)?2—=1)—B > B > 0and n(c((14 B)* —1) — B) < 1. Nonnegativity of the bracket
is ensured because

] 1= n(ew? - —b):l— 1+B)*-c+B) >0
we{o,llfg]l,wgg( new” —c—b) n(c(1+B)? —c+ B) >

under < 1/[8¢(1 + B)?]. O

Lemma 22 (Local contraction with bounded noise). Fix v € (0,1/4], assume |b| < B, B < 1/8
andn < 1/8. If |x — ¢| < ~, then

" _ 2 _
|zT —¢c] < (1 —kn)|x—cl+ BenB, k=73, =21
Moreover; if |x — ¢| > AcB with A > 28/k (e.g. A =T), then
lzt —c < (1=%n)|z—c < (1—3n)|z—d
Consequently,
2 |xo — €]

t > —1
~ kM % "AcB

Proof of Lemmal22] Lety := x — (c+b). Then T} (z) = (1 —ny)(1 —ny —2nz). On |z —c| < 7,
|b] < B, we have |y| < v+ B <3/8and 2z — |y| > 2(c —v) — (v + B) > 9/8. Hence

I T5()] < (L +nlyD) (L =02z —[y]) < 1= (@2 = Jyl) = lyl)n + [yl 2z — [y)n*.
Using (22 —[y|) — |y = 2c =4y —=2B > 3/4, |y[(2z — [y|) < (3/8)(9/8) = 27/64, and n < 1/8,
we get [T} (z)| < 1 — 2. By the mean-value theorem, [T}, (z) — Ty(c)| < (1 — kn)|z — c| with

k= 2/3. Also |Ty(c) —c| = |c(1+nb)? —c| < 2enB+cn?B? < 2.1 ¢nB forn < 1/8. Combining
gives the first claim. If |z — ¢| > AcB, then

|zt — ¢ < (1—/@n+§n>|z—c\§ (1—%n)|z—c|

whenever A > 23/x. This yields the second claim and the exponential-time bound. O

A.4 PROOF OF THEOREM 2]

Recall @i be the max-margin solution on {u’}?; and Yemp := 1/[/0|2.
Lemma 23. Fixe € (0,1) and § € (0, 1). With probability at least 1 — & over the training sample,

r((@) Tu 2V/[s[E+d(Be+ B, [2In(2/5)
B(®Tu>e) =1 - = T ove V ;

Proof. Let U = {u',...,u"} be the training sample and U’ = {u’!,...,u™} be another i.i.d.
samples.

Let ¢ = ¢/||tll2 = €%Yemp and © = 0/||0]|2. Define the ramp function at threshold & and width
5> 0:

1, t<e,
Yeot)=81—-E5 e<t<e+s,
0, t>&+s.
Then ¢ € [0, 1] and is .1./s-LipschitZ. Set 5 = Yemp — & = Yemp(l —€) > 0. Since min, dTut =
Yemp = € + s, the empirical ramp loss is zero:
5D Wes(®u) =0, (48)
i=1

36



Under review as a conference paper at ICLR 2026

and 1{6"u < &} < ¢, (®"u). Now apply the high-probability Rademacher uniform deviation
bound (Shalev-Shwartz & Ben-David| (2014), Theorem 26.5) to the loss £ = w(5—75) (bounded by 1),

over the linear class F = {u+ v 'u: ||v|s < 1}: with probability at least 1 — 4,

1 « ,
E[¢(dTu)] < =S ¢ u') + 2By [R(toFol 2In(2/9)
Uvﬂ_nzyvm+ w[R(o Fol)] + /=55
Using the contraction lemma (Shalev-Shwartz & Ben-David|(2014), Lemma 26.9), R(£o F o U’) <
%R(]—' o U’). By the linear class Rademacher bound (Shalev-Shwartz & Ben-David| (2014),

Lemma 26.10), R(F o U") < R/\/n since ||u|| < R as. Because the empirical ramp loss is
zero, we get

2R 21n(2 /5)
< S\f
Finally, Pr(¢ "u < &) < E[tp(z s (0 "u)] yields

2R 21n(2/5)
Yemp (L — )it | ’

which implies the complementary lower bound for Pr((@1) "u > ). Combining with Lemma
gives the explicit version.

Pr(()'u<e) <

Define

s
S 1= 8] — So, u:= {x—z} , Rad := \/||SH§+d(Bx+BZ)2.

