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Abstract

Locating and fixing software faults is a time-consuming and resource-intensive task in soft-
ware development. Traditional fault localization methods, such as Spectrum-Based Fault
Localization (SBFL), rely on statistical analysis of test coverage data but often lack accu-
racy. While more effective, learning-based techniques require large training datasets and
can be computationally intensive. Recent advancements in Large Language Models (LLMs)
have shown potential for improving fault localization by enhancing code comprehension
and reasoning. LLMs are typically pretrained and can be leveraged for fault localization
without additional training. However, these LLM-based techniques face challenges, includ-
ing token limitations, performance degradation with long inputs, and difficulties managing
large-scale projects with complex, interacting components. We introduce LLM4FL, a multi-
LLM-agent-based fault localization approach to address these challenges. LLM4FL utilizes
three agents. First, the Context Extraction Agent uses an order-aware division strategy to
divide and analyze extensive coverage data into small groups within the LLM’s token limit,
identify the failure reason, and prioritize failure-related methods. The prioritized methods
are sent to the Debugger Agent, which uses graph-based retrieval to identify failure reasons
and rank suspicious methods in the codebase. Then the Reviewer Agent re-evaluates and
re-ranks buggy methods using verbal reinforcement learning and self-criticism. Evaluated on
the Defects4J (V2.0.0) benchmark of 675 faults from 14 Java projects, LLM4FL outperforms
AutoFL by 18.55% in Top-1 accuracy and surpasses supervised methods like DeepFL and
Grace, all without task-specific training. Coverage splitting and prompt chaining further
improve performance, boosting Top-1 accuracy by up to 22%.

1 Introduction

The process of locating and fixing software faults requires significant time and effort. Research shows that
software development teams allocate more than half of their budgets to testing and debugging activities (Hait
& Tassey, 2002; Alaboudi & LaToza, 2021). As software systems become increasingly complex, the demand
for more accurate fault localization techniques grows. To assist developers and reduce debugging costs,
researchers have developed various fault localization techniques (Li et al., 2019; Lou et al., 2021; Qian et al.,
2023b; Li et al., 2021; Abreu et al., 2009; Sohn & Yoo, 2017). These techniques analyze code coverage and
program execution to identify the most likely faulty code, assisting developers in finding the fault.

Despite the advances in fault localization, many existing techniques still struggle with scalability and pre-
cision. Traditional methods, such as Spectrum-Based Fault Localization (SBFL), use statistical analysis to
analyze coverage data from passing and failing test cases to rank suspicious code elements (Abreu et al.,
2006). While these techniques provide valuable insights, their accuracy is lower. Their reliance on statistical
correlations between test failures and code coverage does not always capture the deeper semantic relation-
ships needed for more accurate fault localization (Wong et al., 2016; Xie et al., 2013; Le et al., 2013). Recent
techniques applied machine learning (Sohn & Yoo, 2017; Zhang et al., 2019a; Li et al., 2021; 2019) and deep
learning models (Lou et al., 2021; Qian et al., 2023b; Rafi et al., 2024; Lou et al., 2021) to address these
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issues to improve fault localization. These methods enhance the ranking of suspicious code elements by in-
corporating additional information like code complexity, text similarity, and historical fault data. However,
these techniques often require extensive training data that may not be available.

Recent advances in Large Language Models (LLMs) have shown great potential for software fault localization
due to their strong language comprehension and generation capabilities (Abedu et al., 2024; Lin et al., 2024a).
LLMs trained on extensive programming datasets can understand code structure, interpret error messages,
and even suggest bug fixes (Wu et al., 2023; Pu et al., 2023; Li et al., 2023). These models, with their
ability to analyze and process both natural language and code, present an opportunity to significantly
improve traditional fault localization methods by incorporating deeper semantic analysis and context-aware
reasoning.

Several recent studies have explored the use of large language models (LLMs) for fault localization (Kang
et al., 2024; Qin et al., 2024; Zhang et al., 2024), showing promising results. However, these approaches still
have important limitations. As summarized in Table 1, current techniques face three key challenges: ➀ Due to
LLM’s token limitation, prior studies often use only method names or summaries to determine if a method
requires further investigation, thereby missing code implementation details. ➁ They rely on text-based
search to navigate across methods and files based on names, making them prone to LLM hallucinations and
confusion caused by methods having similar names or overridden methods. ➂ They make one-shot decisions
when ranking faulty methods, limiting their ability to improve the ranking when there is new information.

In this paper, we propose LLM4FL, a multi-agent LLM-based fault localization technique designed to analyze
software projects at the repository level, emulating developers’ fault localization process. To address ➀,
LLM4FL uses the Context Extraction Agent, which mitigates token constraints by dividing covered methods
into manageable groups and analyzing every method’s implementation details to prioritize the most suspicious
ones. This allows the LLM to reason over source code rather than rely solely on method names or summaries.
To address ➁, the Debugger Agent enhances structural awareness by performing graph-based, retrieval-
augmented code navigation. It follows interprocedural call relationships when navigating the codebase,
ensuring that retrieved methods are semantically and structurally relevant, rather than based solely on
textual similarity. Finally, to address ➂, the Reviewer Agent refines the results through verbal reinforcement
learning (Shinn et al., 2024), iteratively revisiting and improving the ranking of suspicious methods based
on earlier reasoning and method implementation details. This iterative refinement leads to more stable and
accurate fault localization outcomes.

We evaluated LLM4FL on the Defects4J (v2.0.0) benchmark (Just et al., 2014), which includes 675 real-world
faults across 14 open-source Java projects. As a widely adopted dataset in fault localization research (Kang
et al., 2024; Qin et al., 2024; Lou et al., 2021; Rafi et al., 2024; Li et al., 2019), Defects4J provides a controlled
environment for evaluating FL techniques. A recent study (?) also shows that it has a very low risk of data
leakage for LLMs, making it suitable for evaluating LLM-based FL techniques. Our results demonstrate that
LLM4FL surpasses LLM-based technique AutoFL (Kang et al., 2024) and AgentFL/SoapFL (Qin et al.,
2024) by achieving 18.55% and 4.82% higher Top-1 accuracy, respectively. LLM4FL is also the cheapest
among the three, costing only $0.05 per fault. Additionally, LLM4FL outperforms supervised techniques
such as DeepFL (Li et al., 2019) and Grace (Lou et al., 2021), even without task-specific training. We also
analyzed the impact of individual components within LLM4FL on fault localization accuracy. Our findings
indicate that each component plays a significant role in performance. Among these, dividing the covered
methods into smaller groups and Graph-RAG-based code navigation contribute the most.

