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Abstract

While modern (deep) Neural Networks (NN) with their high number of parameters have
the ability to memorize training data, they achieve surprisingly high accuracies on test sets.
One theory that could explain this behavior is based on the manifold hypothesis: real-world
high-dimensional input data lies near low-dimensional manifolds. A NN layer transforms
the input manifold, arriving at a so-called representation manifold. The NN learns trans-
formations which flatten and disentangle the manifolds layer by layer. In this way, the NNs
learn the structure of the data instead of memorizing. Under the manifold hypothesis, we
demonstrate that flat manifolds (subsets of affine linear subspaces) in the second-to-last
layer of a classification network ensure perfect class separability in the noiseless case. In
regression tasks, we derive an upper bound on the generalization error which decreases as
the input manifold becomes flatter. In the case of almost flat manifolds, the bound can be
modified to be even lower. These results support the argument that flat input manifolds
improve generalization. However, we argue that the results can also be used to show that
flatter representation manifolds improve generalization. Further, we conduct numerical ex-
periments to show that these findings apply beyond strict theoretical assumptions. Based on
our results, we argue that a flatness promoting regularizer, combined with an L!-regularizer,
could enhance the generalization of Neural Networks.

1 Introduction

Neural Networks (NN) have become a popular tool in the machine learning portfolio for various applications
such as image and language processing, signal processing, financial modeling, or as surrogate for physical
simulations. The fully connected feed forward network may be one of the most well-known variants, but
others have also been developed for specific applications, such as Convolutional Neural Networks for image
processing (Zhao et al.l 2024) or Recurrent Neural Networks for time series data (Mienye et al.l 2024).
Recently, the Transformer model (Vaswani et al., |2017) has gained popularity for many applications. The
popularity of Deep Neural Networks (DNNs) originates not only from their ability to model complex training
data, but also their often outstanding performance on unseen test data. GoogleNet (Szegedy et al., 2014)
for example, has circa 6.8 million parameters, was trained on 1.2 million samples from the ImageNet dataset
and achieved a test accuracy for image classification of roughly 93%. The generalization gap, estimated
by the difference between training and test accuracy, was only 6%. The high test accuracy is surprising,
considering NNs are universal approximators, and as such can approximate any Borel measurable function
(Hornik et al., [1989). So, networks such as GoogleNet have the ability to easily memorize the training data
which would lead to a bad performance on the test set. Instead, high test accuracies can be achieved after
gradient-based optimization. Statistical Learning Theory, while being helpful for simple models such as the
perceptron (Suykens & Vandewallel [1999), does not provide a satisfactory explanation either. The upper
bounds on the generalization gap developed in this field, such as those based on VC-dimension (Vapnik &
Chervonenkis, 2015) or Rademacher complexity, are vacuous for DNNs (Berner et al., 2023). The reason
why DNNs generalize well despite the massive amount of parameters is still a mystery. However, one
hypothesis is based on manifolds and the manifold hypothesis.

The manifold hypothesis states that real-world high-dimensional data usually are situated on or near
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low-dimensional manifolds. Consider, for example, a dataset consisting of images of one object taken from
different angles and with different lighting. Each sample, i.e. image, consists of a vector whose dimension
is the number of pixels in the image which can be hundreds to thousands. However, the main variations
in the data are angles and lighting. The samples are therefore hypothesized to lie on a low dimensional
manifold in the high dimensional space. If there are multiple classes in a dataset, we assume that samples of
different classes lie on/near different manifolds. The manifold hypothesis is popular in machine learning. For
example, the field of manifold learning (Meila & Zhang), 2024; |Ma & Ful, [2012) is based on this hypothesis
with the goal of recovering the low-dimensional manifold from samples. If the input data of a neural network
lie on a low-dimensional manifold, then we assume the layer’s representations also lie on manifolds. This
is also a popular assumption (Ansuini et al., 2019; [Kaufman & Azencot| [2023). We call manifolds in NN
layers representation manifolds.

Based on the manifold hypothesis, |Brahma et al.| (2016) introduced a possible explanation for the network’s
behavior of learning data structure instead of memorizing. Their hypothesis states that NN training
automatically disentangles manifolds from different classes. Disentanglement here means flattening and
separation of manifolds. In this way, the network does not simply memorize the training data, but learns
the (manifold) structure of the data, resulting in a small generalization gap. This would also comply with
the findings of Zhang et al.|(2016]) that the structure of the data is essential for estimating the generalization
gap. |Brahma et al.|(2016)) empirically showed that the hypothesis is true for multiple networks and datasets.
Based on the manifold hypothesis, we aim to improve NN training through encouraging such disentaglement
explicitly by adding a measure of flatness as regularizer. These improvements could take the form of better
generalization (as popular networks still have generalization gaps of up to 20% (Rohlfs, 2025)) or faster
convergence.

In a similar fashion, the popular L' and L? regularizors (Phaisangittisagul, 2016; [Vidaurre et al., [2013)) were
developed based on the idea of VC-dimension and Rademacher complexity. These constrain the space of
parameters that is searched during training, thereby constraining the ability of the considered model class.
They promote smaller weights which lead to more linear models. This should reduce the VC-dimension
based upper bound on the generalization gap. We want to develop a regularizer in a similar way, but based
on the manifold hypothesis. The present work is the first step in which we present theoretical benefits of
encouraging flatness in representation manifolds.

Various researchers have studied properties of representation manifolds (Ansuini et al. [2019; Facco et al.,
2017; [Kaufman & Azencot, 2023)). |Ansuini et al.| (2019) found a link between the intrinsic dimension of
the manifold in the last two layers and the network’s performance. [Stubbemann et al.| (2023) developed a
feature selection strategy based on the intrinsic dimension of the manifold. |Psenka et al.| (2024)) developed
an autoencoder network whose goal is to linearize the manifold along its layers. However, apart from
Labate & Shi| (2024]), we only found one paper conducting thorough theoretical analysis based on the
manifold hypothesis in combination with neural networks: [Kiani et al.| (2024) showed that learning under
input manifolds of bounded curvature is hard. However, with constraints on the volume and curvature,
learnability is guaranteed.

The main contributions of this paper are the following:

e A theorem showing that flat class manifolds in the second-to-last layer of a classification network
ensure perfect class separability in the noiseless case (Theorem .

o A theorem demonstrating that, in the case of regression tasks, having a less curvy input manifold
leads to a decreased upper bound on the generalization gap as opposed to having a more curvy input
manifold (Theorem .

e An extension of Labate et al’s Theorem (Labate & Shil, 2024)) that yields a tighter upper bound on
the generalization gap for regression if the input manifold is close to being flat (Corollary .

e Empirical validation of the benefits of flat input manifolds in regression through an experiment
whose setup is closer to practical applications of neural networks than the assumptions of Theorem

and Corollary [2] (Section [4.2).
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This work is structured as follows: In Section 2, we introduce the considered flatness measures and show
that flatness is equivalent to the manifold being a subset of an affine linear subspace. In Section 3, we
consider classification and present a proof that flat representation manifolds in the second-to-last layer of a
classification network guarantee separability, i.e. perfect classification. In Section 4, we consider the case of
regression. We show that there is an upper bound on the generalization gap, which decreases with increasing
flatness of the input manifold (i.e. manifold of the input data). Further, we show that especially small
upper bounds can be achieved if the input manifolds are close to being flat. These findings hold for a certain
architecture of neural network. Numerically, we show that flatter input manifolds can also be beneficial
in practical settings that differ from this architecture. In Section 5 and 6, we summarize the findings and
present next steps and further research directions.