Since with probability at least 1 — O(1/d?) the output at T* = T} + Ty + T satisfies
d2

ST _ o x| T3 T %
VT —dlogTy +p%, e =0(1), Tp=——0
Vo2logd/n
Moreover,
T 0 . 2 oz d . o%logd/n
W =[] et s T e 5 Y
Hence
T*\02 02|12 < o?logd T 1022
[(w )2 = (w2, Sr———, (W' )*Z3 < r(1+0(1)).

n
Letp = U(({IT*)TU.) and, for 7 € (0,1/2),
Q={p>1-7},  k;:=logiT.

Choose ¢, := (k. +C,Rad)/log Ty with |(p"2) Tu| < C, Rad a.s.; then {ii"u > ¢,} C Q,. By
Lemma 23] with probability at least 1 — & over the training sample

2Rad  [2In(2/9)
Isll2(1 —&-)v/n no

In particular, taking 7 := ¢, 0% log d/(n d) and log T3 > 4C, Rad + 2log(
1/4 — o(1) and thus Pr(Q;) close to one; moreoverp > 1 —7 > 1 — =

Lemma 24. Let T, := A\pax( E[(z — x)(z —x)T | Q;]) < Crd, Cr = (Bx + B,)*. Then
EH LW ) - = T}

< e (H) [ (w772 w@%+#anWm+Bm/nTWw

Pr(Q,) > 1- (49)

nd :
—hd logd) gives 1 — g, >
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Proof. Let pi,(x) =E[y | x] =x"(w*)®? and § = (px + (1 — p) Z)T(VVT*)W. Then we have

J—pe =x (W)= (W)) +(1-p)g, g=@=-x"(w )2 (50
Since € 1 x, E[e] = 0, we have
L—0%/2=3FE[() — pta)?] — E[( — pia)e]. (51)

Conditioning on 2, (s0o 0 < 1 —p < 7), we get
E[(7 - o) | ] <2 ((w")®% = (")) "H((w"") = (w*)®%) + 27 E[g* | Q]
<2 Amax (H) [ (wT) @2 — (W) ) 3 + 2771~ | (w25,
For the cross term,
[E(9 — pa)e | Q]| = [E[(1 = p)ge | Q]| < BerEllgl | ) < Ber VT [[(w") 2.
Combining yields the claim. O

Proof of Theorem 2] Let Q := Q.. The probability lower bound follows from equation [49] with
e, and the stated scale of 75. Since pl >1—7>1- d% Apply Lemma [24] and substitute

[(WT)©2 — (w*)©2)|2 S r 21984 | (wT™)92)2 < 1, T, < Cpd, and 7 < 2194 16 obtain the
stated rate. O]

Proof of Corollary[l] Define u’ = [x E z/} and Rad’ := /||s||3 + d (Bx + Bx)? . Replicating

the high-probability calibration of the gate (as in the proof of Theorem with u replaced by u’ and
Rad by Rad’ yields the event 2 with

/ 2
Pr() > 1-— 8Rad’  /2In(2d )7
Isll2v/n n

on which p”" = o((v7)Tu) > 1 —1/d>.

For the risk, write § = (p? % + (1 — pT*)Z’)T(vV 7702 and p, (x) = x " (w*)92. Decompose (as
in Lemma [24)

Z) — Uy = XT((WT*)QQ _ (W*)QQ) + (1 _pT*)g/7 g/ _ (ZI _ X)T(WT*)®2.
Conditioned on €2, we have 0 < 1 — pT* <1/ d?. Hence,
E[(7— 12)? Q] < 2 Amax (D) [[(w 7)) — (w)®2|[ + 272 TL || (wT7)2],

where 7 = 1/d? and T, := \pax(E[(Z' — x)(z' — x)T | Q]) < CLd with Cf = (Bx + By)? by
the envelope bounds. The cross term satisfies |[E[(§ — gz )€ | Q]| < Be 7 /T% |[(wT7)®2[s.

Finally, substitute the parameter accuracies from Theorem [(wT)O2—(w*)9?|2 < ro?logd/n
and [|(w77)®2|]3 < (1 + o(1)), to conclude

ro?logd

~

n

* * 0'2
EH Loy (W ¥1) =5

‘Q}<

A.5 EXAMPLES

Example 25 (Under Dominant-Coordinate Condition, population linear regression retains a constant
fraction of z). Let
y=xi1te, z=cy+§{ z;=0(=2),

with mutually independent coordinates and

Var(x;) =a >0, Var(x;)=1(j>2), Var(e)=o0? Var(f)= a?,
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and e L (x,£), & L x. Consider the population linear regression problem

(Bx: B;) € arg min E[(y — Bax — B, 2)?].

