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ABSTRACT

We revisit when Transformers can prioritize causes over spurious effects by view-
ing the problem through data correlation strength and the implicit regularization
of gradient descent. We identify a phenomenon called Correlation Crowding-
Out (CCO) arising from the training dynamics of Transformers. Specifically, un-
der strongly correlated causal features, gradient descent filters out spurious cues
and converges to a predictor that relies almost exclusively on the causes. The-
oretically, using a simplified Transformer model trained on data from a mini-
mal causal chain, we introduce a Dominant-coordinate condition that character-
izes when CCO arises and explain its mechanism as a coupling of “occupation”
and “crowding-out”. “Occupation” denotes the rapid growth of weights aligned
with the dominant causal direction while non-dominant directions remain small.
“Crowding-out” denotes the attention logits align with separation directions favor-
ing the causal branch, suppressing descendants. We provide convergence guaran-
tees for both the optimization trajectory and generalization. Our empirical results
on simulated and real examples across various tasks including vision and natu-
ral language demonstrate the procedure. Together, these results show that, under
suitable conditions, standard training alone can induce cause only prediction.

1 INTRODUCTION

Whether data-driven models can extract causal invariances from observational data and thereby de-
liver robust predictions has long been a central hope in AI (Pearl, 2009; Peters et al., 2016; Arjovsky
et al., 2019; Schölkopf et al., 2021; Fan et al., 2024). Yet models trained by empirical risk min-
imization are often prone to shortcut learning (Geirhos et al., 2020; Shah et al., 2020; Ye et al.,
2024), indiscriminately exploiting any correlation, including spurious cues unrelated to the true
causal mechanisms (Sagawa et al., 2020a; Qiu et al., 2023). This pattern is widely documented
across modalities and tasks (Geirhos et al., 2018; McCoy et al., 2020; Li et al., 2023b). The rise
of Transformers and LLMs sharpens this tension: these systems can sometimes rely on shallow ar-
tifacts (Bender et al., 2021; Tang et al., 2023; Du et al., 2023; Varma et al., 2024; Jin et al., 2024;
Gui & Ji, 2025), yet they also produce answers that appear strikingly logical and robust in certain
scenarios (Brown et al., 2020; Wei et al., 2022; Kojima et al., 2022; Yuan et al., 2024). Recent theory
offers partial clues for why Transformers sometimes appear causal, but does not yet answer the cause
only generalization question. On stylized in-context tasks, Transformers trained on Markov Chain
sequences can recover parent sets and estimate transition probabilities in-context (Edelman et al.,
2024; Nichani et al., 2024; D’Angelo et al., 2025). These results suggest how attention might recon-
struct graph edges from observational sequences, but they rely on designed ICL setups rather than
generic pipelines with spurious features and do not show when spurious information is suppressed
at both train and test time. In parallel, large margin analyses show that gradient descent (GD) pushes
query–key parameters toward max-margin separators (Tarzanagh et al., 2023; Ataee Tarzanagh et al.,
2023; Vasudeva et al., 2024). While this suggests separation can emerge during training, it does not
characterize how such separation filters out spurious features or yields cause only risk guarantees.
This landscape motivates a basic question:

When and through what mechanism can Transformer training produce predictors
that rely on causes while ignoring spurious effects?
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We answer this by uncovering and analyzing Correlation Crowding-Out (CCO). CCO is a training
phenomenon in which, under a uniform dominance gap where a causal feature is more strongly
associated with the target than any competing spurious feature, GD drives Transformer to progres-
sively suppress spurious features and converge to a predictor that relies almost exclusively on the
causal feature. Crucially, the dominance condition does not require spurious features to be weak:
many can remain highly correlated with the target and may even surpass non-dominant causal coor-
dinates. What matters is a persistent margin favoring the dominant causal direction.

Remarkably, strong causal correlation in the data alone does not guarantee cause only prediction for
generic estimators. In Example 25, even under a dominance gap, population least squares retains a
constant fraction of a spurious feature. Thus, CCO is not a corollary of data dominance; it hinges
on optimization induced implicit regularization that actively crowds out spurious features. This
occurs without explicit invariance penalties (Arjovsky et al., 2019; Shapiro, 2017; Fan et al., 2024)
or multi-environment training (Peters et al., 2016; Fan et al., 2024; Xu et al., 2024).

Our perspective complements existing analyses of correlation driven learning dynamics. Prior work
has shown that neural networks exhibit a simplicity bias, often preferring features that are highly
correlated with the label or easier to fit (Belkin et al., 2019; Moayeri et al., 2022; Morwani et al.,
2023; Qiu et al., 2023; Xue et al., 2023; Yang et al., 2024). When spurious features are more
predictive or less complex, they tend to dominate early training, delaying or even entirely inhibiting
the learning of causal features (Shah et al., 2020; Yang et al., 2024). These studies underscore that
correlation strength and feature complexity critically shape learning trajectories, and they reinforce
the notion that deep models are vulnerable to superficial shortcuts. In contrast, we focus on the
opposite regime: when the causal features themselves dominate in predictiveness. We formalize
CCO as the mirror image of shortcut learning. Intuitively, if a causal feature explains the target with
overwhelming strength, the model has little incentive to rely on weaker spurious cues.

Building on this premise, we demonstrate CCO empirically and provide a theoretical account of
its mechanism. To theoretically understand this behavior, we analyze a simplified two-layer Trans-
former trained on data from a causal chain (x→ y → z) generative process. Our theory provides a
Dominant-Coordinate Condition on the data, which quantifies how strong the x-y correlation must
be for CCO to occur. Under this condition, the training dynamics unfold in two coupled phases.
In the first “occupation” phase, within the Transformer’s feed-forward sublayer, the weight vector
that aligns with the dominant causal coordinate in x grows rapidly to a stable magnitude, while
weights in other directions remain small. This expansion makes the causal direction salient and es-
tablishes it as the primary signal driving the predictions. Next comes the “crowding-out” phase: the
Transformer’s attention mechanism gradually shifts its query-key alignment toward the max-margin
separator between the transformed causal and spurious features (roughly, x̃− z̃). Consequently, the
attention weights concentrate almost entirely on the causal x branch, effectively gating out the spu-
rious z branch. Through this two-phase process, GD steers the model toward a cause only solution
without any specialized regularization for invariance.

By elucidating the mechanism behind CCO, we contributes a more nuanced perspective on Trans-
former’s generalization: while spurious shortcuts are a serious and pervasive concern, there exist
regimes in which strong causal signals can turn GD into an ally for causal learning. In such regimes,
the implicit regularization of GD yield cause only generalization, even in the absence of multiple
training environments or explicit causal objectives.

1.1 OUR CONTRIBUTION

• We introduce and formalize the new phenomenon CCO.

• We elucidate CCO’s mechanism with both theory and experiments.

2 RELATED WORK

Spurious Correlations and Invariance Learning. Across vision, language, and ERM-trained
deep models including modern Transformers and LLMs—readily latch onto shortcut cues and spu-
rious correlations, leading to brittle generalization under shift (Geirhos et al., 2018; 2020; Zhou
et al., 2021; Du et al., 2021; Tang et al., 2023; Du et al., 2023; Yuan et al., 2024). A major theo-
retical response is invariance learning: instead of trusting raw correlations, one seeks mechanisms
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stable across environments. Two canonical frameworks are Invariant Causal Prediction (Peters et al.,
2016; Meinshausen et al., 2016), which tests for subsets of covariates that render the conditional law
of the target invariant across interventions or environments, and Invariant Risk Minimization (Ar-
jovsky et al., 2019), which encourages representations that admit a single optimal classifier across
environments. Both lines have spurred extensive follow-ups and critiques clarifying assumptions,
identifiability, and practical limitations (Ghassami et al., 2017; Heinze-Deml et al., 2018; Pfister
et al., 2019; Rothenhäusler et al., 2019; 2021; Rosenfeld et al., 2021; Lin et al., 2022b; Kamath
et al., 2021; Lu et al., 2021a; Zhou et al., 2022; Lin et al., 2022a). In parallel, distributionally robust
optimization offers a complementary lens by minimizing worst-case (group) risk under distributional
shifts (Shapiro, 2017; Sagawa et al., 2020a; Duchi & Namkoong, 2021; Gao et al., 2024). More re-
cently, Environment-Invariant Linear Least Squares and variants show that, when cross-environment
heterogeneity is sufficiently strong, a regularized least-squares estimator can recover invariant fea-
tures with generalization guarantees while quantifying heterogeneity (Fan et al., 2024; Gu et al.,
2024; Xu et al., 2024; Gu et al., 2025). Most invariance methods posit either explicit regularizer
or environment partitions; comparatively less is known about when standard GD on a Transformer
will, by its own dynamics, yield an cause only predictor. Our work targets precisely this gap.

Implicit Bias. Implicit bias refers to the tendency of (S) GD, even without explicit regularization,
to select solutions with special structure and generalization properties, widely regarded as a key
to the success of over-parameterized models. Such as for logistic regression, (S)GD converges in
direction to the max-margin classifier (Soudry et al., 2018; Ji & Telgarsky, 2019; Wu et al., 2025;
Cai et al., 2025); in over-parameterized linear models, (S)GD can display benign overfitting (Zou
et al., 2021; Wu et al., 2022), double descent (Lu et al., 2023; Zhang et al., 2025), and scaling
laws (Bordelon et al., 2024; Lin et al., 2024); and for quadratically parameterized models, (S)GD
implicitly favors low-complexity solutions and exhibits incremental learning (Li et al., 2018; Vaske-
vicius et al., 2019; Woodworth et al., 2020; HaoChen et al., 2021; Li et al., 2021; Jin et al., 2023;
Xu et al., 2024). Turning to Transformers, a growing theory literature dissects how attention evolves
under GD. For single-head ViTs, GD is shown to concentrate attention on label-relevant tokens,
yielding progressively sparse maps (Jelassi et al., 2022; Li et al., 2023a). These results clarify which
inputs receive mass under training induced anisotropy, but they are agnostic to causal structure. On
stylized in-context tasks, Transformers trained on Markov chain sequences learn the set of parent
tokens and estimate transition probabilities in-context; related mechanistic work on induction heads
explains how attention circuits implement dependency tracking and copying behaviors (Lu et al.,
2021b; Olsson et al., 2022; Li et al., 2023c; Edelman et al., 2024; Nichani et al., 2024; D’Angelo
et al., 2025). These analyses are posed in designed ICL setups and do not address under generic
training with spurious descendants when and why GD yields a cause only predictor. A complemen-
tary line shows that GD on attention pushes query–key parameters toward max-margin separators,
establishing that separation can emerge during training; yet this does not identify which side of the
margin corresponds to causal versus spurious directions, nor when separation suffices for cause only
generalization (Tarzanagh et al., 2023; Ataee Tarzanagh et al., 2023; Vasudeva et al., 2024).

3 CCO: A PHENOMENOLOGY IN TRANSFORMER TRAINING

CCO refers to a training phenomenon in Transformers whereby, if there exists a dominant causal fea-
ture whose association with the target exceeds that of any competing spurious feature by a uniform
gap, GD learns a predictor that progressively suppresses spurious features and relies almost exclu-
sively on the causal one. Crucially, this dominance condition does not require spurious features to be
weak: many can remain highly correlated with the target and some may even surpass non-dominant
causal features. What matters is a persistent gap favoring the dominant causal direction.

CCO unfolds through two coupled effects:

(I) Occupation (early rise): within representation and prediction layers (e.g., embeddings, feed-
forward blocks, attention heads), weights aligned with a dominant, highly predictive causal feature
grow rapidly to a stable, large scale, while spurious features aligned directions remain small, ren-
dering the causal signal salient to the optimizer.

3
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(a) Input image (b) Iter=0 (c) Iter=50 (d) Iter=500

Figure 1: This figure shows how attention shifts during ViT training on a foreground–foreground
causal disentanglement task. (a) is the input image. Early in training (b, iter 0), attention is diffuse
across left bird (cause feature) and right bird (spurious feature). As training proceeds (c, iter 50),
attention weight rises on the left bird illustrating the occupation phase. By (d, iter 500), attention is
concentrated almost entirely on the left bird, with the right bird and background receiving near zero
weight, illustrating the crowding-out phase.

(II) Crowding-out (attention selection): multi-head attention progressively aligns its logits with sep-
aration directions that prefer causal over spurious features (e.g., larger query-key margins for causal
tokens), concentrates attention mass on causal features, and suppresses spurious features.

We verify the above phenomenon in Fig 1. When training ViT to predict the label of background,
the attention map first show a rapid growth in the background in the occupation stage, while the
attention on birds remain small growth. Then in the crowding-out stage, the attention allocated to
the background significantly surpasses the attention to the bird, with the bird’s attention appearing
very faint in the attention map.

3.1 WHY CCO ARISES

(I) Intrinsic strong causal correlation: CCO emerges when the data exhibits a property whereby the
correlation between a causal feature and the target is consistently stronger than that of any spurious
feature. This is common rather than contrived: many real datasets can be viewed as mixtures of
latent environments in which causal–target relationships remain relatively stable, whereas spurious
features oscillate across environments. When pooled, these oscillations destructively interfere, re-
ducing spurious–target correlation relative to causal–target correlation. Equivalently, causal features
concentrate stable signal, while spurious features disperse unstable variance, making the dominant
causal direction statistically more salient.

(II) Implicit regularization of GD in Transformers: early strong-signal directions (Occupation) steer
gradients toward causal features, inducing a directional bias in the learned representation. Attention
then transduces this bias into selection (Crowding-out), assigning higher weight to causal features
and down-weighting spurious ones, thereby approaching an invariant, cause only solution without
explicit invariance penalties.

3.2 STRONG CAUSAL CORRELATION ALONE DOESN’T ENSURE CAUSE ONLY

It is important to stress that strong causal correlation in the data does not by itself alone guarantee
cause only prediction for generic estimators. In Example 25, we show that even under a dominant
causal correlation, population linear regression retains a constant fraction of the spurious features,
remaining using spurious features to predict noise. This demonstrates two points: (a) strong causal
alignment alone does not ensure spurious suppression; and (b) CCO is not a trivial corollary of data
dominance but instead relies on the implicit regularization induced by Transformers and GD.

4 THEORETICALLY ANALYSIS OF CORRELATION CROWDING-OUT

4.1 PROBLEM SETUP

We provide a theoretical explanation for CCO by analyzing a specialized Transformer module
trained on data generated by the causal chain x→ y→ z. When the dominant feature of x exhibits
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sufficiently strong association with y, the implicit regularization of GD leads the learned predictor
to filter out z and rely almost exclusively on x.

4.1.1 DATA GENERATIVE PROCESS

We consider the causal chain x → y → z, where x, z ∈ Rd are vector covariates and y ∈ R is a
scalar response. The response y is a sparse quadratic signal in x:

y = x⊤ (w∗)
⊙2

+ ϵ, (1)

with noise ϵ⊥ x, E[ϵ] = 0, and Var(ϵ) = σ2. The descendant z depends on y via an L-Lipschitz
function f : R→ Rd and additive noise ξ ∈ Rd,

z = f(y) + ξ, ξ⊥y. (2)

We assume the moment and boundedness conditions:

H := E[xx⊤] =

[
a 0
0 Id−1

]
, E[x+ z] = ζ, Var(x+ z) = Σ, (3)

and almost surely sup1≤j≤d |xj | ≤ Bx, |ϵ| ≤ Bϵ, sup1≤j≤d |ξj | ≤ Bξ, sup1≤j≤d

∣∣zij∣∣ ≤
∥f (0)∥∞ + L (rBx +Bϵ) + Bξ := Bz. The ground truth w∗ is sparse and binary: w∗

j ∈ {0, 1},
w∗

1 = 1, and |supp(w∗)| ≤ r. We observe i.i.d. samples
{(

xi, yi, zi
)}n

i=1
from (x, y, z).