2 Curvature of Manifolds

A Riemannian manifold is a smooth manifold equipped with a Riemannian metric. The curviness of such a
manifold can be either intrinsic or extrinsic. Intrinsic curvature is inherent to the manifold and is defined by
the Riemannian curvature tensor. We are interested in the extrinsic curvature which is determined by the
embedding and can be measured by the Second Fundamental Form. As an example, consider one period of
a sine-curve as a 1-dimensional manifold embedded into 3-dimensional space. If you decrease the frequency,
the extrinsic curvature decreases since the manifold is now more stretched. The intrinsic curvature, however,
considers the curvature in the manifold-inherent coordinate system which is embedding-invariant. For an
introduction to differential geometry, we refer the reader to |[Robbin & Salamon| (2022).

Definition 1. (Robbin & Salamonl, 2022) Let M C R be a simply connected (Krantz, 1999) d-dimensional
Riemannian manifold. Let T, M be the tangent space at point p € M. Then, there exists an orthogonal
projection II(p) € RP*P which projects points v € RP onto the tangent space II(p)v € T, M.

The symmetric bilinear map

I, : Ty,M x T,M — T,M*
IT,(v,w) = (dIl(p)w)v
is the Second Fundamental Form (SFF) on M in p € M.

Here,

d

dll(p)w := aH(W(t))h:o,

where 7 : R — M with v(0) = p and %(0) = w.

Theorem 1. Let M C RP be a d-dimensional simply connected Riemannian manifold. Then, the following
are equivalent:

(a) There is a conver set X C R, a matriz B € RP*4 and a vector b € RP so that
M={Bx+b:zecX}.

(b) The manifold M is flat in the sense that the SFF vanishes II,(v,w) =0 Vp € M, Yv,w € T,M.
Proof. The proof will be presented in the Appendix O

Theorem [I] shows that a flat manifold is a subset of an affine linear subspace.
Apart from the SFF, the reach is another tool to characterize the extrinsic curvature of a manifold:

Definition 2. For a manifold M C RP| the reach is defined as
7 :=max{r € Rug| (Vo € R? with d(z, M) < r: 2 has a unique nearest point on M)}.

where d(z, M) is the euclidean distance from point z € R” to the nearest point on the manifold.
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Remark 1. In contrast to the SFF, the reach does not depend on the considered point, but is a global
property of the manifold. It can be seen as a worst-case measure that considers how much the manifold folds
in onto itself. A manifold with low reach either has a section with "tight curls" or is close to self-intersection
at some point. It can be shown (Aamari et al.| |2019) that the reach is the minimum of

1. the smallest bottleneck of the considered manifold and

2. the minimal radius of curvature, which can be expressed by the SFF.

The reach of a linear subspace, which is a flat manifold with respect to the Second Fundamental Form, is
infinite.

3 Flat representation manifolds are beneficial for classification tasks

In the case of classification, the manifold hypothesis states that samples of different classes are situated
on different manifolds. The following theorem formalizes why flat manifolds in the second-to-last layer of
classification networks are beneficial:

Theorem 2. Any two flat manifolds as characterized in Theorem (1| (a) where X is compact, that do not
intersect can be separated by a linear Neural Network layer.

In other words, for the two hyperplanes My and Mo, there exists a weight matriz W € R**P and a bias
vector b € R? so

0 zeM;

1 7€ Ma,.

The operator arg max maps a vector to the index with maximum entry. If multiple entries attain the maxi-
mum, the first such indez is returned.

argmax(Wz +b) = {

Proof. A linear NN layer simply defines a hyperplane. All points on one side of the hyperplane are classified as
0 and all other points as 1. We have to show that compact subsets of affine linear subspaces can be separated
by a hyperplane if they do not intersect. The hyperplane separation theorem (Boyd & Vandenberghe, 2004)
states that two closed disjoint nonempty convex subsets of R™ can be strictly separated by a hyperplane if
one of the subsets is compact. Note that the considered subspaces are by assumption compact and, due to
them being simply connected subsets of affine linear subspaces, they are convex. By applying the hyperplane
separation theorem, we conclude the proof. O

Remark 2. Theorem [2| shows that flatness of manifolds (as characterized in Theorem (1) is a sufficient
condition for separability, but not a necessary one. Figure [I] shows this using examples. For classification,
the overall curviness in combination with the space separating the hyperplanes determines whether the
classification is successful, rather than smaller, local areas of higher curvature. We will see in the next
section that this is different in the regression case.

Remark 3. Note that Berner et al.| (2023) argued in their Section 4.1 why NNs can, in the presence
of a data manifold, reduce the problem to the underlying low-dimensional problem. This is done by
partitioning the manifold into suitable neighborhoods and approximating the coordinate charts of the
manifold via NNs using the universal approximation property. This means that NNs can recover the
low-dimensional manifold-inherent coordinate system. If they can perform this, they can also project the
resulting low-dimensional manifold into high-dimensional space, resulting in flat manifolds.

Theorem [2] does not state how to achieve flat manifolds in the second-to-last layer. One idea that we want
to consider in future research is to encourage flat representation manifolds by explicitly measuring the
flatness and adding this as penalty term in the loss function, resulting in a flatness regularizer.

Further, from Theorem [2] it is not clear whether flatness of class manifolds in all layers is beneficial or
only in the last. [Frosst et al.| (2019) showed empirically that class entanglement in earlier layers can
be beneficial for generalization. Kaufman & Azencot| (2023)) showed that in successful image classifica-
tion networks, representation manifolds are especially curvy. However, they did not consider different
classes separately. Whether encouraging flatness in earlier layers benefits generalization has yet to be studied.
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Figure 1: Two configurations of curvy manifolds that show that flatness is sufficient (a), but not necessary
(b) for separability. On the right, one possible separating hyperplane that can be defined by a linear NN
layer is displayed.

4 Flat input manifolds are beneficial for regression tasks

In this section, we show how flat input manifolds can be beneficial for regression. In Section [I.I] we present
a theorem by |[Labate & Shi| (2024) as well as an extension which states that flat manifolds are beneficial for
networks’ performance. In Section [£:2]we give numerical examples which are closer to real-world applications
than the presented theorems.

4.1 Theoretical Considerations

We consider the cases of non-flat and flat manifolds separately. We find that the upper bound on the
network’s generalization gap is lower if the input manifold is flat. We study how far the manifold can deviate
from being perfectly flat while still retaining the tighter bound.

In the following, ||.|| :=||.||2 is the euclidean norm either in vector or matrix form.

4.1.1 Non-flat Manifolds

We first present the Theorem by [Labate & Shil (2024)). This has several assumptions. For a more thorough
explanation and derivation, refer to the original work.
Assumptions:

A 1 Observations {z;,y;}".; € M x R with n € N are available where M C [0,1]” is a d-dimensional
Riemannian manifold. The samples x; are drawn independently and identically distributed (i.i.d.)
from a random variable with probability density function pu.

A 2 The manifold M is a compact, smooth Riemannian manifold with 0 € M. Its reach is given by 7.

A 3 The ground truth is y; = fo(z;) + €, where € ~ N(0,0?) is a normally distributed (measurement)
error.
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A4

A5

fo € H(B, M, R) where H is the ball with radius R > 0 in the Hélder space H (3, M) with 8 € (0, 1].
This means

fo € H(B,M,R) = {f €C°(M) | Su/a f(z) < R and
re

wp @O _ o

aryem |z —yll?
For g =1, the second condition is the global Lipschitz-continuity condition.

