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Abstract

We teach goal-driven agents to interactively001
act and speak in situated environments by002
training on generated curriculums. Our agents003
operate in LIGHT (Urbanek et al., 2019)—a004
large-scale crowd-sourced fantasy text adven-005
ture game wherein an agent perceives and in-006
teracts with the world through textual natu-007
ral language. Goals in this environment take008
the form of character-based quests, consist-009
ing of personas and motivations. We augment010
LIGHT by learning to procedurally generate011
additional novel textual worlds and quests to012
create a curriculum of steadily increasing diffi-013
culty for training agents to achieve such goals.014
In particular, we measure curriculum difficulty015
in terms of the rarity of the quest in the original016
training distribution—an easier environment is017
one that is more likely to have been found in018
the unaugmented dataset. An ablation study019
shows that this method of learning from the tail020
of a distribution results in significantly higher021
generalization abilities as measured by zero-022
shot performance on never-before-seen quests.023

1 Introduction024

A key hypothesis in the pursuit towards creating025

goal-driven natural language-based agents posits026

that interactivity and environment grounding is027

critical for effective language learning (Barsalou,028

2008; Bisk et al., 2020; Ammanabrolu and Riedl,029

2021). Text games provide a platform on which030

to interactively train agents that can both act and031

speak in a situated manner—producing language032

that is both goal-driven and contextually relevant.033

Agents in text games operate—perceiving, acting034

in, and speaking to others in a world—entirely us-035

ing textual natural language. These games are struc-036

tured generally as sequential decision making prob-037

lems in the form of puzzles or quests that must be038

completed to advance in the game.039

As seen in Figure 1, we focus on creating agents040

in LIGHT (Urbanek et al., 2019), a large-scale041

Figure 1: The LIGHT questing environment presented
as a 2 player game deployed in Messenger.

crowdsourced fantasy text-adventure game, consist- 042

ing of rich textual worlds—locations, objects, and 043

characters with personas, and quests—motivations 044

for each character. To complete these quests, an 045

agent must: (1) maintain character via its persona; 046

and (2) reason in a partially observable world about 047

potential actions and utterances based on incom- 048

plete descriptions of the locations, objects, and 049

other characters. This requires several human like 050

competencies such as commonsense reasoning, dy- 051

namic natural language understanding, and operat- 052

ing in combinatorially sized language-based state- 053

action spaces. Although recent work has provided 054

evidence showing that interactive language learn- 055

ing via reinforcement learning (RL) in text games 056

can be significantly more sample efficient than 057

static supervised learning (Ammanabrolu et al., 058
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2021) when creating goal-driven natural language059

agents, their ability to robustly generalize to novel060

scenarios is limited.061

In sequential decision making problems in par-062

ticular, this generalization gap is the result of an063

agent simply memorizing trajectories, e.g. the se-064

quence of actions and dialogues required to finish065

a game, and thus being unable to react in novel066

scenarios—i.e. the agent learns from the head067

the training data and simply memorizes the long068

tail. One way of decreasing this generalization069

gap is by training agents on procedurally gener-070

ated environments—wherein the agent learns a071

family of parametrized tasks with a significantly072

larger state-action spaces than singular environ-073

ments, thus effectively making the memorization074

of trajectories impossible (Justesen et al., 2018;075

Cobbe et al., 2020). Drawing inspiration from all of076

these ideas, we create a method that learns to create077

a training curriculum of increasingly more difficult078

novel procedurally generated environments.079

Our contributions are threefold: (1) We present080

a method of parametrizing and generating a cur-081

riculum of environments in text games; (2) We082

show how to effectively train reinforcement learn-083

ing agents on this curriculum; and (3) Provide an084

experimental study showing that our method en-085

ables significantly better generalization than those086

training on singular environments.087

2 Procedural Environment Generation088

This section describes our procedural generation089

pipeline as seen in Figure 2, starting with world090

and quest generation, followed by aligning both091

of them. There are two main kinds of models that092

we use for the different modules in this pipeline:093

retrieval and generative.094

The LIGHT Questing Environment. The095

LIGHT game environment (Urbanek et al., 2019)1096

is a multi-user fantasy text-adventure game consist-097

ing of a rich, diverse set of 1775 characters, 663098

locations, and 3462 objects. Characters are able099

to perform templated actions to interact with both100

objects and characters, and can speak to other char-101

acters through free form text dialogues. Actions in102

text games generally consist of verb phrases (VP)103

followed optionally by prepositional phrases (VP104

PP). For example, get OBJ, put OBJ, give OBJ to105

CHAR, etc.. These actions change the state of the106

world which is expressed through text descriptions.107

1https://parl.ai/projects/light

Quests in LIGHT (Ammanabrolu et al., 2021) 108

take the form of a short motivation and goal action 109

that is required reach the world state required to fin- 110

ish the game. For example, if the short motivation 111

is “Your motivation is to acquire a sword”, then 112

the corresponding goal state would be for the char- 113

acter to have a sword in their inventory and goal 114

action would be get sword. This environment also 115

contains a set of human expert demonstration of 116

people speaking and acting in character while play- 117

ing the quests mentioned above. Further details are 118

found in Appendix A.1. 119

2.1 World and Quest Creation 120

World Retrieval. The first step of the pipeline 121

involves choosing an initial character who will per- 122

form the quest. For this, we uniformly randomly 123

sample from the set of characters found in the 124

LIGHT-Quest training set. The corresponding char- 125

acter information includes a name and a description 126

of the character’s persona. Given this character in- 127

formation, we further retrieve the location where 128

the character is most likely to be found. 129

Retrieval models are trained to return the most 130

highly correlated output for a given input in the 131

dataset. For example, a retrieval model can be 132

asked to return the most likely character that can be 133

found at a particular location. These models com- 134

pare a human annotated gold standard label with 135

negative candidates drawn from the dataset. The 136

negative candidates provide noise that the model 137

must filter out in order to learn representations that 138

let it best predict the gold label. These models are 139

trained via a ranking loss that maximizes the scores 140

of the gold label while simultaneously minimizing 141

negative candidate score. At test time, the highest 142

ranked candidate based on the score is selected as 143

the model prediction. 144

Specifically, we use a retrieval-based ranker 145

model that checks for similarity of StarSpace (Wu 146

et al., 2018) embeddings. Our choice of model is 147

influenced by Fan et al. (2019) who report state- 148

of-the-art retrieval performance for locations in 149

LIGHT using this model. The overall ranker model 150

first trains a randomly initialized StarSpace embed- 151

ding model that is designed to correlate characters 152

with the locations they are found in. It learns a 153

single bag-of-words embedding that takes into ac- 154

count all the individual words contained within the 155

input—encoding character and location informa- 156

tion as well as the previously mentioned negative 157
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Select Initial Character:
Dragon - I am a dragon living

in the mountains. I enjoy

hoarding treasure. I terrorize the

local populace for fun. 