The chain x→ y→ z is a minimal DAG that that captures the key trade-off behind CCO: a causal
parent x that determines y, versus a spurious descendant z is induced by y. This reduction is pur-
poseful and representative. For example, in sentiment analysis, content features x→ sentiment label
or rating y → label derived auxiliary fields generated downstream z (Gururangan et al., 2018). So
that z is a descendant induced spurious correlate of y while x carries the causal signal.

In this pattern, descendants furnish alluring but non invariant shortcuts, a phenomenon widely doc-
umented across deep learning (Geirhos et al., 2020). By positing one dominant, highly y-predictive
direction in x while allowing z to be strongly, yet non causally correlated with y. Thus, the
x→ y→ z pattern offers a principled, portable abstraction: it is simple enough for precise anal-
ysis yet representative of broader scenarios where CCO is expected to emerge.

4.1.2 MODEL ARCHITECTURE

We adopt a two-key attention architecture and augment inputs with fixed positional encodings
s1, s2 ∈ RM :

x̃ i =

[
s1
xi

]
, z̃ i =

[
s2
zi

]
∈ RM+d.

We parameterize the query as the gating vector qt := ṽ t ∈ RM+d, take the keys as k i
x := x̃ i and

k i
z := z̃ i, and the values as v i

x := x̃ i and v i
z := z̃ i.

Two-key Attention. Define the logits

ℓtx,i = (qt)⊤k i
x, ℓtz,i = (qt)⊤k i

z ,

and weights

αt
x,i =

eℓ
t
x,i

eℓ
t
x,i + eℓ

t
z,i

, αt
z,i = 1− αt

x,i.

By softmax translation invariance,

αt
x,i = σ

(
(qt)⊤(k i

x − k i
z)
)
= σ
(
(ṽ t)⊤(x̃ i − z̃ i)

)
=: pti.

The attention output (per sample) is

ĥ i,t = αt
x,i v

i
x + αt

z,i v
i
z = pti x̃

i + (1− pti) z̃ i.
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Algorithm 1 GD on the two-key attention model

1: Input: {(xi, yi, zi)}ni=1, encodings s1, s2, stepsizes {ηt}, {βt}, initialization scale α, iterations
T .

2: Positional Encoding: x̃ i=

[
s1
xi

]
, z̃ i=

[
s2
zi

]
.

3: Init: w̃0 =

[
0
αId

]
, ṽ 0=0M+d.

4: for t = 0, 1, . . . , T − 1 do
5: for i = 1 to n do
6: pti ← σ

(
(ṽ t)⊤(x̃ i − z̃ i)

)
, ŷ i,t ←

(
ptix̃

i + (1− pti)z̃ i
)⊤(

w̃ t
)⊙2

, rti ← ŷ i,t − yi

7: w̃ t+1 ← w̃ t − ηt

n

∑n
i=1 r

t
i

(
ptix̃

i + (1− pti)z̃ i
)
⊙ w̃ t

8: ṽ t+1 ← ṽ t − βt

n

∑n
i=1 r

t
i p

t
i(1− pti) (x̃ i − z̃ i)⊤

(
(w̃ t)⊙2

)
(x̃ i − z̃ i)

9: Return: (w̃ t+1, ṽ t+1).

Squared-parameter Head and Loss. We predict with a quadratic parameterization feed-forward
layer:

ŷ i,t =
(
ĥ i,t

)⊤(
w̃ t
)⊙2

=

M+d∑
j=1

(
w̃ t

j

)2
ĥ i,t
j , Ln(w̃, ṽ) =

1

2n

n∑
i=1

(ŷ i − yi)2.

This quadratic parameterization feed-forward layer can be seen as a special diagonal neural network,
essentially a position wise FFN that provides anisotropic multiplicative gains and thus retains feature
learning capacity through the attention mixed representation. This parameterization can be further
generalized by ŷ i,t =

(
ĥ i,t

)⊤ ((
w̃+, t

)⊙2 −
(
w̃−, t

)⊙2
)

.

GD on the two-key attention model is summarized in Algorithm 1.

Our module is exactly a single-head dot-product attention applied per sample with two keys/values,
one for the cause path and one for the descendant path. It is the special case of a Transformer atten-
tion block where WQ,WK ,WV are identity projections, so the query is the learned gating direction
ṽ , and the two tokens are x̃ and z̃. This reduction keeps the softmax competition geometry and
the value mixing mechanism intact while stripping away projection layers that would obscure the
optimization dynamics. The quadratic parameterization head is a diagonal, position wise FFN that
provides nonnegative per-coordinate gains. Studying this minimal attention–FFN pair is theoreti-
cally meaningful: it isolates the allocation dynamics behind the implicit bias we analyze, preserving
the key nonlinearities (softmax and multiplicative gains) that produce CCO.

The distinct fixed encodings s1 ̸= s2 attach branch identity to keys and values and inject a sample-
independent margin (ṽ t)⊤(s1 − s2) into the logit difference. When xi and zi are weakly separated
early in training, the offset (ṽ t)⊤(s1 − s2) prevents the gate from collapsing to 1/2 and ensures a
non-degenerate gradient, thereby guaranteeing identifiability of branches and stable training dynam-
ics. This mirrors the role of positional embeddings in Transformers.

4.1.3 DOMINANT-COORDINATE CONDITION.

We characterize which patterns of strong correlation are sufficient for CCO to emerge. The two
conditions below formalize (i) a population-level dominance of one causal coordinate and (ii) a
per-sample margin along that coordinate.

Define sj := E
[
(x⊤(w∗)⊙2) (xj + zj)

]
measures the cross-moment between response y and the

combined coordinate xj + zj . The adjustment µj := E[ϵ(xj + zj)] accounts for noise leakage.
seffj := sj + µj is the effective signal which governs the drift of gradient updates. We also write
mj := E

[
(xj + zj)

2
]
= Σjj + ζ2j and mkj := E

[
(xk + zk)(xj + zj)

]
= Σkj + ζkζj which capture

the second-moment scales of the combined features.

Condition 1. The effective signal satisfies that seff1 > 2m1

15 +maxj>1

(
4
∣∣seffj ∣∣+ m1j

8

)
.

6
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Condition 1 requires effective signal the dominant feature is sufficiently strong to exceed that of other
competitor by a uniform gap. The assumption is mild, it allows strong descendant induced corre-
lations on other coordinates but prevents the dominant causal direction from being overwhelmed.
Under Condition 1, the GD dynamics preferentially amplify the squared weight on the dominant
coordinate, creating the occupancy that initiates CCO.
Condition 2. There exist constant τ1, τ2 > 0 such that for every sample i = 1, . . . , n: (i) Nontrivial
gap: |xi

1 − zi1| ≥ τ . (ii) Sign stability: sgn
(
xi
1 − zi1

)
= sgn

(
xi
1

)
. (iii) Dominant-coordinate

margin lower bound: 3
4

∣∣xi
1

∣∣ ≥ r Bx +Bϵ + τ2.

In combination with Condition 1, Condition 2 guarantees that GD on the gate parameter ṽ t towards
the max-margin solution on {x̃i − z̃i}ni=1 drives pti → 1 and thereby squeezes out the descendant
branch. In short, Condition 1 ensures occupancy, whereas Condition 2 ensures crowding out, com-
pleting the CCO mechanism.

These two conditions are satisfiable in bounded, Lipschitz settings. Importantly, as detalied in Ex-
ample 26, they do not exclude the empirically relevant regime where some non-dominant causal
coordinates are less correlated with y than descendant coordinates: it can happen that for some
j > 1 with w∗

j = 1, Cov(xj , y) < Cov(zj , y).

4.2 MAIN RESULT

We next formalize when and how CCO emerges in our two-key attention model. Under the
Dominant-coordinate condition, the first theorem provides a mechanistic account of CCO during
training. The second theorem provides a generalization guarantee: with high probability, the learned
predictor filters out the descendant z, relies almost exclusively on the causal x, and attains test risk
near the cause only level.
Theorem 1 (CCO’s Mechanism). Under Condition 1 and Condition 2, consider GD with initial-

ization scale α =

√
σ2 log d/n

d3 and the following stepsize schedule: (i) For 1 ≤ t ≤ T ∗
1 :=

min{t ∈ N : wt
1 ≥ 1

4}, set ηt ≡ η and βt ≡ 0. (ii) For T ∗
1 < t ≤ T ∗

1 + T ∗
2 , with

T ∗
2 ≍ exp

(√
∥s∥22 + d (Bx +Bξ)2

)
, set ηt ≡ 0 and βt ≡ β. (iii) For T ∗

1 + T ∗
2 < t ≤

T ∗
1 + T ∗

2 + T ∗
3 =: T ∗, set ηt ≡ η and βt ≡ 0 with T ∗

3 ≍ 1
η log

(
n

σ2 log(dr)

)
. Then, with

probability at least 1− 1
d2 , the squared-parameter head satisfies∣∣wT∗

i −w∗
i

∣∣ ≲ σ
√
log d√
n

for i ∈ supp(w∗),
∣∣wT∗

i −w∗
i

∣∣ ≲ 1

d
for i /∈ supp(w∗).

Meanwhile, the query (gating) iterate qt = ṽ t obeys ṽ t = û log t + ρt, where û is the max-
margin solution on {x̃i − z̃i}ni=1 and ρt a bounded residual. Consequently, pT

∗

i ≥ 1 − 1
d2 for all

1 ≤ i ≤ n.

This theorem explains the mechanism by which CCO arises during optimization. Under the
dominant-coordinate condition, the dominant causal direction becomes visible to GD: the gate’s
gradient aligns with the separation direction (x̃ i − z̃ i) and tracks a max-margin ray with a logarith-
mically diverging norm, so the attention weight concentrates on the x-branch. As the gate filters out
the descendant branch, the squared-parameter head fits the ground-truth weights w∗ up to the error
on active coordinates and a 1/d tail on inactive ones.

Role of Positional Encodings. Distinct fixed encodings s1 ̸= s2 attach branch identity and in-
troduce a sample-independent margin in the gate logit, (ṽ t)⊤(s1 − s2). This symmetry breaking
enables the two-key attention to identify the dominant feature and drive the attention weights to
select the branch associated with it, thereby catalyzing CCO.
Theorem 2 (Generalization of CCO). For an independent test triple (x, y, z), there exists an event

Ω with Pr(Ω) ≥ 1− 8
√

∥s∥2
2+d (Bx+Bz)2

∥s∥2
√
n

−
√

2 ln(2d2)
n , such that conditioned on Ω,

pT
∗
= σ
(
(ṽ T∗

)⊤(x̃T∗
− z̃T∗

)
)
≥ 1− 1

d2
and E

[∣∣∣∣ L − σ2

2

∣∣∣∣ ∣∣∣ Ω] ≲ r σ2 log d

n
.
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With high probability (strengthened when ∥s∥22 ≍ d), the learned gate continues to prefer the causal
branch on test distribution, i.e., pT

∗
is bounded away from 0 and close to 1. Moreover, the test loss

approaches the cause only noise floor σ2/2 at rate O(r σ2 log d/n), indicating that the predictor
essentially relies on x while filtering out z on the test distribution.

Theorem 2 controls generalization when train and test share the same data distribution. We next
show that the same CCO predictor remains robust under test time shifts that perturb y → z.

Corollary 1 (Robust generalization under y→z shifts). At test time, change the y→z mechanism
so that z′ = f ′(y) + ξ′ and assume supj |z′j | ≤ Bz′ . There exists an event Ω with Pr(Ω) ≥

1− 8
√

∥s∥2
2+d (Bx+Bz′ )

2

∥s∥2
√
n

−
√

2 ln(2d2)
n , such that conditioned on Ω,

pT
∗
= σ
(
(ṽ T∗

)⊤(x̃T∗
−z̃

′, T∗
)
)
≥ 1− 1

d2
, E
[∣∣∣∣ L(x,y,z′)

(
w̃ T∗

, ṽ T∗)
− σ2

2

∣∣∣∣ ∣∣∣ Ω] ≲
r σ2 log d

n
.

5 FURTHER DISCUSSION

Positioning of CCO. CCO arises under purely correlational training with single environment, no
environment labels, and no explicit invariance regularizers. Yet when a dominant causal correlation
is present and GD’s implicit bias takes hold, the learned predictor moves beyond correlation toward
causation: it increasingly relies on causal features while largely discounting spurious correlates.
Meanwhile, multi-environment invariance methods also seek causally aligned predictors, but they
pursue this goal by explicitly leveraging cross environment heterogeneity.

Figure 2: Positioning of CCO.

When Can Transformers Learn Causation?
CCO offers a concrete path to cause only behav-
ior under standard Transformer training, but it is
not unique, and its assumptions need not always
hold. In practice, Transformers/LLMs frequently
exploit shortcuts and spurious cues (Bender et al.,
2021; Du et al., 2023; Tang et al., 2023; Jin et al.,
2024). CCO also has limits: it benefits from a
strong causal correlation; when spurious cues are
comparably strong or plentiful, single environ-
ment ERM may still lean on them. In this regime,
multi-environment invariance learning that ex-
plicitly leverages heterogeneity remains essential
for causal generalization.

Practical Insights. CCO suggests actionable insightss for training: (i) amplify causal alignment
in data to widen the dominant causal gap; (ii) employ mild attention sparsity or large step schedules
to accentuate strong features. These steps do not enforce invariance, but they increase the likelihood
that standard training will self select a cause only solution when the data permit.

6 EXPERIMENTS

6.1 SIMULATED EXPERIMENTS

We realize the GD on the two-key attention model in Algorithm 1 and present the simulation result
in this section. We consider the case where the data are generated from the same causal chain
x → y → z. The structural assignment for each variable is defined as x ∼ N (σId, µx), y =

x⊤ (w∗)
⊙2

+ ϵ, z = Cy + ξ, where ϵ, ξ are independent standard normal distributed and we set
w∗ as an all-ones vector. The results are shown in Fig 3. We calculate the weight ptx,i and display
its average across the batch p̄tx = 1

n

∑
i p

t
x,i. We then run GD for 5000 iterations with batchsize

n = 64, and the dimension of data d ∈ {5, 10}. We can see that p̄tx increases rapidly to 1 in all cases
in the first 100 iterations corresponding to the occupation phase, while in the crowding out stage p̄tx
remains at 1, while w slowly decreases to the minimum value.
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Figure 3: Simulation results for the GD on the two-key attention model. (a): the curve of ||w −
w∗||2 and the average of p with d ∈ {5, 10}. (b): the first component of w quickly reaches its
optimum during occupation phase, while the other components slowly approach their optima during
the crowding-out phase.
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Figure 4: Experiments on waterbirds dataset. (a): The test accuracy with bias strength ptest = 0.02
bias strengths on DeiT-Small, ResNet34 and EfficientNet-B4 trained across a full sweep of training
bias strengths from 0.5 to 0.99. Oracle is the accuracy on no-biased test data using DeiT-Small
trained without bias. (b): The test accuracy with bias strength ptest sweeping from 0.02 to 0.99 on
DeiT-Small trained across a full sweep of training bias strengths from 0.5 to 0.95.

6.2 EXPERIMENTS ON REAL DATA

Experiments on Vision Task. We consider an image object classification task on the birds. The
target is to classify water birds (Y = 1) and land birds (Y = 0 in the CUB dataset (Wah et al., 2011).
To eliminate confounding due to foreground–background asymmetry altogether, we introduced a
setting where one bird species on the left side serves as the true target label y and another bird
species on the right side acts as the spurious bias z, both appearing in the foreground. We set the
bias strength in the train dataset to 0.9, i.e. ptrain = P (z = y|y) = 0.9. This ensures that any
observed attention shift cannot be attributed to low-level feature quality differences (e.g., texture
richness or semantic complexity) between foreground and background.