The considered machine learning model consists of a projection ¥ followed by a ReLLU neural network.
This means that the output of the projection is the input for the ReLU NN further detailed in
Assumption [A 6] The function ¥ has the following form:

UM — R%
U(z)=Az+c

for a matrix A € R%*P and a vector ¢ € R%. The scalar d. € N is called effective dimension. The
effective dimension d, together with A and c are chosen in such a way that he projection fulfills the
following properties for € € (0, %] and x1,z2 € M with at least some probability v € (0, 1]:

(1 —€)||lz1 — z2| < ||Az1 — Aza|| < (1 +€)||z1 — 22| and
T(M) C [0,1]%.

Labate & Shi| (2024) show in their Theorem 4 (which we will call Theorem L4 to avoid confusion
with Theorem [4|in this work) that this assumption is e.g. fulfilled if the following assumptions are
met:

d
(a) vp > (%T) , where v, is the volume of the manifold and d is the intrinsic dimension of

the manifold as introduced in Assumption[A 1] Note that this assumption is not applicable for
flat, compact manifolds where 7 = 0o, and therefore vy, would have to be infinite.

(b) The projection function ¥ has the following form

1

Y@ = S amn

(Axz — yo)

The matrix A € R4*P consists of i.i.d random variables distributed according to N(0,1/d.)
and yo € R ensures that ¥(z) € [0, 1]% with high probability. For a more detailed derivation
of why such a yg exists, refer to the proof of Theorem 1 in Labate et al’s original work (Labate
& Shil 2024).

The operator diam(M) is the diameter of the manifold. Note that the diameter is the maximal
geodesic distance between two points on the manifold. The geodesic distance between two
points on a manifold is the length of the shortest path between those points, but the path has
to be on the manifold. If the manifold is not flat, this is different from the euclidean distance
between two points.

The effective dimension in this case is given by

d, = [828 (24d+ 2dlog (9\7/‘?> + 1og(2vi4)>].

Here, log denotes the natural logarithm. If the reach 7 is large, i.e. M has small curvatures
and is far apart from self-intersecting, then d. is small.
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A 6 The ReLU network parameters are the solution of the least squares problem

f= agmin S (/) - i)

feF(N,L,B) ;4

where F(N, L, B) is the set of all ReLU networks with the specified depth L € Ny, maximal width
N € N5 and maximal norm of the weights B € R. A ReLU network is a fully connected feed forward
NN where the activation function is the well-known rectified linear unit function. The parameters
L, N and B of the neural network depend on d. as well as some other quantities.

We now present the theorem by Labate et al. Their aim was to show that the network’s performance in
terms of function approximation based on samples does not depend on the ambient dimension D, but only
on the intrinsic dimension d of the input manifold M.

Theorem 3. (Labate & Shi, |2024) If Assumptions A 0 with stricter assumptions and are

fulfilled, then with probability at least 1 — 2exp(—n Qﬂde) for any n > N with N sufficiently large it holds
that

< Cln—Qﬂ/(Qﬁ‘i‘de)

2
+ c2 (log (c?)nﬁ/(QB""de)) + 1)
n Cq

+ 5 log(cgn®/(26+do))
n

If - ol 22t

+ epn B/ (20+de) (1)

< Cn~28/(2B+de) (1 4 logn)? (2)

where ¢; > 0 are independent of n, i € {1,2,3,4,5,6,7} and C depends on o, 8, d., R and the diameter of
the manifold M.

We now present a theorem, which shows that flatter input manifolds decrease the upper bound presented in
Theorem [3l

Theorem 4. Let € > 0. If Assumptions [A"6 and Assumptions and [A_5Y hold, then there exists
an N € N so that for alln > N with probability at least 1 — €, the upper bound on the generalization gap
IIf — f0||2LQ(M7u) decreases with decreasing d..

A necessary condition for d. decreasing when going from manifold My to My is:

ledAT
T1

Avpa <

for the change in volume Avag = v, — v, and the change in reach AT = 19 — 71 for small enough AT.
This includes the case were Avyg = 0 and AT > 0, i.e. the volume of the manifold does not change while
the manifold becomes less curvy.

Proof. For the first statement of the proof, i.e. that the upper bound on the generalization gap decreases
with decreasing d., we present two proofs in the Appendix The first proof is simpler, but considers an
upper bound which is not tight to Equation . The second proof is more elaborate, but considers a tighter
bound. Here, Equation is only upper bounded to achieve a differentiable function. For further details,
we refer the reader to the Appendix [A22]

Consider the second statement, i.e. d. can only decrease if Avpy < U":—lldAT for small enough A7r. We

consider d., which is d. from Assumption but without the ceiling operation.

d : =828 (24d + 2dlog <M> + log(QUi,l))
T

=k+46
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for an integer £k € N and 0 < § < 1. This means that d. only needs a negative change of magnitude § to
decrease to the next smaller integer. Then, using Taylor expansion, we get

2

UM

- - 2d
de(T1 + AT, v, + Avpag) = de(T1, 00, ) + 828 (—TAT—‘r AUM> + O(]|[AT, AvM]||2).
1

1

The new de (72, Va1, ) = de(T1 + AT, vpq, + Avpy) is smaller than d (11, vaq, ) if

2d
(—AT +
T1 le

v
& Aoy < 21dAr
T1

AUM> <0

for small enough A7 (so the residual term O(||[AT, Avaq]||?) is negligible). If now the decrease is larger than
0, d. decreases at least onto the next smaller integer. For this to happen, we need

2
15]] < Hszs <_dm+
T1

Avm> L o(|iar, AWPDH .
’l)/\,[1

O

Example 1. A manifold which changes its reach but does not change its volume fulfills one of the condition
for d. decreasing in Theorem [4 This happens, for example, if you imagine unfolding a manifold shaped like
a scroll. To formalize this idea, consider the following manifolds where & > k:

M = {[rcos(8), ksin(h),0,...,0] : 6 € [0,7]} Cc RP,

D2
My = {[Fcos(8), &sin(6),0,...,0]” : 6 € [0, 577]} C RP,
N R
D2
Mz ={[0,0,...,0]" : 0 € [0, k7]}.
~——

D—-1

All three are 1-dimensional manifolds (i.e. lines) embedded in R”. M; describes a half circle, My with & > &
a ’smaller fraction’ of a circle and Mg is a straight line. The volume and diameter of all three manifolds is
k7, while the reach is x, & and infinity respectively. Therefore, Avyq =0 while A7y = —T1 =k —K >0
and 732 = oco. This is an example for manifolds which fulfill the condition of Theorem E| for a decreasing
effective dimension d.

Example 2. In this example we show that the condition in Theorem [4| for decreasing d. is not always
fulfilled. Consider the spherical cap, which is a sphere cut off by a plane. This is our 2-dimensional manifold
embedded in 3 dimensions, so d = 2 and D = 3. Let the sphere have radius x and a cut-off-angle of 6. The
volume is vy = 27k?(1 —cos(f)) and the reach is equal to the radius  as in the previous example, so 7 = k.
We choose the following values for manifolds M; and Ms:

K1 = 0.5,91 = 0].,
Ko = 1,92 =0.2.

By choosing a larger radius k2, we make My less curvy. At the same time, the increase in cutoff-angle 6
increases the volume of My in relation to My. This results in
0.008-2-A d
b _IMEN,

AUM:UM2—UM1 =0.11 > 0.016 = =
K1 1

The effective dimensions are

de, = 43012
d., = 45303.