Moreover, we examined whether the initial ordering of methods provided to the LLM influences performance.
The results reveal that method ordering is important. Even though LLM eventually visits all methods, the
Top-1 accuracy still has a difference of up to 22% when comparing an execution-based ordering and the
order provided by DepGraph (Rafi et al., 2024). We also find that by combining traditional techniques with
LLM4FL, we can further improve the fault localization accuracy.

The paper makes the following contributions:

• We introduce LLM4FL, a novel LLM-based fault localization technique that employs a divide-and-
conquer strategy. This technique groups large coverage data and ranks the covered methods using an
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SBFL formula. Using multiple agents and code navigation based on Graph-RAG, LLM4FL analyzes
the repository iteratively to identify and localize faults.

• We conducted an extensive evaluation and LLM4FL demonstrates superior performance, surpassing
AutoFL (Kang et al., 2024) by 18.55% and AgentFL/SoapFL (Qin et al., 2024) by 4.82% in Top-1
accuracy. It also outperforms supervised techniques like DeepFL and Grace, achieving these results
without requiring task-specific training.

• We find that the different ordering on the initial method list passed to LLM can affect fault local-
ization accuracy by up to 22% in Top-1 scores, even though LLM eventually visits all the methods.

• Our analysis of LLM4FL’s components shows that key components like dividing methods into smaller
groups and code navigation are essential to its fault localization accuracy. Removing these features
leads to performance declines, emphasizing their importance in handling token limitations and ef-
fective fault analysis.

• The data and source code of this work are publicly available online: https://anonymous.4open.
science/r/llm4fl-10AD/readme.md.

In short, we provide a strategy to mitigate the token limitation issues and analyze repository-level data in
LLM-based fault localization. We also highlight the impact of initial method ordering for LLM’s input. The
findings may help inspire future research on LLM-based fault localization for large-scale software projects.

Paper Organization. Section 2 discusses background and related work. Section 3 describes our technique,
LLM4FL. Section 4 presents the experimental results. Section 5 discusses the threats to validity. Section 6
concludes the paper.

2 Related Work

Large Language Models. Large Language Models (LLMs), primarily built on the transformer architec-
ture (Meta AI, 2024; Brown, 2020; Roziere et al., 2023), have significantly advanced the field of natural
language processing (NLP). These LLMs, such as the widely recognized GPT3 model with 175 billion pa-
rameters (Brown, 2020), are trained on diverse text data from various sources, including source code. The
training involves self-supervised learning objectives that enable these models to develop a deep understanding
of language and generate contextually relevant and semantically coherent text. LLMs have shown substan-
tial capability in tasks that involve complex language comprehension and generation (Abedu et al., 2024;
Lin et al., 2024a), such as code recognition and generation. Recent research has leveraged LLMs in soft-
ware engineering tasks, particularly in fault localization (Kang et al., 2024; Qin et al., 2024; Yang et al.,
2024), where they assist in identifying the faulty code groups responsible for software errors. One of the key
advantages of using LLMs in fault localization is their ability to process both natural language and code
without re-training, allowing them to analyze error messages, stack traces, and test case information to infer
suspicious methods or code sections in an unsupervised zero-shot setting.

LLM Agents. LLM agents leverage LLMs to autonomously execute tasks described in natural language
autonomously, making them versatile tools across various domains. LLM agents are artificial intelligence
systems that utilize LLMs as their core computational engines to understand questions and generate human-
like responses. They leverage functionalities like memory management (Zhou et al., 2023) and tool integra-
tion (Xia et al., 2024; Roy et al., 2024) to handle multi-step and complex operations seamlessly. The agents
can refine their responses based on feedback, learn from new information, and even interact with other AI
agents to collaboratively solve complex tasks (Hong et al., 2024; Qian et al., 2023a; Xu et al., 2023; Lin et al.,
2024a). Through prompting, agents can be assigned different roles (e.g., a developer or a tester), providing
more domain-specific responses that help improve the answer (Hong et al., 2024; White et al., 2024; Shao
et al., 2023).

Recent studies (Shinn et al., 2024; Renze & Guven, 2024; Pan et al., 2025) explore using the agent’s verbal
reasoning result to guide iterative improvement (i.e., verbal reinforcement learning), which has shown
promising improvement in downstream tasks. In verbal reinforcement learning, LLM agents receive natural
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language feedback, such as reasoning results or instructions, from other agents as a reward signal. This
allows agents to learn and adapt their behavior based on human-like guidance, improving their learning
process to solve complex tasks. As the capabilities of large language model (LLM) agents grow, they play an
essential role in enhancing automation and increasing productivity in software development. They can assist
in code generation (Nijkamp et al., 2022; Lin et al., 2024b; Gu, 2023), debugging (Lee et al., 2024; Kang
et al., 2024), test case creation (Huang et al., 2024; Chen et al., 2024b), and automated refactoring (Pomian
et al., 2024; Liu et al., 2025), enabling developers to streamline repetitive tasks and focus on higher-level
design and problem-solving. Additionally, LLM agents can facilitate collaborative software engineering by
acting as intelligent assistants in code reviews, documentation generation, and issue resolution, improving
overall development efficiency (Lin et al., 2024b; He et al., 2024). This paper explores using LLM agents to
improve fault localization by emulating developers’ debugging process using verbal reinforcement learning.

2.1 Related Work

Spectrum-based Fault Localization. Spectrum-based fault localization (SBFL) (Abreu et al., 2006;
Jones et al., 2002; Wong et al., 2013; Abreu et al., 2009) employs statistical techniques to evaluate the
suspiciousness of individual code elements, such as methods, by analyzing test outcomes and execution
traces. The core idea of SBFL is that code components executed more frequently in failing tests and less
frequently in passing tests are more likely to contain faults. Despite its widespread study, SBFL’s practical
effectiveness remains limited (Kochhar et al., 2016; Xie et al., 2016). To enhance SBFL’s accuracy, recent
research (Cui et al., 2020; Wen et al., 2019; Chen et al., 2022; Xu et al., 2020b) has suggested incorporating
additional data, such as code changes (Wen et al., 2019; Chen et al., 2022) or mutation analysis (Cui et al.,
2020; Xu et al., 2020b). However, SBFL’s reliance on code coverage metrics still poses challenges, as its
suspiciousness scores may not generalize effectively to different faults or systems.