The results in Fig 1 consistently show that the cause features progressively occupy and crowds out
the spurious features (whether background or another bird). We find that the attention map on the
left bird raise rapidly in the first 50 iterations, while the attention map on the right side seldom
changes, illustrating the occupation phase. By iter 500, attention is concentrated almost entirely on
the left side, with the bird on the right side receiving near zero weight, marking crowding-out. These
findings confirm that the observed behavior reflects genuine optimization-driven cause preference
not artifacts of feature disparity.

We conducted fair experiments on Waterbirds using DeiT-Small (from timm with ImageNet pretrain-
ing) alongside ResNet34 and EfficientNet-B4 (from torchvision, also pretrained, with comparable
about 20M parameter counts), training all models for 1,000 epochs at a learning rate of 1e-4 across a
full sweep of bias strengths from 0.5 to 0.99. As shown in the Fig 4 (a), DeiT-Small maintains signif-
icantly higher accuracy at strong bias levels (e.g., 0.9), demonstrating that Transformers can better
capture the underlying causal signal—left side bird type—despite overwhelming spurious correla-
tions with right bird, suggesting an advantage over CNNs in leveraging stronger semantic features
when spurious cues dominate.
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Figure 5: Experiment results on natural language task. (a): the test loss when mask the noun, adj,
verb or their combination in the text. (b): the saliency scores of each token when input "I hate this
DVD, it’s awful." to the model at 1%, 50%, 99% of the training steps.

We also added out-of-distribution (OOD) test experiments in Fig 4 (b). We constructed a water-
bird dataset with a base spurious correlation of varying training bias strengths ptrain, measuring test
accuracy on OOD data where the test bias strengths ptest ∈ [0, 1]. The curve reveals that when
ptrain ≥ 0.9, test accuracy drops as bias increases, indicating that the model fails to learn the invari-
ant causal feature (bird type) and instead relies heavily on the spurious background cue. However,
once ptrain ≤ 0.85, test accuracy rises significantly and remains high (above 95%), which is the
hallmark of CCO: the model effectively crowd out the spurious features and learn the cause only
prediction. Therefore, when the spurious correlation is under the threshold, transformer can obtain
a cause only predictor which exhibits robust generalization at test time.

Experiments on Natural Language Task. We conduct the sentiment classification task on the
Amazon reviews dataset (He & McAuley, 2016) which consists of reviews from amazon. Here
Y ∈ {1, 2, 3, 4, 5} represents the reviewer’s rating, X denotes the associated adjectives and verbs,
and Z indicates the nouns related to the product itself. We finetune the bert-base-uncased model
Devlin et al. (2019) for 50k steps, employing the Adam optimizer Kingma (2014) with a learning
rate of 1e-5. When constructing the test data, we mask the noun, adj, verb or their combination in the
text. As shown in Fig 5 (a), test loss with masked NOUN+VERB decay rapidly corresponding to the
occupation phase. We also observe a final upward trend in the test loss with masked ADJ+VERB,
indicating that the attention allocated to NOUNs is being crowded out by cause features. Fig 5
(b) display the saliency scores computed by the gradients of target class score relative to input
embeddings, which show which tokens most influence the model’s decision. The result indicates
that the cause features (hate, awful) crowds out the spurious features during the training process.

7 CONCLUSION

In this paper, we identify a new training phenomenon for Transformers training dynamics called
CCO, showing that strong causal alignment in the data, coupled with the implicit regularization of
GD, can drive the model toward cause only prediction. We demonstrate CCO empirically and de-
velop a theoretical account of its two phase mechanism (occupation and crowding-out). While not
the only route to causal generalization, CCO offers a concrete answer to when and through what
dynamics standard Transformer training can suppress spurious features and rely almost exclusively
on causal ones. The results spark that: amplifying causal alignment in data and designing train-
ing procedures that accentuate causal signals can make Transformers more likely to learn causally
grounded predictors.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 ETHICS STATEMENT

Our paper complies with the ICLR Code of Ethics.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. In Neural Information Processing Systems, 2023.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias-variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pp. 610–623, 2021.

Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scaling
laws. In International Conference on Machine Learning, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Neural Information Processing Systems, 2020.

Yuhang Cai, Kangjie Zhou, Jingfeng Wu, Song Mei, Michael Lindsey, and Peter L Bartlett. Implicit
bias of gradient descent for non-homogeneous deep networks. arXiv preprint arXiv:2502.16075,
2025.

Francesco D’Angelo, Francesco Croce, and Nicolas Flammarion. Selective induction heads: How
Transformers select causal structures in context. In International Conference on Learning Repre-
sentations, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi Deshpande, Franck Dernoncourt, Jiuxiang Gu,
Tong Sun, and Xia Hu. Towards interpreting and mitigating shortcut learning behavior of NLU
models. In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 915–929, 2021.

Mengnan Du, Fengxiang He, Na Zou, Dacheng Tao, and Xia Hu. Shortcut learning of large language
models in natural language understanding. Communications of the ACM, 67(1):110–120, 2023.

John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distribu-
tionally robust optimization. The Annals of Statistics, 49(3):1378–1406, 2021.

Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, and Surbhi Goel. The evo-
lution of statistical induction heads: In-context learning markov chains. In Neural Information
Processing Systems, 2024.

Jianqing Fan, Cong Fang, Yihong Gu, and Tong Zhang. Environment invariant linear least squares.
The Annals of Statistics, 52(5):2268–2292, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ragnar Frisch and Frederick V Waugh. Partial time regressions as compared with individual trends.
Econometrica: Journal of the Econometric Society, pp. 387–401, 1933.

Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributionally robust optimization and
variation regularization. Operations Research, 72(3):1177–1191, 2024.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Conference on Learning Representations, 2018.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, and Kun Zhang. Learning causal
structures using regression invariance. In Neural Information Processing Systems, 2017.

Yihong Gu, Cong Fang, Peter Bühlmann, and Jianqing Fan. Causality pursuit from heterogeneous
environments via neural adversarial invariance learning. arXiv preprint arXiv:2405.04715, 2024.

Yihong Gu, Cong Fang, Yang Xu, Zijian Guo, and Jianqing Fan. Fundamental computational lim-
its in pursuing invariant causal prediction and invariance-guided regularization. arXiv preprint
arXiv:2501.17354, 2025.

Shurui Gui and Shuiwang Ji. Mitigating spurious correlations in LLMs via causality-aware post-
training. arXiv preprint arXiv:2506.09433, 2025.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A Smith. Annotation artifacts in natural language inference data. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 2 (Short Papers), 2018.

Jeff Z HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit
bias of the noise covariance. In Conference on Learning Theory, 2021.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference on
world wide web, pp. 507–517, 2016.

Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. Invariant causal prediction for
nonlinear models. Journal of Causal Inference, 6(2):20170016, 2018.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision Transformers provably learn spatial structure.
In Neural Information Processing Systems, 2022.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, 2019.

Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon Shaolei Du, and Jason D Lee. Understanding incre-
mental learning of gradient descent: A fine-grained analysis of matrix sensing. In International
Conference on Machine Learning, 2023.

Zhijing Jin, Jiarui Liu, Zhiheng LYU, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona T.
Diab, and Bernhard Schölkopf. Can large language models infer causation from correlation? In
International Conference on Learning Representations, 2024.

Pritish Kamath, Akilesh Tangella, Danica Sutherland, and Nathan Srebro. Does invariant risk mini-
mization capture invariance? In International Conference on Artificial Intelligence and Statistics,
2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Neural Information Processing Systems, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vi-
sion Transformers: Learning, generalization, and sample complexity. In International Conference
on Learning Representations, 2023a.

Jiangyuan Li, Thanh Nguyen, Chinmay Hegde, and Ka Wai Wong. Implicit sparse regularization:
The impact of depth and early stopping. In Neural Information Processing Systems, 2021.

Yicong Li, Xiang Wang, Junbin Xiao, Wei Ji, and Tat-Seng Chua. Transformer-empowered invariant
grounding for video question answering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023b.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference on Learning Theory,
2018.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do Transformers learn topic structure: Towards a
mechanistic understanding. In International Conference on Machine Learning, pp. 19689–19729.
PMLR, 2023c.

Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter Bartlett, and Jason D. Lee. Scaling laws in linear
regression: Compute, parameters, and data. In Neural Information Processing Systems, 2024.

Yong Lin, Hanze Dong, Hao Wang, and Tong Zhang. Bayesian invariant risk minimization. In
Computer Vision and Pattern Recognition, 2022a.

Yong Lin, Shengyu Zhu, Lu Tan, and Peng Cui. Zin: When and how to learn invariance without
environment partition? In Neural Information Processing Systems, 2022b.
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(a) Input image (b) Iter=0 (c) Iter=500 (d) Iter=1000

Figure 6: This figure shows how attention shifts during ViT training on a background-label (target)
task. (a) is the input image. Early in training (b, iter 0), attention is diffuse across background
(causal feature) and bird (spurious feature). As training proceeds (c, iter 500), attention weight rises
on the background illustrating the occupation phase. By (d, iter 1000), attention is concentrated
almost entirely on the background, with the bird receiving near zero weight, marking crowding-out.

A APPENDIX

A.1 USE OF LLMS

We used LLMs for language polishing.

A.2 ADDITIONAL EXPERIMENT

Background-label (target) task.We consider an image object classification task on the background
with birds. The target is to classify water environment (Y = 1) and land environment (Y = 0).
We generate datasets by combining the bird images in the CUB dataset (Wah et al., 2011) and the
background images in the Places dataset (Zhou et al., 2017) using specific probabilities, which is
similar to the waterbird setting in Sagawa et al. (2020b) with different target. We set the pixels
related to birds as z and place 70% of all water birds against a water background and 70% of all
land birds against a land background, generating a dataset with 30k images. We then train the vision
Transformer model (Dosovitskiy et al., 2020) using the dataset, fixing the input image size to 224,
with patch size set to 16, learning rate set to 1e-4, and batch size set to 16. The results are displayed
in Fig 6. Initially, attention grows rapidly in the background with only a slight increase on the bird.
Later, during crowding-out, the map is rapidly dominated by background attention, while the bird’s
attention becomes very faint.

Sensitive of sign-stability. In order to empirically verify how sensitive our mechanism is to mild
violations of sign-stability, we consider the image object classification task on the background with
birds. The target is to classify water bird (Y = 1) and land bird (Y = 0). We generate datasets
by combining the bird images in the CUB dataset (Wah et al., 2011) and the background images in
the Places dataset (Zhou et al., 2017) using specific probabilities. But here we flip the label Y with
probability pflip:

Ŷ =

{
1− Y, with probability pflip,

Y, with probability 1− pflip.

We also place ptrain of all water birds against a water background and ptrain of all land birds against a
land background, generating a dataset with 30k images. We then train the vision Transformer model
using the dataset, fixing the input image size to 224, with patch size set to 16, learning rate set to
1e-4, and batch size set to 16. As shown in Fig 7, we scan the pflip from 0 to 0.5, and find that when
pflip = 0.2, the crowding-out behavior can still be observed in the model with the accuracy reaches
over 90%, proving that the mechanism is sign-stable. When pflip ≤ 0.15, the test accuracy remains
robust across different bias strengths, indicating that CCO is still effective and the model is able to
learn invariant cause only prediction.

CCO boundary conditions. To empirically characterize the boundary conditions of CCO, we intro-
duce controlled cause-predictive correlation by flipping the true bird class label Y with probability
pflip in a Waterbirds-like setup, where water birds and land birds are composited onto matching
backgrounds with strength ptrain (measuring spurious-predictive correlation). As shown in Fig 7,
when pflip ≤ 0.3 in (a) or pflip ≤ 0.05 in (b), the Vision Transformer maintains high and stable
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Figure 7: Test Accuracy on Deit-Small trained across a full sweep of label flip probability pflip from
0 to 0.5 with ptrain fixed to 0.7 and 0.9. We sweep the test bias strength ptest from 0.02 to 0.99.
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Figure 8: (a): Test accuracy of Deit-Small trained on dataset with various pflip and ptrain on the bird
classification task. The background curves show test accuracy on the background dataset without
bird. The oracle curves show test accuracy on the dataset with ptest = 0.5. (b): The dynamic of
attention weight for x, z during training in simulation on standard transformer.

test accuracy across varying bias strengths, and its attention concentrates on the bird rather than the
background—evidence that CCO is active and the model learns an invariant predictor based on the
cause features x. Even at pflip = 0.2 in Fig 7(a), the model still achieves over 90% accuracy and
exhibits crowding-out behavior, demonstrating robustness to mild violations of sign-stability. How-
ever, as pflip increases further toward 0.4 or 0.5, the performance deteriorates sharply, indicating that
CCO collapses once the correlation gap falls below a critical threshold. These results establish that
CCO operates effectively when the cause-predictive correlation remains sufficiently stronger than
the spurious one, defining a practical boundary beyond which the mechanism no longer reliably
emerges.

Generalization effects of spurious-dominant correlation. We test the accuracy of ViT on the
background dataset without bird in a specular setting with dominant correlations between y and z,
and weaker ones between x and y. The results are shown in Fig 8 (a). When the correlation between
y and z in the dataset is strong, we observe a specular result: the model achieves high accuracy
on the background-only test set, indicating that it primarily relies on features associated with z for
prediction. In contrast, when the correlation between y and z is relatively weaker compared to the
correlation between x and y, the model’s accuracy on the background-only test set becomes very
low. In this regime, the CCO mechanism emerges: the model’s attention focuses predominantly on
cause features x, effectively crowding out those spurious features z.

Image classification on CelebA. We conduct our experiment on the classification task on CelebA
dataset and the discussion on NLP task can be found in response to weakness-2. This classification
task aims to predict the presence of a beard from CelebA images, where the target label is spuriously
correlated with gender. We trained ResNet-34, EfficientNet-B4, and DeiT-Small with comparable
parameter counts on this dataset under standard settings, using the AdamW optimizer with a learning
rate of 1e-4.
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Table 1: The accuracy of ResNet-34, EfficientNet-B4, and DeiT-Small on train dataset and test
dataset including (1) (Test Set 1) masking out facial regions, and (2) (Test Set 2) masking out every-
thing except the facial regions.

Model Train Accuracy Test Set 1 Accuracy (↓) Test Set 2 Accuracy (↑)
Deit-small 0.987 0.552 0.893
ResNet-34 0.992 0.577 0.861

EfficientNet-B4 0.979 0.573 0.802

Table 2: The loss of BERT trained on datasets with various P (z | y). The table shows the loss on
train dataset and test dataset including (1) (Oracle Test): z and y are independent, P (z | y) = 0.5,
and (2) (Biased Test): P (z | y) = 0.02.

P (z | y) Final Train Loss Oracle Test Loss (↓) Biased Test Loss (↓)
0.5 0.64 0.61 0.65
0.9 0.62 0.65 0.68
0.95 0.67 0.77 0.87

In the test set, we evaluated two masking conditions based on the bounding box (bbox) annotations
provided by the dataset: (1) (Test Set 1) masking out facial regions, and (2) (Test Set 2) masking out
everything except the facial regions and the result are shown in Tab 1. On Test Set 2, DeiT-Small
outperformed both ResNet-34 and EfficientNet-B4, indicating the CCO mechanism of crowding out
spurious features for accurate beard prediction. The performance gap observed on Test Set 2, where
only facial regions are visible, underscores that when the dataset contains strong but misleading
associations (like gender bias), DeiT-Small leverages its capacity to attend to all parts of the image
equally and identify the most predictive elements—the beard itself—thus achieving higher accuracy.
This supports the hypothesis that under certain conditions, particularly those involving complex
spurious correlations, Transformers exhibit a robustness and adaptability that enables them to focus
on invariant cause only prediction, enhancing their generalization capabilities on unseen data.