Retrieve Initial Location:
Dangerous Precipice - The

dangerous precipice overlooks

the valley below.  The ground

slopes down to the edge here....

Generate Motivation and Goal:
Dragon - I need to recover the

dragon egg that was stolen and

punish the knight.

Goal: take egg, hit knight 

Retrieve Additional Characters:
Knight - I come from a lower-

ranking noble family. I serve under

the king, as my father did before

me. In times of war...

Retrieve Additional Objects:
Golden Dragon Egg

Knight's Fighting Gear

Retrieve Neighboring Locations:
Forest - It is glowing with color...

Castle - The walls are tall and stony...

World and Quest
Generation

Alignment

Figure 2: Procedural environment generation pipeline. Black lines indicate conditioning on all prior components.
Gold lines indicate (adjacent) location placement.

retrieval candidates. The rest of the training is sim-158

ilar to other retrieval models described earlier. The159

retrieved location information consists of a location160

name as well as a description of the location.161

Quest Generation. The quest is now generated162

using the existing character and location informa-163

tion. The generation-based models used in this164

pipeline are trained to return the most likely out-165

put sequence given an input sequence. Given a166

target sequence Y = {y1, ..., yM} and some input167

context vector via the encoders X. These mod-168

els use autoregressive decoding techniques that169

factor the distribution over the target sequence170

into a chain of conditional probabilities with a171

causal left to right structure as P (Y |X; θ) =172 ∏M+1
i=1 p(yi|y0:i−1,X; θ) where θ represents the173

current network parameters. At test time, a special174

start-of-sequence token is provided to the model175

which then proceeds to decode the rest of the output176

sequence using beam search.177

We train two BART (Lewis et al., 2020) models178

that encodes input information via a bidirectional179

transformer encoder and decodes autoregressively:180

the first takes as input character and location in-181

formation and produces a short motivation (Sec-182

tion 2); the second takes as input character, loca-183

tion information, short motivation and produces184

the sequence of LIGHT game engine executable185

actions needed to achieve the motivation. This se-186

quence of actions is provided by the human expert187

demonstrations as mentioned in Section 2.188

2.2 Aligning Worlds and Quests189

At this stage, the environment contains a motivated190

main character to perform a quest and a location191

for them to start in. We now focus on aligning192

the world with the quest to ensure that the quest is 193

playable and achievable. Intuitively, to ensure that 194

a quest is achievable, the world needs to contain all 195

of the entities—locations, characters, and objects— 196

mentioned within the quest. 197

To this end, the alignment process involves train- 198

ing three BERT-based (Devlin et al., 2018) bien- 199

coder retrieval models to retrieve the most likely 200

characters, locations, and objects required flesh the 201

environment out and make the quest achievable. 202

We use the same biencoder architecture proposed 203

by Urbanek et al. (2019) which encodes context us- 204

ing one transformer and candidates with another— 205

scoring candidates via inner product between the 206

two encoded vectors. The character retrieval model 207

is conditioned on the initial character, quest, and 208

location—producing additional characters required 209

to complete the world. 210

We follow the setup in Ammanabrolu et al. 211

(2021) and restrict worlds to only contains 2 charac- 212

ters at maximum but note that this method is extend- 213

able to greater numbers of characters. Similarly, the 214

location retrieval model is also conditioned on the 215

same things—producing, in this case, 4 neighbors 216

to the initial location (resulting in worlds that are 217

5 locations large). These locations are connected 218

to the initial location and a character can move be- 219

tween them by using commands such as go west, 220

go up etc.. Once these characters and locations 221

are added to the world, the object retrieval model 222

predicts the set of objects that are required to be 223

distributed for each location given all the character 224

information present in it. The final game environ- 225

ment instance is complete once this object set has 226

been added. 227
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3 Curriculum Learning228

Generating Curriculums. We generate curricu-229

lums by building off of our procedural LIGHT230

game instance generation pipeline. We make the231

observation that the original quests in LIGHT are232

heavily skewed towards certain quest types—with233

the majority involving goals and short motivations234

that contain objectives related to getting and object,235

and hitting or hugging another character (Figure 3).236

We further note that the first verb in the short moti-237

vation forms the basis of the quest for that agent.238

Actions in LIGHT, and more generally in text239

games, are executed in the game engines on the ba-240

sis of verbs—engine subroutines are linked to verbs241

with nouns forming arguments—and as such are242

primarily responsible for changing the state of the243

world. For example, get sword invokes the get sub-244

routine that places an object, in this case a sword,245

in the character’s surrounding into their inventory.246

As the quest is generated early in the pipeline, with247

the world and the rest of the components being con-248

ditioned on it, we can say that the first verb in the249

short motivation is an important dimension along250

which we can assess the distribution of individual251

LIGHT game instances. Thus, concretely, the verb252

counts from the short motivation aggregated over253

a set of quests represents the primary dimension254

along which we measure the distribution of quests.255

Parametrizing Curriculum Difficulty. Given256

the relative imbalance of this multinomial distri-257

bution, as seen in Figure 3, we hypothesize that258

a LIGHT agent only learns to do well on certain259

types of objectives and not others—memorizing260

trajectories for less seen quest types, i.e. those261

found in the tail of the distribution. Preliminary262

evidence for this hypothesis is also seen in Prab-263

humoye et al. (2020), where they show a positive264

correlation between the number of instances of a265

particular type of quest during training and the final266

test goal-achievement performance. Based on these267

observations and our initial hypothesis, we use this268

particular dimension to parametrize curriculum dif-269

ficulty for training LIGHT agents—quest types that270

are rarer in the initial training data will be harder271

for the agent to generalize to in a zero-shot setting.272

Intuitively, we seek to create curriculums that273

contain a diverse set of game instances with quest274

types that are not often found in the initial training275

data. Our earlier observations let us hypothesize276

that this will enable the LIGHT agent to more ef-277

fectively learn from rare instances of quests as op-278
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Figure 3: Normalized top-20 verb count distribution of
short motivations of the LIGHT-Quests dataset.
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Figure 4: Normalized top-20 noun count distribution of
short motivations of the LIGHT-Quests dataset.