Learning-based fault localization. Recent efforts have focused on improving SBFL with learning-based
methods (Sohn & Yoo, 2017; Zhang et al., 2019a; Li et al., 2021; Li & Zhang, 2017; Li et al., 2019; Zhang
et al., 2019b). These approaches use machine learning models like radial basis function networks (Wong
et al., 2011), back-propagation networks (Wong & Qi, 2009), and convolutional neural networks (Zhang
et al., 2019b; Li et al., 2021; Albawi et al., 2017) to estimate suspiciousness scores based on historical
faults. Some techniques, such as FLUCCS (Sohn & Yoo, 2017), combine SBFL scores with metrics like code
complexity, while others, like DeepFL (Li et al., 2019) and CombineFL (Zou et al., 2019), merge multiple
sources such as spectrum-based and mutation-based data (Moon et al., 2014; Papadakis & Le Traon, 2015;
Dutta & Godboley, 2021). Graph neural networks (GNNs) have also been applied to fault localization (Qian
et al., 2023b; Lou et al., 2021; Qian et al., 2021; Xu et al., 2020a). Techniques like Grace (Lou et al.,
2021) and GNET4FL (Qian et al., 2023b) utilize test coverage and source code structure for improved
accuracy, while DepGraph (Rafi et al., 2024) refines these approaches by graph pruning and incorporating
code change information, resulting in higher performance with reduced computational demands. Although
these learning-based techniques show improved results, they require training data that may not be available
to every project.

LLM-Based Fault Localization. Large Language Models (LLMs), such as GPT-4o (OpenAI, 2024)
and LLaMA (Meta AI, 2024), demonstrated remarkable abilities in processing both natural and program-
ming languages. LLMs have shown potential in identifying and fixing errors using program code and error
logs (Achiam et al., 2023). Due to LLM’s token limitations, some LLM-based fault localization techniques
operate on small code snippets. LLMAO (Yang et al., 2024) uses bidirectional adapters to score suspicious
lines within a 128-line context. In contrast, Wu et al. (Wu et al., 2023) prompt ChatGPT with code and
error logs but struggle to scale to large projects (Liu et al., 2024).

Recent LLM-based techniques address these challenges with strategies for retrieving failure-related classes or
methods, navigating code repositories, and ranking suspicious methods (Kang et al., 2024; Qin et al., 2024;
Zhang et al., 2024). Table 1 summarizes the key differences in how these components are designed across
prior work and our approach.

AutoFL (Kang et al., 2024) retrieves class and method signatures related to the test failure, and prompts
the LLM to decide which methods need future analysis (i.e., to examine the code). While this approach
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Table 1: Comparison of LLM-based fault localization techniques.

Aspect AutoFL (Kang
et al., 2024)

SoapFL/AgentFL (Qin
et al., 2024)

AutoCodeRover (Zhang
et al., 2024)

LLM4FL (this
work)

➀ Handling
token limi-
tation

Provide only class and
method signatures to
the LLM, then let it
decide which methods
need deeper analysis.

Use LLMs to gen-
erate descriptions for
classes and methods
using their signatures.
Then, the LLM decides
which classes/methods
are relevant to the
test failures for further
analysis.

Iteratively retrieve
classes and meth-
ods using text-based
search guided by the
issue description and
prioritize candidates
based on SBFL rank-
ings.

Divides methods into
groups based on the to-
ken size and analyzes
each group separately.

Limitations
of prior to-
ken limit
handling
techniques

– Uses only method names or LLM-generated summaries to decide which meth-
ods need further analysis: Did not provide implementation details to LLMs, so
the model selects methods to investigation based only on names/de-
scriptions rather than actual code semantic.

LLM4FL analyzes the
full source code with
their interprocedural
code structure.

➁ Navigat-
ing large
code repos-
itory

Retrieves class and
method signatures
related to the test
failure, then let the
LLM decide which
methods need deeper
analysis.

Ranks classes based on
test-failure data and
their documentation,
then analyzes each
class’s methods itera-
tively, guided by the
documentation.

Start with the file
or method names ex-
tracted from issue re-
ports, then iteratively
search the repository
based on called meth-
ods in the retrieved
source code.

The agent au-
tonomously navigates
the repository, iter-
atively following an
inter-procedural call
graph to retrieve and
explore connected
methods.

Limitations
of prior
navigation
techniques

– Lacks awareness of repository-level structure: May overlook cross-file or
inter-method dependencies, leading to missed or incorrect analysis.
– Relies on text-based code retrieval: Prone to LLM hallucinations and
confusion, particularly with overridden, non-existent methods, or methods
with similar names.

LLM4FL uses in-
terprocedural call
graph to guide
navigation, ensuring
the retrieved code is
correct and reachable.

➂ Ranking
of faulty
methods

Re-run the fault local-
ization process multi-
ple times and do a ma-
jority vote on the re-
sult.

Rank methods by hav-
ing two LLM agents
discuss the code and
decide which ones are
most likely to be faulty.

Does not rank meth-
ods; it selects a method
as faulty from the
retrieved context and
generates a patch.

Hierarchical ranking.
First, it finds the
suspicious methods
and ranks them in
each group. Then, it
employs verbal rein-
forcement learning to
combine and re-rank
the suspicious methods
from all groups.

Limitations
of existing
faulty-
method
ranking
techniques

– No iterative refinement or revisiting of prior decisions: Rely on one-shot
decision, limiting their ability to improve rankings based on new infor-
mation.

LLM4FL refines its ini-
tial rankings by revis-
iting the code and
incorporating new
insights through iter-
ative reasoning.
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Figure 1: Overview of LLM4FL for Multi-Agent Fault Localization, illustrating how agents collaborate to
analyze software artifacts, extract failure reasoning, perform graph-based retrieval-augmented code naviga-
tion, and rank faulty methods using verbal reinforcement learning.

ensures the input size is less than the LLM’s token limitation, it may miss method dependencies in the
analysis. Instead, it refines rankings by repeatedly running the process and using a majority voting mech-
anism to rank faulty methods. AgentFL/SoapFL (Qin et al., 2024) models fault localization as a struc-
tured operating procedure with controlled phases. It uses LLM-generated summarization of methods/classes
or developer-provided documentation to guide code navigation and iteratively scores and ranks suspicious
methods to narrow down fault candidates. However, summaries may miss important implementation logics,
inter-procedural connections, or bug-related details in the complete code. AutoCodeRover (Zhang et al.,
2024) extracts method names from issue reports and iteratively searches the codebase for related methods.
It may use SBFL to guide this process, but does not rank methods; instead, it selects one from context to
generate a patch.

In contrast to prior techniques, LLM4FL uses a structured, graph-based approach to analyze the code,
enabling the LLM to systematically navigate the repository by considering caller-callee relationships. This
reduces LLM hallucination when searching and retrieving methods in the repository. Additionally, LLM4FL
uses a divide-and-conquer strategy to mitigate token limitations by breaking down large methods into smaller,
manageable groups, ensuring comprehensive analysis. Finally, LLM4FL refines fault localization results
through verbal reinforcement learning, iteratively re-ranking suspicious methods for improved accuracy.
These contributions collectively enhance the accuracy and scalability of LLM-based fault localization.