Controllable Spuriousness evaluation in NLP task. We construct NLP evaluation settings where
the degree of spurious correlation is known and controllable. When ground-truth labels y are avail-
able and the data-generating process allows intervention, we can deliberately manipulate the associ-
ation between a potentially spurious variable z (e.g., the name of item) and the label y. By sampling
instances according to a fixed conditional distribution P (z | y) = p, we can break or calibrate the
spurious link between z and y.

The Amazon reviews dataset provide the label of scores which is the target y and the name of item,
which is a measurement of z. Varying p across experimental conditions allows systematic study of
how model behavior changes with the strength of the z–y association. The table shows the final test
loss of BERT under various p, where BERT remains lower test loss when p = 0.9, demonstrating
that transformers can pick up the stronger causal signal in NLP data.

Simulation on standard transformer. We conduct simulation experiments on standard multi-token
transformer. We take a two-token X = [x, z] as the input, and the causal chain is x→ y → z, where
x, z ∈ Rd are vector covariates. We set

y = x⊤wx + ϵ, z = wzy + ξ

Here ϵ and ξ are both Gaussian random vectors, with variances of 0.1 and 1, respectively. We set
wx = 1d, wz = 0.1 · 1d. We then train a 2-layer standard multi-token Transformer with a learning
rate of 1e-3 and the dynamic of attention weight for x, z during training is shown in Fig 8. The
attention weight curve demonstrates that the model initially assigns comparable attention to both the
cause X and its effect Z, but shows a two-stage shifts focus toward X while sharply suppressing
attention to Z. This "occupation" and "crowding out" behavior aligns with the CCO mechanism.
Consequently, the model learns to rely on direct evidence rather than attending to indirect, spurious
predictive pathway.
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A.3 PROOF OF THEOREM 1

The proof of Theorem 1 in three stages. In Stage 1, we show that the squared-parameter FFN rapidly
amplifies the weight on the dominant causal coordinate while keeping all other coordinates small.
In Stage 2, GD on the gate parameter ṽ t towards the max-margin solution on {x̃i − z̃i}ni=1 drives
pti→ 1 and thereby squeezes out the descendant branch. Finally, in Stage 3, after the descendant z
is nearly excluded, the squared-parameter FFN recovers the sparse ground truth.

A.3.1 STAGE 1

Theorem 3. Let T ∗
1 = min

{
t ∈ N : wt

1 ≥ 1
4

}
. Under Condition 1, suppose the step sizes satisfy

ηt ≡ η < 1

2(|seff1 |+m1
32 )

, and βt ≡ 0, and the initialization scale is α =

√
σ2 log d/n

d3 , Then with

probability at least 1 − 1
d2 , the iterate w̃T∗

1 =

[
0

wT∗
1

]
satisfies 1

4 ≤ w
T∗
1

1 ≤ 1
2 and |wT∗

1
j | ≤

√
σ2 log d/n

d2 for j > 1.

Proof of Theorem 3. Throughout Stage 1 we set βt ≡ 0, hence ṽ t ≡ 0 for all 1 ≤ t ≤ T ∗
1 . With the

two-key attention, this implies pti = σ(0) = 1
2 for every sample 1 ≤ i ≤ n and iteration 1 ≤ t ≤ T ∗

1 .

By the structure of the squared-parameter head, w̃t keeps the form w̃t =

[
0
wt

1

]
.

The update of wt satisfies

wt+1 = wt − η

n

n∑
i=1

(
1

2

(
xi + zi

)⊤ (
wt
)⊙2 −

(
xi
)⊤

(w∗)
⊙2 − ϵi

)(
xi + zi

)
⊙wt. (4)

We analyze non-dominant coordinates (j > 1) and the dominant coordinate (j = 1) in turn.

By the defination of T ∗
1 , we have wt

1 < 1/4, for t < T ∗
1 . We now prove for j > 1 and 1 ≤ t ≤⌈

log(d3/4(
√

σ2 log d/n))

log(1+ηκ)

⌉
∧ T ∗

1 , κ = 15
16s

eff
1 − m1

32 , |wT∗
1

j | ≤
√

σ2 log d/n

d2 holds by induction.

The update for coordinate j > 1 is

wt+1
j = wt

j −
η

2

[
1
n

n∑
i=1

(xi
1 + zi1)(x

i
j + zij)

]
(wt

1)
2(wt

j) + η
[
1
n

n∑
i=1

(xi)⊤(w∗)⊙2(xi
j + zij)

]
wt

j

+ η
[
1
n

n∑
i=1

ϵi(xi
j + zij)

]
wt

j −
η

2n

n∑
i=1

d∑
k=2

(xi
k + zik)

2(wt
k)

2(xi
j + zij)w

t
j .

Separating population terms from sampling deviations gives the multiplicative form

wt+1
j = wt

j + η
(
seffj −

m1j

2
(wt

1)
2
)
(wt

j) + η∆t
j , (5)

where ∆t
j is expressed as the following:

∆t
j =−

1

2

[
1

n

n∑
i=1

(
xi
1 + zi1

)(
xi
j + zij

)
−m1j

](
wt

1

)2(
wt

j

)
+

[
1

n

n∑
i=1

(
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)⊤(

w∗)⊙2 (
xi
j + zij

)
− sj

]
wt

j +

[
1

n

n∑
i=1

ϵi
(
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j + zij

)
− µj

]
wt

j

− 1

2n

n∑
i=1

d∑
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(
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)2(
wt

k

)2(
xi
j + zij

)
wt

j .

By Lemma 6 (concentration) and boundedness, using wt
1 <

1
4 and the inductive hypothesis |wt

j | ≤√
σ2 log d/n

d2 , we obtain

|∆t
j | ≤ (ϕ2 + ϕϵ) |wt

j | +
ϕ1
32
|wt

j | +
B3

x+z

2d2
|wt

1| = ej |wt
j |, (6)
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where ej = O(d−2) and, for large d, |ej | ≤ 1
4 maxj>1

(∣∣seffj ∣∣+ m1j

32

)
. Combining equation 5 and

equation 6,
|wt+1

j |
|wt

j |
≤ 1 + η

(
max
j>1

(∣∣seffj ∣∣+ m1j

32

)
+ ej

)
≤ 1 + η

(
5

4
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(∣∣seffj ∣∣+ m1j

32

))
.

(7)

By the above inequality, |wt+1
j | can be bounded by
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j |

(1)
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(
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32

)))
|wt

j |

(2)

≤
(
1 + η
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32
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⌉
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(
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(
5

4
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j>1
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32

)))⌈
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⌉ √
σ2 log d/n

d3

(3)

≤
√
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.

(8)

where (1) uses equation 7, (2) uses α =

√
σ2 log d/n

d3 and (3) uses Condition 1.

Therefore, by induction, for all j > 1 and all 1 ≤ t ≤
⌈

log(d2/4)
log(1+ηκ)

⌉
∧T ∗

1 , we have |wt
j | ≤

√
σ2 log d/n

d2 .

We then prove for j = 1 and 1 ≤ t ≤
⌈

log(d2/4)
log(1+ηκ)

⌉
∧ T ∗

1 , wt+1
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1, where κ =
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16s
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32 .

The update for wt+1
1 is given by
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Separate expectations and deviations, we have
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By Lemma 6 and boundedness,

|∆t
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ϕ1
2
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2
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(wt
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1|. (9)

Since for j > 1, |wt
j | ≤

√
σ2 log d/n

d2 and 0 < wt
1 ≤ 1/2, we have

∑d
j=2(w

t
j)

2 ≤ 1/d. Hence by
equation 9,

wt+1
1

wt
1

≥ 1 + η
(
seff1 − ϕ2 − ϕϵ −
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x+z
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32
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This implies that for 1 ≤ t ≤
⌈

log(d3/4(
√

σ2 log d/n))

log(1+ηκ)

⌉
∧T ∗

1 , wt
1 ≥ (1+ηκ)t

√
σ2 log d/n

d3 . Therefore,

we obtain that
⌈

log(d3/4(
√

σ2 log d/n))

log(1+ηκ)

⌉
∧ T ∗

1 = T ∗
1 . Then we have |wT∗

1
j | ≤

√
σ2 log d/n

d2 for j > 1

and w
T∗
1 −1

1 ≤ 1
4 . Then,

wt+1
1

wt
1

≤ 1 + η
(
seff1 + ϕ2 + ϕϵ +

B3
x+z

2d +
m1 + ϕ1

32

)
. (10)

Since η satisfies η
(
seff1 + ϕ2 + ϕϵ +

B3
x+z

2d + m1+ϕ1

32

)
≤ 1, we have w

T∗
1

1 ≤ 1
2 .

Consequently, we obtain 1
4 ≤ w

T∗
1

1 ≤ 1
2 and |wT∗

1
j | ≤

√
σ2 log d/n

d2 for j > 1.

The lemmas required for the Theorem 3 are listed below.

Lemma 4. For any 1 ≤ i ≤ n and 1 ≤ j ≤ d,
∣∣zij∣∣ ≤ ∥f (0)∥∞ + L (rBx +Bϵ) +Bξ := Bz.

Proof of Lemma 4. Because w∗ ∈ {0, 1}d and |supp(w∗)| ≤ r,∣∣ (xi
)⊤

(w∗)⊙2
∣∣ = ∣∣∣ ∑

j∈supp(w∗)

xi
j

∣∣∣ ≤ ∑
j∈supp(w∗)

|xi
j | ≤ r Bx. (11)

Together with
∣∣ϵi∣∣ ≤ Bϵ,

|yi| =
∣∣ (xi

)⊤
(w∗)⊙2 + ϵi

∣∣ ≤ rBx +Bϵ. (12)

For any coordinate 1 ≤ j ≤ d,

|fj(yi)| ≤ |fj(0)|+ |fj(yi)− fj(0)| ≤ |fj(0)|+ ∥f(yi)− f(0)∥∞ ≤ |fj(0)|+ L |yi|.

Taking supj and using equation 12 yields

∥f(yi)∥∞ ≤ ∥f(0)∥∞ + L (rBx +Bϵ). (13)

By the triangle inequality,

|zij | = | fj(yi) + ξij | ≤ |fj(yi)|+ |ξij | ≤ ∥fj(yi)∥∞ +Bξ.

Combining with equation 13 gives

|zij | ≤ ∥f(0)∥∞ + L (rBx +Bϵ) +Bξ,

and thus ∥zi∥∞ ≤ Bz almost surely.

Lemma 5 (Bernstein inequality for bounded distributions ( Theorem 2.9.5, Vershynin (2009))). Let
{ξi}ni=1 be independent, Eξi = 0, |ξi| ≤M a.s., and Var(ξi) ≤ v. Then for any t > 0,

Pr

(∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2v + 2
3Mt

)
,

hence with probability ≥ 1− δ,∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣ ≤
√

2v log(2/δ)

n
+

2M log(2/δ)

3n
. (B1)
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Lemma 6. Define Bx+z := Bx + Bz. For any δ ∈ (0, 1), with probability at least 1 − δ, the
following hold simultaneously for all 1 ≤ j ≤ d:

max
1≤k,j≤d

∣∣∣∣∣ 1n
n∑

i=1

(
(xi

k + zik)(x
i
j + zij)−mkj

)∣∣∣∣∣ ≤ ϕ1 := 2B 2
x+z

(√
2 log(6d/δ)

n
+

2 log(6d/δ)

3n

)
,

max
1≤j≤d

∣∣∣∣∣ 1n
n∑

i=1

(
(xi)⊤(w∗)⊙2

)
(xi

j + zij) − sj

∣∣∣∣∣ ≤ ϕ2 := r BxBx+z

(√
2 log(6d/δ)

n
+

2 log(6d/δ)

3n

)
,

max
1≤j≤d

∣∣∣∣∣ 1n
n∑

i=1

ϵi(xi
j + zij) − µj

∣∣∣∣∣ ≤ ϕϵ := BϵBx+z

(√
2 log(6d/δ)

n
+

2 log(6d/δ)

3n

)
,

where Bx+z := Bx + Bz and the factor log(6d/δ) accounts for a union bound over d coordinates
and the three families.

Proof of Lemma 6. For fixed 1 ≤ k, j ≤ d, set Ξ(1)
i := (xi

k + zik)(x
i
j + zij)−mkj . Then |Ξ(1)

i | ≤
M2 := 2B2

x+z and Var(Ξ
(1)
i ) ≤ v2 := M2

2 . Applying Bernstein and union-bounding over j with
probability ≥ 1− δ/3,

max
j

∣∣∣∣∣ 1n
n∑

i=1

(
(xi

j + zij)
2 −mj

)∣∣∣∣∣ ≤ ϕ1,
where

ϕ1 := 2B2
x+z

(√
2 log(6d/δ)

n
+

2 log(6d/δ)

3n

)
.

Let Si := (xi)⊤(w∗)⊙2 and Ξ
(2)
i := Si(x

i
j + zij)− sj . Since (w∗)⊙2 ∈ {0, 1}d with support size

≤ r, |Si| ≤ rBx, hence |Ξ(2)
i | ≤ MM := rBxBx+z and Var(Ξ

(M)
i ) ≤ vM := M2

M. Bernstein
union bound gives with probability at least ≥ 1− δ/3

max
j

∣∣∣∣∣ 1n
n∑

i=1

(
(xi)⊤(w∗)⊙2

)
(xi

j + zij)− sj

∣∣∣∣∣ ≤ ϕ2,
with

ϕ2 := r BxBx+z

(√
2 log(6d/δ)

n
+

2 log(6d/δ)

3n

)
.

Let Ξ(ϵ)
i := ϵi(xi

j+zij)−µj . Then |Ξ(ϵ)
i | ≤Mϵ := BϵBx+z and Var(Ξ

(ϵ)
i ) ≤ vϵ :=M2

ϵ . Bernstein
plus union bound yields with probability ≥ 1− δ/3

max
j

∣∣∣∣∣ 1n
n∑

i=1

ϵi(xi
j + zij)− µj

∣∣∣∣∣ ≤ ϕϵ,
where

ϕϵ := BϵBx+z

(√
2 log(6d/δ)

n
+

2 log(6d/δ)

3n

)
.

A.3.2 STAGE 2

Notation and max-margin solution. Set s := s1 − s2 and define

u :=

[
s

x− z

]
∈ RM+d, ∥u∥2 ≤

√
∥s∥22 + d (Bx +Bz)2 a.s.
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Let {u i}ni=1 be the samples form u and consider the empirical ℓ2 max-margin separator

û ∈ arg min
w∈RM+d

1

2
∥w∥22 s.t. (u i)⊤w ≥ 1, i = 1, . . . , n.

Its empirical margin is γemp := 1/∥û∥2. Let S ⊆ [n] be the support set with (u i)⊤û = 1 for i ∈ S.
By the KKT conditions there exist multipliers αi ≥ 0, nonzero only on S, such that

û =
∑
i∈S

αi u
i.

Lemma 7. Define usep :=

[
s/∥s∥22

0

]
. For every i, (u i)⊤usep = 1, hence usep satisfies all margin

constraints and separates the sample from the origin with margin 1. Since û minimizes ∥u∥2 over
the feasible set, ∥û∥2 ≤ ∥usep∥2 = 1/∥s∥2, and thus

γemp = 1
∥û∥2

≥ ∥s∥2.

Proof of Lemma 7. Since u i = [s; xi−zi] and usep = [s/∥s∥22;0], (u i)⊤usep = s⊤(s/∥s∥22) = 1.
Thus usep is feasible and the norm bound follows.