This example shows that the condition described in Theorem [4 for decreasing d. does not hold in all cases.
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Remark 4. [Labate & Shi| (2024) note that for M being a unit sphere, d. ~ 19872d. However, a more

d
general statement can be made about d.: Inserting Assumption [A 5al vaq > (%T) , into the definition

of d. (Assumption [A 5b) yields that d, > 27987, making the bound in Theorem [3[ too large to have any
meaning in practice.

Remark 5. The reason why a larger reach decreases the bound is because if the manifold is less complex
(larger reach, lower curvature), the effective dimension d. (which is the dimension after the projection) can
be lower without losing important information during the projection (refer to Assumption. The reader
might notice that the Johnson-Lindenstrauss lemma (Larsen & Nelson, |2017)) contains a similar statement to
the one in Theorem L4 (Theorem 4 in [Labate & Shi, [2024) (refer to Assumption[A 5|). However, in contrast
to the lemma, in Theorem L4 the number of samples has no impact on the dimension of the projection space
d.. This means that the statement generalizes to out-of-sample data.

Remark 6. Theorem [4| can be applied not only to input manifolds, but also to representation manifolds in
the following way: In a NN with k layers, the first layer’s representation acts as input for the NN consisting
of layers 2 to k. Likewise, the second layer’s representation acts as input for the NN consisting of layers 3 to
k, and so on. Therefore, promoting flatness in the layer’s representations leads to better performance of the
following sub-network, yielding better overall performance.

Recall that the reason for the improved performance is that less complex structures can be represented using
less neurons (refer to Remark . So, by encouraging the representation manifolds to be flat, we can decrease
the width of successive layers without loss of information, thereby retaining good fit to training data and
achieving better generalization.

Even if the network’s width and depth are not decreased, classical deep network training can also benefit
from encouraging flat representation manifolds. Less effective width can be achieved by setting some of the
considered layer’s weights to 0, which is exactly what the L!-regularizer encourages. Less effective depth can
be achieved by setting some layers to be the identity function. In a ReL.U-network, a layer can mimic the
identity function if the identity matrix is chosen as weight. The sparsity promoting L'-regularizer could also
encourage this behavior. Combining flatness promoting regularizers with the L' regularizer could therefore
result in networks that effectively are less deep and wide, yielding better generalization for deep learning.

4.1.2 Special Case of flat or almost flat Manifolds

Theorem L4 (which is Theorem 4 in (Labate & Shil 2024)) requires Assumption which prohibits the
application of Theorem [3] to flat manifolds. To consider the case of flat manifolds, we replace Theorem L4
with a similar statement, but for flat manifolds. We need to make sure Assumption[A5]is still fulfilled, even
if Assumptions [A 5a] and [A_5b| are not. However, as we will see in Corollary [T} for a flat manifold, we can
choose d. = d which leads to a tighter upper bound than in the non-flat case (refer to Remark [7) .

Next, we study how far the manifold M can deviate from being flat while still having the tighter upper
bound with d. = d. This is considered in Corollary

The proof of the following corollary is presented in the Appendix [AZ3]
Corollary 1. If M C [0, ﬁ]D is a flat manifold as described in Theorem then there exists a matrix
A € R™P and vector ¢ € R? such that the projection ¥(x) = Az + ¢ fulfills

1W(z) = U(y)|* = [|Az — Ay[|> = [Jz — y||?

and

¥(z) € [0, 1]

for all x,y € M.

Remark 7. As by Corollary [1} if the considered manifold is flat, we can use d as effective dimension, so
d. = d while still fulfilling Assumption Let, for example, the intrinsic dimension be d = 2 and the
ambient dimension be D = 100 of a flat manifold and Assumptions be fulfilled. Then, according to
Theorem [3| using Corollary

I - JollFa(a,p < T705.
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Figure 2: The manifold from Example |3 as well as its linear part.

For a non-flat manifold, we can use d. described in Assumption leading to bounds that are extremely
large so they become meaningless as described in Remark [

The following Corollary relaxes the flatness condition for achieving a significantly reduced upper bound.
Again, the proof can be found in the Appendix [A3.2]

Corollary 2. Let M C |0, ﬁ]D be a compact d-dimensional Riemannian manifold which can be described

by the parametrization f: 0 € M = {f(t):t € U C [0,1]%,0 € U} with U convez. Fiz € € (0, %].
For an orthonormal matriz B € RP*? and a vector b € RP, f(t) can be partitioned in the following way:

f@t)=b+Bt+r(t), (3)

where r describes the deviation of the manifold from the affine linear subspace given by B and b.
If for all z = f(t;) € M and y = f(ty) € M the following holds:

2lr(ts) = r(t)I* < llz = yl|%

then there exists a vector ¢ € R? so U(z) = BTz + ¢ fulfills Assumption ,
If further, Assumptions (A and[A 4 are fulfilled, then Theorems[3 and[f] hold with d. = d.

Example 3. We know from Theorem [ that there is a non-sharp upper bound which decreases with
increasing flatness of the manifold. If the input manifold is close to being flat, Corollary [2| shows that we get
an even lower bound as described in Remark [7] One example which satisfies the condition is the manifold

t 1. 1,\"
M:{(\/?’\/Qt+2t2) :te[0,0.25]},

which is a 1-dimensional manifold embedded in 2-dimensional space. The manifold is almost linear, but has
a small deviation in the form of a quadratic term. Here,

>~ (77 )

= (0,0)7,

- ()

This manifold is displayed in Figure [2, With the projection ¥(x) = BTx + 0 for x € M, we get ¥(z) €

10
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0,1+ 32\f] [0,1]. We choose € = £ € (0, 4]and need to show 2||r(ty) — r(ty)||* < €|z — y|[* for all
tz,ty €[0,0.25] and o = Bty + b+ r(ty), y = Bty + b+ r(ty).

For t, =t,, we get 2||[r(t,) — r(t,)||> = 0 = ¢|lz — y||>.

Now we consider the case t, # t,. Using the Mean Value Theorem, we get that there is a £ € [0,0.25] with
the property

2 2

Loty _ 21

ty —ty

S 12—t =21ty — ty)

= (12— 12)? = 4P (t, — ty)°

= (1 =80 < ta — 1) = {6 — 1) (@)

Using this, we get

z Y

2jr(t) — r(t)|? =25 (22— £2)?

INE]

1
g(tm —t,)%

On the other hand,

T
1 1
Vellz ~yll = 5%—%@—%ﬁ+(m%¢_@0

1
> e (HQ(tI —ty ty — 1) 7

—\ﬁ(tx 2 —12) )

)

Using that
1 /1
2-2)2 < 4/t by —t
-2 4 | vl
yields
\fwmpwf( 1))
= \ﬁz‘tﬁ _ty‘-
Then,
3
ell = yl? 2 2t — 1,
1
> Lt —1,)?

> 2[|r(ta) = r(ty)|*.

The condition for Corollary [2]is fulfilled, leading to a smaller upper bound on the generalization gap for this
manifold with d. = d.

Remark 8. Note that the theorems and corollaries presented in this section have strict assumptions which
are not fulfilled in many practical applications of NNs. Examples are Assumption about the structure
of the considered NN, Assumption [A 4] about the projection before the ReLU network, or the assumption
from Corollaries |l| and [2[ that M C [0, ﬁ][) which is only a small interval for large D.

