
Published as a conference paper at ICLR 2023

WINNING BOTH THE ACCURACY OF FLOATING POINT
ACTIVATION AND THE SIMPLICITY OF INTEGER
ARITHMETIC

Yulhwa Kim1, Jaeyong Jang1, Jehun Lee1, Jihoon Park1, Jeonghoon Kim2,
Byeongwook Kim2, Baeseong park2, Se Jung Kwon2, Dongsoo Lee2, Jae-Joon Kim1

1Seoul National University, 2NAVER Cloud
{yulhwakim,jaeyongjang,jehun.lee,jihoonpark,kimjaejoon}@snu.ac.kr,
{jeonghoon.samuel,byeonguk.kim,baeseong.park,sejung.kwon,
dongsoo.lee}@navercorp.com

ABSTRACT

Even though floating point (FP) numbers have been adopted as a de facto standard
data format for deep learning computing, the complexity of FP arithmetic impedes
a broader deployment of Deep Neural Networks (DNNs). Recent works such as
quantization have attempted to replace the FP matrix multiplication (MatMul) of
DNNs with simple integer MatMul by transforming the datatypes of both weights
and activations into integers. Unfortunately, unlike weight values that are static,
it is challenging to represent dynamic activations with integers. In this paper, to
simultaneously achieve the accuracy of FP activation and the simplicity of inte-
ger arithmetic, we present a method for replacing FP arithmetic with integer one
without changing FP activations in the storage format while weights are quantized.
The proposed method pre-aligns the significands of FP activations just ahead of
the MatMul on-the-fly so that the aligned significands (integers) can be used for
the computation. Inspired by an observation that conventional FP arithmetic does
not produce precise results due to rounding, we demonstrate that our proposed
integer arithmetic-based scheme can produce the same level of errors as that of
the FP arithmetic in case DNNs use FP activations and quantized weights. Ex-
perimental results show that the hardware based on the proposed scheme shows
significant improvement over FP arithmetic-based designs in terms of energy effi-
ciency and throughput-per-area while maintaining a similar level of accuracy.

1 INTRODUCTION

Deep Neural Networks (DNNs) usually use Floating-Point (FP) number systems to represent a wide
range of weight and activation values. Such a comprehensive representation, however, demands high
computational complexity and cost for FP matrix multiplication (MatMul) (Sze et al., 2017). On the
other hand, integer (a.k.a fixed-point) arithmetic logic is much simpler while consuming less energy
compared to FP counterpart (Jouppi et al., 2021). As such, the computational efficiency of DNNs
can be enhanced by replacing FP arithmetic with integer one. Accordingly, quantization has been
actively studied as a promising technique to support DNN computations with integer arithmetic, as
it maps the input values of a (virtually) continuous domain (FP numbers) to the output values of
a discrete set (integers) (Jacob et al., 2018). Note that even though several studies have success-
fully quantized weights and activations of some target DNNs with low-precision integer values (Li
et al., 2021; Wu et al., 2022), quantization is still challenging for numerous DNNs. In particular,
activation values are known to be more difficult to be quantized than the weight parameters because
activations are dynamically generated during inference while the distribution of weights is static.
The uncertainty of the distribution of dynamic activation values limits the ability to estimate proper
quantization range (Choi et al., 2018). Such issues on activation quantization become even more
serious when DNNs involve highly non-linear activation functions (e.g., GeLU) or modules that
increase the variance of the activations (e.g., softmax and normalization layers) (Jeon et al., 2020).
As a result, while the weight parameters can be successfully quantized even for generative mod-

1

Published as a conference paper at ICLR 2023

Figure 1: An example of FP summation with (a) conventional FP computation and (b) proposed
method. The precise summation is described in the box on top.

els (Xu et al., 2018; Bai et al., 2019; Jeon et al., 2022; Park et al., 2022; Kwon et al., 2022; Frantar
et al., 2022) and extra-large models such as GPT-NeoX-20B (Chung et al., 2020; Yao et al., 2022),
activation quantization usually relies on intensive quantization-aware training or sophisticated in-
vestigation algorithms such as dynamic min/max searching (Tao et al., 2022). Note that activation
quantization is mandatory if integer arithmetic logic is involved for MatMul operations. Thus, to
avoid such significant efforts to quantize complex DNNs (mainly due to activation quantization),
recent neural processing units tend to employ FP arithmetic units even for inference process at the
cost of increased energy and area (Jouppi et al., 2021).

To address the challenges discussed above, we propose a scheme that can achieve both the accuracy
of FP activations and the simplicity of integer arithmetic. Our motivation stems from an observation
that most multiplications can be removed once weights are quantized to be binary-coded (Jeon et al.,
2020). Then, consecutive FP additions are mainly required to perform MatMul, and hence, we find
conventional FP units can be much simplified. To be more specific, when processing the MatMul of
DNNs, our proposed method first pre-aligns the significands of FP activations to be added. Corre-
spondingly, FP activations can be reformatted into integer values and FP arithmetic units (FPUs) can
be replaced with integer units during MatMul operations. A naive pre-alignment for accurate com-
putation requires very high-resolution integer units for the computation, which negates the benefits
of using integer units. Inspired by an observation that conventional FP arithmetic does not guarantee
the exact results due to rounding errors (Wilkinson, 1994), we show that the same level of compu-
tational error can be obtained even when the pre-aligned significands are aggressively truncated.
We then implement an integer-based FP arithmetic unit (iFPU) hardware for MatMul computation
based on the proposed scheme. A comprehensive evaluation of the iFPU on various DNNs shows
that the iFPU significantly improves energy efficiency and throughput-per-area over the conventional
FPU-based MatMul engine while maintaining the neural network accuracy.

2 BACKGROUND

2.1 FLOATING-POINT ARITHMETIC AND ROUNDING ERROR

FP format represents a number as (−1)s × (m)× 2(e−bias) which consists of sign (s), exponent (e),
and significand (or mantissa, m) (Muller et al., 2018). Float32 assigns 1 bit for s and 8 bits for e.
Precision (p), the effective bit count of the significand, is 24 bits (among which 23 bits are explicitly
stored). Bfloat16, which has been gaining popularity in the field of deep learning, intensely cuts
down stored significand bits to 7 (compared to 23 in float32) to lower the total number of bits per
value, and thereby reduces memory footprint (Wang & Kanwar, 2019). The bias of the exponent
term is usually set to half of the exponent maximum.