By the properties established in Lemma 9, each sample gradient can be written as ∇ℓi(ṽt) =
∇ϕi

(
ṽ⊤ui

)
. Each ϕi is monotonically decreasing to zero, Cϕ′′–smooth, and has a (Ci, µi) tight

exponential tail. Hence, in Phase II the implicit bias of GD drives the direction toward the ℓ2 max-
margin solution while the norm diverges, which forces the gate weight pti to converge to one. We
formalize this as the following Theorem 8. The proof follows Soudry et al. (2018, Thm. 9), with
minor adaptations to handle sample dependent ϕi and the dominant coordinate condition.

Theorem 8. Let T ∗
2 ≍ d2/

√
σ2 log d/n. Under Condition 2, suppose the step sizes satisfy ηt = 0,

βt = β < n
Cϕ′′ σmax(U)2 , where Cϕ′′ is a constant defined in Lemma 9, there exists a bounded

residual ρt such that
ṽ t = û log t + ρt,

and, in particular,

lim
t→∞

ṽ t

∥ṽ t∥2
=

û

∥û∥2
, min

i
(ṽ t)⊤ui ∼ log t → +∞.

Consequently, at T ∗
1 + T ∗

2 , pT
∗
1 +T∗

2
i = σ((ṽ T∗

1 +T∗
2 )⊤ui) ≥ 1−

√
σ2 log d/n

d2 for all i.

Proof of Theorem 8. We first prove that ṽ t can be expressed by ṽ t = û log t + ρt with bounded
ρt. Since ρt = rt + ũ and rt = ṽ t − û log t− ũ, then∥∥rt+1

∥∥2 =
∥∥rt+1 − rt

∥∥2 + 2
(
rt+1 − rt

)⊤
rt +

∥∥rt∥∥2 . (14)

By Lemma 9 (A), we have ϕ
′(
(ṽt)⊤ui

)
< 0. By the definition û, we have û⊤ui ≥ 1. This implies

û⊤

∥∥rt+1 − rt
∥∥2 =

∥∥∥∥−β∇L(ṽt)− û

(
log

(
1 +

1

t

))∥∥∥∥2
= β2

∥∥∇L(ṽt)
∥∥+ ∥û∥2(log(1 + 1

t

))2

+ 2βû⊤∇L(ṽt) log

(
1 +

1

t

)
≤ β2

∥∥∇L(ṽt)
∥∥+ 1

t2
∥û∥2 ,

(15)

By Lemma 9 (B) and Lemma 10, we have
∞∑
t=0

∥∥∇L(ṽ t)
∥∥2
2
= C0 < ∞, lim

t→∞

∥∥∇L(ṽ t)
∥∥
2
= 0. (16)
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Therefore, ∥∥rt+1 − rt
∥∥2 = o (1) ,

∞∑
t=T∗

1

∥∥rt+1 − rt
∥∥2 = C0 <∞. (17)

By Lemma 11, for t > t1,
(
rt+1 − rt

)⊤
rt ≤ C t−min{θ,1+0.5µmin}.

Thus, ∥∥rt∥∥2 − ∥∥rt1∥∥2 =

t−1∑
k=k1

∥∥rk+1 − rk
∥∥2 + 2

(
rk+1 − rk

)⊤
rk

≤ C0 + 2

t−1∑
k=k1

C k−min{θ,1+0.5µmin}

<∞.

(18)

This implies ∥rt∥ is bounded and further ∥ρt∥ is bounded.

In Stage 2, w̃t ≡ w̃T∗
1 is fixed and the gate updates ṽt follow:

ṽt+1 = ṽt − β

n

n∑
i=1

∇ℓi(ṽt), ṽT∗
1 = 0,

∇ℓi(ṽt) :=
((
ptix

i +
(
1− pti

)
zi
)⊤ (

wt
)⊙2 −

(
xi
)⊤

(w∗)
⊙2 − ϵi

)
·
(
xi − zi

)⊤ (
wT∗

1

)⊙2

pti
(
1− pti

) (
x̃i − z̃i

)
,

(19)

where pti = σ
(
(ṽt)⊤

(
x̃i − z̃i

))
, and σ(t) = 1

1+e−t .

∇ℓi(ṽt) can be further expressed as

∇ℓi(ṽt) =

(
pti

((
xi
1 − zi1

) (
w

T∗
1

1

)2
+ ζi1

)
− xi

1 + ci1 + ζi2

)
·
((

xi
1 − zi1

) (
w

T∗
1

1

)2
+ ζi1

)
pti
(
1− pti

) (
x̃i − z̃i

)
=

(
pti

((
xi
1 − zi1

)2 (
w

T∗
1

1

)4
+ ζ3

)
−
(
xi
1 − ci1

) (
xi
1 − zi1

) (
w

T∗
1

1

)2
+ ζi4

)
· pti
(
1− pti

) (
x̃i − z̃i

)
,

(20)

where ζi1, ζ
i
2, ζ

i
3, ζ

i
4 are small quantities, and ci1 is a constant.

ζi1 =

d∑
j=2

(
xi
j − zij

) (
w

T∗
1

j

)2
, ζi2 =

 d∑
j=2

(
zij
) (

w
T∗
1

j

)2 ,

ζi3 = 2
(
xi
1 − zi1

) (
w

T∗
1

1

)2
ζi1 + (ζi1)

2, ζi4 =
(
xi
1 − zi1

) (
w

T∗
1

1

)2
ζi2 −

(
xi
1 − ci1

)
ζi1 − ζi1ζi2,

ci1 =

zi1

(
w

T∗
1

1

)2
−

d∑
j=2

(
xi
j

) (
w∗

j

)2 − ϵi
 .

Let ϕi
(
ṽ⊤ui

)
= ℓi(ṽ

t) such that

ϕ
′

i (u) =

(
σ (u)

((
xi
1 − zi1

)2 (
w

T∗
1

1

)4
+ ζi3

)
−
(
xi
1 − ci1

) (
xi
1 − zi1

) (
w

T∗
1

1

)2
+ ζi4

)
· σ (u) (1− σ (u)) .
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Define

L(ṽ) := 1

n

n∑
i=1

ϕi
(
ṽ⊤ui

)
, ui := x̃ i − z̃ i. (21)

Then∇L(ṽ) = 1
n

∑n
i=1∇ℓi(ṽt) which is equal to the gradient of L(ṽ) := L(ṽ)− inf ṽ L(ṽ) ≥ 0.

Without loss of generality, we assume inf ṽ L(ṽ) = 0.

Since w
T∗
1

1 ∈ [1/4, 1/2] and |wT∗
1

j | ≤
√

σ2 log d/n

d2 for all j > 1. For each sample i, define and
|xi

j | ≤ Bx, |zij | ≤ Bz, |ϵi| ≤ Bϵ a.s. Then

|ζi1| ≤
Bx +Bz

d
, |ζi2| ≤

Bz

d
, |ζi3| ≤

C3

d
, |ζi4| ≤

C4

d
,

for explicit constants C3, C4 depending only on (Bx, Bz, Bϵ).

Let
A

(0)
i := (xi

1 − zi1)
2 (w

T∗
1

1 )4, B0,i := (xi
1 − ci1) (xi

1 − zi1) (w
T∗
1

1 )2,

and absorb the small remainders into

ζi5(u) := σ(u) ζi3 + ζi4, |ζi5(u)| ≤
C3 + C4

d
for all u (since 0 ≤ σ(u) ≤ 1).

Then the scalar driving term becomes

ϕ′i(u) =
(
σ(u)A

(0)
i − B0,i + ζi5(u)

)
σ(u)

(
1− σ(u)

)
, σ(u) =

1

1 + e−u
.

Lemma 9 (Properties of ϕi(u)). ϕi(u) has the following properties:

• (A) Monotonicity. For all i and u, ϕ′i(u) < 0.

• (B) Second-derivative control. For all u, |ϕ′′i (u)| ≤ Cϕ′′ , hence

∥∇2L(ṽ)∥op ≤
Cϕ′′

n
σmax(U)2, U := [u 1, . . . ,un],

where

Cϕ′′ :=
1

4

(
5(Bx +Bz)

2

64
+

1

4

(
Bx +

1

4

(
Bx +

Bz

4
+ r Bx +Bϵ

)
(Bx +Bz) + 1

)
.

• (C) Exponential tails. Let

fi(u) := −ϕ′i(u) =
(
B0,i − σ(u)A(0)

i − ζ
i
5(u)

)
σ(u)

(
1− σ(u)

)
,

there exist Ci > 0, µi > 0 and u0,i such that, for all u > u0,i,

Ci

(
1− e−µiu

)
e−u ≤ fi(u) ≤ Ci

(
1 + e−µiu

)
e−u.

Proof of Lemma 9. (A) Since w
T∗
1

1 ∈ [1/4, 1/2], we have 1 − (w
T∗
1

1 )2 ≥ 1 − (1/2)2 = 3/4. By
Condition 2 (iii),

|Ξi| ≥
(
1− (w

T∗
1

1 )2
)
|xi

1| − |S′i| − |ϵi| ≥ 3

4
|xi

1| − (r Bx +Bϵ) ≥ τ2.

Moreover, Condition 2 (iii) also implies sgn(Ξi) = sgn(xi
1). By Condition 2 (i) and Condition 2

(ii),
|(xi

1 − zi1) Ξi| ≥ |xi
1 − zi1| |Ξi| ≥ τ1 τ2, sgn

(
(xi

1 − zi1) Ξi

)
= +1.

Therefore,

B0,i −A(0)
i = (xi

1 − zi1) (w
T∗
1

1 )2 Ξi ≥
1

16
τ1 τ2.

When d is large enough,
σ(u)A

(0)
i − B0,i + ζi5(u) <

τ1 τ2
32

(22)
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Therefore, for all u ∈ R,

ϕ′i(u) =
(
σ(u)A

(0)
i −B0,i + ζi5(u)

)
· σ(u)

(
1− σ(u)

)
< 0.

(B) Let s := σ(u), g(u) := s(1 − s) ∈ (0, 1/4]. Define h(u) := sA
(0)
i − B0,i + ζi5(u). Noting

ζi ′5 (u) = σ′(u) ζi3 = g(u) ζi3, we have

ϕ′′i (u) = h′(u) g(u) + h(u) g′(u) =
(
A

(0)
i + ζi3

)
g(u)2 + h(u) (1− 2s) g(u).

Hence

|ϕ′′i (u)| ≤
1

4

(
|A(0)

i + ζi3|
4

+ |A(0)
i + ζi3|+ |B0,i|+ |ζi5(u)|

)
≤ Cϕ′′ ,

where, using |xi
1 − zi1| ≤ Bx +Bz and w

T∗
1

1 ∈ [1/4, 1/2],

|A(0)
i + ζi3| ≤

(Bx +Bz)
2

16
+
C3

d
, |B0,i| ≤

1

4

(
Bx +

Bz

4
+ r Bx +Bϵ

)
(Bx +Bz) ,

and thus one can take the explicit bound

Cϕ′′ :=
1

4

(
5(Bx +Bz)

2

64
+

1

4

(
Bx +

1

4

(
Bx +

Bz

4
+ r Bx +Bϵ

)
(Bx +Bz) +

C3 + C4

d

)
.

Consequently, for the Phase-II scalar objective

L(ṽ) = 1

n

n∑
i=1

ℓi(ṽ) =
1

n

n∑
i=1

ϕi
(
ṽ⊤ui

)
, ui := x̃i − z̃i.

Let U :=
[
u1, u2, . . . , un

]
∈ R(M+d)×n.

∇2L(ṽ) = 1

n

n∑
i=1

ϕ′′i
(
ṽ⊤ui

)
ui(ui)⊤ =

1

n
UD(ṽ)U⊤,

D(ṽ) := diag
(
ϕ′′1(ṽ

⊤u1), . . . , ϕ′′n(ṽ
⊤un)

)
.

∥∥∇2L(ṽ)
∥∥
op
≤ 1

n
∥U∥2op ∥D(ṽ)∥op ≤

Cϕ′′

n
σmax(U)2.

(C) Let

fi(u) := −ϕ′i(u) =
(
B0,i − σ(u)A(0)

i − ζ
i
5(u)

)
σ(u)

(
1− σ(u)

)
, σ(u) =

1

1 + e−u
.

Set
Ci := B0,i −A(0)

i − ζ
i
3 − ζi4, Di := A

(0)
i + ζi3.

Assuming the dominance condition ensures Ci > 0 and, for d large, Di ≥ 0 (since A(0)
i > 0 and

|ζi3| = O(1/d)).

Expanding at e−u → 0,

fi(u) = Cie
−u + (Di − 2Ci)︸ ︷︷ ︸

=:ai

e−2u + (3Ci − 3Di)︸ ︷︷ ︸
=:bi

e−3u +O(e−4u).

Factor Cie
−u:

fi(u) = Cie
−u
(
1 + ai

Ci
e−u + bi

Ci
e−2u +O(e−3u)︸ ︷︷ ︸

small for large u

)
.

Choosing u > u0,i and µi > 0 such that |ai|
Ci
e−u + |bi|

Ci
e−2u ≤ e−µiu absorbs all higher orders into

the single factor (1± e−µiu). Then, we have for all u > u0,i,

Ci

(
1− e−µiu

)
e−u ≤ fi(u) ≤ Ci

(
1 + e−µiu

)
e−u.
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Denote Ci exp
(
−ũ⊤ui

)
= αi. Let rt = ṽ t − û log t− ũ, then ρt = rt + ũ.

Lemma 10 ( Soudry et al. (2018, Lemma 10)). Consider GD updates ṽ t+1 = ṽ t − β∇L(ṽ t). If
β < n

Cϕ′′ σmax(U)2 , then the GD sequence satisfies

∞∑
t=0

∥∥∇L(ṽ t)
∥∥2
2
< ∞, lim

t→∞

∥∥∇L(ṽ t)
∥∥
2
= 0.

Lemma 11. Define µmin = min1≤i≤n µi There exists constant C and t1, such that for t > t1,(
rt+1 − rt

)⊤
rt ≤ C t−min{θ,1+0.5µmin}, θ = argmini/∈S u⊤ui > 1.

Proof of Lemma 11. Since under our setting each sample’s scalar loss ϕi(u) satisfies that −ϕ′i(u)
has an exponential tail, Soudry et al. (2018, Lemma 11) yields this lemma.

(
rt+1 − rt

)⊤
rt =

(
−β∇L(ṽt)− û

(
log

(
1 +

1

t

)))⊤

rt

= û⊤rt
[
1

t
− log

(
1 +

1

t

)]
︸ ︷︷ ︸

(A1)

− β

n

∑
i/∈S

ϕ
′

i

( (
ṽt
)⊤

ui
)
(ui)⊤rt︸ ︷︷ ︸

A2

− β

n

∑
i∈S

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt︸ ︷︷ ︸
A3

(23)

Denote by XS the matrix whose columns are the support vectors, and let P be the orthogonal
projection onto the subspace spanned by these support vectors. Then Pû = û.

For A1, firstly, the following shows that û⊤rt = o(t). Lemma 10 shows that
limt→∞

∥∥∇L(ṽ t)
∥∥
2
= 0.

û⊤rt = û⊤

ṽT∗
1 − β

t∑
s=T∗

1

∇L(ṽs)− û log t− ũ


≤ û⊤

(
ṽT∗

1 − û log t− ũ
)
− βt min

T∗
1 ≤s≤t

û⊤∇L(ṽs) = o(t)

(24)

Then A1 can be bounded from above by:

û⊤rt
[
1

t
− log

(
1 +

1

t

)]
≤ max

[
û⊤rt, 0

] [1
t
− log

(
1 +

1

t

)]
≤ max

[
û⊤Prt, 0

]
t−2

≤
{
∥∥ û ∥∥ ϵ1t−2, if ∥Prt∥ ≤ ϵ1

o(t−1), if ∥Prt∥ > ϵ1

(25)

By Lemma 9, we have ϕ′i(u) < 0. Then,

û⊤∇L(ṽ) = 1

n

n∑
i=1

ϕi
(
û⊤ṽ

)
û⊤ṽ < 0. (26)

This implies that L(ṽ) does not have finite critical points ṽ. With limt→∞
∥∥∇L(ṽ t)

∥∥
2

= 0, we
have limt→+∞(ṽt)⊤ui = +∞. By Lemma 9, there exists t1 > 0 such that for t > t1 and i ∈ [n],

Ci

(
1− e−µi(ṽ

t)⊤ui)
e−(ṽt)⊤ui

≤ −ϕ′i((ṽt)⊤ui) ≤ Ci

(
1 + e−µi(ṽ

t)⊤ui)
e−(ṽt)⊤ui

. (27)
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For A2, when t > t1,
∣∣ϕ′i((ṽt)⊤ui)

∣∣ ≤ 2 exp(−(ṽt)⊤ui).