3 Methodology

Figure 1 provides an overview of LLM4FL. It consists of three LLM-Agents by using novel prompting
techniques: (i) Context Extraction Agent, (ii) Debugger Agent, and (iii) Reviewer Agent to localize the
fault iteratively. The Context Extraction Agent utilizes an order-aware division and failure-reason
guided prioritization prompting technique, which consists of two phases. In the division phase, a toolchain
divides the large-scale code coverage data into small groups to fit within the LLM’s token limits. In the
prioritization phase, the agent iteratively analyzes the divided code coverage, leveraging failed test cases
and stack traces to identify potentially faulty methods. The Debugger Agent then performs graph-based
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java.lang.IllegalArgumentException: Invalid locale format: _GB
at commons.lang3.LocaleUtils.toLocale(LocaleUtils.java:99)
at commons.lang3.LocaleUtilsTest.assertValidToLocale(LocaleUtilsTest.java:119)
At commons.lang3.LocaleUtilsTest.testLang865(LocaleUtilsTest.java:505)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
…
At junit.runners.model.FrameworkMethod$1.
runReflectiveCall(FrameworkMethod.java:47)

Stack Trace

Test Failure
Point

Remove 
External 
Libraries

Context 
Extractor 

Agent

Test Case

Test Failure
Point

118.   private void assertValidToLocale (String localeString, … ) {
119. Locale locale = LocaleUtils.toLocale(localeString);
120.        assertNotNull("valid locale", locale);
121.        assertEquals(language, locale.getLanguage());
122.        assertEquals(country, locale.getCountry());
123.        assertEquals(variant, locale.getVariant());
124.    }

Test Failure 
Point

Test Helper

Preprocess
Stack

Preprocess
Test

503. @Test
504. public void testLang865() {
505. assertValidToLocale("_GB", "", "GB", "");
506. assertValidToLocale("_GB_P", "", "GB", "P");
507. assertValidToLocale("_GB_POSIX", "", "GB", "POSIX");
508. …………
509. } catch (final IllegalArgumentException iae) {
510. }
511. }

Remove Codes 
After Failure 
Point

Remove Codes 
After Failure 
Point

Include 
Test Helper 
Method

Figure 2: Context-Extraction Agent uses tool-chains to preprocess software artifacts for Lang-5 to emphasize
the test failure context. For (i) stack-trace the agent prunes external libraries, and (ii) test code, the agent
prunes statements in the test code after the assertion failure.

retrieval-augmented code navigation to locate code artifacts further to enhance the accuracy of fault
ranking. Finally, the Reviewer Agent re-ranks the buggy method through verbal reinforcement learning,
ensuring more precise fault localization.

3.1 Context Extraction Agent

This agent defines a order-aware division and failure-reason guided prioritization prompting tech-
nique to divide code-coverage and iteratively prioritize faulty methods using stack trace and test code within
each division. We describe the technique below.

3.1.1 Order-Aware Division Phase

To mitigate token size limitation, our LLM4FL first performs a division phase, where it first runs the test case
to extract the list of method-level code coverage using GZoltar (Campos et al., 2012), which is denoted as C,
containing a sequence of pairs (m, s), where m denotes the method and s denotes the set of statements within
method m. We then divide C into K group of sequences of C1, C2, . . . , Ck, where K =

⌈
Input Token Length

Token Limitation

⌉
,

and each subset satisfies |Ci| ≤ ⌊Token Limitation⌋ to ensure the data fits within the LLM’s context window.
If including m would exceed the limit, it is deferred entirely to the next subset Ci+1. For example, given
an Input Token Length of 500K tokens, we divide this by the Token Limitation for GPT-4o-mini, which has
a limit of 128K tokens (OpenAI, 2024). This results in K = 4, each with a 128K token limit. To ensure
methods are not split across subsets, we include a method m in subset Ci only if its full token representation
fits within the remaining token budget.

Traditionally, the order in which divisions occur in divide-and-conquer algorithms does not impact the out-
come. However, prior studies have shown that LLM may improve performance when the order of instructions
is carefully considered (Chen et al., 2024a). Inspired by this, we propose order-aware division, where we use
a Spectrum-Based Fault Localization (SBFL) technique to sort C based on their likelihood of being faulty.
Specifically, we use method-level Ochiai ranking to order C1, C2, . . . , Ck, which is an efficient and unsuper-
vised technique that assigns higher suspiciousness scores to methods that are executed more frequently by
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failing test cases and less frequently by passing ones (Abreu et al., 2006; Lou et al., 2021; Li et al., 2021; Cui
et al., 2020; Wen et al., 2019; Qian et al., 2021).

3.1.2 Failure-Reason Guided Prioritization Phase

To prioritize faulty methods from the divided code coverage, one approach is to provide the agent with the
stack trace and test case. However, prior studies have shown that incorporating a summarized description
can improve accuracy (Stiennon et al., 2020; Roit et al., 2023). Thus, we propose failure-reason-guided
fault prioritization, which follows two steps. First, the input tokens are summarized into a failure-reason
representation, capturing the test purpose failure reason. Second, the divided code coverage is prioritized
based on the reason for failure. Below, we discuss each step in detail.

Generate failure-reason from code artifacts. Our failure-reason generation makes the following three
observations: (i) Firstly, the stack traces are verbose and include calls to external libraries unrelated to the
fault. (ii) Secondly, some statements within a test case are irrelevant to the failure, specifically statements
after the first assertion failures. (iii) Finally, the test case may call other helper methods that trigger the test
failure (Peng et al., 2022). Hence, as shown in Figure 2, to mitigate (i), the Context Extraction Agent uses
PreprocessTrace tool-chain to prune external execution in the stack trace. To mitigate (ii) and (iii), Context
Extraction Agent uses PreprocessTest tool-chain, which uses static analysis to build an interprocedural call
graph to extract all helper test methods called by the test and prunes all the statements appearing in the test
after the failure point. Given the preprocessed stack trace and test code, Context-Extraction Agents generates
failure-reason by generating the test purpose and failure reason. A simplified example of a failure-reason
generated for Lang-5 given stack trace and test code is:

## Test Purpose:
Test whether LocaleUtils.toLocale parses ’_GB’ as a locale string, expecting it to return a Locale object
with an empty language and ’GB’ as the country.
## Failure Reason:
The actual output is an IllegalArgumentException due to an invalid locale format, as LocaleUtils.toLocale
requires a language before the underscore. For example, ’_GB’ does not conform to the expected locale
format. Update the test input to ’en_GB’ or modify LocaleUtils.toLocale to handle ’_GB’ as a valid case.