FP format can cover a wide range of numbers by separating the significant digits and the scale of
the number. Note that because of the precision limits, there is a gap between two consecutive FP
numbers. Such a gap is called a unit of least precision (ulp) whose value is represented by the
least significant digit. Hence, it is hard to represent real numbers precisely with FP format even if
the numbers are in the dynamic range of the FP format, and rounding is required for converting real
numbers into FP numbers. FP arithmetic typically normalizes significands for each computation, and
the rounding operation is followed by the normalization to convert the computation result into an FP
number. Round-to-nearest is the most frequently chosen as a rounding mode where the difference
between the real value and the round-off value can be as large as half of ulp, and its relative error is
bounded by ϵ = 1

2ulp = 2−p, which is referred to as machine epsilon. Both ulp and ϵ are widely
used to evaluate the accuracy of numeric calculations (Goldberg, 1991).

2

Published as a conference paper at ICLR 2023

As every FP operation includes the rounding stage, rounding error is unavoidable in FP arithmetic.
Although the error of a single FP arithmetic operation may be small enough to be ignored, the er-
ror can be substantial if a series of multiple FP arithmetic results are accumulated. For example,
an inner product of MatMul involves multiple FP additions in a row and the FP summation piles
up the rounding error of each FP adder (Figure 1(a)). Accordingly, numerous solutions have been
introduced to compensate for the error of the FP summation (Muller et al., 2018). Such error com-
pensations cause an additional computation burden for tracking and fixing the error. Since the effect
of the rounding errors on DNN accuracy is negligible, popular deep learning frameworks such as
PyTorch and CuDNN (Paszke et al., 2019; Chetlur et al., 2014) allow the rounding errors (without
the compensation algorithms) in favor of simple computation. Note that as the level of rounding
error depends on the precision p (only 8 bits for bfloat16), the error becomes noticeable for bfloat16.
Therefore, summation of bfloat16 values uses float32 adders (instead of bfloat16 adders) to preserve
the accuracy of accumulated results (Wang & Kanwar, 2019; Intel, 2018; Henry et al., 2019).

2.2 RELATED WORKS

Block Floating Point (BFP) has been proposed as a compromise between FP and integer formats.
It assigns a single shared exponent to a group of FP values while maintaining individual signifi-
cands (Wilkinson, 1994). The BFP has drawn attention as a flexible low-bit numeric format for
quantization because the shared exponent can represent the dynamic range of values with little over-
head. Hence, BFP can achieve a higher compression ratio than integer formats (Zhang et al., 2022a).
In addition, since the individual significand values are integer, the BFP formats enable simpler com-
putation than FP formats (Köster et al., 2017). Note that a critical limitation in previous works based
on BFP formats is that the same level of accuracy as that of conventional FP computations cannot
be guaranteed (even theoretically). Previous works tend to find the optimal BFP formats with the
least memory/computation density by evaluating DNN accuracy for various bit resolution and group
sizes (Song et al., 2018; Lian et al., 2019; Rouhani et al., 2020). Another drawback in some previous
works on BFP is that DNNs with BFP format need to be fine-tuned usually by quantization-aware
training to improve the accuracy (Zhang et al., 2022a; Rouhani et al., 2020). Since a quantized neu-
ral network allows only one fixed block size that is optimized for target hardware during training, a
neural network needs to be retrained for different hardware choices if a block size differs.

Truncated binary multipliers with error compensation schemes have been proposed to reduce the
number of outputs in integer multiplications (Petra et al., 2009). While both the truncated mul-
tipliers and our proposed work use the truncations to improve computational efficiency, there are
critical differences between them. In the truncated binary integer multipliers, the amount of the
truncated bits is fixed while it varies in FP additions cases which our work focuses on. In addition,
(Petra et al., 2009) presents a truncation error correction function utilizing the fact that some of the
truncated partial products share the same inputs with the remaining partial products, so they have
correlations with the remaining partial product values. Unfortunately, in FP addition cases, the trun-
cated significands do not have any correlation with the remaining bits so it is hard to devise similar
error correction schemes. Hence, there is a strong need to develop alternative ways to control the
truncation errors in FP operations.

3 RECONSTRUCTION OF FP-BASED MATMUL WITH INTEGER ARITHMETIC

3.1 OVERVIEW OF THE PROPOSED MATMUL RECONSTRUCTION AND COMPUTATION

In this section, we propose a methodology to reconstruct FP MatMul with integer arithmetic for
efficient DNN computation, focusing on FP activations and quantized weights. In most cases, the
weight matrix with m-bit quantization can be expressed as a binary-coded matrix:

∑m
b=1 αb · Bb

where αb is a scaling factor and Bb is a binary weight matrix of each bitplane. Here, αb can be a
power of 2 for uniform quantization or can be an FP value for non-uniform quantization. MatMul
is composed of multiple dot products, and a dot product between activations and weights is defined
as

∑n
k=1 (ak × wk) (a: activation, w: weight, n: fan-in of the layer). If we apply binary-coded

weights and properly change the order of the operations, we can rewrite the dot product as follows:
m∑
b=1

αb

n∑
k=1

(ak ×Bb,k) , Bb,k ∈ [−1,+1] (1)

3

Published as a conference paper at ICLR 2023

Figure 2: Overview of the proposed MatMul computing scheme for DNNs with FP activations.

Figure 3: Comparison of a previous approach (e.g., MSFP (Rouhani et al., 2020)) and the proposed
approach for applying block floating point (BFP) to DNN computation. In the case of MSFP, the
original network needs to be retrained for the MatMul engines with different block sizes, but in the
proposed scheme, the original network can be fed into the engines with any block sizes.

For each bitplane, MatMul of weights and activations is reconfigured as the addition/subtraction of
activation values except for a few αb multiplications that are necessary to merge the outputs from
each bitplane. Because FP multiply-accumulate operations require more hardware resources than
FP additions, even such a reconfiguration of matrix multiplication to remove most multiplications
can improve the efficiency of DNN computations significantly (Jeon et al., 2020). Even so, be-
cause FP additions are still computationally more expensive than integer additions, replacing FP
additions with integer additions can save even more energy and area. Therefore, we propose to
reconstruct FP-based MatMul (Eq. 1) using integer additions (Figure 2). One of the key compo-
nents of the proposed method is the pre-alignment, which reformats the FP activation values into
integer values on-the-fly by sharing the exponent value among the activations that are fed to a dot
product of the MatMul at a time. The pre-alignment finds the maximum of the exponents among
the activations and aligns corresponding significands simultaneously based on the difference of each
exponent and the maximum exponent. As a result, unlike conventional FP arithmetic that performs
the alignment for each addition, our proposed computing methodology aligns the activation values
once per MatMul, and thus, reduces the overall cost of the alignment process significantly. Note that
as opposed to previous works that share the exponent among a block of inputs in the storage format
(e.g., MSFP (Rouhani et al., 2020)), our design performs the exponent sharing during the compu-
tation. Since different exponents are allowed in the storage format in our scheme, we keep the
representation power of the conventional FP format (Figure 3). Because pre-aligned activations can
be represented by the aligned significands which are integer values, an FP addition of the MatMul
can be replaced by an integer addition. After the whole summation process, the proposed method
reformats the summation results back to FP values by normalizing the results with the maximum
exponent found in the pre-alignment stage. Then, the computation results from each weight bitplane
are multiplied by αb and merged to finish the target MatMul operation.