posed to memorizing the corresponding trajectories. 279

To this end, the generated curriculums each consist 280

of a pool of quests with steadily decreasing quest 281

type imbalance. In our case, this imply that the 282

flatness of the multinomial distribution increases 283

until it tends towards being uniform with respect 284

to the categorical quest type variable. This is done 285

by running the procedural generation pipeline itera- 286

tively until the number of instances for the highest 287

count quest type is within n of the lowest count 288

quest type. The total number of additional gen- 289

erated instances is held fixed across curriculums, 290

only the task distribution of quest types within each 291

curriculum changes. 292

Figure 6 shows that decreasing n has the in- 293

tended effect of decreasing imbalance with respect 294

to verb types. Generating using this pipeline has 295

the added effect of increasing diversity within the 296

pool of each available quest type. One measure 297

of diversity within the pool of a single quest type 298

is the types of nouns contained within the short 299

motivations—these generally correspond to the 300

characters, locations, and objects mentioned. Fig- 301

ure 6 shows that decreasing imbalance in the verb 302

types for a short motivation also results in decreas- 303

ing imbalance in noun types, once again corre- 304

sponding to decreasing n. Short motivation gen- 305
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Persona 

+

Motivation

Full
action/dialogue

history
Setting

Encoder

Action & Dialogue
Policy Networks

Update

Game
Engine

Action Utterance

LIGHT
Environment

DMPartner

LIGHT
Agent

Update

Reward Reward

Figure 5: Architecture and training pipeline for the
LIGHT RL Agent (Ammanabrolu et al., 2021).

eration is one of the first steps in the pipeline, i.e.306

the rest of the pipeline is conditioned on it, and307

as such increasing the flatness of the distribution308

there has the effects of increasing distribution for309

downstream components.310

A2C Curriculum Training. Overall training is311

done via A2C (Mnih et al., 2016) a policy gradi-312

ent algorithm that maximizes long-term expected313

reward by comparing the advantage A(st, a
∗
t ) of314

taking an action at in a state st to the average value315

of taking any valid action as predicted by the critic316

V (st). The setup and network architectures used317

are similar to Ammanabrolu et al. (2021) and are318

summarized in Figure 5. At every step, the LIGHT319

agent receives as input the text describing the set-320

ting, the character’s persona & motivation, and the321

full dialogue history. This is then encoded using a322

transformer based encoder and sent to the action323

and dialogue policy networks which output an ac-324

tion/dialogue utterance. These are then passed into325

the LIGHT environment which process them and326

returns rewards to be used by the agent.327

Rewards. As seen in Figure 5, all actions, either328

those of the agent-in-training or the partner agent,329

are processed by the engine, checking for goal state330

completion—hence known as act goals. For ex-331

ample, if the LIGHT agent had the motivation to332

acquire a sword, the goal could be completed via333

a: self act completion: where the agent acquires a334

sword itself by picking it up, stealing it, convinc-335

ing the partner to drop theirs so you can pick it336

up, etc. partner act completion: where the agent337

uses dialogue utterances to convince their partner338

to achieve the goal for them (e.g., by persuading the339

Pipeline Step Model Hits@10 F1 Ppl
World Generation

Location Biencoder 0.543 0.153 -
Object Biencoder 0.563 0.154 -
Character Starspace 0.653 0.289 -

Quest Generation
Short Motive BART - 0.488 7.55
Goal Action BART - 0.763 3.75

Table 1: Procedural generation evaluation showing met-
rics for each individual model in the pipeline.

partner to give them the sword). The naturalness of 340

the dialogue utterances is further rated by a learned 341

Dungeon Master (DM), a transformer-based ranker 342

model trained on human demonstrations to score 343

how relevant the utterance is given the character’s 344

persona and motivation. Further training details are 345

provided in Appendix A.1. 346

4 Evaluation 347

We conduct two separate evaluations: the first mea- 348

sures the effectiveness of the various models in the 349

procedural environment generation pipeline as well 350

as the effectiveness of the pipeline as a whole. The 351

second provides zero-shot ablations of the LIGHT 352

RL agents trained on the resulting curriculums and 353

answers the questions (1) how does the relative 354

difficulty of the training quests effect test perfor- 355

mance?; (2) how does the diversity of the environ- 356

ments during training effect test performance?; and 357

(3) how are the results of the previous questions 358

affected by pre-training? 359

4.1 Procedural Generation Evaluation 360

All of the models in the pipeline described in Sec- 361

tion 2 are trained using only the training set of the 362

original LIGHT and LIGHT-Quests data. LIGHT- 363

Quests inherits characters, locations, and objects 364

from the original LIGHT dataset and adds on moti- 365

vations and goals in the form of quests. Thus, the 366

character, location, and object retrieval models are 367

evaluated on the LIGHT unseen test set and the 368

motivation and goal generation models are evalu- 369

ated on the LIGHT-Quests test set. We report the 370

standard array of metrics: hits@10 and F1 ranking 371

prediction score for retrieval models; and F1 (as 372

a harmonic average of BLEU-1 (Papineni et al., 373

2002) and ROUGE-1 (Lin, 2004)) and perplexity 374

for generative models. Hyperparameters for all 375

models are found in Appendix A.6. 376

Analysis. Table 1 presents the results of this 377

evaluation. There are two primary trends to note: 378
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Figure 6: Top-20 distribution of verbs (top) and nouns (bottom) in the short motivation of the curriculum of quests
starting from the original generated curriculum on the left to the flattened, generated curriculum on the right as a
function of n (Section 3). The y-axis of the reflects normalized overall count in the pool of quests.