Failure-reason guided prioritization. Given Failure-reason, the Context Extraction Agent analyzes
the covered methods in each group, previously denoted as {C1, C2, . . . , CK}, to prioritize methods that are
most related to the failure. Formally, prioritizing each set Ci results in a prioritized subset C ′

i, where:
C ′

i ⊆ Ci, ∀i ∈ {1, 2, . . . , K}. The prioritized methods from all subsets are then combined into a final
prioritized set: C ′ =

⋃K
i=1 C ′

i. This final prioritized list C ′ is just a union of the ordered subsets, meaning no
additional processing is introduced. This union process is necessary as LLMs are highly sensitive to initial
order (Chen et al., 2024a), yet analyzing entire code coverage poses a token limitation. By dividing coverage
into groups, prioritizing each, and unionizing subsets, we extract important contexts that are necessary for
the Debugger Agent for fault analysis and localization in the next step.

3.2 Debugger Agent

Previously, the Context Extraction Agent prioritized C to subsets C ′ to mitigate the LLM’s token limitation
when analyzing large coverage data. While this technique can adapt to any LLM and token input size,
prioritization may miss methods in the coverage that are important for fault localization. Inspired by how
developers analyze the call dependencies to understand program execution and identify faults, we propose a
graph-based retrieval-augmented code navigation strategy (Graph-RAG). This approach enables
the Debugger Agent to utilize call graphs and method bodies for effective repository navigation, implemen-
tation analysis, generation of failure reasoning, and ranking the methods based on their likelihood of causing
errors. We will detail this technique below.
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3.2.1 Generating failure reasoning through call-graph-aware retrieval-augmented (Graph-RAG) code
navigation.

The agent first uses code-coverage C to construct the inter-procedural call-graph database G = (V, E), where
V is a set of methods in the call-graph, and E is a set of edges representing the caller-callee relationship. This
graph is used by the tool-chains, get_MethodBody and get_CallGraph, to facilitate agent-driven navigation
within the call graph. Below is a simplified version of the actual prompt LLM4FL uses to drive the agent:

“Given (i) failure reasoning, (ii) stack trace, and (iii) test code, analyze, navigate, and enhance the failure
reasoning for the given methods to identify faults. Extract the call graph to get the caller or callee’s
implementation if more details are needed. Your output should contain: (i) analyzed methods, (ii) enhanced
failure reasoning, and (iii) fault ranking."
## Input: ‘{Test Code, Stack Trace, Failure Reason, PrioritizedMethods}’
## Response: ‘{Analyzed Method, Enhanced Failure Reason, Fault Ranking}’

The agent begins the analysis of methods selected sequentially from the prioritized C ′. The agent retrieves its
body using get_MethodBody by passing a method identifier and analyzes its implementation for each method.
It then queries get_CallGraph by passing a method identifier to identify relevant callers or callees, deciding
whether to retrieve their implementations to enhance its understanding of code behavior. Throughout the
iterative retrieval and analysis process, every method examined, regardless of whether it was prioritized or
invoked by a prioritized method, is assigned a failure reason by the agent. This information is saved in a
set called R. This failure reasoning is a natural language explanation of each method’s failure, analyzed in
the code navigation process. These results are stored as pairs in a set: R = {(mi, ri) | mi is analyzed, i =
1, . . . , n}. Here, n denotes the number of methods for which failure reasoning was generated.

Ranking methods based on failure reasoning results. Finally, given the analysis and failure reasoning
R, the agent assigns each method mi ∈ R an ordinal rank (r∗

i ). Formally, the final ranked set R∗ is sorted
in descending order based on the ordinal ranks: R∗ = sort ({(mi, ri, r∗

i ) | mi ∈ R}) where r∗i denotes the
ordinal rank that reflects each method’s likelihood of containing the fault, and ri explains the reasoning
behind the method being faulty. The final ranked list R∗ is output in JSON format for subsequent analysis.

3.3 Reviewer Agent

Code review is important in software development to ensure software quality. Beyond traditional debugging,
code review can help refine failure reasoning and improve fault localization. Inspired by this, we propose
Reviewer Agent, which uses a novel prompting technique called Re-ranking through Verbal Reinforce-
ment Learning to emulate a rigorous code-review process to refine fault localization. We describe the
technique below.

3.3.1 Re-ranking through Verbal Reinforcement Learning

To refine the fault rankings R∗, Reviewer Agent adopts a verbal reinforcement learning process inspired by
the Reflexion framework (Shinn et al., 2024). The agent iteratively critiques its rank trajectory by identifying
inconsistencies, retrieving missing execution insights, and updating method prioritization to better reflect
the failure’s root cause. After the iterations, a chain of thought is applied to update the final ranking and
return the fault localization results. Below is a simplified version of the original Reviewer Agent’s prompt:

“Given (i) failure reasoning, (ii) stack trace, and (iii) test code, analyze and critique the initial ranking of
suspicious methods. Identify missing or extra details, and refine the analysis using the call graph and method
bodies if needed. You should output (1) a revised set of analyzed methods, (2) improved failure reasoning,
and (3) final fault ranking with a possible fix."
## Evaluating the Initial Ranking: ‘{Test Code, Stack Trace, Ranked List with Reasonings}’
## Self-Critique and Refinement:
- Find missing insights and remove unnecessary information.
- Use ‘get_MethodBody‘ and ‘get_CallGraph‘ to improve reasoning if needed
## Final Output: ‘{Analyzed Methods, Enhanced Failure Reasoning, Fault Ranking}’

9
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Table 2: An overview of our studied projects from Defects4J v2.0.0. #Faults, LOC, and #Tests show the
number of faults, lines of code, and tests in each system. Fault-triggering Tests shows the number of failing
tests that trigger the fault.

Project #Faults LOC #Tests Fault-triggering Tests
Cli 39 4K 94 66
Closure 174 90K 7,911 545
Codec 18 7K 206 43
Collections 4 65K 1,286 4
Compress 47 9K 73 72
Csv 16 2K 54 24
Gson 18 14K 720 34
JacksonCore 26 22K 206 53
JacksonXml 6 9K 138 12
Jsoup 93 8K 139 144
Lang 64 22K 2,291 121
Math 106 85K 4,378 176
Mockito 38 11K 1,379 118
Time 26 28K 4,041 74
Total 675 380K 24,302 1,486

Evaluating and self-critiquing the initial ranking. The Reviewer Agent uses the initial ranking, R∗,
provided by the Debugger Agent as the baseline trajectory for refinement. The agent enters a self-reflection
phase, guided by Reflexion’s Self-Reflection Model (Msr), to refine its ranking decisions through verbal rein-
forcement learning (Shinn et al., 2024). In this phase, the agent examines whether the initial ranking aligns
with observed fault rankings by comparing the failure reasoning r, with caller-callee interactions and test
coverage data, thereby identifying discrepancies such as misordered rankings or missing call dependencies.
The agent generates natural language critiques and retrieves additional execution details if needed using
tools such as get_MethodBody (to obtain complete method implementations) and get_CallGraph (to re-
trieve caller-callee relationships). The refined context is then incorporated in the Reviewer Agent’s iterative
adjustment process.