As the exponent of float32 (or bfloat16) is 8-bit, the maximum amount of the significand shifting
is 255 and the resolution of the aligned activation becomes 279 (or 263) bits. Note that such a
large bit width might negate the benefits of using integer units. For example, while 32-bit integer
addition consumes 10.3% energy of float32 addition, 279-bit integer requires a level of energy per
addition comparable to that of float32 addition (Appendix B.1). To avoid the large design overhead,
we propose to use only the top t(= p + δ) bits of the aligned activation when δ indicates the
number of extra significand bits for reducing truncation error. Since the conventional FP addition
also experiences errors due to truncation of significand, relatively small extra δ bits for the proposed
method can derive a level of errors similar to that of conventional FP addition (as described in
Figure 1).

3.2 COMPUTATION ERROR AFTER SIGNIFICAND TRUNCATION

To study the characteristics of errors in the proposed method with truncated significands, we first
analyze the computation error with a single addition/subtraction between two FP values x and y.

4

Published as a conference paper at ICLR 2023

We assume x > y ≥ 0, x = x0.x1 · · ·xp−1, and y = y0.y1 · · · yp−1 × 2−k (k ≥ 0) without loss
of generality, because only the difference between the exponents decides the amount of shifting and
truncation. Here, xi and yi denote the binary value of i-th significand bit, and the leading bit x0 is 1
for x when x > 0. When either k or y is 0, there is no need for significand shifting and truncation,
and hence, integer-based FP arithmetic can guarantee the precise computation without any extra bit
(i.e., δ = 0).

When k > 0, we need to shift and truncate the significand of y for the computation. For the align-
ment, y should be shifted to right by k, so y can be rewritten as y = 0.0 · · · 0y′ky′k+1 · · · y′k+p−1

where y′k+i is equal to yi. As only the top t(= p + δ) bits of the significand remain after the trun-
cation, the truncated result becomes ȳ = 0.0 · · · y′k · · · yt−1. When δ ≥ k, the difference between y
and ȳ is 0. Otherwise, the difference between y and ȳ is bounded as follows:

|y − ȳ| = 0.0 · · · 0y′t · · · y′k+p−1 ≤ 2−(p+δ−1)(1− 2−(k−δ)). (2)

The relative error of the addition with the truncated significand is defined as follows:

eadd =
|(x+ y)− (x+ ȳ)|

|x+ y|
=

|y − ȳ|
|x+ y|

. (3)

By applying both |x+ y| ≥ |x| ≥ 1 and Eq. 2 to Eq. 3, we can obtain

eadd ≤ 2−(p+δ−1)(1− 2−(k−δ)) ≤ 2−(p+δ−1). (4)

Because the machine epsilon is given as ϵ = 2−p, eadd ≤ ϵ when δ is 1 and eadd ≤ 1
2ϵ when δ is 2.

For subtraction, the relative error is defined similarly as follows:

esub =
|(x− y)− (x− ȳ)|

|x− y|
=

|y − ȳ|
|x− y|

. (5)

When δ ≥ k, |y − ȳ| is 0 so that esub is 0. The minimum of x is 1, and y has the maximum value
when all y′k+is are 1. Correspondingly, |x− y| is bounded as follows:

|x− y| ≥
{
1− 0.11 · · · 1 = 2−p, for k = 1

1− 0.0 · · · 01 · · · 1 ≥ 2−1 + 2−2 + · · ·+ 2−(k−1), for k ≥ 2
(6)

When k is 1 and δ is 0, we get |y − ȳ| ≤ 2−p from Eq. 2. For such a case, according to Eq. 6 and
Eq. 5, we have esub ≤ 1. The worst case happens when x = 1 and y = 0.111 · · · 1. When k ≥ 2, by
applying Eq. 2 and Eq. 6 to Eq. 5, we get esub ≤ ϵ for δ = 1, and esub ≤ 1/2ϵ for δ = 2. As a result,
regardless of FP formats, the proposed method has the error level as summarized in the following
Remark 1.

Remark 1 The integer-based FP addition/subtraction has the same level of error as that of the
conventional FP addition/subtraction with 1 extra bit, and the error becomes half with 2 extra bits.

Note that the error of FP summation is the same as the accumulated value of errors from each
addition (Muller et al., 2018). The reconstructed MatMul, however, induces an additional stage of

Figure 4: (a) Average and (b) maximum FP summation errors of conventional FP computation and
the proposed method with extra bits (δ=0,1,2) against the accurate FP summations with Schewchuk
algorithm (Shewchuk, 1997).

5

Published as a conference paper at ICLR 2023

converting integer summation results to FP values, and thus, additional rounding error during the
FP formatting (Figure 5(a)). For example, to sum 128 FP values, a conventional FP-based MatMul
has 127 error sources with bound ϵ while the reconstructed MatMul with 1 extra bit has 128 error
sources with bound ϵ such that the reconstructed MatMul might experience a slightly larger error
than conventional FP-based MatMul. Therefore, to guarantee the same error level as that of the
conventional FP arithmetic, 2 extra bits are used for pre-alignment. Then, reconstructed MatMul
has 127 error sources with bound 0.5ϵ and an additional error source with bound ϵ.

To verify the computation error of the proposed method, we randomly sample float32 values and
compare the computation error of FP summation between conventional FP computation and the
proposed method. To explore a wide range of float32 values, we sample s, e, and m values indepen-
dently assuming a uniform distribution, and then concatenate those values. We vary the fan-in (i.e.,
the number of values to be accumulated) from 128 to 8192, and sample 50,000 sets of FP numbers
for each fan-in selection. The Schewchuk algorithm is employed to obtain accurate FP summation
baseline data for error measurement (Shewchuk, 1997).

As shown in Figure 4, the proposed method produces a similar level of errors to that of the conven-
tional FP arithmetic for various fan-in values when δ=2. Because larger errors are more likely to be
accumulated with larger fan-in, we see that both average and maximum errors tend to grow as the
fan-in increases (Figure 4). Nonetheless, the average error (12.3 × 10−7) and the maximum error
(2.4× 10−2 or 2.4%) are relatively small even with 8192 fan-in, which justifies the current practice
of implementing conventional FP additions without error correction for DNN inference. Corre-
spondingly, the proposed method can support as precise numerical computation as conventional FP
arithmetic does.