(1) character retrieval is easier than retrieving lo-379

cation and objects; and (2) goal action generation380

is easier than motivation generation. We hypothe-381

size that the first trend is a direct consequence of382

the fact that generated motivations and goals regu-383

larly contain the names of the characters involved384

but mostly leave implicit information such as the385

objects required—e.g. the action hit dragon as a386

knight would require a weapon such as a sword to387

be equipped first. The second trend stems from the388

fact that goal actions can often be thought of as con-389

densed version of the short motivation—number of390

tokens required to generate goal actions is far less391

than short motivations. This implies that the goal392

action model is akin to a summarization model as393

opposed to the short motivation model which has394

the more difficult task of generating the motivation395

with only initial persona and location information.396

4.2 Curriculum Learning Evaluation397

This evaluation tests the LIGHT RL agent’s abil-398

ity to zero-shot generalize to unseen environments.399

For all experiments in this study, agents were each400

zero-shot evaluated on 211 human demonstrations401

from the LIGHT-Quests test set for a single episode402

per quest across three independent runs. They were403

measured on the basis of whether or not they were404

able to achieve their goals in the environments con-405

ditioned on their personas: act goals measuring406

their ability to act consistently, and speech goals407

reflecting their ability to speak naturally. The study408

ablates across three dimensions in order to answer409

the posed research questions relating to: (1) cur-410

riculum difficulty, (2) curriculum diversity, and (3) 411

agent pre-training. 412

Curriculum Difficulty. To measure the overall 413

effectiveness of the distribution tuning technique 414

shown in Section 3, we vary the parameter n used 415

to measure curriculum difficulty—note that a lower 416

n corresponds to a flatter distribution and so is 417

higher difficulty. As seen in Fig. 6, we generate 418

pools of quests with steadily increasing difficulty 419

with varying n based on the range of the origi- 420

nal untuned distribution—with the agents being 421

trained on each pool separately as well as all of 422

them in sequence through a curriculum. Agents 423

received 107 total environment interactions per par- 424

allel A2C agent in a batch of 16. For the curriculum 425

learning method, the agent received 2.5×106 inter- 426

actions per pool of quests starting with the initial 427

pool of untuned quests and then sequentially with 428

n = 64, 16, 2 resulting in a total of 107 total envi- 429

ronment interactions per parallel A2C agent. 430

Curriculum Diversity. The variations in the 431

combinations of quests and worlds themselves seen 432

at training time has potential to effect zero-shot per- 433

formance (Samvelyan et al., 2021). We introduce 434

two baselines that change the relative diversities 435

of resulting quests in the curriculums, to contrast 436

with our proposed procedural generation pipeline. 437

Generated quest details are found in Appendix A.5. 438

• Sampled Curriculums. Inspired by Chawla 439

et al. (2002); Graves et al. (2017), we ex- 440

plore an alternate method of creating curricu- 441

lums by simply oversampling the same rare 442

quests found in the tails of the distributions. 443
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This method does not generate new environ-444

ments via the pipeline, instead choosing to445

sample rarer instances of quests with a higher446

weight when initializing each parallel A2C ac-447

tor. This means that the distribution of verbs448

looks similar to what it is in Figure 6 but449

the quests within a pool are repeated multi-450

ple times and so contain no new diversity.451

• Randomly Generated Curriculums. On the452

other side of the diversity spectrum, we test453

a method that follows the same steps as the454

pipeline proposed in Section 2 with the modi-455

fication that the selection process for each step456

in the pipeline is random. The characters, ob-457

jects, location are randomly selected and the458

generated motivations per character are con-459

ditioned on these randomly created worlds.460

This results in a significantly higher diversity461

of quests per pool—at the expense of the rela-462

tive coherence of the overall environment.463

Pre-training. We test two model types, drawing464

from Ammanabrolu et al. (2021), to determine if465

pre-training effects curriculums learning.466

• Scratch. No pre-training is done, the encoder467

is a 3-layer randomly initialized transformer468

and trained along with the policy networks.469

• Adaptive. Pre-training is done on the tasks470

introduced in Ammanabrolu et al. (2021) by471

training a 12 layer transformer with 256 mil-472

lion parameters using a cross-entropy loss473

as seen in Humeau et al. (2020). These474

weights are then transferred to the encoder475

used during RL training then frozen with 3476

randomly initialized-layers appended. The en-477

coder is multi-task trained on both pushshift.io478

Reddit (Baumgartner et al., 2020) and the479

commonsense dataset ATOMIC-LIGHT (Am-480

manabrolu et al., 2021), giving the agent gen-481

eral priors on how to act and speak. It is then482

fine-tuned in LIGHT, giving the agent further483

domain specific priors. Specific task details484

are provided in Appendix A.1.485

Analysis. Table 2 presents the results of this486

evaluation. We first report that the overall propor-487

tion of a pool of procedurally generated environ-488

ments that contain achievable quests or goals for a489

single curriculum is 0.89. This metric provides a490

proxy for measuring the accuracy of the alignment491

process and the overall error rate of the pipeline.492

The high achievability rate means that only a small493

proportion of LIGHT RL A2C agents will waste494

Expt. Act Goals Speech Goals All Goals
Scratch Encoder

No Curr. 0.418 0.118 0.103
Sampled

only n=64 0.392 0.113 0.097
only n=16 0.431 0.116 0.099
only n=2 0.435 0.124 0.111

curriculum 0.460 0.145 0.138
Randomly Generated

only n=64 0.221 0.011 0.009
only n=16 0.223 0.011 0.009
only n=2 0.257 0.016 0.012

curriculum 0.263 0.024 0.017
Generated

only n=64 0.426 0.121 0.107
only n=16 0.433 0.129 0.112
only n=2 0.432 0.130 0.112

curriculum 0.477 0.163 0.155
Adaptive Encoder

No Curr. 0.420 0.330 0.303
Sampled

only n=64 0.431 0.336 0.312
only n=16 0.450 0.340 0.317
only n=2 0.456 0.339 0.321

curriculum 0.473 0.358 0.344
Randomly Generated

only n=64 0.267 0.110 0.092
only n=16 0.271 0.125 0.116
only n=2 0.289 0.168 0.153

curriculum 0.335 0.221 0.207
Generated

only n=64 0.445 0.341 0.330
only n=16 0.469 0.367 0.359
only n=2 0.471 0.366 0.357

curriculum 0.506 0.382 0.373

Table 2: Zero-shot goal achievement rates on a scale
of 0-1, averaged over 3 random seeds with standard
deviations not exceeding 0.02. The “All Goals” col-
umn refers to quests where the agent has simultane-
ously achieved both types of goals within the allotted
one episode. The parameter n refers to the difference
between the number of instances for the highest and
lowest count quest types. All pair-wise comparisons
made are statistically significant.