To check whether flat manifolds are still beneficial if these assumptions are not fulfilled, we conducted
empirical experiments in the following Section [£.2]

11
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4.2 Numerical Experiment

To show that flat manifolds can also be beneficial outside of the strict assumptions of Theorem [3] we conduct
numerical experiments. First, we sample points on two manifolds of different curviness. Then we construct
a ground truth function and apply it to the samples to receive our training and test data. Next, we create
two identical neural networks and train them on the data from the two manifolds respectively and compare
their performances.

To sample the points on the manifolds, we use the following steps:

1. Create n random vectors in R? with uniformly distributed entries between 0 and 27. This gives a
matrix R of size (n x d). These are the intrinsic coordinates of the manifold.

2. For each intrinsic dimension i € {1,...,d}, create a sine wave evaluated at the points R[:,¢] which
means the i-th column. The frequency of the sine wave is ¢-c where ¢ > 0 is a scalar which determines
the curvature of the generated manifold. A small ¢ results in a manifold with higher reach (i.e. has
less ’sharp’ curves). The resulting vectors for all dimensions are added up. This vector is attached
to R as the column d + 1, creating the matrix M € R™*(@+D) which acts as samples drawn from the
manifold. The resulting manifold has d-dimensions and is embedded in d + 1 dimensions with sine
waves of different frequencies in each coordinate axis. The next step is to embed this manifold into
the ambient space of dimension D.

3. Similar to what was done by [Kienitz et al.| (2022), we project the data to the ambient space using
three matrices. The ambient coordinate matrix M € R**(@+1) 4 matrix consisting of zeros E =
0nx(P=(d+1) and a random orthogonal matrix O € R"*P. The final samples of the low dimensional

manifold embedded into high dimensional space are computed as
X =[] B 0T er™P,

where the first matrix in the product is a concatenation of M and E. The concatenation is the
embedding into the D-dimensional space while the orthogonal matrix is used to rotate the resulting
manifold.

Manifolds generated according to this procedure for d = 2, D = 3 and different values for ¢ are presented in
Figure [3] For the numerical experiment, we created two manifolds in this way with d = 10, D = 100 and
normalized the resulting coordinates to [0, 1]”. The samples drawn from the first (less curvy) manifold, X;
used ¢ = 0.1 while the samples drawn from the second (more curvy) manifold, X used ¢ = 3. Then, we
created target values by the following formula:

Y =sin(X)W+b+2z€R,
where the entries in W € RP*! and b € R are randomly drawn from a uniform distribution in the interval
[0,1]. The value z is random gaussian noise distributed according to N'(0,02) with o2 = 0.01. The
sine-function is applied elementwise to each element of the matrix X.

4.2.1 Experiment 1 with 10 neurons in the hidden layer

We created two identical neural networks with one hidden layer of size 10, which is the same as the intrinsic
dimension d, and 1 neuron in the output layer and leaky ReLLU activation. We trained one network on data
from the curvy manifold X; and one on data from the less curvy manifold X,. We used Mean Squared
Error (MSE) as loss function, the Adam optimizer and 500 epochs with batch size 32. The whole process
from the generation of the manifolds to the training and evaluation on a test set was repeated 10 times to
alleviate the effect of random initializations.

The following results are summarized in Table[Il] The test error of the network trained on Xs was on average
0.113 while the error of the network trained on X; was on average 0.103. To check whether the networks’

12
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(a) c=0.1 (b) c=0.3

(¢)c=0.5 (d)e=1

Figure 3: Manifolds with d = 2 and D = 3 and different curvatures.

Table 1: The test errors of the NN with 10 neurons in the hidden layer trained on flat and curvy input data.
The test error of the base estimator, which simply predicts the average of the training output data, is also
displayed. The p-value for the t-test with O-hypothesis "The following are the same: The expected value
of the test error of the NN trained on curvy manifold data and the expected value of the test error of the
NN trained on flat manifold data." is 0.0002<0.05. The 0-hypothesis is rejected with 95% confidence level,
showing that the difference in test error is statistically significant.

manifold \ mean test error of small NN \ mean test error of base estimator
X1 (less curvy) 0.103 0.7
Xy (more curvy) 0.113 0.7

13
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Table 2: The test errors of the NN with 100 neurons in the hidden layer trained on flat and curvy input data
with and without Ll-regularization. The test error of the base estimator, which simply predicts the average
of the training output data, is also displayed. The p-value for the t-test with O-hypothesis "The following are
the same: The expected value of the test error of the regularized NN trained on curvy manifold data and
the expected value of the test error of the regularized NN trained on flat manifold data." is 0.02<0.05. The
0-hypothesis is rejected with 95% confidence level, showing that the difference in test error is statistically
significant. The same test applied to the test errors of the NNs without regularization has a p-value of
0.25>0.05, meaning the difference is not statistically significant.

manifold mean test error of larger NN | mean test error of larger NN | mean test error of
with regularization without regularization base estimator
X5 (less curvy) 0.137 0.116 0.6
X (more curvy) 0.150 0.126 0.6

training can be considered successful on their own, we compared these results to a base estimator which
predicted the average of Y in the training set for all inputs. This estimator had an error of approximately
0.7 for both the flat manifold data (X;) and the curvy manifold data (X53). This is much higher than the
networks’ test error, meaning the training of both neural networks was overall successful. We performed a
t-test with the O-hypothesis "The following are the same: The expected value of the test error of the NN
trained on curvy manifold data and the expected value of the test error of the NN trained on flat manifold
data." The p-value was 0.0002 < 0.05, indicating that the differences in test errors are not due to mere
chance, but statistically significant.

This shows that in practice, flat input manifolds can be beneficial for training and generalization even in
cases where the assumptions of Theorem [I] do not hold and the upper bound is not tight.

4.2.2 Experiment 2 with 100 neurons in the hidden layer

Usually in deep learning, wider networks are used than the one from Experiment 1. The transformer encoder
model (Vaswani et al. [2017)), for example, consists of sequential encoder blocks where the width of the input
and output layers is the same. So, no dimensionality reduction is done. To check how such models are
effected by more or less curvy manifolds, we repeated the steps described in Experiment 1, but with 5
repetitions and 100 neurons in the hidden layer of the used NNs. This is the same as the ambient dimension
D. The results can be found in Table The average error on the test set for X; was smaller than the
average error for X, in accordance with the results from Experiment 1. However, when applying the t-test,
the p-value was 0.25>0.05. The difference in test error was not statistically significant and as such we can
not confidently say that the manifold’s curviness has an impact on the generalization ability of the network.
Inspired by Remark [] we added an Ll-regularizer to the weights of the model. The results for this can also
be seen in Table[2] Here, the test error was again smaller for the network trained on X; than for the network
trained on X5. However, this time the t-test had a p-value of 0.02<0.05. Thus, the difference in test error
was statistically significant. With 95% confidence we can say that a less curvy manifold leads to a better
generalization performance. The number of weights less than 10~7 was increased by 15% for the network
trained on X; compared to the network trained on X, which supports our hypothesis stated in Remark [6]
Flat manifold datasets can be modeled by networks which have effectively less width (by setting weights to
0 during training), resulting in better generalization compared to more curvy manifold data.

5 Discussion

The theoretical framework established in our study indicates that flat representation manifolds, particularly
in the second-to-last layer of classification networks, ensure perfect classification. This insight provides a
mathematical foundation for the importance of flatness in classification tasks.