4 EXPERIMENT

4.1 IFPU: A MATMUL ENGINE FOR THE PROPOSED METHOD

Figure 5: A block diagram of iFPU

Overall Architecture. To evaluate the proposed
method with real hardware implementation, we first
design a MatMul engine called iFPU. Figure 5 shows
the overview of systolic iFPU architecture which
adopts the design principle of Google’s TPU (Jouppi
et al., 2017). iFPU performs FP MatMul in the
form of a set of FP summation (Eq. 1) that is physi-
cally implemented as integer summation for high ef-
ficiency. After the computation, the iFPU converts
integer results into FP values through the int2fp con-
verter at the end of the Processing Element (PE) ar-
rays. Then, scale & accumulator is used to multiply
αb and add summation results of each weight bit-
plane to finish the MatMul (Eq. 1). The size of MatMul that can be processed in the iFPU at a
time is bounded by the number of PEs, and as a practical design, we evaluate the iFPU with 32×32,
64×64, or 128×128 PEs for the experiment. When fan-in of the DNN layer exceeds the row count
of PEs, activations of the layer are tiled to fit the row-count limit, and each tile is fed into the iFPU at
a time and processed with integer adders in the PEs. To complete the entire MatMul, the computing
results for different tiles should be merged, and for this, float32 adders (accumulator) are used again.

Precision of Integer Adder. As the PE array of the iFPU accumulates the pre-aligned and truncated
significands, the size of the integer adder in each PE depends on t, which is determined by the
precision of the given FP format (p) and extra bits (δ) attached to control truncation error. Based
on the theoretical analysis given in Section 3.2, the iFPU for float32 activations conducts 26-bit
integer addition with δ = 2. Though the iFPU introduces additional FP accumulations due to the
MatMul tiling, the error level of integer-based FP addition with δ = 2 is half of the conventional
FP addition according to Remark 1. Therefore, the iFPU with δ = 2 can still preserve the same
level of computing error as that of conventional FP MatMul (Figure 6(a)). Furthermore, the iFPU
for bfloat16 activations can be designed to be even smaller and more energy efficient by using
smaller precision integer adders thanks to the reduced bit precision for significands. Interestingly,
conventional bfloat16 accumulation still uses float32 adders to preserve the accuracy of accumulated

6

Published as a conference paper at ICLR 2023

(a) Evaluation with float32 activation

(b) Evaluation with bfloat16 activation

Figure 6: Numerical computation errors of MatMul for DNNs with FP activation. We measure the
computation error of conventional FPU-based engine and the proposed iFPU against the accurate
FP computation with Schewchuk algorithm (Shewchuk, 1997). The number of PEs and fan-in are
annotated along the horizontal axis.

(a) Evaluation with float32 activation

(b) Evaluation with bfloat16 activation

Figure 7: Cosine distance between MatMul results of BERT-base (task: MRPC) extracted from
inference results using conventional FPU-based engine (NVIDIA RTX3090) and the proposed iFPU.
The last feed-forward layer in each encoder block (1-12th layers) and pooler (13th layer) is used for
the evaluation. The number of PEs and layer indices are annotated along the horizontal axis.

results (Wang & Kanwar, 2019; Intel, 2018; Henry et al., 2019). However, as the accumulated results
are converted back to bfloat16, it is possible to maintain the accuracy of bfloat16 accumulation with
less accurate adders than float32 adders. Figure 6(b) shows that the proposed bfloat16 iFPU with
δ = 3 (which uses 11 bit adders) provides comparable accuracy to that of conventional bfloat16
adders.

4.2 ANALYSIS OF THE DNN COMPUTATION ACCURACY

MatMuls of DNN with iFPU vs FPU. In the previous section, we compared the accuracy of the
proposed integer-based FP MatMul with precise results. Since our goal is to replace the FPU with
the proposed iFPU, it is also important to compare the computational difference between the conven-
tional error-prone FPU-based engine and the iFPU. For an in-depth understanding of DNN inference
with the iFPU, we first compare the inference output of each layer in the BERT-base model (Devlin
et al., 2018) computed with an FPU-based engine (NVIDIA RTX3090) and the proposed iFPU.
BERT-base uses 4-bit weight values and the target task is MRPC. In iFPU, MatMuls between
weights and activations are processed with the proposed integer-based approach, but other opera-
tions such as softmax are processed by using conventional FPU. We employ cosine distance as the
metric to measure the difference in layer outputs. Note that the cosine distance is 0 for two identical
vectors and 2 for entirely opposite vectors. In this experiment, the last feed-forward layer in each

7

Published as a conference paper at ICLR 2023

Table 1: Accuracy of DNNs inference with conventional FPU-based engine (NVIDIA RTX3090)
and proposed iFPUs(-#rows/columns of PE arrays). The numbers in parentheses represent accuracy
difference between FPU & iFPU.

float32 activation bfloat16 activation

VGG-9 ResNet-18 OPT-1.3B VGG-9 ResNet-18 OPT-1.3B

FPU 92.91 70.27 12.96 92.91 70.28 12.96

iFPU-32 92.91 (+0.00) 70.27 (+0.00) 12.96 (+0.00) 92.91 (+0.00) 70.26 (-0.02) 12.96 (+0.00)
iFPU-64 92.91 (+0.00) 70.27 (+0.00) 12.96 (+0.00) 92.90 (-0.01) 70.27 (-0.01) 12.97 (+0.01)
iFPU-128 92.91 (+0.00) 70.27 (+0.00) 12.96 (+0.00) 92.92 (+0.01) 70.26 (-0.02) 12.98 (+0.02)

ResNet-50 RegNet MnasNet ResNet-50 RegNet MnasNet

FPU 76.32 78.18 75.99 76.33 78.17 75.96

iFPU-32 76.31 (-0.01) 78.18 (+0.00) 75.99 (+0.00) 76.38 (+0.05) 78.18 (+0.01) 75.97 (+0.01)
iFPU-64 76.31 (-0.01) 78.18 (+0.00) 75.99 (+0.00) 76.38 (+0.05) 78.18 (+0.01) 75.96 (+0.00)
iFPU-128 76.31 (-0.01) 78.18 (+0.00) 75.99 (+0.00) 76.40 (+0.07) 78.18 (+0.01) 75.97 (+0.01)

BERT--BASE w/ float32 activation

CoLA MRPC SST-2 STS-B QQP MNLI-m/mm QNLI RTE Avg.

