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ABSTRACT

Dynamical systems are found in innumerable forms across the physical and bi-
ological sciences, yet all these systems fall naturally into equivalence classes:
conservative or dissipative, stable or unstable, compressible or incompressible.
Predicting these classes from data remains an essential open challenge in com-
putational physics on which existing time-series classification methods strug-
gle. Here, we propose, phase2vec, an embedding method that learns high-
quality, physically-meaningful representations of low-dimensional dynamical sys-
tems without supervision. Our embeddings are produced by a convolutional back-
bone that extracts geometric features from flow data and minimizes a physically-
informed vector field reconstruction loss. The trained architecture can not only
predict the equations of unseen data, but also produces embeddings that encode
meaningful physical properties of input data (e.g. stability of fixed points, conser-
vation of energy, and the incompressibility of flows) more faithfully than standard
blackbox classifiers and state-of-the-art time series classification techniques. We
additionally apply our embeddings to the analysis of meteorological data, showing
we can detect climatically meaningful features. Collectively, our results demon-
strate the viability of embedding approaches for the discovery of dynamical fea-
tures in physical systems.

1 INTRODUCTION

The application of deep neural networks to the prediction (Lusch et al., 2018), control (Haluszczyn-
ski & Räth, 2021), and basic understanding (Raissi et al., 2019) of dynamical systems has spurred
important advances across the sciences, from neuroscience (Sussillo et al., 2016) to physics (Karni-
adakis et al., 2021), from earth and climate science (Reichstein et al., 2019; Fresca et al., 2020) to
computational biology (Sapoval et al., 2022). However, while deep learning has already contributed
significantly to the analysis of single systems, its role in understanding the underlying principles
of dynamical systems in general remains somewhat limited. The ability to predict or control one
system, after all, tells us little about how to do so with another. Crucially, without the ability to gen-
eralize across behaviors of numerous dynamical systems, the problem of constructing new systems
is quite difficult, and most current attempts rely on exhaustive search through system parameters
(Hart et al., 2012; Scholes et al., 2019).
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Figure 1: phase2vec pipeline. phase2vec learns high-quality embeddings of dynamical sys-
tems from phase space data. An input vector field (represented as a stream plot, i.e. a set of trajec-
tories) is passed through a series of convolutional, rectification, and downsampling layers. Terminal
convolutional features are aggregated in a relatively low-dimensional (d = 100) layer before being
mapped to a set of estimated coefficients, Ξrecon. These coefficients are used to weight a dictio-
nary of polynomials in q variables (depicted q = 2), and the resulting linear combination (depicted
transposed above) comprises the estimated governing equation, Frecon(X,Ξrecon) associated to the
reconstructed vector field.

A machine learning framework that could elucidate the latent dynamical structure across numerous
systems having different governing equations and parameters would be an important first step in this
direction. However, progress on this front has been limited, largely because representations of even
a single dynamical system are necessarily high-dimensional (many initial conditions over time) and
the problem of understanding single systems in detail is already as daunting as it is useful. The
few existing approaches that analyze multiple systems simultaneously focus on the limited setting
of rapid adaptation to new parameter regimes for governing equations (Kirchmeyer et al., 2022) or
rely on hardwired features and laborious search over model manifolds (Quinn et al., 2021).

To address this challenge, we propose phase2vec, a dynamical systems embedding model which
learns high-quality, low-dimensional, physically-meaningful representations of dynamical systems
(Fig. 1). We focus here on two- and three-dimensional dynamics because of their preponderance
in nature, ranging from classical non-linear models of population growth like the Lotka-Volterra
model to increasingly important models of climate dynamics (for applications to both, see Sec.
4). Similarly to many word embedding approaches (Mikolov et al., 2013), which approximate the
meaning of words using statistical regularity instead of formal semantics, our dynamical embeddings
seek to model the “semantics” of dynamical systems from data instead of via analytical investigation.
phase2vec is so-called since it is based on a vector of convolutional features extracted from
the vector field representing the dynamics in phase space of input data. To encourage physically-
meaningful solutions from our encodings, we use a decoder which reconstructs input dynamics from
a library of basis functions. The full pipeline is trained with a reconstruction loss placing special
emphasis on fixed points, giving phase2vec a physically-informed “learning bias” (following the
terminology for principles of physics-informed learning suggested in (Karniadakis et al., 2021), Box
2).

Like other embedding methods, we train our system on an auxiliary task, in our case one involving
equation reconstruction. We show that this auxiliary task, combined with a physics-informed loss,
steers the network towards learning dynamically stable, informative embeddings1.