environment interactions learning from quests that 495

cannot be completed—increasing this rate even fur- 496

ther would likely also improve sample efficiency. 497

Further, we see that just the distribution tuning 498

by itself shows no significant gains in performance 499

over the baselines trained on the original data and in 500

fact loses performance in certain cases. In contrast, 501

learning from the individually tuned quest pools 502

in a sequential curriculum increases performance 503

significantly. This appears to indicate that LIGHT 504

RL agents need to be trained with quests pools of 505

steadily increasing difficulty—starting immediately 506

on a set of quests with a high proportion of rare, 507

generated quests can degrade performance. 508

The significantly increased performance of the 509

procedurally generated curriculums over the sam- 510

pled and randomly generated curriculums indicates 511

the relative importance of diversity within a single 512

quest type—but only up to a certain extent. The 513

sampled quests contain multiple instances of the 514

same quest type but the generated ones have higher 515
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variability—leading to an increased observation516

space, ensuring that the agent cannot simply mem-517

orize trajectories. On the other hand, randomly518

generated quests have even higher variability but519

sacrifice relative coherence—it is more likely that520

the world contains unlikely scenarios, e.g. a desert521

and swamp being located right next to each other—522

resulting in significantly decreased performance.523

We’d finally like to note that the adaptive pre-524

trained model takes advantage of the generated525

curriculums and distribution tuning more than the526

non-pre-trained scratch encoder, showing consis-527

tenly higher performance across the board. We528

hypothesize that this is likely a consequence of the529

adaptive model having greater model capacity—the530

pre-training enabling it to learn generalizable rep-531

resentations of the generated environments. Over-532

all, trends in performance are independent of pre-533

training—both the scratch and the adaptive pre-534

trained model benefit significantly from learning535

from the procedurally generated curriculums.536

5 Related Work537

Text-based Game Playing and Generation. Re-538

cent text game playing works have focused on tack-539

ling three primary challenges: (1) how to represent540

agent knowledge to effectively operate in partially541

observable environments (Adhikari et al., 2020;542

Sautier et al., 2020); (2) scaling RL algorithms to543

handle combinatorial natural language state-action544

spaces (Zahavy et al., 2018; Ammanabrolu and545

Hausknecht, 2020; Jang et al., 2021); and (3) giv-546

ing agents commonsense priors to better reason547

about the world (Murugesan et al., 2020, 2021)548

On the flip side, we have procedural generation549

of games with works such as Short and Adams550

(2017); Risi and Togelius (2019); Khalifa et al.551

(2020) that focus on creating content especially for552

2D visual games via search or reinforcement learn-553

ing based methods. Ammanabrolu et al. (2020b,a)554

use knowledge graphs to ground language and pro-555

duce worlds and quests separately for text games556

from existing corpora such as stories. Fan et al.557

(2019) leverage LIGHT to learn to generate inter-558

active fiction worlds on the basis of locations, char-559

acters, and objects—this work is closest in spirit to560

our own World Generation module later on. They561

all focus on either generating or playing games.562

Goal oriented Dialogue. Sub-tasks within the563

overall task of goal oriented dialogue, such as564

dialogue state management (Singh et al., 2000;565

Pietquin et al., 2011; Fatemi et al., 2016) and re- 566

sponse generation (Li et al., 2016) have used RL 567

to boost performance. As noted by Ammanabrolu 568

et al. (2021), the negotiation tasks of (Yarats and 569

Lewis, 2017; Lewis et al., 2017), where two agents 570

are trying to convince each other to perform certain 571

actions, are related to the tasks in LIGHT-Quests. 572

These works all lack environment grounding. 573

Curriculum Learning. Curriculums in rein- 574

forcement learning have traditionally been used 575

to set goals of steadily increasing difficulty for an 576

agent (Bengio et al., 2009; Schmidhuber, 2013). 577

The difficulty of these curriculums are generally 578

measured difficulty via proxy of agent perfor- 579

mance (Narvekar et al., 2020)—methods either 580

choose to adversarially set goals of steadily increas- 581

ing difficulty (Sukhbaatar et al., 2018; Racaniere 582

et al., 2019; Dennis et al., 2020; Campero et al., 583

2021) or to maximize learning performance based 584

on environment instances an agent finds difficult 585

historically (Graves et al., 2017; Portelas et al., 586

2020). While we were inspired by these works, 587

they all focus on searching for goals for agents 588

which can be difficult to scale to complex tasks 589

such our own natural language motivation-based 590

goals. We’d also like to note that most works us- 591

ing procedural generation to benchmark RL agents 592

such as Cobbe et al. (2020); Küttler et al. (2020); 593

Samvelyan et al. (2021) rely on the underlying 594

richness of the game engines to generate novel en- 595

vironments as opposed to learning to generate. 596

6 Conclusions 597

We focus on the problem of improving zero-shot 598

generalization abilities of goal-driven RL agents to 599

act and speak via natural language. An (obviously) 600

key component of achieving this is to train the RL 601

agents on a balanced training dataset that matches 602

the test data in distribution. As this is an unlikely 603

scenario in most real-world applications, we make 604

the observation that we can artificially augment our 605

pool of training environments by generating cur- 606

riculums to mimic this. In our text game domain, 607

with goal-driven situated natural language agents, 608

we hypothesize—and gather supporting evidence 609

suggesting—that an effective way to parametrize 610

such distributions is by looking at the primary verbs 611

within an agent’s motivation and bringing the dis- 612

tribution of verb types as close to uniform as possi- 613

ble. Curriculum training significantly increases an 614

agent’s ability to generalize to novel scenarios. 615
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A Appendix899