In the context of regression tasks, our result (Theorem emphasizes that increasing flatness of input
manifolds correlates with a reduction in the upper bound on the generalization gap. This relationship

14
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suggests that when the underlying data manifold is less complex (characterized by larger reach) neural
networks can better approximate target functions with fewer parameters. Consequently, this leads to
enhanced performance and generalization capabilities. Further, when the manifold is close to being flat, the
upper bound on the generalization gap reaches a significantly smaller value (Corollary [2[ and Remark .
The empirical evidence obtained from our numerical experiments supports the theoretical claims, revealing
that neural networks trained on flat manifolds outperform those trained on more curvy counterparts,
indicating the applicability of the claim outside the strict assumptions by Theorem Combining flat
manifolds with the L'-regularizer extends the advantage of flat input manifolds to wide networks, hinting
at the applicability of flatness promoting regularizers for deep network training.

6 Conclusion

Our study clearly demonstrates theoretical benefits of flat representation manifolds for both classification
and regression tasks. Further, the benefits for regression tasks were confirmed empirically in settings which
are closer to real-life applications of deep NNs than the theoretical results.

While our study demonstrates the benefits of flat manifolds, it is essential to acknowledge limitations.
The presented theorems operate under specific assumptions which deviate from the usual applications, e.g.
noiseless case in classification. As acknowledged in Remark [5] the bound in Theorem [4]is not tight and can
become vacuous. [Labate & Shil (2024) also acknowledge this but hope that a tighter upper bound can be
found. One major point of interest for this is proving that Assumption can be fulfilled with smaller
effective dimension d. in the general case (not only the flat or almost-flat case). This will be grounds for
future research.

Further, the theorems do not yield practical flatness measures. In the case of regression, Theorem [4] considers
the reach as flatness measure. However, since the reach is a maximum, it is hard to estimate from a limited
amount of samples.
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A Appendix

A.1 Proof of Theorem Il

Proof. (b) = (a)
First we show that if the SFF vanishes, there exists B € RP*¢ and b € RP fulfilling the claim.
If the SFF vanishes,

SO =0

for all v as in Definition [I] and all p € M. The projection II(p) onto the tangent space T, M therefore does
not depend on p, resulting in the same tangential space at all points p € M. Let B € RP*? be a basis of
the tangential space.

For a Riemannian manifold embedded in euclidean space, a vanishing SFF is equivalent to all geodesics being
straight lines (Lee| [2018) (Proposition 8.12). The goedesics are the shortest paths between two points on
the manifold. Therefore, and because M is simply connected, for all y,j € M we know that

@) =g+ (1 =Ny eM
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is a path on the manifold, parametrized by A € [0,1]. As such, 4(0) = § — y is an element of the tangential
space 1, M with basis B and the following holds:

VieM3IzeR: = Bi:c +y =Bz +b.
=Yy-vy

We still need to show that X := {x: Bx + b € M} is a convex set. Let z1,29 € X and y; = Bxy +b € M,
Yo = Brog +b e M. Let & = \xy + (1 — Ny for some A € [0,1]. From the convexity of M follows

Bi+b=BMx1+ (1 =Na2)+b=ABx1+ (1 = A\)Baa+b=Ay1 + (1 — N)y2 € M.

Therefore, £ € X, proving the convexity of X.

(a) = (b)

Next we show that if M = {Bzx +b: 2 € X} for a convex set X, the SFF vanishes.
The tangential space is the same for every p € M and given by the matrix B, so

T,M = {Bz : z € RY}.

The matrix II(p) = B(BTB)~! BT satisfies the two conditions that need to be fulfilled in order for II(p) to
be the projection that defines the SFF (refer to|[Robbin & Salamon| (2018)):

1. Dpv=v<eveI,M
If TI(p)v = v, then
(p)v = B(BTB) BTy = Buw,
~—_———
:=weR?
so v is an element of the tangential space T, M.
If on the other hand v € T),M, then there exists a w € R? so v = Bw. Then

(p)v = B(B"B)™'BT Bw = Bw = v.

2. II(p) = II(p)? = (p)T. This can be checked by inserting the definition of II(p) above.
Then, dII(p) = 0 Vp since II(p) does not depend on p and therefore I1(p) = 0. O

A.2 Proof of Theorem [4

There are two proofs for this theorem. Both show that the bound in can be upper bounded by a function
which decreases monotonically with decreasing d. for large enough n.

The first proof is simpler, but the used upper bound is not tight to .

The second proof considers the upper bound of equation that is the tightest possible differentiable
function. By differentiation, we can see that the upper bound decreases with decreasing d.. This proof is
more elaborate, but also considers a tighter upper bound.

Proof 1

Proof. From the proof of the original theorem in [Labate & Shi| (2024) we know that the following upper
bound holds with the specified probability:

1= folla (e < (e1 + cad?)n =20/ 28+de) 5
+ %’W(de,n) (ln(c4f(de7n)n5/(25+de)) n 1)2 ©
+ %W(de, n)d? In (4f(de7 n)nﬁ/(2ﬁ+dﬁ)> )
+ cyn B/ (20+de) ®)
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with

W(de,n) = (de + 1)N(de,n) + (L(de) — 1)N(de,n)? + L(de)N(de,n) 4 1
Fdeyn) = (L(de) + 1)(B(de,n) + 2) B(de, n) )N (d,, p)Llde) 1

N(de,n) = 2%/P+1(6d, + 4T)nde/ (47F2de)

L(d,) = (28d2 — 15)d%/*(c7d? + 6)d</(2P)

B(de,n) = |62/ Fn /@5 40e) (n(nte/ 45 +200) 4 )1/ | [ 4112 (rdf + 6)1/7 .

It is sufficient to show that terms , @, and grow monotonically with increasing d. or can be upper
bounded by a function that does so. For terms () and (8)) this is clear. We consider terms (6]) and (7)) more
thoroughly.

Since N(de,n) and L(d.) increase monotonically with d. and L(d) > 1 for d. > 1, W (d,,n) also grows
monotonically with d.. The only critical part in term @ is f(de, n)nﬁ/(25+de).

First, we find an upper bound for f(d.,n):

f(de,n) < AL(d)B(de,n)* )2 N (d,, n)"(de)+1, (9)

Here we used that L(d.) > 1 and B(d.,n) > 2 for large enough n. Now, we consider the functions L and B
separately. L(d.) increases monotonically with d. and is upper bounded by,

L(d.) < 28d? I(d.)
where 1(d,) = d2*/*(czdP + 6)4/0) Let b(d.) := c29/8 (dt/* (czdP + 6)1/8).
Then,
B(d.,n) = nl/(26+de)(1n(nde/(4ﬁ+2de) + 2))1/d5b(de) < n2/(2ﬁ+de)b(de)

for large enough n for which n'/(2f+de) > (In(nde/(4F+2de) 4 9))1/de holds. Here, b(d.) is monotonically
increasing with d.. Therefore,

B(de,n)L(de)“ < n(sﬁdz l(de)+4)/(25+de)b(de)L+2_
Using equation @, we get:

f(de,n) < 4L(de)2(L+l)(de/ﬁ+1)(6de +47)L+1b(de)L+2 n(z&lg 1(de)+112d2 I(de)+2de+8)/(48+2d.)