FPU 56.36 89.05 91.51 87.52 83.73 81.95/82.56 89.00 70.04 81.28

iFPU-32 56.36 89.05 91.51 87.52 83.73 81.95/82.56 89.00 70.04 81.28 (+0.00)
iFPU-64 56.36 89.05 91.51 87.52 83.73 81.95/82.56 89.00 70.04 81.28 (+0.00)
iFPU-128 56.36 89.05 91.51 87.52 83.73 81.95/82.56 89.00 70.04 81.28 (+0.00)

BERT--BASE w/ bfloat16 activation

CoLA MRPC SST-2 STS-B QQP MNLI-m/mm QNLI RTE Avg.

FPU 56.08 89.05 91.51 87.52 83.74 81.97/82.57 89.00 70.04 81.30

iFPU-32 56.10 89.05 91.51 87.52 83.72 81.94/82.55 89.05 70.04 81.28 (-0.02)
iFPU-64 56.36 89.05 91.63 87.52 83.72 81.93/82.56 89.00 70.04 81.31 (+0.01)
iFPU-128 56.10 88.83 91.63 87.52 83.72 81.96/82.54 89.05 70.04 81.27 (-0.03)

encoder block and pooler is chosen for evaluation. Figure 7 shows that the FPU and the iFPU pro-
duce almost identical outputs for each layer. The averages of the distance are less than 1.2 × 10−6

and 2.5 × 10−4 for float32 and bfloat16 activations, respectively. Moreover, the distance between
layer outputs from the two engines remains close throughout the forward path. As a result, we can
expect that the proposed iFPU can support DNN inference with almost the same accuracy as that of
conventional FPU.

DNN Inference Accuracy. We select 7 types of DNN models to compare DNN model accuracy
between the FPU and iFPU: BERT-base, VGG-9, ResNet-18, ResNet-50, RegNet-3.2GF, MnasNet-
2.0, and OPT-1.3B. The accuracy of BERT-base is evaluated on the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al., 2019). VGG-9 (Simonyan & Zisserman, 2014) is
evaluated on CIFAR-10 (Krizhevsky et al., 2009). ResNet-18, ResNet-50 (He et al., 2016), RegNet-
3.2GF (Radosavovic et al., 2020), and MnasNet-2.0 (Tan et al., 2019) measure top-1 accuracy on
ImageNet (Russakovsky et al., 2015). OPT-1.3B (Zhang et al., 2022b) is an open-sourced NLP
model provided by Meta AI roughly matching the performance and sizes of the GPT-3 class of mod-
els and is evaluated by estimating the perplexity on WikiText-2 dataset (Merity et al., 2016). All
DNN models use 4-bit weight values that are quantized by a binary-coding quantization scheme.
Note that no modifications to DNN structures are needed to deploy the weight-quantized DNNs to
various iFPUs because 1) activations are FP values and 2) iFPUs are designed to process any Mat-
Mul for DNNs as long as weights are quantized. Table 1 summarizes the DNN inference results.
Because the iFPU can produce almost identical MatMul results as FPU, the proposed iFPUs preserve
the DNN accuracy for both float32 and bfloat16 activations as we expected.

4.3 ANALYSIS OF COMPUTATION EFFICIENCY

Setup. To evaluate the efficiency of proposed iFPUs, we synthesize the proposed hardware in a
28nm CMOS technology. For a fair evaluation of the impact of replacing FP MatMul with integer-
based MatMul, we also design two ‘baseline’ engines for the conventional FP-based MatMul (Fig-

8

Published as a conference paper at ICLR 2023

ure 8). As the first baseline (FP-MAC), Figure 8(a) is designed with FP MAC units to process FP
MatMul as a naive approach. In addition, as the second baseline (FP-ADD), Figure 8(b) is designed
with FP adders to process FP MatMul reconfigured as Eq. 1. Because bitplanes of weight values are
decomposed for FP-ADD and iFPU, binary weights are processed in a bit-parallel manner in FP-
ADD and iFPU, while FP-MAC processes the whole weight values in each MAC unit. Compared
to those two baseline engines, iFPU exhibits the lighter PEs along with additional units such as the
pre-alignment unit and int2fp converter. Lastly, an int8 MatMul engine (INT8) is also implemented
for the comparison between the proposed iFPU MatMul and integer MatMul.

Figure 8: Baseline MatMul engines (a)
FP-MAC and (b) FP-ADD

Results. Simulation results using the synthesized hard-
ware demonstrate that the proposed iFPUs can improve
both energy and area compared to the baselines, as the FP
units of the baseline engines are replaced with the more
area/energy efficient integer units (Figure 9). For float32
activations, the proposed iFPU improves throughput-per-
area (TOPS/mm2) by up to 7.9× and energy efficiency
(TOPS/W) by up to 6.4× compared to the FP-MAC base-
line. For bfloat16 activations, the proposed iFPU achieves
even larger improvements because the size of the corresponding integer-based unit is reduced as the
bit resolution of the aligned-truncated significands is reduced by 15 bits compared to float32 activa-
tion cases. The throughput-per-area of the iFPU is improved by up to 9.9× and energy efficiency is
enhanced by up to 11.9× compared to the FP-MAC baseline. The improvement over the baseline
becomes larger as the number of PEs increases because the overhead of additional logic such as
pre-alignment units in the proposed scheme can be amortized (detailed in Appendix C.2). We also
compare the iFPUs with the INT8 engine. While bfloat16 activations close the gap between the
FP-MAC baseline and the INT8 engine significantly in terms of throughput-per-area, iFPU (with
bfloat16 activations) achieves even higher energy efficiency than the INT8 engine in some cases
(Figure 9).

Figure 9: Normalized energy efficiency (TOPS/W) (left) and throughput-per-area (TOPS/mm2)
(right) of MatMul Engines: baselines and iFPUs for FP MatMul; INT8 for int8 MatMul. The
number of PEs and target activation types are annotated along the horizontal axis.

5 CONCLUSION

The need to accomplish computing MatMul by using FP activations and quantized weights is in-
creasing due to the growing usage of complex non-linear activation functions in DNN models such
as Transformers. Conventional computing platforms such as CPU, GPU, and NPU, however, are
inefficient in performing such computations. In this paper, we propose a new MatMul comput-
ing scheme dedicated to DNNs with FP activations and binary-coding weight quantization. The
proposed method accelerates the FP MatMul of DNNs using the shared exponent and the integer
arithmetic to improve computational efficiency. Previous works which also used the block floating
point number with shared exponent often claim the validity of their design by presenting comparable
DNN accuracy without verifying the robustness of MatMul results in a rigorous manner. We theo-
retically prove that the proposed scheme can produce the same error level as that of conventional FP
arithmetic. To evaluate the computational efficiency of the proposed method, we design and syn-
thesize a MatMul engine, iFPU, following the principle of integer-based operations. Experimental
results support our claim that, compared to the conventional FPU-based design, the iFPUs accelerate
the weight-only quantized DNNs with 6.4× and 7.9× higher energy efficiency and throughput-per-
area for float32 activations, respectively. In addition, the iFPUs yield 11.9× and 9.9× higher energy
efficiency and throughput-per-area, respectively, when associated with bfloat16 activations.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work was supported in part by Institute of Information communications Technology Planning
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-01343, Artificial
Intelligence Graduate School Program (Seoul National University) (10%), and No.2021-0-02068,
Artificial Intelligence Innovation Hub (10%)).