Ranking adjustment through trajectory optimization. After the initial self-critique phase, the Re-
viewer Agent refines its initial ranking by updating each method’s rank r∗ and revising its failure reasoning
r. Conceptualized as a trajectory optimization problem within the Reflexion framework, the agent, acting as
an Actor (Ma), leverages reinforcement cues from its Self-Reflection Model (Msr) to systematically re-order
methods based on the updated evidence of inter-method interactions and failure reasoning. Each iteration
integrates new feedback to adjust the ranking until it stabilizes or a preset iteration limit is reached.

Finalizing the ranking through chain-of-thought. After the iterative ranking adjustment, the Reviewer
Agent finalizes the ranking one last time using chain-of-thought (Wang et al., 2024). To facilitate the thinking
process, we ask the Reviewer Agent to generate a probable fix for every method in the final ranking by
considering the updated ranking score R∗ and refined failure reasoning R. After generating all probable
fixes, the agent then revisits all the information to do a final re-ranking. Formally, the final ranked list
R∗

final = sort ({(mi, r∗
i , ri, fi) | mi ∈ C ′}), where fi denotes the fix generated for method mi. The final

ranked list R, encoded in JSON format, provides a structured, machine-readable prioritization along with
human-interpretable failure justifications.

4 STUDY DESIGN AND RESULTS

In this section, we first describe the study design and setup. Then, we present the answers to the research
questions.

Benchmark Dataset. We experimented on 675 faults across 14 projects from the Defects4J benchmark
(V2.0.0) (Just et al., 2014). Defects4J provides a controlled environment to reproduce faults collected from
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various types and sizes of projects. It has been a standard benchmark in automated fault localization
research (Lou et al., 2021; Sohn & Yoo, 2017; Chen et al., 2022; Zhang et al., 2017), and more recently, it
has been adopted by LLM-based fault localization methods for evaluation (Kang et al., 2024; Qin et al.,
2024). Furthermore, recent analysis confirms that Defects4J poses minimal data leakage risk for LLMs (?),
making it a reliable choice for assessing LLM-based approaches. In our study, we excluded three projects,
JacksonDatabind, JxPath, and Chart, from Defects4J because we encountered many execution errors and
could not collect test coverage information for them. Table 2 gives detailed information on the projects and
faults we use in our study. The faults have over 1.4K fault-triggering tests (i.e., failing tests that cover the
fault). The sizes of the studied projects range from 2K to 90K lines of code. Note that since a fault may
have multiple fault-triggering tests, there are more fault-triggering tests than faults.

Evaluation Metrics. According to prior findings, debugging faults at the class level lacks precision for
effective location (Kochhar et al., 2016). Alternatively, pinpointing them at the statement level might be
overly detailed, omitting important context (Parnin & Orso, 2011). Hence, we perform our fault localization
process at the method level in keeping with prior work (Benton et al., 2020; B. Le et al., 2016; Li et al.,
2019; Lou et al., 2021; Vancsics et al., 2021). We apply the following commonly used metrics for evaluation:

Recall at Top-N . The Top-N metric measures the number of faults with at least one faulty program element
(in this paper, methods) ranked in the top N. The result from LLM4FL is a ranked list based on the
suspiciousness score. Prior research (Parnin & Orso, 2011) indicates that developers typically only scrutinize
a limited number of top-ranked faulty elements. Therefore, our study focuses on Top-N, where N is set to
1, 3, 5, and 10.

Implementation and Environment. To collect test coverage data and compute results for baseline
techniques, we utilized Gzoltar (Campos et al., 2012), an automated tool that executes tests and gathers
coverage information. For the LLM-based components, we employed OpenAI’s gpt-4o-mini-2024-07-18, a
more cost-effective yet capable LLM (OpenAI, 2024). We used LangChain to develop LLM4FL (Langchain,
2024). We designed the prompts to be concise to minimize token usage and to allow more room for analysis-
related information and code. Our code and prompts are available online (AnonymousSubmission, 2025).
To reduce the variations in the output, we set the temperature parameter to 0 during model inference.

RQ1: How does LLM4FL perform compared with other fault localization techniques?

Motivation and Approach. We compare LLM4FL’s fault localization accuracy with five baselines repre-
senting different methodological families: Ochiai (statistical) (Abreu et al., 2006), DeepFL (deep neural
network) (Li et al., 2019), Grace (graph neural network) (Lou et al., 2021), DepGraph (graph neural net-
work) (Rafi et al., 2024), AutoFL (LLM) (Kang et al., 2024), and AgentFL/SoapFL (Qin et al., 2024)
(LLM).

Ochiai (Abreu et al., 2006) is a widely recognized statistical fault localization technique known for its high
efficiency, making it a common baseline for comparison (Lou et al., 2021; Li et al., 2021; Cui et al., 2020;
Wen et al., 2019; Qian et al., 2021; Rafi et al., 2024). As such, we use Ochiai to rank the methods during
the segmentation process and include it as a baseline for accuracy comparison.

DeepFL (Li et al., 2019) is a deep-learning-based fault localization technique that integrates spectrum-based
and other metrics such as code complexity, and textual similarity features to locate faults. It utilizes a
Multi-layer Perceptron (MLP) model to analyze these varied feature dimensions. We follow the study (Li
et al., 2019) to implement DeepFL and include the SBFL scores from 34 techniques, code complexity, and
textual similarities as part of the features for the deep learning model. Grace (Lou et al., 2021) utilized graph
neural networks (GNN). It represents code as a graph and uses a gated graph neural network to rank the
faulty methods. DepGraph (Rafi et al., 2024) is another GNN-based technique that further improves Grace
by enhancing code representation in a graph using interprocedural call graph analysis for graph pruning and
integrating historical code change information.

AutoFL (Kang et al., 2024) is an LLM-based fault localization approach that provides the LLM with a failing
test and method descriptions to gather relevant coverage data, then repeats the process to assign inverse
scores and rank candidate methods by averaging results across runs. SoapFL (also known as AgentFL) (Qin
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Table 3: Fault localization accuracy (Top-1, 3, 5, and 10) for 675 faults from Defect4J V2.0.0. The numbers
in the parentheses show the percentage difference compared to LLM4FL.