=:g9(de,n)
where g is monotonically increasing with d.. Then,

fde, n)nﬁ/(2ﬂ+de) < g(d., n)nh(de)

h(d ) ._ 28d2 l(de) + 1126@ l(de) +2d. +8+ 28
e) 1= 4ﬂ n 2de ]

The function h is increasing monotonically with d., making the whole expression increase monotonically.
Therefore, there is an upper bound on term @ which decreases with decreasing d..
The same can be used to show that is upper bounded by a function which increases monotonically with
de.

de
Theorem and therefore this derivation hold with probability at least 1 —2 exp(—n?2#+dc ). As this approaches
1 for large n, we arrive at the conclusion of the proof. O

Proof 2

Proof. This more elaborate proof consists of three steps:
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1. Find an upper bound for the bound from Theorem [3| using a differentiable function. Mainly, this
means getting rid of ceiling operations by using [k] < k+ 1 for k € R.

2. Compute the derivative of the bound with respect to d. and show that it is positive for large sample
sizes n. With increasing flatness of the manifold, the reach 7 increases, decreasing d.. Due to the
positive derivative, this results in a decreasing bound.

3. Theorem [3| and therefore this derivation hold with probability at least 1 — 2 exp(—n T ). As this
approaches 1 for large n, we arrive at the conclusion of the proof.

From the proof of the original theorem in |Labate & Shi| (2024) we know that the following upper bound
holds with the specified probability:

1= Fol 32y < (1 + ead.”yn =20/ 2P0 (10)
4 EW () (Infesf (dempn®/ @5+00) 41)° (1)
n %W(Je, n)d.” n (4 F(d., n)nﬂ/<2ﬂ+ffe>) (12)
1 ey B/ (2B+de) (13)
=:b([de], [Bi([de],n)] - [B2([de],m)]) (14)

with

de = [d.]

W(de,n) = (de + 1)N(de,n) + (L(de) — 1)N(de,n)? + L(de)N(de,n) + 1
f(de,n) = (L(de) + 1)(B(de,n) + 2) B(de, n)“ ()N (d,, n)F(de) 1

N(de,n) = 2179/5(6d, + 47)nde/ (45+2de)

L(d.) = (28d% — 15)d%/*(c7d? + 6)/ ()

B(de,n) = [662dc/5n1/(2ﬁ+dﬁ) (ln(nde/(4ﬁ+2dﬁ) + 2))1/d5—‘ [di/z (@df + 6)1/6-‘ .

Bl B2

In the term above and the rest of the proof, the constants ¢; are positive and independent of d. and n. They
can depend on the diameter of the manifold, and properties of fy like 8 and R. Similar, constants b; are
positive and do not depend on n.

To prove the statement, we show that the derivative of the upper bound with respect to the effective
dimension d. is positive for all n > N. With increasing reach, i.e. increasing flatness of the manifold, d,
decreases. So if the upper bound’s derivative with respect to d. is positive, then an increasing reach leads
to a decreased upper bound.

We want to show that b can be bounded from above by a function that has a positive derivative with respect
to d. (step 2). First, as described in step 1, we have to find this differentiable bounding function (note that
claims (i) and (ii) are proven later on):

b([de], [Bi([de])T - [Ba2([de])]) (S) b(de + 1, (Bi([de]) + 1) - (B2([de]) +1))

o+ 1, (Bu(de — 1) +1) - (Ba(de +1) + 1))
— b((d.), B(B1(U(d.)) - h(Bs(h(d.))))

y(h(B1),h(B2))

where h(z) := 2+ 1 and I(z) := 2 — 1. In the course of the proof we will show that g;(d.,n) := %j@’y) >0,
(d — 9bldey) d — 9(BLB) - 4 and d — 9y(B1,By) - ; lai ;
g2\le, Tl) C dy = Y% 93( e Tl) . 0B, = an g5( e ﬂ) L 0B = U, proving claim (1)
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Further, to prove claim (ii), we show g4 := <0 and g := 83827;%) > 0.

We want to show that the derivative of b with reespect to d. is positive.eT he total derivative of b with respect
to d. can be computed as:

9B (de)
ad

d b(h(de), y(h(B1(l(de)), (B2 (h(de)))) _ 0b(h(de),y) Oh(d.)

dd, Oh(d.) od,
=1

L O0h(de),y) | Oy((B1), h(B>)) Oh(B1) 0B (i(de)) Ol(de)

By oh(B1) 9B, ol(d.) 0(dv)
=1 =1

+5y(h(31)7h(32)> Oh(B2) 0Ba(h(d.)) Oh(d.)

Oh(Ba) 9B  Oh(d.)  0d.
=1 =1

_ Ob(h(de).y) | Ob(h(de).y) | Oy(h(B1), h(B2)) OB (I(d))
Oh(d.) Ay Oh(By) dl(d,)

gl(de) gQ(dC) gS(de) g4(de)

dy(h(B1), h(Bz2)) 0Ba(h(de))
Oh(Bs) oh(d.)

g5(de) ge(de)

(a)
2 g1 (d€7 n) + 92 (d67 n)g3 (d€7 n)g4(d67 n)

®)
> 0.

We have to prove (a) and (b).
Throughout the whole proof, we will use the following variables in the exponents:

bs = B
5 1=

28 +d,
biy = — e

YT 4B+ 2d,

1
b30_2ﬁ+de
28 +1

2 —1=-2b5 = - 1
b1z bs = b3 95+ d, (15)

We omit the precise definitions of the other variables b; > 0 since defining them would not contribute to the
arguments of the proof.

First, we show claim (b). We compute the asymptotic behavior of g1, g2, g3 and g4 and compare positive
and negative contributions of the term g1 (de,n) + ga(de,n)gs(de, n)ga(de, n).

Closed form and asymptotic behavior of ¢;
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We consider the closed form
91(de,n) =n~" (b1 In(n) + bon =" In(n) + ban ")
+ [n"7 (bis + braIn(n)) + n*"7 (bis + big In(n))] [%”(m@ f(de, By, Bo)n") +1)°+

ade W(ds' 7”)

+%2b7 n(4f(d., B, Bz)an)}

(L4 byn®™ + bipnn7) (‘32 (In(caf(de, By, Bo)n®) + 1) (W by ln(n)>
Wi(de,n) ‘
C2 bs 8def(d€7BlaB2) _
—|—E (blo(h'l(4f(de,B1,Bg)n )) + b7 (f(devBl,BQ) bg ln(n)>>> : (16)

Further,

In(cf(de, By, Bo)n®) = In(c) 4+ In(f(de, By, B2)) + bs In(n)
=1In(c) + bs In(n) + In(L(de) + 1) + In(B(de, n) + 2) + (L(de) + 1)(In(B(de, n)) + In(N(de,n)))
= a+ bgIn(n) + big In(In(n®*7 4 2)) + In(B(d, n) + 2)
> a + bg In(n) + big In(In(n7 + 2)) > 0 for large n,

Here, a is a constant with respect to m which can be negative. In terms of asymptotic behavior,
In(cf(de, By, Bo)n”) € O(In(n) + In(In(n))). Note that we use the O-notation here and in the rest of
the proof to describe asymptotic behavior for the case n — oo.

Next, we compute a closed expression for:

8def(dea Bl7 BQ)

— by + bas In(n) + bas In(In(n?” +2)).
f(de, By, B2) 22 + D23 In(n) + bag In(In(n”" + 2))
Note that the first term in the sum in equation is positive for all n > 1. The second term grows with

O(n?*7=n(n)?).

The third term in could be negative and would be decreasing at most with
O(n?*7~1n(n)?).

Therefore, with regards to n,

g1(de,n) € O(n*71In(n)® — n?17"11n(n)?). (17)

Closed form and asymptotic behavior of g,
We consider the closed form

_ z)/) W(deyn) | 27 (n(caf (h(de). y)n'**) +1) + “2d?