−β
n

∑
i/∈S

ϕ
′

i

( (
ṽt
)⊤

ui
)
(ui)⊤rt ≤ −β

n

∑
i/∈S:(ui)⊤rt≥0

ϕ
′

i

( (
ṽt
)⊤

ui
)
(ui)⊤rt

≤ β

n

∑
i/∈S:(ui)⊤rt≥0

2 exp(−(ui)⊤rt)(ui)⊤rt

=
2β

n

∑
i/∈S:(ui)⊤rt≥0

t−(ui)⊤û exp
(
−ũ⊤ui − (ui)⊤rt

)
(ui)⊤rt

≤ 2β

n

∑
i/∈S:(ui)⊤rt≥0

t−(ui)⊤û exp
(
−ũ⊤ui

)
≤ 2β exp

(
− min

1≤i≤n
ũ⊤ui

)
t−θ.

(28)
For A3, the proof is divided into two cases (ui)⊤rt ≥ 0 and (ui)⊤rt < 0.

If (ui)⊤rt ≥ 0, for t > t1, by equation 27,

− β

n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt

≤βCi

n
t−1 exp

(
−ũ⊤ui

) [(
1 + t−µi exp

(
−µiũ

⊤ui
))

exp
(
−(ui)⊤rt

)
− 1
]
(ui)⊤rt.

(29)

(I) If 0 ≤ (ui)⊤rt ≤ t−0.5µi ,

− β

n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt

≤βCi

n
exp

(
− (1 + µi) min

1≤i≤n
ũ⊤ui

)
t−1−0.5µi

≤βCi

n
exp

(
− (1 + µi) min

1≤i≤n
ũ⊤ui

)
t−1−0.5µmin .

(30)

(II) If (ui)⊤rt > t−0.5µi , we have

− β

n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt

≤βCi

n
t−1 exp

(
−ũ⊤ui

) [(
1 + t−µi exp

(
−µiũ

⊤ui
))

exp
(
−t−0.5µi

)
− 1
]
(ui)⊤rt

≤βCi

n
t−1 exp

(
−ũ⊤ui

) [(
1 + t−µi exp

(
−µiũ

⊤ui
)) (

1− t−0.5µi + tµi
)
− 1
]
(ui)⊤rt

≤βCi

n
t−1 exp

(
−ũ⊤ui

) [
t−µi exp

(
−µiũ

⊤ui
) (

1− t−0.5µi + tµi
)
− t−0.5µi + tµi

]
(ui)⊤rt

≤ 0. (t > ti2)
(31)

(III) If (ui)⊤rt > ϵ2, consider ti3 > ti2 such that ti3 > exp
(
min1≤j≤n ũ

⊤uj
) (
e0.5ϵ2 − 1

)− 1
µi .

Then we have

− β

n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt

≤βCi

n
exp(− max

1≤j≤n
ũ⊤uj)

(
1− e−0.5ϵ2

)
ϵ2t

−1.

(32)
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If (ui)⊤rt < 0, still consider three case. (I) If −t−0.5µi ≤ (ui)⊤rt < 0, since −ϕ′

i > 0, we have

−β
n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt ≤ βCi

n
exp(−ũ⊤ui)

∣∣(ui)⊤rt
∣∣

≤ βCi

n
exp(− max

1≤j≤n
ũ⊤un)t−1−0.5µi

≤ βCi

n
exp(− max

1≤j≤n
ũ⊤un)t−1−0.5µmin .

(33)
(II) If (ui)⊤rt < −t−0.5µi , for t > t1,

− β

n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt

≤βCi

n
t−1e−ũ⊤ui

[
1− e−(ui)⊤rt

(
1−

(
t−1e−ũ⊤ui

e−(ui)⊤rt
)µi
)] ∣∣(ui)⊤rt

∣∣ (34)

We then show that there exists ti4 > ti3 such that for t > ti4 the right hand of the above inequality is

negative. Since
(
t−1e−ũ⊤ui

e−(ui)⊤rt
)µi

= exp
(
−µi (ṽ

t)
⊤
ui
)
→ 0, there exists ti5 > ti3 such

that for t > ti5,
(
t−1e−ũ⊤ui

e−(ui)⊤rt
)µi

< 1
2 . If e−(ui)⊤rt ≥ 3, then

e−(ui)⊤rt
(
1−

(
t−1e−ũ⊤ui

e−(ui)⊤rt
)µi
)
≥ 1.5 > 1. (35)

If e−(ui)⊤rt < 3, then

e−(ui)⊤rt
(
1−

(
t−1e−ũ⊤ui

e−(ui)⊤rt
)µi
)

>e−(ui)⊤rt
(
1−

(
3t−1e−ũ⊤ui

)µi
)

≥
(
1 + t−0.5µi

) (
1− t−µi

(
3e−ũ⊤ui

)µi
)

≥1 + t−0.5µi − t−µi

(
3e−ũ⊤ui

)µi

− t−1.5µi

(
3e−ũ⊤ui

)µi

.

(36)

By taking ti4 > ti3 such that for t > ti4, equation 35 and equation 36 larger than 1, we can obtain that

−β
n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt < 0. (37)

(III) If (ui)⊤rt < −t−0.5µi , there exists ti5 > ti4 such that for t > ti5,

e−(ui)⊤rt
(
1−

(
t−1e−ũ⊤ui

e−(ui)⊤rt
)µi
)
≥ 1.5. (38)

Then there exists constant c1 such that

−β
n

[
1

t
Ci exp(−ũ⊤ui) + ϕ

′

i

( (
ṽt
)⊤

ui
)]

(ui)⊤rt < −c1t−1. (39)

FInally, consider t > t2 := max1≤i≤n t
i
5: If ∥Prt∥ > ϵ1, then

max
i∈S

∣∣(ui)⊤rt
∣∣2 ≥ 1

|S|
∑
i∈S

∣∣(ui)⊤Prt
∣∣2 =

1

|S|
∥∥X⊤

SPrt
∥∥2 ≥ 1

|S|
σ2
min (XS) ϵ

2
1. (40)

Let ϵ2 =
√
|S|−1

σ2
min (XS)ϵ1, then there exists i ∈ S such that

∣∣(ui)⊤rt
∣∣ ≥ ϵ2. By equation 32,

equation 39 and equation 25, we can obtain that there exists c2 > 0, such that for t > t2,(
rt+1 − rt

)⊤
rt ≤ −c2t−1 + o(t−1). (41)

Then there exists t3 > t2 such that for t > t3,(
rt+1 − rt

)⊤
rt ≤ 0 ≤ C t−min{θ,1+0.5µmin}. (42)
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If ∥Prt∥ > ϵ1, then by equation 30, equation 31, equation 33, and equation 34, there exists c3 > 0
such that for t > t2, we have

(
rt+1 − rt

)⊤
rt ≤ c3 t−min{θ,1+0.5µmin}. (43)

Taking C = c3 and t1 = t4, we obtain that for t > t1,
(
rt+1 − rt

)⊤
rt ≤ C t−min{θ,1+0.5µmin}.

A.3.3 STAGE 3

After Stage 2, we have with probablity at least 1−O( 1
d2 ), w̃T∗

2 =

[
0

wT∗
2

]
satisfies 1

4 ≤ w
T∗
2

1 ≤ 1
2 ,

for j ∈ S \ {1},
√

σ2 log d/n

d3 ≤ w
T∗
2

j ≤
√

σ2 log d/n

d2 , and for j ∈ Sc, wT∗
2

j ≤
√

σ2 log d/n

d2 . Moreover,

the gate iterate ṽ t satisfies pT
∗
1 +T∗

2
i = σ((ṽ T∗

1 +T∗
2 )⊤ui) ≥ 1−

√
σ2 log d/n

d2 for all i. We now show

that, in Stage 3 with T ∗
3 ≍ 1

η log
(

n
σ2 log(dr)

)
, and T ∗ = T ∗

1 +T ∗
2 +T ∗

3 , GD yields w̃T∗
=

[
0

wT∗

]
,∥∥wT∗

S − 1
∥∥
∞ ≲

√
σ2 log d

n ,
∥∥wT∗

Sc

∥∥
∞ ≲

√
σ2 log d/n

d . Since Stage 3 freezes the gate, ṽ T∗
remains

at its Stage 2 form: ṽ T∗
= û log T ∗

2 + ρT∗
2 , where û is the max-margin solution on {x̃i − z̃i}ni=1,

ρT∗
2 a bounded residual, and T ∗

2 ≍ d2/
√
σ2 log d/n. This completes the proof of Theorem 1. The

Stage 3 bounds follow by combining Lemma 12 and Lemma 13.

As a preparatory step, we provide a recursion expression of wt in Stage 3, which will be used
repeatedly in the proof. The update of wt in Stage 3 takes the form:

wt+1 = wt

[
1d −

η

n

n∑
i=1

(
(xi)⊤(wt)⊙2 − (1− pT

∗
2

i )(xi − zi)⊤(wt)⊙2

− (xi)⊤(w∗)⊙2 − ϵi
)
·
(
xi − (1− pT

∗
2

i )(xi − zi)
)]
.

(44)

Collecting the small factors involving
(
1− pT

∗
2

i

)
yields:

wt+1 = wt ⊙

[
1d − η

(
1

n

n∑
i=1

xi(xi)⊤
(
(wt)⊙2 − (w∗)⊙2

)
− 1

n

n∑
i=1

xiϵi

− 1

n

n∑
i=1

(
1− pT

∗
2

i

)
xi(xi − zi)⊤(wt)⊙2

− 1

n

n∑
i=1

(
1− pT

∗
2

i

)
(xi − zi)(xi)⊤

(
(wt)⊙2 − (w∗)⊙2

)
+

1

n

n∑
i=1

(
1− pT

∗
2

i

)
(xi − zi) ϵi

− 1

n

n∑
i=1

(
1− pT

∗
2

i

)2
(xi − zi)(xi − zi)⊤(wt)⊙2

)]
.

(45)
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We then decompose wt over the support of w∗. Let supp (w∗) = S, with |S| = r. Define
wt

S = wt ⊙ 1S , wt
Sc = wt ⊙ 1Sc . Then we define,

rt =

(
1

n

n∑
i=1

xi
(
xi
)⊤ −H

)((
wt

S

)⊙2 − (w∗)
⊙2
)
,

et =

(
1

n

n∑
i=1

xi(xi)⊤ (wt
Sc)⊙2 − 1

n

n∑
i=1

xiϵi −
1

n

n∑
i=1

(
1− pT

∗
2

i

)
xi(xi − zi)⊤(wt)⊙2

− 1

n

n∑
i=1

(
1− pT

∗
2

i

)
(xi − zi)(xi)⊤

(
(wt)⊙2 − (w∗)⊙2

)
+

1

n

n∑
i=1

(
1− pT

∗
2

i

)
(xi − zi) ϵi

− 1

n

n∑
i=1

(
1− pT

∗
2

i

)2
(xi − zi)(xi − zi)⊤(wt)⊙2

)
.

(46)

Then the dynamic of wt can be expressed as

wt+1 = wt ⊙
[
1d − ηH

((
wt

S

)⊙2 − (w∗)
⊙2
)
− rt + et

]
. (47)

With H = diag(a, 1, . . . , 1), let c = a for j = 1 and c = 1 for j > 1. Since (w∗
j )

2 = w∗
j ∈ {0, 1},

If j ∈ S : wt+1
j = wt+1

j

(
1− η

(
c
(
wt+1

j

)2 − c− rt − et

))
,

If j /∈ S : wt+1
j = wt

j (1 + η (rt + et)) .

Lemma 12. DefineB1 := C1 r
√

log(dr)
n andB2 := C2

√
σ2 log(dr)

n , for absolute constantsC1 > 0.
Assume the step size 0 < η ≤ 1

8 a (1+B1)
. Set the phase lengths

T ∗
4 :=

⌈
5

4η
log

(
max{a(wT∗

2
1 )2, 1}

5aB1

)⌉
+

⌈
5

4η

⌉
, T ∗

5 :=

⌈
5

4η
log
(B1

B2

)⌉
, T ∗

3 := T ∗
4 + T ∗

5 .

Then, with probability at least 1− 1
d2 , the following statements hold. For all t ≤ T ∗

2 + T ∗
3 ,

∀j ∈ S : 0 ≤ wt
j ≤ 1 +B1, ∀j ∈ Sc : wt

j ≤
1

d

√
σ2 log d

n
.

Proof of Lemma 12. Define the inductive property P(t) for t ≥ T ∗
2 :

P(t) : ∀s ∈ [T ∗
2 , t], ∀j ∈ S : 0 ≤ ws

j ≤ 1+B1, ∀s ∈ [T ∗
2 , t], ∀j ∈ Sc : ws

j ≤ d−1
√
σ2 log d/n.

Base case holds by initialization. Assuming P(t), with concerntration Lemma 14 15 16 17 18 19
and 20 we bound

∥rt∥∞ ≤ 2Lrr ≤ 1
2B1, ∥et∥∞ ≤ 1

2B1,

hence ∥rt−et∥∞ ≤ B1. By Lemma 21 withB = B1 and the stepsize, we have 0 ≤ wt+1
j ≤ 1+B1

for j ∈ S. For j ∈ Sc,

wt+1
j ≤ (1 + ηB1)w

t
j ⇒ w

T∗
2 +τ

j ≤ eηB1τw
T∗
2

j .

Since T ∗
3 := T ∗

4 + T ∗
5 satisfies

T ∗
3 ≤

⌈ 1

ηB1
log
(d√σ2 log d/n

w
T∗
2

max,Sc

)⌉
,

then w
T∗
2 +τ

j ≤ d−1
√
σ2 log d/n for all τ ≤ T ∗

3 . Thus P(t + 1) holds. By induction, the claim
holds.
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Lemma 13. For all t ≥ T ∗
2 + T ∗

4 and all j ∈ S,∣∣wt
j − 1

∣∣ ≤ 5B1.

If n ≳ σ2r2 log3(dr), then for all t ≥ T ∗
2 + T ∗

4 + T ∗
5 = T ∗

2 + T ∗
3 and all j ∈ S,∣∣wt

j − 1
∣∣ ≤ 5B2.

Proof of Lemma 13. Fix j ∈ S and xt := c(wt
j)

2, c ∈ {a, 1}, γ = 1/4, γw = γ/2 = 1/8. When
wt

j ≤ 1− γw,

wt+1
j = wt

j

(
1 + η

(
c(1− (wt

j)
2)− bt

))
,

with |bt| ≤ B1. Since 1−(wt
j)

2 ≥ 15/64, assumingB1 ≤ 11/64 yields c(1−(wt
j)

2)−bt ≥ 11/64,

hence wt+1
j ≥ (1 + η · 11/64)wt

j . From w
T∗
2

j ∈ [1/4, 1/2], in at most

T (B1) ≤
⌈ 64

11 η
log

1− γw
w

T∗
2

j

⌉
≤ 33

η

steps we have wt
j ≥ 1− γw, i.e., |xt − c| ≤ γ. Then by Lemma 22 (with B = B1),

|xt+1 − c| ≤ (1− κη)|xt − c|+ βcηB1, κ = 2
3 , β = 2.1,

and whenever |xt − c| ≥ ΛcB1 with Λ ≥ 2β/κ (Λ = 7),

|xt+1 − c| ≤
(
1− κ

2 η
)
|xt − c|.