Techniques Top-1 Top-3 Top-5 Top-10
Ochiai 121 (169.42%) 260 (63.46%) 340 (39.41%) 413 (20.10%)
DeepFL 257 (26.85%) 353 (20.40%) 427 (11.01%) 468 (5.98%)
Grace 298 (9.40%) 416 (2.16%) 486 (-2.47%) 541 (-8.32%)
DepGraph 359 (-9.19%) 481 (-11.64%) 541 (-12.38%) 597 (-16.92%)
AutoFL 275 (18.55%) 393 (8.14%) 423 (12.06%) 457 (8.53%)
SoapFL/AgentFL 311 (4.82%) 414 (2.66%) 455 (4.18%) 478 (3.77%)
LLM4FL 326 425 474 496

et al., 2024) organizes fault localization into structured phases, including test failure comprehension, code
navigation, and iterative LLM-based scoring, leveraging enhanced method documentation to refine suspicious
methods. While both AutoFL and SoapFL used OpenAI’s GPT-3.5 for their experiments, for our evaluation,
we adapted both techniques to use the same LLM version as LLM4FL (i.e., gpt-4o-mini-2024-07-18) for
comparison.

Results. LLM4FL outperforms the LLM-based baselines, AutoFL and AgentFL, by achieving
a 185.55% and 4.82% improvement in Top-1, respectively. Tables 3 show the fault localization
results of LLM4FL and the baseline techniques. Among the three LLM-based techniques, LLM4FL achieves
a better Top@N across all values of N. In the Top-1 metric, LLM4FL locates the correct fault in 326 cases,
compared to AutoFL’s 275 and AgentFL’s 311, representing an 18.55% and 4.82% improvement, respectively.
Similarly, in Top-3, Top-5, and Top-10, LLM4FL an improvement between 8.14% to 12.06% over AutoFL
and 2.66% to 4.18% for AgentFL. These numbers highlight LLM4FL’s ability to pinpoint faulty methods
more accurately. For cost, we compute the total dollars spent by multiplying each approach’s token usage
by the per-million-token price (e.g., $0.150 for input, $0.600 for output). SOAPFL averages about $0.055
per bug, AutoFL averages about $0.065, while LLM4FL is at around $0.050 per bug making our approach
comparably cost-effective.

LLM4FL shows higher Top-1 and Top-3 compared to most other non-LLM-based techniques.
For the Top-1 metric, LLM4FL scores 326, which is 169.42% higher than Ochia’s score of 121, 26.84% higher
than DeepFL’s score of 257, and 9.39% better than Grace’s result of 298. One exception is DepGraph,
which achieves a Top-1 of 359, 8.64% higher than LLM4FL. As the range expands to Top-3 and beyond,
LLM4FL demonstrates its robustness, significantly outperforming DeepFL and maintaining strong perfor-
mance alongside Grace. LLM-based techniques have several advantages over traditional techniques such as
DepGraph. First, techniques like LLM4FL leverage pre-trained LLMs in a zero-shot setting, which can be
easily applied to systems with insufficient training data. Second, techniques like DepGraph require additional
model training that can take days. LLM-based techniques leverage generic pre-trained LLMs without specific
fine-tuning or re-training. Finally, LLM-based techniques can explain the decision, which helps with adap-
tion (Kang et al., 2024; Qin et al., 2024). Hence, LLM-based techniques have strong potentials to enhance
fault localization by offering greater adaptability, reducing training overhead, and providing interpretable
explanations.

LLM4FL achieves a higher Top-1 compared to other LLM-based techniques, AutoFL and
AgentFL, by 18.55% and 4.82%, respectively. It also has competitive results compared to supervised
techniques like DeepFL and Grace, leveraging a pre-trained LLM in a zero-shot setting.

RQ2: Does order matter in the initial list of methods provided to the LLM?

Motivation. LLM4FL divides the coverage data into different divisions using an order-aware division
strategy to address the token size limitation of LLMs. We sort the methods using the Ochiai scores before
the division, though different sorting mechanisms may affect the final fault localization result. Although
LLM4FL eventually visits and assesses every method, a recent study (Chen et al., 2024a) observes that the
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Figure 3: Fault localization results when using different method sorting strategies during the order-aware
division process.

order of premises affects LLM’s results. However, whether this effect extends to software engineering tasks,
particularly fault localization, remains unclear. Hence, in this research question, we investigate whether the
order of methods within the groups affects the LLM’s fault localization performance.

Approach. To test the effect of method ordering, we experiment with three distinct sorting strategies:
LLM4FLExecution, LLM4FLOchiai (the default sorting in LLM4FL), and LLM4FLDepGraph to sort the
methods before the divide-and-conquer step.

LLM4FLExecution: We use the unsorted list of methods executed during testing, as generated by
Gzoltar (Campos et al., 2012). This default list represents the natural execution order of the methods,
with no explicit ranking or prioritization. By providing the LLM with methods based on the execution
sequence, we establish a control case to measure its performance without any ranking influence.

LLM4FLOchiai: As discussed in Section 3.1, we apply Ochiai to sort the methods before the divide-and-
conquer process. Ochiai is unsupervised and is efficient to compute. We hypothesize that providing the
LLM with methods sorted by their suspiciousness score will lead to more effective fault localization, as the
model will focus on the most likely faulty candidates earlier in the process.

LLM4FLDepGraph: It uses the ranking produced by DepGraph, a state-of-the-art Graph Neural Network
(GNN)-based fault localization technique (Li et al., 2015; Rafi et al., 2024), to sort the methods. DepGraph
ranks methods based on structural code dependencies and code change history. As shown in RQ1, DepGraph
shows the highest fault localization accuracy among all the techniques, surpassing LLM4FLOchiai. By ex-
amining the fault localization result after sorting the methods using DepGraph’s scores, we can better study
if the initial order affects LLM’s results, even though LLM eventually visits all the methods.

Results. Method ordering has a significant impact on LLM’s fault localization result, with up to
22% difference in Top-1 (from 299 to 366). Figure 3 shows the fault localization results using different
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sorting strategies. When methods were presented in the execution order, LLM4FLExecution achieved a Top-1
score of 299, 402 for Top-3, 431 for Top-5, and 462 for Top-10. This performance establishes a baseline,
showing how the LLM behaves without strategic ordering. However, sorting methods with the lightweight
Ochiai scores resulted in noticeable improvements across all Top-N, where LLM4FLOchiai improved the
Top-1 score to 323, an 8% increase over LLM4FLExecution.