(a) ©)

2b17

The term (b) is positive for all n > 1, the same holds for W which grows with n*"7. Let’s consider term (a):

9y f(h(de), y) L L+l

Fh(de)y) w2y
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The term y = Bi(de) - Ba(d.) is positive for all n > 1. L is also positive, making the whole term positive.

Using that %H + Lgl < ng, we can deduce that

In(n)
92(de,n) € O (ln(nb17 n 2)1/hn(2ﬁ+1)/(2/5+dc)) '

Closed form and asymptotic behavior of g3
We consider the closed form

O(h(B1)h(Bs))

gB(deyn) = 8h<B1)

= h(Bz) = b31,
which is positive.

Closed form and asymptotic behavior of g,
We consider the closed form
9B, (h)
oh

= bysn®™ (In(n®7 +2)1/%) ((bag — b2 In(n) — by In(ln(n"" +2)) + b In(n) __nor
= 025 26 5 27 28 h’l(’I’Lb” + 2) 7’Lb17 +2 )

which is negative for large n. In the computation of the derivative, g4 is multiplied by g» and g3. We want
to show that this negative product grows slower than the positive term g1, which would guarantee a positive
value for the sum of both terms for large enough n.

Combining all four terms

The negative term of the product gs(de,n)g3(de,n)gs(d.,n) grows with In(n)?n=2%s. At the same time,
g1 € O(In(n)3n=2% — In(n)?n=2%) (refer to and ), making the positive contribution larger than
the negative one for large n. This proves claim (b) for large enough n.

To prove claim (a), we show that g2(de,n),95(de,n) and gg(de,n) are positive:

g5(de,n) = h(B1) >0
g6(de,n) = bag > 0.

We showed prior that ga(de,n) > 0. Together, these prove claim (a), thereby concluding the proof. O

A.3 Proofs of Corollaries
A.3.1 Proof of Corollary [I]

Proof. Remember that ||.|| = ||.||2 is the euclidean norm either in matrix or vector form.

If M is an affine linear space, then there exists a matrix B € RP*? and a vector b € R so for all z € M
there exists a t € R? so 2 = Bt +b. We can assume that the matrix B consists of the normalized basis
vectors of the subspace, so BT B = I € R4*? is the identity matrix.

Take A = BT as the projection matrix, defining the projection as ¥(x) = BTz + ¢ for a suitable ¢ € R? so
U(z) € [0,1]? Vo € M. We will later show that such a c exists.

Then for all z,y € M:

U(x)— T =BT = ¢— BT —|?

W () = ¥(y)||” =l =;t/1:-b+ =By/;b |
= ||BTBt, + B"v — B' Bty — BTb||?
=[|BTB(t1 —t2)||* = [|t1 — ta|]* = (t1 — t2)" BT B(t1 — t2)
= [|B(t1 — t2)[|* = || Bt1 + b — Bty —b|* = ||z — y||*.
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Let’s check that W(z) € [0,1]%: Since B consists of normalized vectors and A = BT,
D
d AT =1Vj=1,..d
i=1

D
The maximum of Zil Ajx; for any x € [0, 2\%} is reached for A;; = % and x; = ﬁ Vi, resulting in

- 1
iz:; Aj,ixi < 5

To show this, we have to solve the following optimization problem for some j:

D
max E Aj’iifi
3yt 1

a:"i7A",1 )
i—
st.—x; <0Vi

1
T; QﬁSOVZ
D
}:A%—lzo
=1

The KKT-conditions (refer to Theorem 12.1 in (Nocedal & Wright|, 2006)) state that the optimal ; and A ;
for all i solves the following system of equations:

1. (Stationarity) For u, i € RP and X € R, the gradient with respect to z and A, of the function

- N 1
Lz, Aj., s i, A) = = Z Ajizi + Zﬂi(_xi) + Z,Ui (CEi - ﬁ) + A ZA?Z -1
i i i 2vD i
has to be 0. This means

= Aji—pi+ i =0Vi
—x; + 2>\AJ‘,¢ =0Vi.

2. (Primal Feasibility 1) The equality condition has to be met: Zil Az =1

3. (Primal Feasibility 2) The inequality conditions have to be met:

— X S 0 Vi
T L <0Vi
i— —— <0Vi
2vD
4. (Dual Feasibility) p; > 0 and ji; > 0 Vi
5. (Complementarity)

1
Ni T; — —— = 0V¢
g ( 2@)
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When solving this system of equations, the possible candidates for the maximum are characterized by the
following:

1C{1,..,D}

K C{1,..,D}
IUK ={1,..,D}
2 =0Viel

1
= —— Vke K
" 9yD

A =0Viel
1

Ajp = ——

" VK]

where | K| is the number of elements in the index set K.
The objective function values of these solutions are determined by |I| and |K| and given by

vk € K,

R 1 _1VIK]
2 A= 20N D S TRV 2 D

icl keK

The largest objective function value is reached for |K| = D and therefore |I| = 0. The maximal value is
1+|D 1
ZAj,ixi = *L = —.
; 2./|D] 2

With a similar approach, one can show that the minimum is reached by A4; ; = —%, resulting in

1 D
_§ < Zl Aj,imr
i=

Defining the full projection as ¥(z) = Az + ¢ = Az + 1[1,...,1]7 yields ¥(z) € [0,1]%. O
A.3.2 Proof of Corollary [2]
Proof. Remember that ||.|| = ||.||2 is the euclidean norm either in matrix or vector form.

We have to show that Assumption holds for the projection with A = BT defined as ¥(z) = BTz + c.
The assumption states the following two properties

Cl (A-ellz—yll <[¥(x)-¥(yl =BTz +c— BTy —cl]| =Bz — BTy|| < (1 +¢)l|z — yl| for all
x,y € M.

C2 YU(z) € [0,1)% Vo € M.

With the same argument as in the proof of Corollary Consitionis fulfilled for BT as projection matrix
and a suitably chosen vector c.
Using BT as projection matrix yields for x = f(t,) € M and y = f(t,) € M:
||BY2 — BTy||* = ||B"> — B"b+ BT Bt, — B"Bt, + B"r(t,) — BTr(t,)|?
< ||BT Bty — BT Bt,||* + || BT||* [|r(t) — r(t,)|[?
= ||Bty +b+r(ts) — Bty —b—r(ty) —r(tz) +rty)[I> + BT [|r(ts) — r(ty)I?
<l = yl® +Ir(ts) — @)1 + BT [Ir(ts) — r(ty)]-
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Note that in the second line we use ||Az||2 < ||A]]2]|z||2 for a matrix A and vector . The third line follows
from similar arguments as presented in the proof of Corollary
Inserting

||BT||2 = ||BTH§ = HB”% = )‘maX(BTB) = )‘maX(I) =1,
where Anax is the operator returning the maximal eigenvalue, yields
1B w — BYy[|> < ||z =yl + 2llr(t.) —r(t,)]
<lz—ylP(A+e) .
Similarly, using |[z — y[|> > [lz|[> — [ly||*, we get
||BT> — BTy||?* = ||B"b — BTb + B' Bt, — B'Bt, + BTr(t,) — BTr(t,)|?

> ||BT Bty — BT Bt,||* — | BT|]?|Ir(ty) — r(t.)I]”

> ||z = yl? = 2[|r(ty) — r(ta)|?

> ||z —ylF(1—e) . (18)

To conclude the proof note that from follows:

VI—e |lz—y|| <||B"z — B"y||
——

i=1-é>1—¢

Therefore, there exists an € < e < % for which Condition holds for all z,y on the manifold. O
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