A.1 LIGHT Environment Details900

Formally, we adapt the definition of text-based901

games as seen in (Côté et al., 2018; Hausknecht902

et al., 2020) to LIGHT. They are partially observ-903

able Markov decision processes (POMDPs), repre-904

sented as a 7-tuple of 〈S, T,A,Ω, O,R, γ〉 repre-905

senting the set of environment states, conditional906

transition probabilities between states, the vocabu-907

lary or words used to compose action commands or908

dialogue utterances (e.g. get sword or Hey, give me909

that sword! respectively), observations returned by910

the game, observation conditional probabilities, re-911

ward function, and the discount factor respectively.912

There are 5982 training, 756 validation, and 748913

test quests. The average sequence of a human914

demonstration is 12.92, with an average action se-915

quence length of 2.18 and dialogue of 10.74. There916

are 1800 training, 100 validation, and 211 test hu-917

man expert demonstrations corresponding to the918

same splits as the quests themselves.919

The LIGHT environment further allows us to920

factorize the overall action space A into A as the921

set of possible textual actions or commands (e.g.922

get sword, steal coins from merchant), and U as923

the set of possible dialogues that can be uttered by924

an agent, thus making it a factored POMDP (De-925

gris and Sigaud, 2013). This in turn means that,926

for a given quest q, each expert human demonstra-927

tion D(q) = α∗0, α
∗
1...α

∗
n can be factorized into928

two sub-sequences of expert demonstrations of929

actions and dialogue DA(q) = a∗0, a
∗
1, ...a

∗
n and930

DU (q) = u∗0, u
∗
1, ...u

∗
m respectively. The factor-931

ized action spaces A and U are constructed by932

enumerating all possible actions/dialogue utter-933

ances in the all human demonstrations in LIGHT-934

quests—A =
⋃

q∈QDA(q);U =
⋃

q∈QDU (q)935

with |A| = 4710 and |U | = 22672.936

Figure 7 shows the overall architecture and train-937

ing pipeline—our reinforcement learning pipeline938

is unchanged from that shown in Ammanabrolu939

et al. (2021) with the exception of the curriculum940

of quests performed by the agent and the way the941

speech rewards are designed. An encoder first takes942

in information about setting, persona, motivation943

for a single character then passes it onto a switch944

module. This switch module is a meta policy that945

decides if an agent should act or talk and is trained946

to mimic how often human experts act or talk while947

performing quests via demonstrations. Two sep-948

arate policy networks make a decision on which949

action to perform or dialogue to say given the cur- 950

rent context and a single shared critic attempts to 951

measure the value of taking an action in a particular 952

state. 953

Once an agent acts or talks, the partner agent—in 954

this case also a polyencoder (Humeau et al., 2020) 955

trained to react to agents with motivations—also 956

acts or talks and this information is processed by 957

the environment. As recommended by Prabhumoye 958

et al. (2020); Ammanabrolu et al. (2021), we keep 959

the partner model fixed during the episodes where 960

the LIGHT agent trains to ensure that it retains 961

natural English semantics—avoiding the problem 962

of language drift by learning an emergent language 963

with that must agree with the partner’s usage (Lee 964

et al., 2019). 965

A2C Training. Each parallel A2C agent sam- 966

ples from the the current pool of available quests— 967

i.e. the curriculum—for a fixed number of steps k 968

before switching to the quest pool corresponding 969

to the next higher level difficulty curriculum. The 970

initial pool of quests is the training set of LIGHT- 971

Quests as seen in Ammanabrolu et al. (2021) and 972

all pools after that correspond to decreasing values 973

of n used when generating the curriculums (as seen 974

in Figure 6). 975

Rewards. Following Ammanabrolu et al. 976

(2021), we use a learned model–the Dungeon Mas- 977

ter (DM)—to score the agent’s ability to speak. 978

The DM used here is a poly-encoder model trained 979

on collected human quest demonstrations as well 980

as the original conversations in LIGHT. It is con- 981

ditioned on quests and motivations and thus able 982

to provide a (noisy) indication of how natural the 983

agent’s dialogue utterances are given its immediate 984

context, similarly to the function of the DM during 985

data collection. 986

Given the dialogue portion of a human quest 987

demonstration DU (q) = u∗0, u
∗
1, ...u

∗
n, of length n, 988

the DM returns a reward ru of 1
2n if an utterance 989

was in the demonstration u ∈ DU (q) (for a max- 990

imum of one time per episode for each utterance 991

from the demonstration). A further 1
2n is given each 992

time the utterance is scored as being within the top- 993

k most likely utterances by the DM. The original 994

quests all have human demonstrations but the pro- 995

cedurally generated ones do not. During training, 996

in cases where a particular LIGHT game instance 997

does not have corresponding human demonstration, 998

only the latter reward resulting from an utterance 999

being within the top-k most likely utterances by 1000

12
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Figure 7: Expanded overall architecture and training pipeline diagram for the LIGHT RL Agent (Ammanabrolu
et al., 2021).