LLM4FLDepGraph provides further improvement to the already-promising result of DepGraph,
indicating method ordering is critical to LLM4FL, or LLM-based fault localization in gen-
eral. LLM4FLDepGraph achieved the highest Top-1 score of 366, which significantly outperforms both
LLM4FLExecution and LLM4FLOchiai. The improvement was consistent across all the metrics. We also
see that LLM4FLDepGraph has better Top-1, 3, and 5 scores compared to DepGraph. This consistent im-
provement underscores the importance of method ordering in enhancing the accuracy of LLM-based fault
localization. Namely, if the initial order is closer to the group truth, the final localization result tends to be
more accurate.

Our finding establishes a new research direction for LLM-based fault localization, or any software engineering
tasks that take a list of software artifacts as input. Future studies may study how different premises of order-
ing affect other software engineering tasks, and how to combine traditional software engineering techniques
to pre-process LLM’s input to improve the results further.

The initial method ordering significantly impacts the accuracy of LLM-based fault localization, with
Top-1 scores varying by up to 22%. Combining LLM4FL and DepGraph further improves
the results. Future research should explore various ordering strategies and how traditional software
engineering techniques can be integrated to optimize LLM performance further.

RQ3: How do different components in LLM4FL affect the fault localization accuracy?

Motivation. LLM4FL employs several components, each of which plays a distinct role in the overall process.
Hence, in this RQ, we conduct an ablation study by removing each component separately and studying their
impact on fault localization accuracy. The findings may inspire future studies on adapting the components
for similar tasks.

Approach. To evaluate the impact of each component, we designed four different configurations:

LLM4FLw/o CodeNav removes the code navigation mechanism, meaning the Debugger agent no longer does
fault navigation by retrieving the call graphs. Instead, the LLM4FL uses a single prompt to perform fault
localization without fault navigation. This configuration tests whether using the caller-callee information
improves the ranking and selection of faulty methods.

LLM4FLw/o Division removes the order-aware division of the covered methods, giving the agents the en-
tire coverage data at once instead of dividing it into smaller, manageable groups. Coverage segmentation
addresses token limitations in LLMs, so removing it explores the impact of feeding the full dataset to the
agents in one step. We aim to see how handling large amounts of data in a single input influences the fault
localization result, as it may overwhelm the model or reduce precision.

LLM4FLw/o Reflexion removes the verbal reinforcement learning technique, which is used to allow agents to
review and refine their initial ranking. Without this step, the agents rely solely on their initial assessments
without iterative improvements.

Results. While all components help improve the results, including coverage division and code
navigation, provide the largest improvement to fault localization results (23% and 17% in
Top-1). Table 4 shows the Top-1, 3, 5, and 10 scores when each component is removed. Removing
coverage divisions has the largest overall impact across all scores, reducing Top-N by 19% to 23%. Removing
prompt chaining has the second largest impact (11% to 17%). At the individual project level, these two
components also have the largest impact in Top-1 in 9/13 studied projects. Our finding shows that employing
sorted coverage grouping following the divide and conquer technique and agent communication significantly
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Table 4: Impacts of removing different components in LLM4FL on Top-1, 3, 5, and 10. The numbers in the
parentheses show the percentage changes compared to LLM4FL with all the components.

Techniques Top-1 Top-3 Top-5 Top-10
LLM4FL 326 425 474 496
LLM4FLw/o CodeNav 273 (-16.51%) 378 (-11.06%) 409 (-13.53%) 409 (-17.21%)
LLM4FLw/o Division 251 (-23.24%) 341 (-19.76%) 365 (-22.83%) 381 (-22.87%)
LLM4FLw/o Reflexion 290 (-11.31%) 400 (-5.88%) 436 (-7.82%) 459 (-7.09%)

improves fault localization results. Future research should consider these techniques when designing fault
localization techniques.

Although there is no oracle during the fault localization process, asking LLMs to self-reflect
still helps improve the overall Top-1 by 11%. LLMs often suffer from hallucinations, especially when
there is a lack of feedback from external oracles (Xu et al., 2024; Huang et al., 2023). Even though we did not
provide any ground truth or external feedback to LLM, we found that Reflexion is still effective in improving
fault localization results. We speculate that verbal reinforcement learning helps the model improve its results
by revisiting the suspicious methods it ranked earlier, creating a feedback loop. In this process, we analyze
the results for each group of methods and combine these group-specific results into a final ranking. The
model can then spot mistakes or gaps in its logic, leading to better results. Self-reflection brings 6% to
11% improvement across the Top-N metrics. Our finding suggests that future studies should consider self-
reflection even without external feedback. Our finding highlights the effectiveness of self-reflection, which
should be considered in future fault localization results.

The results show that each component of LLM4FL contributes to its overall fault localization perfor-
mance, with coverage division and code navigation having the largest positive impact. Re-
moving these components leads to significant declines in accuracy, confirming their role in finding faults
in a large code base.

5 Threats to Validity

Internal Validity. A potential threat to internal validity is the risk of data leakage in large language models
(LLMs), where the model might have been exposed to the benchmark data during training. Nevertheless,
Ramos et al. (Ramos et al., 2024) found that newer and larger models trained on larger datasets exhibit
limited evidence of leakage for defect benchmarks. Since we utilize GPT-4o-mini, a large model trained
using a tremendous amount of data, it likely shares similar characteristics in reducing memorization risks.
Additionally, following a prior work we ensure no content related to the project name, human-written bug
report, or bug ID is entered into ChatGPT to minimize the risk of data memorization (Qin et al., 2024).

External Validity. Our evaluation is based on Defects4J, a well-established dataset in the software en-
gineering community. Although this dataset includes real-world bugs, the systems studied are primarily
Java-based. Future studies may extend our study to other programming languages or domains.

Construct Validity. Construct validity relates to whether the metrics we used accurately measure the
performance of fault localization techniques. We used widely accepted Top-N metrics, which are commonly
utilized in prior fault localization studies. However, our results are based on the assumption that developers
primarily focus on the top-ranked faulty methods. Although this assumption aligns with previous research,
different development practices could influence the effectiveness of our approach.

6 Conclusion

In this paper, we introduced LLM4FL, an LLM-agent-based fault localization approach. It utilizes multi-
ple specialized LLM agents, including Context, Debugger, and Reviewer, to iteratively refine and improve
the accuracy of fault localization through order-aware prioritization, graph-based code navigation, and self-
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reflection using verbal reinforcement learning. Evaluated on the Defects4J (V2.0.0) benchmark, LLM4FL
demonstrated significant improvements over existing approaches, achieving an 18.55% increase in Top-1 accu-
racy compared to AutoFL and 4.82% improvement over SoapFL. Further enhancements, including coverage
segmentation and iterative refinement, increased accuracy by up to 22%. Future work will explore expanding
LLM4FL’s capabilities for larger and more diverse codebases, further refining the agent collaboration and
reasoning mechanisms.
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