REFERENCES

Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via proximal
operators. International Conference on Learning Representations, 2019.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Insoo Chung, Byeongwook Kim, Yoonjung Choi, Se Jung Kwon, Yongkweon Jeon, Baeseong Park,
Sangha Kim, and Dongsoo Lee. Extremely low bit transformer quantization for on-device neural
machine translation. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pp. 4812–4826, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
computing surveys (CSUR), 23(1):5–48, 1991.

Mark Harris. Mixed-precision programming with cuda 8, 2016. URL https://developer.
nvidia.com/blog/mixed-precision-programming-cuda-8/.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Greg Henry, Ping Tak Peter Tang, and Alexander Heinecke. Leveraging the bfloat16 artificial intel-
ligence datatype for higher-precision computations. In 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), pp. 69–76. IEEE, 2019.

Mark Horowitz. Computing’s energy problem (and what we can do about it). In 2014 IEEE Inter-
national Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14. IEEE,
2014.

Intel. Bfloat16 - hardware numerics definition, 2018. URL https://www.
intel.com/content/dam/develop/external/us/en/documents/
bf16-hardware-numerics-definition-white-paper.pdf. Accessed: 2022-09-
07.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, 2018.

Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and Dongsoo
Lee. Biqgemm: matrix multiplication with lookup table for binary-coding-based quantized dnns.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

10

https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

Published as a conference paper at ICLR 2023

Yongkweon Jeon, Chungman Lee, Eulrang Cho, and Yeonju Ro. Mr.biq: Post-training non-uniform
quantization based on minimizing the reconstruction error. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12329–12338, 2022.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th annual international symposium on computer
architecture, pp. 1–12, 2017.

Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B Jablin, George
Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten lessons from three genera-
tions shaped google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 1–14. IEEE, 2021.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-
only bert quantization. In International Conference on Machine Learning, pp. 5506–5518. PMLR,
2021.

Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Constable, Oguz
Elibol, Scott Gray, Stewart Hall, Luke Hornof, et al. Flexpoint: An adaptive numerical format for
efficient training of deep neural networks. Advances in neural information processing systems,
30, 2017.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

Se Jung Kwon, Jeonghoon Kim, Jeongin Bae, Kang Min Yoo, Jin-Hwa Kim, Baeseong Park,
Byeongwook Kim, Jung-Woo Ha, Nako Sung, and Dongsoo Lee. Alphatuning: Quantization-
aware parameter-efficient adaptation of large-scale pre-trained language models. arXiv preprint
arXiv:2210.03858, 2022.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In Interna-
tional Conference on Learning Representations, 2021.

Xiaocong Lian, Zhenyu Liu, Zhourui Song, Jiwu Dai, Wei Zhou, and Xiangyang Ji. High-
performance fpga-based cnn accelerator with block-floating-point arithmetic. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 27(8):1874–1885, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: Wide reduced-precision
networks. In International Conference on Learning Representations, 2018.

Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jeannerod, Vincent
Lefevre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, Serge Torres, et al. Handbook of
floating-point arithmetic. Springer, 2018.

Gunho Park, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee.
nuqmm: Quantized matmul for efficient inference of large-scale generative language models.
arXiv preprint arXiv:2206.09557, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Nicola Petra, Davide De Caro, Valeria Garofalo, Ettore Napoli, and Antonio GM Strollo. Truncated
binary multipliers with variable correction and minimum mean square error. IEEE Transactions
on Circuits and Systems I: Regular Papers, 57(6):1312–1325, 2009.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

11

Published as a conference paper at ICLR 2023

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna
Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of narrow pre-
cision inferencing at cloud scale with microsoft floating point. Advances in neural information
processing systems, 33:10271–10281, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric
predicates. Discrete & Computational Geometry, 18(3):305–363, 1997.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Zhourui Song, Zhenyu Liu, and Dongsheng Wang. Computation error analysis of block floating
point arithmetic oriented convolution neural network accelerator design. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Chaofan Tao, Lu Hou, Wei Zhang, Lifeng Shang, Xin Jiang, Qun Liu, Ping Luo, and Ngai
Wong. Compression of generative pre-trained language models via quantization. arXiv preprint
arXiv:2203.10705, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. International
Conference on Learning Representations, 2019.

Shibo Wang and Pankaj Kanwar. Bfloat16: The secret to high performance on cloud tpus. Google
Cloud Blog, 4, 2019.

James Hardy Wilkinson. Rounding errors in algebraic processes. Courier Corporation, 1994.

Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li, and Yuxiong He. Extreme compression for
pre-trained transformers made simple and efficient. arXiv preprint arXiv:2206.01859, 2022.

Chen Xu, Jianqiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hongbin
Zha. Alternating multi-bit quantization for recurrent neural networks. In International Conference
on Learning Representations, 2018.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861, 2022.

Sai Qian Zhang, Bradley McDanel, and HT Kung. Fast: Dnn training under variable precision
block floating point with stochastic rounding. In 2022 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 846–860. IEEE, 2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022b.

12

Published as a conference paper at ICLR 2023

A COMPUTATIONAL COST OF FP ARITHMETIC VS. INTEGER ARITHEMETIC

Table 2: Energy of computing units synthesized in a 28nm tech node (MAC: multiply-accumulate).

MAC Multiply Add

float32 int8 float32 int32 int8 float32 int32

Energy per Operation 1.51 pJ 0.08 pJ 1.23 pJ 0.94 0.06 pJ 0.28 pJ 0.03 pJ
Normalized Energy 18.9× 1.0× 20.5× 15.7× 1.0× 9.3× 1.0×

Figure 10: Area comparison
of computing units (layouts
synthesized in a 28nm node).