Hence after

T ∗
4 ≤

⌈ 5

4η
log
|xT∗

2
− c|

5cB1

⌉
+
⌈ 5

4η

⌉
iterations, |xt − c| ≤ 5cB1, which implies |wt

j − 1| ≤ 5B1.

This implies ∥(wt
S)

⊙2 − (w∗)⊙2∥∞ ≤ CwB1. Therefore,

∥rt∥∞ ≤ Lr r CwB1 ≤ Cr
σ2r2 log2(dr)

n
= B2, ∥et∥∞ ≤ Ce

√
σ2 log d

n ≤ B2.

By Lemma 21 with B = B2, for t ≥ T ∗
2 + T ∗

4 + T ∗
5 ,

T ∗
5 =

⌈ 5

4η
log

B1

B2

⌉
⇒ |wt

j − 1| ≤ 5B2.

Lemma 14. Given vector u supported on S, for any δ ∈ (0, 1), with probability at least 1− δ,∥∥∥( 1
n

n∑
i=1

xi(xi)⊤ −H
)
u
∥∥∥
∞
≤ B2

x

√
2

n
log
(2dr
δ

)
· r ∥u∥∞.

Proof of Lemma 14. Fix j ∈ [d]. Then[(
1
n

∑
i

xi(xi)⊤ −H
)
u
]
j
=
∑
k∈S

(
1
n

∑
i

xi
jx

i
k − E[xjxk]

)
uk.

For each k, xi
jx

i
k ∈ [−B2

x, B
2
x], so Hoeffding implies

Pr
(∣∣∣ 1n ∑

i

xi
jx

i
k − E[xjxk]

∣∣∣ ≥ t) ≤ 2 exp
(
− 2nt2

(2B2
x)

2

)
.

A union bound over (j, k) ∈ [d]× S gives the uniform deviation. Hence,∣∣∣[( 1
n

∑
i

xi(xi)⊤ −H
)
u
]
j

∣∣∣ ≤ B2
x

√
2
n log( 2drδ )

∑
k∈S

|uk| ≤ B2
x

√
2
n log( 2drδ ) · r∥u∥∞,

and taking the maximum over j yields the claim.
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Theorem 15. Given u ∈ Rd, for any δ ∈ (0, 1), with probability at least 1− δ,∥∥∥ 1
n

n∑
i=1

x i(x i)⊤u
∥∥∥
∞
≤
[
max{a, 1} + B2

x d

√
2 log(2d2/δ)

n

]
∥u∥∞.

Proof of Lemma 15. Decompose

1

n

n∑
i=1

x i(x i)⊤u = Hu+
(

1
n

n∑
i=1

x i(x i)⊤ −H
)
u.

Since H = diag(a, 1, . . . , 1),
∥Hu∥∞ ≤ max{a, 1} ∥u∥∞.

For the deviation, define

Yi,j := x i
j (x

i)⊤u− E
[
xj x

⊤u
]
,

[(
1
n

n∑
i=1

x i(x i)⊤ −H
)
u
]
j
=

1

n

n∑
i=1

Yi,j .

The Yi,j are i.i.d., mean zero, and almost surely

|Yi,j | ≤ |x i
j |

d∑
k=1

|x i
k| |uk| ≤ Bx · (dBx) ∥u∥∞ = B2

x d ∥u∥∞.

By Hoeffding’s inequality,

Pr

(∣∣∣ 1n n∑
i=1

Yi,j

∣∣∣ ≥ t) ≤ 2 exp

(
− n t2

2B4
xd

2 ∥u∥2∞

)
.

A union bound over j = 1, . . . , d gives, with probability at least 1− δ,

max
1≤j≤d

∣∣∣ 1n n∑
i=1

Yi,j

∣∣∣ ≤ B2
x d ∥u∥∞

√
2 log(2d2/δ)

n
.

Combining with the population bound yields the result.

Lemma 16. For any δ ∈ (0, 1), with probability at least 1− δ,∥∥∥ 1
n

n∑
i=1

xiϵi

∥∥∥
∞
≤ BxBϵ

√
2

n
log
(2d
δ

)
.

Proof of Lemma 16. Apply Hoeffding coordinatewise and union bound over d coordinates.

Lemma 17. Define By := rBx + Bϵ and Bxz := Bx + ∥f(0)∥∞ + LBy + Bξ. Then, given
u ∈ Rd, for any δ ∈ (0, 1), with probability at least 1− δ,∥∥∥ 1

n

n∑
i=1

xi(xi − zi)⊤uS

∥∥∥
∞

+
∥∥∥ 1
n

n∑
i=1

xi(xi − zi)⊤uSc

∥∥∥
∞

≤BxBxz

(
1 +

√
2 log(4d/δ)

n

)(
r∥uS∥∞ + (d− r)∥uSc∥∞

)
.

Consequently, with pmin = mini p
T∗
2

i ,∥∥∥ 1
n

n∑
i=1

(
1− pT

∗
2

i

)
xi(xi − zi)⊤(wt)⊙2

∥∥∥
∞

≤(1− pmin)BxBxz

(
1 +

√
2 log(4d/δ)

n

)(
r∥(wt

S)
⊙2∥∞ + (d− r)∥(wt

Sc)⊙2∥∞
)
.
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Proof of Lemma 17. By the model assumptions, ∥x∥∞ ≤ Bx almost surely. With y = x⊤(w∗)⊙2+
ϵ and ∥x∥∞ ≤ Bx, we have |y| ≤ rBx +Bϵ =: By . Since z = f(y) + ξ with f being L-Lipschitz
and ∥ξ∥∞ ≤ Bξ, it follows that

∥z∥∞ ≤ ∥f(0)∥∞ + L|y|+ ∥ξ∥∞ ≤ ∥f(0)∥∞ + LBy +Bξ.

Hence ∥x− z∥∞ ≤ Bx + ∥f(0)∥∞ + LBy +Bξ =: Bxz.

Fix any j ∈ [d]. For the j-th coordinate of 1
n

∑n
i=1 x

i(xi − zi)⊤uS , we have∣∣∣∣∣ 1n
n∑

i=1

xi
j

(
(xi − zi)⊤uS

)∣∣∣∣∣ ≤ 1

n

n∑
i=1

|xi
j | ∥xi − zi∥∞ ∥uS∥1 ≤ BxBxz ∥uS∥1.

Taking expectation shows the same bound for the population mean. For the centered fluctuations,
define

Y
(j,S)
i := xi

j

(
(xi − zi)⊤uS

)
− E

[
xi
j

(
(xi − zi)⊤uS

)]
.

Then |Y (j,S)
i | ≤ 2BxBxz ∥uS∥1 almost surely, and by Hoeffding’s inequality,

Pr

(∣∣∣∣∣ 1n
n∑

i=1

Y
(j,S)
i

∣∣∣∣∣ ≥ BxBxz ∥uS∥1

√
2 log(2d/δ)

n

)
≤ δ

2d
.

A union bound over j ∈ [d] yields, with probability at least 1− δ/2,∥∥∥ 1
n

n∑
i=1

xi(xi − zi)⊤uS

∥∥∥
∞
≤ BxBxz

(
1 +

√
2 log(2d/δ)

n

)
∥uS∥1.

Using ∥uS∥1 ≤ r∥uS∥∞ completes the bound for the uS term. An identical argument with uSc

(and ∥uSc∥1 ≤ (d− r)∥uSc∥∞) gives, with probability at least 1− δ/2,∥∥∥ 1
n

n∑
i=1

xi(xi − zi)⊤uSc

∥∥∥
∞
≤ BxBxz

(
1 +

√
2 log(2d/δ)

n

)
∥uSc∥1.

A union bound over the two events replaces log(2d/δ) by log(4d/δ) and yields the first display.

For the consequence, note 0 ≤ 1−pT
∗
2

i ≤ (1−pmin). Factoring this out and applying the first bound
with u = (wt)⊙2 (so uS = (wt

S)
⊙2 and uSc = (wt

Sc)⊙2) proves the second display.

Lemma 18. Under the same assumptions as Lemma 17, for any δ ∈ (0, 1), with probability at least
1− δ, ∥∥∥ 1

n

n∑
i=1

(xi − zi)(xi)⊤uS

∥∥∥
∞

+
∥∥∥ 1
n

n∑
i=1

(xi − zi)(xi)⊤uSc

∥∥∥
∞

≤BxBxz

1 +

√
2 log(

4d
δ )

n

(r∥uS∥∞ + (d− r)∥uSc∥∞
)
.

Consequently, with pmin = mini p
T∗
2

i ,∥∥∥ 1
n

n∑
i=1

(
1− pT

∗
2

i

)
(xi − zi)(xi)⊤

(
(wt)⊙2 − (w∗)⊙2

)∥∥∥
∞

≤(1− pmin)BxBxz

1 +

√
2 log(

4d
δ )

n

(r∥(wt
S)

⊙2 − (w∗
S)

⊙2∥∞ + (d− r)∥(wt
Sc)

⊙2

∥∞
)
.

Proof of Lemma 18. Same proof as Lemma 17, exchanging the two factors.
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Lemma 19. Let Sn := 1
n

∑n
i=1(x

i − zi) ϵi ∈ Rd. Then for any δ ∈ (0, 1), with probability at least
1− δ, ∥∥∥ 1

n

n∑
i=1

(
1− pT

∗
2

i

)
(xi − zi) ϵi

∥∥∥
∞

≤(1− pmin)

Bxz σ +Bxz

√
2σ2 log(

2d
δ )

n +
2

3
BxzBϵ

log( 2dδ )

n

 .

Proof of Lemma 19. Fix j ∈ [d] and defineX(j)
i := (x i

j −z i
j ) ϵi. Since ∥x i−z i∥∞ ≤ Bxz a.s., we

have |X(j)
i | ≤ BxzBϵ and Var(X

(j)
i ) ≤ B2

xz σ
2. Let µj := E[X(j)

i ] = E[(xj − zj)ϵ]. By Cauchy–
Schwarz and the a.s. bound, |µj | ≤ Bxz σ. Let Y (j)

i := X
(j)
i − µj , then |Y (j)

i | ≤ |X
(j)
i | + |µj | ≤

Bxz(Bϵ + σ) and Var(Y
(j)
i ) = Var(X

(j)
i ) ≤ B2

xzσ
2. By Bernstein’s inequality, for any t > 0,

Pr

(∣∣∣∣∣ 1n
n∑

i=1

Y
(j)
i

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
− nt2

2B2
xzσ

2 + 2
3Bxz(Bϵ + σ) t

)
.

Choose t = Bxzσ
√

2 log(2d/δ)
n + 2

3Bxz(Bϵ + σ) log(2d/δ)n and take a union bound over j = 1, . . . , d

to obtain, with probability at least 1− δ,∥∥∥∥∥ 1n
n∑

i=1

X
(j)
i

∥∥∥∥∥
∞

≤ ∥µ∥∞ +Bxzσ

√
2 log(2d/δ)

n
+

2

3
Bxz(Bϵ + σ)

log(2d/δ)

n
.

Since ∥µ∥∞ ≤ Bxzσ and Bϵ + σ ≤ 2Bϵ, we have∥∥∥∥∥ 1n
n∑

i=1

X
(j)
i

∥∥∥∥∥
∞

≤ Bxzσ +Bxzσ

√
2 log(2d/δ)

n
+

2

3
BxzBϵ

log(2d/δ)

n
.

Finally, 0 ≤ 1− pT
∗
2

i ≤ (1− pmin) implies∥∥∥ 1
n

n∑
i=1

(
1− pT

∗
2

i

)
(x i − z i) ϵi

∥∥∥
∞

≤(1− pmin)

[
Bxzσ +Bxzσ

√
2 log(2d/δ)

n
+

2

3
BxzBϵ

log(2d/δ)

n

]
,

which completes the proof.

Lemma 20. Let pmin = mini p
T∗
2

i . For any δ ∈ (0, 1), with probability at least 1− δ,∥∥∥ 1
n

n∑
i=1

(
1− pT

∗
2

i

)2
(xi − zi)(xi − zi)⊤(wt)⊙2

∥∥∥
∞

≤ (1− pmin)
2B2

xz

(
1 +

√
2 log(4d/δ)

n

)(
r∥(wt

S)
⊙2∥∞ + (d− r)∥(wt

Sc)⊙2∥∞
)
.

Proof of Lemma 20. Apply the same argument as in Lemma 17.

Consider the scalar update

w+ = Gc,b(w) := w
(
1− η(cw2 − c− b)

)
, c ≥ 1, |b| ≤ B, η > 0,

and let x := cw2, Tb(x) := x(1− η(x− (c+ b)))2 (so x+ = Tb(x)).

Lemma 21 (Invariance and monotonicity). If 0 < η ≤ 1
8 c (1+B)2 , then for every |b| ≤ B the map

Gc,b is nondecreasing on [0, 1 +B] and Gc,b

(
[0, 1 +B]

)
⊆ [0, 1 +B].
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Proof of Lemma 21. We have G′
c,b(w) = 1−η(3cw2− c− b). On [0, 1+B], max(3cw2− c− b) ≤

3c(1 + B)2, hence G′
c,b ≥ 0 if η ≤ 1/[3c(1 + B)2], which is implied by η ≤ 1/[8c(1 + B)2]. For

invariance, note that Gc,b(0) = 0, and by monotonicity in both w and b,

Gc,b(w) ≤ Gc,B(1 +B) = (1 +B)
(
1− η

(
c((1 +B)2 − 1)−B

))
≤ 1 +B,

since c((1+B)2−1)−B ≥ B > 0 and η
(
c((1+B)2−1)−B

)
≤ 1. Nonnegativity of the bracket

is ensured because

min
w∈[0,1+B], |b|≤B

(
1− η(cw2 − c− b)

)
= 1− η

(
c(1 +B)2 − c+B

)
≥ 0

under η ≤ 1/[8c(1 +B)2].

Lemma 22 (Local contraction with bounded noise). Fix γ ∈ (0, 1/4], assume |b| ≤ B, B ≤ 1/8
and η ≤ 1/8. If |x− c| ≤ γ, then

|x+ − c| ≤ (1− κη) |x− c|+ β c η B, κ = 2
3 , β = 2.1.

Moreover, if |x− c| ≥ ΛcB with Λ ≥ 2β/κ (e.g. Λ = 7), then

|x+ − c| ≤
(
1− κ

2 η
)
|x− c| ≤

(
1− 1

3η
)
|x− c|.

Consequently,

t ≥ 2

κη
log
|x0 − c|
ΛcB

⇒ |wt − 1| ≤ ΛB.

Proof of Lemma 22. Let y := x− (c+ b). Then T ′
b(x) = (1− ηy)(1− ηy− 2ηx). On |x− c| ≤ γ,

|b| ≤ B, we have |y| ≤ γ +B ≤ 3/8 and 2x− |y| ≥ 2(c− γ)− (γ +B) ≥ 9/8. Hence

|T ′
b(x)| ≤ (1 + η|y|)

(
1− η(2x− |y|)

)
≤ 1−

(
(2x− |y|)− |y|

)
η + |y|(2x− |y|)η2.