the DM is used. This naturalness objective will be1001

hence referred to as a speech goal. These rewards1002

thus also denser than act goals, helping the agent1003

learn overall. Further, similarly to the game engine,1004

the DM also provides a set of M valid utterances1005

which are the M most likely dialogue candidates1006

from the candidate set for the current context.1007

A.2 Encoder Pre-training Tasks1008

Here, we summarize the pre-training tasks for the1009

encoders mentioned in Section 4.2. These tasks are1010

unchanged from those described in Ammanabrolu1011

et al. (2021).1012

ATOMIC-LIGHT. ATOMIC-LIGHT is a1013

(domain-adapted) fantasy commonsense knowl-1014

edge graph, and as such provides priors for an agent1015

on how to act consistently in the world. For exam-1016

ple, given a clause such as “The knight wishes to1017

slay the dragon, as a result the knight needs to1018

acquire a sword,” the task would be to predict the1019

underlined text—a form of knowledge graph com-1020

pletion (Wang et al., 2017).1021

Reddit. A further tuning dataset is derived from1022

an existing Reddit dataset, pushshift.io (Baumgart-1023

ner et al., 2020) as seen in Roller et al. (2020). This1024

dataset has been used in several existing dialogue-1025

based studies and has been shown to result in more1026

natural conversations (Yang et al., 2018; Mazaré1027

et al., 2018).1028

LIGHT-Original. The task itself dervied from1029

the original LIGHT dataset (Urbanek et al., 2019)1030

and involves predicting the next action or utterance1031

given the prior dialogue history as well as the cur-1032

rent setting and persona for a character. They are1033

collected in a chit-chat fashion, with no notion of1034

objectives, and so provide priors on how to gener-1035

ally act consistently and speak in a fantasy world,1036

but not directly how to complete quests.1037

LIGHT-Quests. This dataset provides two pre- 1038

training tasks. (1) Bag-of-action timeline predic- 1039

tion in which, given a quest consisting of setting, 1040

persona, and motivations, any one of the actions 1041

in the timeline must be predicted. (2) Sequential 1042

timeline prediction in which, given a quest consist- 1043

ing of setting, persona, motivations, and the first n 1044

actions in the timeline, the n+ 1th action must be 1045

predicted. (3) Predict the next dialogue utterance 1046

given a human demonstration in a manner similar 1047

to the LIGHT-original tasks. 1048

A.3 Sampled and Randomly Generated 1049

Curriculum Distributions 1050

This section contains the verb and noun distribu- 1051

tions for the sampled and randomly generated cur- 1052

riculums as described in Section 4.2, presented in 1053

the same fashion as Figure 6. 1054

For the randomly generated curriculums, we 1055

present 5 different curriculums—varying the pro- 1056

portion of randomly generated quests per pool from 1057

0% (corresponding to the full procedurally gener- 1058

ated pipeline), to 100% randomly generated, in 1059

increments of 20%. Sections after this present ab- 1060

lation results after training agents on these curricu- 1061

lums to better analyze the effects of randomness 1062

and diversity in zero-shot generalization. 1063
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Figure 8: Distribution of verbs in the short motivation
of the curriculum of quests starting from the original
distribution on top to the flattened and sampled cur-
riculum on the bottom as a function of n (Section 3).
The y-axis of the different nouns reflect their relative
proportion in the pool of quests.
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Figure 9: Distribution of nouns in the short motivation
of the curriculum of quests starting from the original
distribution on top to the flattened and sampled cur-
riculum on the bottom as a function of n (Section 3).
The y-axis of the different nouns reflect their relative
proportion in the pool of quests.
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Figure 10: Distribution of verbs in the short motivation of the curriculum of quests starting from the original distri-
bution on the left to the flattened and randomly generated curriculum on the right as a function of n (Section 3)
with the randomness percentage tuning. The y-axis of the different verbs reflect their relative proportion in the
pool of quests.
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Figure 11: Distribution of nouns in the short motivation of the curriculum of quests starting from the original dis-
tribution on the left to the flattened and randomly generated curriculum on the right as a function of n (Section 3)
with the randomness percentage tuning. The y-axis of the different nouns reflect their relative proportion in the
pool of quests.
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A.4 Effects of Diversity in Procedural1064

Generation Pipeline on Curriculum1065

Learning1066

Table 3 shows the results of a zero-shot evaluation1067

as described in Section 4.2 on each of the randomly1068

generated curriculum pools. Agents were trained1069

on the full curriculum for each of these experiments.1070

One major trend stands out: the less randomness1071

during environment generation, the greater the per-1072

formance. This shows that, while more diverse (as1073

seen in Table 4), having potentially less coherent1074

worlds and quests during training hurts agent per-1075

formance at test time—a case of spurious diversity1076

in training data.1077

Expt. Act Goals Speech Goals All Goals
Scratch Encoder

No Curr. 0.418 0.118 0.103
Sampled 0.460 0.145 0.138
100% Randomly Generated 0.263 0.024 0.017
80% Randomly Generated 0.267 0.080 0.062
60% Randomly Generated 0.379 0.112 0.093
40% Randomly Generated 0.422 0.115 0.109
20% Randomly Generated 0.464 0.146 0.143
Procedurally Generated 0.477 0.163 0.155

Adaptive Encoder
No Curr. 0.420 0.330 0.303
Sampled 0.473 0.358 0.344
100% Randomly Generated 0.335 0.221 0.207
80% Randomly Generated 0.364 0.280 0.269
60% Randomly Generated 0.424 0.327 0.293
40% Randomly Generated 0.481 0.370 0.330
20% Randomly Generated 0.508 0.371 0.369
Procedurally Generated 0.506 0.382 0.373

Table 3: Effects of diversity in procedural generation
on curriculum learning. All experiments were averaged
over 3 random seeds. Standard deviations across any
individual result do not exceed 0.02. The “All Goals”
column refers to quests where the agent has simultane-
ously achieved both types of goals within the allotted
one episode. The parameter n refers to the difference
between the number of instances for the highest and
lowest count quest types.

A.5 Curriculum Statistics1078

This section presents statistics attempting to quan-1079

tify the diversity and relative coherence of the envi-1080

ronments in each of the curriculums we test on. We1081

quantify diversity in terms of the unique entities1082

present overall in the world as well as the num-1083

ber of unique uni-,bi-, and tri-grams found in the1084

generated short motivations and goal texts.1085

Specifically, unique entities were calculated by1086

using the count of all the unique objects and charac-1087

ter which are generated in the procedural generated1088

short motivations / goals. In addition, the count1089

of the unique uni-grams /bi-grams /tri-grams repre-1090

sent the n-grams counts changing with the proce-1091

durally generated curriculum as a function of n1092

Procedural Generated Short Motivations, randomness = 0
entities hit %age unigrams bigrams trigrams

untuned 2529 0.93 448 1141 1734
n=64 2527 0.91 446 1173 1789
n=16 2523 0.91 441 1139 1720
n=2 2523 0.91 436 1146 1738