To cover a wide range of numbers, FP format does not fix the
location of the radix point (Goldberg, 1991). Hence, FP arith-
metic needs to handle input and output values with different scal-
ing factors, and the FP arithmetic units need to align and normal-
ize significands before and after each computation, respectively.
The alignment and normalization logics consist of barrel shifters
that can shift a data word by a specified amount, and the cost of
the barrel shifter far exceeds the cost of other arithmetic logics in
terms of both energy and area, increasing the cost of FP computa-
tion (Horowitz, 2014). Hence, in general, integer arithmetic logic
is much smaller and consumes less energy than FP counterpart.

It is well known that 8-bit integer can achieve up to 4× through-
put improvement compared to IEEE-754 single-precision format
(float32) in widely used GPUs (Kim et al., 2021), as the throughput
of 8-bit operations is generally 4× that of 32-bit operations (Har-
ris, 2016). The advantage of integer can be magnified when the hardware platform moves to
ASIC (Mishra et al., 2018). For in-depth understanding, we synthesize computing units for FP and
integer in a 28nm tech node. As shown in Table 2, multiplication-accumulation (MAC) for float32
consumes 18.9× more energy than 8-bit integer (int8), a widely used integer format for quantized
DNNs. Please note that a float32 MAC consists of a float32 multiplication and a float32 addition
while an int8 MAC consists of an int8 multiplication and an int32 addition. The bit resolution of the
adder for the int8 MAC is higher than that of the multiplier, because int8 multiplication results in
16-bit values and the bit resolution of MAC values increases as the number of accumulated values
increases for integer format. In addition, the area cost of the integer unit is also much smaller than FP
units as shown in Figure 10. Therefore, many studies have attempted activation quantization despite
the various difficulties in the quantization process because both weight parameters and activations
should be quantized to replace FP arithmetic with integer arithmetic.

B SUPPLEMENT FOR PROPOSED SIGNIFICAND TRUNCATION

B.1 ENERGY IMPROVEMENT WITH SIGNIFICAND TRUNCATION

Figure 11: Energy of adders synthesized in a
28nm tech node (tested at 0.9V).

Figure 12: Example of the significand trunca-
tion followed by the pre-alignment.

With naive pre-alignment of float32 activations, the maximum amount of the significand shifting is
255 and the resolution of the aligned activation becomes 279 bits. As shown in Figure 11, while
32-bit integer consumes 0.029 pJ per addition, both float32 and 279-bit integer consumes 0.281 pJ

13

Published as a conference paper at ICLR 2023

per addition. To avoid the large design overhead, we truncate the pre-aligned significands as shown
in Figure 12. The aggressive truncation still did not cause accuracy degradation in FP additions as
we described in the Section 3.2.

B.2 TRUNCATED BINARY MULTIPLIERS VS. PROPOSED SIGNIFICAND TRUNCATION

Figure 13: Comparison of the truncation scheme in the (a) truncated binary multiplier for integer
multiplication and (b) proposed method for FP addition/subtraction.

Truncated binary multipliers (Petra et al., 2009) also discuss the truncation to improve computa-
tional efficiency, but there are critical differences between truncated binary multipliers and the
proposed work as summarized in Figure 13. First of all, truncated binary multipliers deals with
integer multiplications while the proposed work focuses on FP additions/subtractions. Due to the
differences in the number format (integer vs. FP) and arithmetic operations (multiplications vs.
additions/subtractions), the two works present completely different error analysis models and error
reduction schemes.

The error analysis models between truncated binary multipliers and our case are different, because
the amount of truncation is fixed in the truncated binary integer multipliers and the amount of trun-
cation varies in our work as the amount of significand shift varies depending on the input data.
Moreover, in truncated binary multipliers, the bit resolution of truncated output is defined by the
application requirement. On the other hand, as we proposed to truncate the pre-aligned values to
adopt lower-bit integers and improve computational efficiency, the proper bit resolution of truncated
values should be found to meet the accuracy requirement in our case.

In addition, in integer multiplication case, some of the truncated partial products share the same
inputs with the remaining partial products, so they have correlations with the remaining partial
product values. (Petra et al., 2009) proposed an error minimization scheme which exploits such
characteristics. On the other hand, in the FP addition/subtraction case, the truncated significands
do not have any correlation with the remaining bits so it is hard to devise similar error correction
schemes. Instead, we focused on the fact that conventional FP operation is also not precise due to
the rounding of output significands so that we only need to match the error level of the proposed
scheme to the conventional FP operations. Based on the facts, we showed a theoretical analysis such
that the proposed integer-based FP addition/subtraction can have the similar error level as that of
the conventional FP addition/subtraction when small number (1-2) of extra bits are attached to the
shifted significands. With this finding, we can design an efficient integer-based FP addition logic
without having complex error correction function estimated based on the truncated bits.

C IN-DEPTH HARDWARE ANALYSIS

C.1 DETAILED HARDWARE DESCRIPTION OF THE PROPOSED IFPU

Figure 14 describes the proposed iFPU in detail. The proposed iFPU is a bit-flexible accelerator
which can handle variable bitwidth of weight values. The iFPU processes weights in bit-parallel
manner by processing each weight bitplane in different columns of the PE array. For example, 4-bit
weights use 4 PE columns for the computation, and 8-bit weights use 8 PE columns for the computa-
tion. After the integer-based summations are done in each column of the PE array, the integer results
are converted into FP values and multiplied by scaling factors which represent the significance of
each bitplane. Then, computing results of each bitplane are merged in the accumulator (FP adder) to
finish the MatMul. As the output resolution of FP accumulation remains the same regardless of the

14

Published as a conference paper at ICLR 2023

Figure 14: A detailed block diagram of iFPU. The iFPU processes weights in bit-parallel manner
by processing each bitplane of the weights in each column of the PE array. (Bb,k: binary weights in
Eq. 1)

size of the accumulation thanks to the characteristics of the FP format, the size of the accumulator
does not need to increase for the increased weight bit width.

C.2 AREA/ENERGY BREAKDOWN OF PROPOSED IFPU

Figure 15: Area (mm2) (left) and power (W) (right) of MatMul Engines: baselines and iFPUs for
FP MatMul with 32x32 PEs.

Figure 16: Area breakdown (left) and power breakdown (right) of proposed iFPUs with 32x32,
64x64, and 128x128 PEs.