Using (2x− |y|)− |y| ≥ 2c− 4γ− 2B ≥ 3/4, |y|(2x− |y|) ≤ (3/8)(9/8) = 27/64, and η ≤ 1/8,
we get |T ′

b(x)| ≤ 1 − 2
3η. By the mean-value theorem, |Tb(x) − Tb(c)| ≤ (1 − κη)|x − c| with

κ = 2/3. Also |Tb(c)−c| = |c(1+ηb)2−c| ≤ 2cηB+cη2B2 ≤ 2.1 c ηB for η ≤ 1/8. Combining
gives the first claim. If |x− c| ≥ ΛcB, then

|x+ − c| ≤
(
1− κη + β

Λ
η
)
|x− c| ≤

(
1− κ

2 η
)
|x− c|

whenever Λ ≥ 2β/κ. This yields the second claim and the exponential-time bound.

A.4 PROOF OF THEOREM 2

Recall û be the max-margin solution on {ui}ni=1 and γemp := 1/∥û∥2.
Lemma 23. Fix ε ∈ (0, 1) and δ ∈ (0, 1). With probability at least 1− δ over the training sample,

Pr
u

(
(û)⊤u > ε

)
≥ 1− 2

√
∥s∥22 + d(Bx +Bz)2

∥s∥2(1− ε)
√
n

−
√

2 ln(2/δ)

n
.

Proof. Let U =
{
u1, . . . ,un

}
be the training sample and U′ =

{
u′1, . . . ,u′n} be another i.i.d.

samples.

Let ε̄ = ε/∥û∥2 = ε γemp and v̂ = û/∥û∥2. Define the ramp function at threshold ε̄ and width
s > 0:

ψ(ε̄,s)(t) :=


1, t ≤ ε̄,
1− t−ε̄

s , ε̄ < t < ε̄+ s,

0, t ≥ ε̄+ s.

Then ψ ∈ [0, 1] and is 1/s-Lipschitz. Set s = γemp − ε̄ = γemp(1 − ε) > 0. Since mini v̂
⊤ui =

γemp ≥ ε̄+ s, the empirical ramp loss is zero:

1
n

n∑
i=1

ψ(ε̄,s)(v̂
⊤ui) = 0, (48)
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and 1{v̂⊤u ≤ ε̄} ≤ ψ(ε̄,s)(v̂
⊤u). Now apply the high-probability Rademacher uniform deviation

bound (Shalev-Shwartz & Ben-David (2014), Theorem 26.5) to the loss ℓ = ψ(ε̄,s) (bounded by 1),
over the linear class F = {u 7→ v⊤u : ∥v∥2 ≤ 1}: with probability at least 1− δ,

E
[
ℓ(v̂⊤u)

]
≤ 1

n

n∑
i=1

ℓ(v̂⊤ui) + 2EU′
[
R(ℓ ◦ F ◦ U′)

]
+

√
2 ln(2/δ)

n .

Using the contraction lemma (Shalev-Shwartz & Ben-David (2014), Lemma 26.9), R(ℓ ◦F ◦U′) ≤
1
s R(F ◦ U′). By the linear class Rademacher bound (Shalev-Shwartz & Ben-David (2014),
Lemma 26.10), R(F ◦ U′) ≤ R/

√
n since ∥u∥ ≤ R a.s. Because the empirical ramp loss is

zero, we get

E
[
ψ(ε̄,s)(v̂

⊤u)
]
≤ 2R

s
√
n
+

√
2 ln(2/δ)

n
.

Finally, Pr(v̂⊤u ≤ ε̄) ≤ E[ψ(ε̄,s)(v̂
⊤u)] yields

Pr
(
(û)⊤u ≤ ε

)
≤ 2R

γemp(1− ε)
√
n
+

√
2 ln(2/δ)

n
,

which implies the complementary lower bound for Pr((û)⊤u > ε). Combining with Lemma 7
gives the explicit version.

Define

s := s1 − s2, u :=

[
s

x− z

]
, Rad :=

√
∥s∥22 + d (Bx +Bz)2.

Since with probability at least 1−O(1/d2) the output at T ∗ = T ∗
1 + T ∗

2 + T ∗
3 satisfies

ṽ T∗
= û log T ∗

2 + ρT∗
2 , ∥ρT∗

2 ∥2 = O(1), T ∗
2 ≍

d2√
σ2 log d/n

.

Moreover,

w̃T∗
=

[
0

wT∗

]
, ∥wT∗

S − 1S∥∞ ≲
√

σ2 log d
n , ∥wT∗

Sc ∥∞ ≲

√
σ2 log d/n

d
.

Hence ∥∥(wT∗
)⊙2 − (w∗)⊙2

∥∥2
2
≲ r

σ2 log d

n
, ∥(wT∗

)⊙2∥22 ≤ r(1 + o(1)).

Let p = σ
(
(ṽ T∗

)⊤u
)

and, for τ ∈ (0, 1/2),

Ωτ := { p ≥ 1− τ }, κτ := log 1−τ
τ .

Choose ετ := (κτ +Cρ Rad)/ log T
∗
2 with |(ρT∗

2 )⊤u| ≤ Cρ Rad a.s.; then {û⊤u ≥ ετ} ⊆ Ωτ . By
Lemma 23, with probability at least 1− δ over the training sample,

Pr(Ωτ ) ≥ 1− 2Rad

∥s∥2(1− ετ )
√
n
−
√

2 ln(2/δ)

n
. (49)

In particular, taking τ := cτ σ
2 log d/(nd) and log T ∗

2 ≥ 4Cρ Rad+ 2 log
(

nd
σ2 log d

)
gives 1− ετ ≥

1/4− o(1) and thus Pr(Ωτ ) close to one; moreover p ≥ 1− τ ≥ 1− 1
d2 .

Lemma 24. Let Γτ := λmax

(
E[(z− x)(z− x)⊤ | Ωτ ]

)
≤ CΓd, CΓ = (Bx +Bz)

2. Then

E
[∣∣∣∣ L(w̃T∗

, ṽT∗)
− σ2

2

∣∣∣∣ ∣∣∣ Ωτ

]
≤ λmax(H) ∥(wT∗

)⊙2 − (w∗)⊙2∥22 + τ2 Γτ ∥(wT∗
)⊙2∥22 + Bϵ τ

√
Γτ ∥(wT∗

)⊙2∥2.
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Proof. Let µx(x) = E[y | x] = x⊤(w∗)⊙2 and ŷ =
(
p x̃+ (1− p) z̃

)⊤
(w̃T∗

)⊙2. Then we have

ŷ − µx = x⊤((wT∗
)⊙2 − (w∗)⊙2

)
+ (1− p) g, g = (z− x)⊤(wT∗

)⊙2. (50)

Since ϵ ⊥ x, E[ϵ] = 0, we have

L − σ2/2 = 1
2 E[(ŷ − µx)

2]− E[(ŷ − µx)ϵ]. (51)

Conditioning on Ωτ (so 0 ≤ 1− p ≤ τ ), we get

E
[
(ŷ − µx)

2 | Ωτ

]
≤2
(
(wT∗

)⊙2 − (w∗)⊙2
)⊤

H
(
(wT∗

)⊙2 − (w∗)⊙2
)
+ 2 τ2 E[g2 | Ωτ ]

≤2λmax(H)∥
(
(wT∗

)⊙2 − (w∗)⊙2
)
∥22 + 2 τ2 Γτ ∥(wT∗

)⊙2∥22.

For the cross term,

|E[(ŷ − µx)ϵ | Ωτ ]| = |E[(1− p)g ϵ | Ωτ ]| ≤ Bϵ τ E[|g| | Ωτ ] ≤ Bϵ τ
√
Γτ ∥(wT∗

)⊙2∥2.
Combining yields the claim.

Proof of Theorem 2. Let Ω := Ωτ . The probability lower bound follows from equation 49 with
ετ and the stated scale of T ∗

2 . Since pT
∗ ≥ 1 − τ ≥ 1 − 1

d2 . Apply Lemma 24 and substitute

∥
(
(wT∗

)⊙2 − (w∗)⊙2
)
∥22 ≲ r σ2 log d

n , ∥(wT∗
)⊙2∥22 ≤ r, Γτ ≤ CΓd, and τ ≤ σ2 log d

nd to obtain the
stated rate.

Proof of Corollary 1. Define u′ =

[
s

x− z′

]
and Rad′ :=

√
∥s∥22 + d (Bx +Bz′)2 . Replicating

the high-probability calibration of the gate (as in the proof of Theorem 2) with u replaced by u′ and
Rad by Rad′ yields the event Ω with

Pr(Ω) ≥ 1− 8Rad′

∥s∥2
√
n
−
√

2 ln(2d2)

n
,

on which pT
∗
= σ((ṽ T∗

)⊤u′) ≥ 1− 1/d2.

For the risk, write ŷ =
(
pT

∗
x̃+ (1− pT∗

)z̃′
)⊤

(w̃ T∗
)⊙2 and µx(x) = x⊤(w∗)⊙2. Decompose (as

in Lemma 24)

ŷ − µx = x⊤((w T∗
)⊙2 − (w∗)⊙2

)
+ (1− pT

∗
) g′, g′ = (z′ − x)⊤(w T∗

)⊙2.

Conditioned on Ω, we have 0 ≤ 1− pT∗ ≤ 1/d2. Hence,

E
[
(ŷ − µx)

2
∣∣Ω] ≤ 2λmax(H)

∥∥(w T∗
)⊙2 − (w∗)⊙2

∥∥2
2
+ 2 τ2 Γ′

τ

∥∥(w T∗
)⊙2
∥∥2
2
,

where τ = 1/d2 and Γ′
τ := λmax(E[(z′ − x)(z′ − x)⊤ | Ω]) ≤ C ′

Γd with C ′
Γ = (Bx + Bz′)2 by

the envelope bounds. The cross term satisfies |E[(ŷ − µx)ϵ | Ω]| ≤ Bϵ τ
√

Γ′
τ ∥(w T∗

)⊙2∥2.

Finally, substitute the parameter accuracies from Theorem 1: ∥(w T∗
)⊙2−(w∗)⊙2∥22 ≲ r σ2 log d/n

and ∥(w T∗
)⊙2∥22 ≤ r(1 + o(1)), to conclude

E
[∣∣∣∣ L(x,y,z′)

(
w̃ T∗

, ṽ T∗)
− σ2

2

∣∣∣∣ ∣∣∣ Ω] ≲
r σ2 log d

n
.

A.5 EXAMPLES

Example 25 (Under Dominant-Coordinate Condition, population linear regression retains a constant
fraction of z). Let

y = x1 + ϵ, z1 = c y + ξ, zj ≡ 0 (j ≥ 2),

with mutually independent coordinates and

Var(x1) = a > 0, Var(xj) = 1 (j ≥ 2), Var(ϵ) = σ2, Var(ξ) = σ2
ξ ,
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and ϵ ⊥ (x, ξ), ξ ⊥ x. Consider the population linear regression problem

(β⋆
x, β

⋆
z) ∈ arg min

βx,βz

E
[
(y − β⊤

x x− β⊤
z z)2

]
.

If σ2
ξ > 0, the unique solution is

β⋆
z,1 =

c σ2

σ2
ξ + c2σ2

, β⋆
z,j = 0 (j ≥ 2), β⋆

x,1 =
σ2
ξ

σ2
ξ + c2σ2

, β⋆
x,j = 0 (j ≥ 2).

Equivalently,

ŷ = x1 +
c2σ2

σ2
ξ + c2σ2

ϵ+
c σ2

σ2
ξ + c2σ2

ξ,

so linear regression uses z1 to fit the residual noise ϵ with coefficient c2σ2/(σ2
ξ + c2σ2), thereby

retaining a constant fraction of the z component.

Proof of Example 25. From y = x1 + ϵ and independence,

Var(y) = a+ σ2, Cov(x1, y) = a, Cov(xj , y) = 0 (j ≥ 2).

Moreover,
z1 = c y + ξ = cx1 + c ϵ+ ξ, zj ≡ 0 (j ≥ 2),

so
Cov(x1, z1) = c a, Cov(xj , z1) = 0 (j ≥ 2), Var(z1) = c2(a+ σ2) + σ2

ξ .

The population projection is
Πy:x = Σ−1

xxΣxy.

Since y = x1 + ϵ with ϵ ⊥ x, we have

Πy:x = (1, 0, . . . , 0)⊤, y′ := y −Π⊤
y:xx = ϵ.

Likewise, only cx1 in z1 = cx1 + c ϵ+ ξ projects on x, hence

Πz1:x =
Cov(x1, z1)

Var(x1)
=
c a

a
= c, z′1 := z1 −Πz1:x x1 = c ϵ+ ξ,

and z′j ≡ 0 for j ≥ 2.

Frisch-Waugh-Lovell Theorem (Frisch & Waugh, 1933) yields the z-coefficients of the joint regres-
sion by regressing y′ on z′. Thus,

β⋆
z,1 =

Cov(z′1, y
′)

Var(z′1)
=

Cov(c ϵ+ ξ, ϵ)

Var(c ϵ+ ξ)
=

c σ2

c2σ2 + σ2
ξ

,

and z′j ≡ 0 implies β⋆
z,j = 0 for j ≥ 2.

The x-only regression gives

β
(only-x)
x,1 = 1, β

(only-x)
x,j = 0 (j ≥ 2).

The joint coefficient equals the above minus what is explained via z1:

β⋆
x,1 = β

(only-x)
x,1 − Cov(x1, z1)

Var(x1)
β⋆
z,1 = 1− c β⋆

z,1 =
σ2
ξ

σ2
ξ + c2σ2

,

and by symmetry β⋆
x,j = 0 for j ≥ 2.

Example 26. Let x1 ∼ Unif
(
[X,X] ∪ [−X,−X]

)
(symmetric, X > 0), x2 ∼ Unif[−B,B],

ϵ ∼ Unif[−E,E], ξ1 ∼ Unif[−Ξ1,Ξ1], ξ2 ∼ Unif[−Ξ2,Ξ2], all independent, and xj ≡ 0 for
j ≥ 3. Let

y = x1 + x2 + ϵ, z1 = (1− κ) y + ξ1, z2 = α2 y + ξ2,

with 0 < κ < 1, α2 > 0. Set Bx := max{X,B} and Bϵ := E. Then:
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(1) Descendant stronger than a non-dominant causal coordinate. Since Var(x2) = B2/3 and
Var(y) =: Vy = Var(x1) + Var(x2) + Var(ϵ),

Cov(x2, y) = Var(x2) = B2/3, Cov(z2, y) = α2 Vy.

Hence for any α2 > (B2/3)/Vy we have Cov(z2, y) > Cov(x2, y) even though x2 is causal.

(2) Population dominance of coordinate 1 (Condition 1). Since

sj = E
[
y(xj + zj)

]
, µj = E

[
ϵ(xj + zj)

]
, seffj = sj + µj .

Then

seff1 = Var(x1) + (1− κ)Var(y) + (1− κ)Var(ϵ), seff2 = Var(x2) + α2Var(y) + α2Var(ϵ),

and seffj = 0 for j ≥ 3. Because m1,m1j are bounded under our assumptions and seff2 is fixed by
(B,α2, E, κ), choosing Var(x1) large enough (e.g., increasing X) guarantees

seff1 >
2m1

15
+ max

j>1

(
4|seffj |+

m1j

8

)
,

i.e., Condition 1.

(3) Per-sample margins (Condition 2). Since x1 − z1 = κx1 − (1− κ)(x2 + ϵ)− ξ1,

|x1 − z1| ≥ κ|x1| − (1− κ)(|x2|+ |ϵ|)− |ξ1| ≥ κX − (1− κ)(B + E)− Ξ1.

Thus if κX ≥ (1−κ)(B+E)+Ξ1+ τ1, then |x1−z1| ≥ τ1 a.s. Moreover, if κX > (1−κ)(B+
E) + Ξ1, then the sign of x1 − z1 equals the sign of x1 a.s. Finally, if 3

4 X ≥ r Bx +Bϵ + τ2, then
3
4 |x1| ≥ r Bx +Bϵ + τ2 a.s. Hence Condition 2 holds.
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