If 0'? > 0, the unique solution is

co? O¢

ol = — = x . — 0 ) > 2 x -
6z,1 Ug +02027 ﬂz,j (.] = )7 Bx,l

Equivalently,

020'2 60'2

€+
Ug + 202 0? + 202

y:X1+ 57

so linear regression uses z to fit the residual noise ¢ with coefficient c*>c?/ (ag + c%a?), thereby
retaining a constant fraction of the z component.

Proof of Example[23] From y = x; + € and independence,
Var(y) = a+o% Cov(xi,y) =a, Cov(x;,y)=0(j > 2).

Moreover,

z1=cy+&=cx;+ce+é, z; =0(j >2),
S0

Cov(x1,21) = ca, Cov(x;,z1)=0(j >2), Var(z;)=c*(a+o%)+ ag.
The population projection is
My = Z;Qny-
Since y = x; + € with € L x, we have
Hw:(170,...70)—r, y’::y—H;—xx:e.

Likewise, only ¢x; in z; = ¢x; + c€ + £ projects on x, hence

Cov(xy,21) ca

Hzlx: _—

Var(x1) e © 2=~ apcxy = ce+&,

and z; = 0 for j > 2.
Frisch-Waugh-Lovell Theorem (Frisch & Waugh, |1933)) yields the z-coefficients of the joint regres-
sion by regressing 4’ on z’. Thus,

. Cov(z,y’) Cov(ce+& €  co?

=17 Var(z]) = Var(ce+¢) _620'2—|—cr§7

and z; = 0 implies 3} ; = 0 for j > 2.
The x-only regression gives

only-x only-x .
g =1 B =03 22,
The joint coefficient equals the above minus what is explained via z;:
2
9¢

. oy Covxiz) .
org + 202’

= —_— = 1 — * =
x,1 Bx,l Var(xl) z,1 cﬂz,l

and by symmetry 55 ; = 0 for j > 2.
O
Example 26. Ler x; ~ Unif ([X, X] U [-X, —X]) (symmetric, X > 0), xo ~ Unif[-B, B,
€ ~ Unif[—FE, E], & ~ Unif[—E1,E1], {& ~ Unif[—Z=s, =9, all independent, and x; = 0 for
j >3 Let
y=x1tx2+e, z=(1-ry+&, Z2=my+s,
with0) < k < 1, ag > 0. Set By := max{y7 B} and B, := E. Then:
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(1) Descendant stronger than a non-dominant causal coordinate. Since Var(xz) = B?/3 and
Var(y) =: V,, = Var(x;) + Var(xz) + Var(e),

Cov(xz,y) = Var(xy) = B%/3, Cov(zz,y) = a2 V.
Hence for any s > (B?/3)/V, we have Cov(za,y) > Cov(xa,y) even though xs is causal.

(2) Population dominance of coordinate 1 (Condition[I)). Since

s; = EBly(x; +2;)],  p; =Ele(x; +2;)], sST = s; 4 .

Then
s = Var(xy) + (1 — k) Var(y) + (1 — &) Var(e), ST = Var(xy) + apVar(y) + ap Var(e),
and sjﬂ = 0 for j > 3. Because my, my; are bounded under our assumptions and s is fixed by

(B, as, E, k), choosing Var(x1) large enough (e.g., increasing X ) guarantees

2m my;
eff 1 eff 15
AT +r§l>af((4|sﬂ I+ )

i.e., Conditionl[]
(3) Per-sample margins (Condition. Since x1 —z1 = kx1 — (1 — K)(x2 +€) — &,
Ix1 —z1| > Klxi| — (1= &)(|x2| + [e]) = [&] > kX — (1 —£K)(B+E) —E1.

Thusif k X > (1—k)(B+E)+ZE1+ 7, then |x1 — 21| > 71 a.s. Moreover, if k X > (1 —k)(B+
E) + =, then the sign of x1 — z1 equals the sign of x1 a.s. Finally, if%l > r Bx + B, + T, then
%|X1| > r By + B, + 19 a.s. Hence Condition@holds.
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