In this section, the area and power of the MatMul engines designed in Section 4.3 are analyzed in
more detail for deeper understanding of the proposed scheme. First, a breakdown of the area/power
of various MatMul engines with 32x32 PEs is shown in Figure 15. FP-ADD reconstructs FP-MAC
with a series of FP additions by separately processing each weight bitplane (Eq. 1), so to match
the effective throughput of FP-ADD with that of FP-MAC in case of 4-bit weights, 4 FP-ADD

15

Published as a conference paper at ICLR 2023

operations are used for the evaluation. Hence, though the area/energy of a single float32 adder is
lower than that of a float32 MAC unit (Table 2), FP-ADD requires slightly larger area and power
than FP-MAC. On the other hand, though iFPU also introduces m times more operations than FP-
MAC, iFPUs achieve large area and power reduction as the area/energy cost of PE arrays become
significantly lower by replacing FP adders with integer adders. The area/power reduction is even
larger in bfloat16 cases because smaller integer units can be used. As the area/power cost of PE
arrays in iFPUs decreases, the relative portion of area/power of supporting logic (such as scale &
accumulator) in the total area/power increases. Hence, the supporting logic accounts for more than
half of the total area/power of iFPUs with 32x32 PEs. Meanwhile, the overhead of the supporting
logic decreases as the size of PE arrays increases. We report the area/power breakdown of iFPUs
with various number of PEs in Figure 16. The experimental results show that, as the size of PE
arrays increase, the supporting logic is shared among more PEs and the overhead can be amortized.

C.3 IMPACT OF THE WEIGHT BITWIDTH ON THE PROPOSED IFPU

(a) Normalized energy efficiency (TOPS/W) of iFPUs

(b) Normalized throughput-per-area (TOPS/mm2) of iFPUs

Figure 17: Computational efficiency of iFPUs normalized with that of the baseline FP MatMul
engine (FP-MAC). Y-axis is the normalized value against FP-MAC and the iFPUs show higher effi-
ciency than FP-MAC even for high-precision weight bits. The number of PEs and target activation
types are annotated along the horizontal axis.

This section analyzes impact of weight bitwidth on the efficiency improvement achievable with the
proposed iFPU. The experimental setup is the same as Section 4.3 except the weight bits. While
only 4-bit weight cases are evaluated in Section 4.3, this section evaluates weights with 1 to 16
bits. Because the proposed scheme processes each bitplane of the weights in the bit-parallel manner,
higher-bit weights require more operations with PE, scale, and accumulators. Hence, as shown in
Figure 17, the benefits of the iFPUs diminish as the number of weight bits increases. Nevertheless,
even for 8-bit weight case, iFPUs achieve better computational efficiency compared to the FP-MAC
baseline.

C.4 COMPARISON OF THE PROPOSED IFPU WITH INT4 MATMUL ENGINE

In Figure 18,, an int4 MatMul engine (INT4) is evaluated and compared with the other MatMul
engines analyzed in Section 4.3. INT4 MatMul shows high energy efficiency and throughput-per-

16

Published as a conference paper at ICLR 2023

Figure 18: Normalized energy efficiency (TOPS/W) (left) and throughput-per-area (TOPS/mm2)
(right) of MatMul Engines: baselines and iFPUs for FP MatMul; INT8/INT4 for int8/int4 MatMul.
The number of PEs and target activation types are annotated along the horizontal axis.

area. However, to take advantage of INT4 MatMul, both weight and activation should be quantized
to 4 bits, which may not provide desired accuracy in many cases.

C.5 HARDWARE EVALUATION WITH MEMORY ACCESS

Figure 19: Normalized energy consumption of MatMul engines (FP-MAC, FP-ADD, and iFPU)
with memory system. The inference energy is measured for BERT-based and OPT-1.3B with 4-bit
weights and float32/bfloat16 activations.

Setup. To understand the effectiveness of the proposed method in the real computing scenario,
the baselines (FP-MAC and FP-ADD) and the proposed iFPU with 128x128 PEs are further evalu-
ated including memory access. For off-chip memory, we scaled down the bandwidth of HBM2 in
TPU (Jouppi et al., 2021) considering the ratio of the number of PEs that make up Matrix Multiply
Unit (MXU), which is 1:4 and adopted energy per bit of HBM2 from Table 2 in (Jouppi et al., 2021);
we used the bandwidth of 153.5 GB/s and the energy per bit of 3.9 pJ/bit. We also scaled the size
of the unified buffer (on-chip SRAM buffer) in (Jouppi et al., 2021) by dividing it by 4. The unified
buffer size in our design was 32MB. For SRAMs, we used the 28nm CMOS memory compiler and
the energy per bit of 0.155 pJ/bit was used. To overlap memory access with computation, double
buffering scheme was adopted in the unified buffer.

Results. We evaluate a single batch inference of BERT-base and OPT-1.3B. We set the sequence
length of BERT-base and OPT-1.3B as 128 and 1024 respectively. As double buffering hides the
memory access latency, the proposed iFPU with memory model can achieve the same amount of
throughput-per-area improvement as that of the baseline for the case in which memory access is
not considered. On the other hand, the gain in energy efficiency slightly changes after considering
memory access. As shown in Figure 19, the dram access energy accounts for a relatively small
portion of total energy consumption in the baselines, because the data is intensively reused in the
MatMul computation. As the proposed iFPU reduces the energy cost of computation, memory
access energy becomes relatively significant in the proposed system. Thus, when considering the
cost of memory access, the amount of improvement in the energy efficiency slightly decreases.
Nevertheless, the iFPU with memory access still can improve the energy efficiency by up to 6.6x
compared to FP-MAC baseline.

17

Published as a conference paper at ICLR 2023

D FINE-TUNING CONDITION FOR BERT-BASE TRAINING

Table 3: Hyper-parameters for fine-tuning BERT-base on GLUE benchmark. The fine-tuning use
AdamW optimizer and the number of training epochs is 10. The learning rates decay linearly and
the weight decay is set to 0.01.

Configuration GLUE

CoLA MRPC SST-2 STS-B QQP MNLI QNLI RTE

Batch size 16 32 32 32 32 16 16 16
Learning rate 1e-4 1e-4 1e-4 2e-4 1e-4 5e-5 5e-5 5e-5 1e-4

18

	Introduction
	Background
	Floating-Point Arithmetic and Rounding Error
	Related Works

	Reconstruction of FP-based MatMul with integer arithmetic
	Overview of the Proposed MatMul Reconstruction and Computation
	Computation Error after Significand Truncation

	Experiment
	iFPU: A MatMul engine for the proposed method
	Analysis of the DNN Computation Accuracy
	Analysis of Computation Efficiency

	Conclusion
	Computational cost of FP arithmetic vs. Integer arithemetic
	Supplement for Proposed significand truncation
	Energy Improvement with Significand Truncation
	Truncated Binary Multipliers vs. Proposed significand truncation

	In-depth hardware analysis
	Detailed hardware description of the proposed iFPU
	Area/Energy Breakdown of proposed iFPU
	Impact of the weight bitwidth on the proposed iFPU
	Comparison of the proposed iFPU with INT4 MatMul engine
	Hardware evaluation with memory access

	Fine-tuning condition for BERT-base training