Procedural Generated Goals, randomness = 0
entities hit %age unigrams bigrams trigrams

untuned 2529 0.93 955 5148 8348
n=64 2527 0.93 1061 5032 8126
n=16 2523 0.93 992 4749 7853
n=2 2523 0.94 935 4594 7693
Randomly Generated Short Motivations, randomness = 20

entities hit %age unigrams bigrams trigrams
untuned 2633 0.10 389 1007 1617
n=64 2626 0.12 378 1013 1641
n=16 2607 0.16 372 985 1593
n=2 2614 0.17 349 917 1475

Randomly Generated Goals, randomness = 20
entities hit %age unigrams bigrams trigrams

untuned 2633 0.17 846 3061 5824
n=64 2626 0.15 919 3450 6530
n=16 2607 0.17 827 3311 6422
n=2 2614 0.17 724 2998 5926
Randomly Generated Short Motivations, randomness = 40

entities hit %age unigrams bigrams trigrams
untuned 2604 0.37 478 1239 1968
n=64 2590 0.21 762 1695 2458
n=16 2586 0.61 490 1251 1984
n=2 2584 0.60 476 1237 1972

Randomly Generated Goals, randomness = 40
entities hit %age unigrams bigrams trigrams

untuned 2604 0.13 837 4302 7444
n=64 2590 0.12 970 4870 7750
n=16 2586 0.37 901 4617 7551
n=2 2584 0.36 879 4643 7570
Randomly Generated Short Motivations, randomness = 60

entities hit %age unigrams bigrams trigrams
untuned 2582 0.10 346 831 1262
n=64 2578 0.27 383 910 1384
n=16 2576 0.31 390 920 1395
n=2 2573 0.31 378 893 1356

Randomly Generated Goals, randomness = 60
entities hit %age unigrams bigrams trigrams

untuned 2582 0.09 468 1565 3054
n=64 2578 0.27 612 2862 5549
n=16 2576 0.30 571 2834 5612
n=2 2573 0.31 556 2842 5631
Randomly Generated Short Motivations, randomness = 80

entities hit %age unigrams bigrams trigrams
untuned 2541 0.08 409 1046 1636
n=64 2541 0.17 409 1110 1771
n=16 2540 0.19 406 1075 1710
n=2 2540 0.18 402 1070 1691

Randomly Generated Goals, randomness = 80
entities hit %age unigrams bigrams trigrams

untuned 2541 0.11 516 2781 5804
n=64 2541 0.26 786 4171 7534
n=16 2540 0.28 757 4153 7576
n=2 2540 0.28 719 3979 7372
Randomly Generated Short Motivations, randomness = 100

entities hit %age unigrams bigrams trigrams
untuned 2537 0.11 321 779 1204
n=64 2537 0.30 321 765 1166
n=16 2527 0.29 314 744 1141
n=2 2527 0.30 314 739 1127

Randomly Generated Goals, randomness = 100
entities hit %age unigrams bigrams trigrams

untuned 2537 0.07 397 2363 5232
n=64 2537 0.13 477 3156 6263
n=16 2527 0.13 434 3039 6154
n=2 2527 0.14 427 2993 6114

Table 4: Curriculum learning hit analysis and unique
n-grams counts. The tables show the hit percentage
of the procedually generated entities in short motiva-
tions/ goals among the retrieved entities (objects + char-
acter).The count of unique uni-grams /bi-grams/ tri-
grams represent the n-grams counts changing with the
procedurally generated curriculum as a function of
n (Section 3) with the randomness percentage tun-
ing for the generated short motivations or goals using
BART model.
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(Section 3) with the randomness percentage tun-1093

ing for both the short motivations and goals gener-1094

ated by BART. As a sanity check on how coherent1095

an environment is, we attempt to see if the enti-1096

ties required to finish a quest even exist within the1097

world—i.e. a hit percentage that roughly estimates1098

what proportion of quests in a pool are achievable1099

end to end. The hit percentage are calculated by1100

checking if the NOUN extracted from the short mo-1101

tivations/goals exists in the procedually generated1102

entities (objects + character) in the same environ-1103

ment. Counting as 1/0 to represent as existing/not1104

and divided by the total number of quests to get the1105

hit percentage in the table.1106

A.6 Hyperparameters1107

Hyperparameter type Value

Num. layers 2
Num. attention heads 2
Embedding size 300
Dropout ratio 0.0
Gradient clip 0.1
Optimizer Adam
Learning rate 1 × 10−4

Table 5: Hyperparameters used to train the Biencoder
model to retrieve objects for generating the LIGHT
world. The same trained models were then frozen and
used for further experiments.

Hyperparameter type Value

Embedding size 128
Embedding norm 10
Dropout ratio 0.0
Gradient clip 0.1
Optimizer SGD
Learning rate 0.1

Table 6: Hyperparameters used to train the Starspace
model to retrieve character for generating the LIGHT
world.

Hyperparameter type Value

Num. encoder layers 12
Num. decoder layers 12
Num. attention heads 16
Batchsize 8
Activation gelu
Beam size 1
Beam decay 30
Beam length penalty 0.65
Num. attention heads 2
Embedding size 1024
Dropout ratio 0.1
Gradient clip 0.1
Optimizer SGD
Learning rate 1× 10−4

Table 7: Hyperparameters used to train and test the
BART model for generating short motivations and
goals.

Hyperparameter type Value

Dictionary Tokenizer Byte-pair encoding
Num. layers 12
Num. attention heads 12
Feedforward network hidden size 3072
Input length 1024
Embedding size 768
Batch size 32
Dropout ratio 0.1
Poly-n-codes 64
Gradient clip 1.0
Optimizer Adam
Learning rate 1× 10−6

Table 8: Hyperparameters used to pre-train the adaptive
encoder as described in Humeau et al. (2020).

Hyperparameter type Value

General
Discount γ 0.99
Valid Action loss coefficient 10
Action entropy coefficient 0.01
Valid Speech loss coefficient 40
Speech entropy coefficient 0.04
Batch size 32
Gradient clip 1.0
Steps per episode 100
Policy Networks (Actors)
Num. Layers 3
Feedforward network hidden size 768
GRU hidden size 768
Value Predictor (Critic)
Num. Layers 2
Feedforward network hidden size 768
Appended Encoder
Num. layers 3
Num. attention heads 3
Feedforward network hidden size 768

Table 9: RL experiments hyperparameters unchanged
from Ammanabrolu et al. (2021).
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