The main contributions of this paper are:

1. phase2vec, a novel neural-network-based embedding method that can be used to learn
low-dimensional representations of dynamical systems in an unsupervised manner.

2. A demonstration that these embeddings can be used to decode the governing equations of
testing data, recover sparse underlying models, and denoise input data in a way that pre-

1Code available here: https://github.com/nitzanlab/phase2vec
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serves dynamical characteristics better than per-equation fitting approaches (e.g. LASSO;
(Tibshirani, 1996)), even on noisy data.

3. Quantitative analysis showing that important physical properties (conservation of energy,
incompressibility, class of dynamical stability) can be decoded from phase2vec embed-
dings with much greater accuracy than both blackbox classifiers and contemporary time
series classification approaches.

4. An application of phase2vec to the analysis of climate data, demonstrating that the em-
beddings capture meaningful structure in real data, such as the characteristics of distinct
temperature zones.

2 RELATED WORK

Data-driven discovery of governing equations There is a large body of work concerning the
discovery of governing equations of single systems from time series data (reviewed in (Timme &
Casadiego, 2014)). Early work by (Bongard & Lipson, 2007; Schmidt & Lipson, 2009) fit the coef-
ficients of an explicit basis of polynomials to time series data using least squares, an approach which
was modernized in the sparse reconstruction method of SINDy (Brunton et al., 2016) and its autoen-
coder formulation in (Champion et al., 2019). Other approaches eschew the explicit modeling of
dynamical equations in favor of implicitly representing the dynamical transition as the discrete-time
action of an autoencoder on state samples. For example, (Lusch et al., 2018) approximated the ac-
tion of the Koopman operator in such a set-up, while (Bramburger et al., 2021) used an autoencoder
to learn topologically conjugate representations of unseen equations. Importantly, all of the above
methods focus on a specific system at hand and do not generalize to additional settings.

Generalization across physical systems While there has been some progress in estimating equa-
tions for single systems, inferring the dynamics of multiple systems simultaneously has proven more
challenging (Brown & Sethna, 2003). The manifold boundary approximation method of (Quinn
et al., 2021) has been used in multiple cases (Transtrum & Qiu, 2014) to estimate the minimal
mechanisms underlying behavioral archetypes within a single parameterized dynamical family (e.g.
a family of Ising models parameterized by coupling strength (Teoh et al., 2020)). This method can
be used to identify dynamics that happen to lie on the boundaries of the model manifold, but its use
in identifying arbitrary, user-defined dynamical classes is less straightforward. A more recent line
of work (Clavera et al., 2019; Lee et al., 2020; Yin et al., 2021; Kirchmeyer et al., 2022; Wang et al.,
2022) has taken an adaptation approach whereby the representation of dynamics observed during a
training period can be quickly updated to a new setting in which the parameters of the underlying
system have changed. Here, too, the focus is the generalization to new parameter regimes of the
same underlying equation. To our knowledge, the problem of learning generalizable representations
of dynamical models whose functional forms vary widely has not been systematically addressed.

Vector-field-based approaches All of the above approaches have taken time series as their input
data. Instead, vector field representations can be generated from known governing equations or from
time series measurements, for instance by binning velocities (Sneed & Komaee, 2021) or by fitting
a statistical model (e.g. (Qiu et al., 2022)). Among the approaches which rely on vector field data
is (Battistelli & Tesi, 2020), which provided theoretical guarantees for the performance of two-class
vector field classifiers for linear systems. (Ye et al., 2020) used a supervised convolutional network
to analyze a vector field arising from aerodynamic simulations, but they neither addressed the prob-
lem of generalization across systems or equations nor the problem of classifying general physical
properties. Others sought to construct vector fields subject to the constraints on the number, loca-
tion, and stability of fixed points which are mathematically imposed by Conley index theory(Conley,
1978; Zhang et al., 2006; Chen et al., 2008). Our approach not only combines the classifier method
of (Battistelli & Tesi, 2020) with the physical biases of (Zhang et al., 2006; Chen et al., 2008),
but importantly introduces deep-learning-based feature extraction, supporting generalization across
complex non-linear dynamics.
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3 METHODOLOGY

Let D = {Fi}mi=1 be a set of continuously differentiable, parameterized vector fields on Rq , each
with parameter vector Ξi. Each F ∈ D is associated to a dynamical system via

Ẋ = F (X; Ξ). (1)

When F is identified with a dynamical system in this manner, we refer to Rq as the system’s phase
space and the value X(t) of a solution to Eq. 1 as the state of the system at time t. Our goal is
to learn a γ-parameterized embedding map zi = ψ(Fi; γ) for each Fi ∈ D so that the zi ∈ Rd

capture the principal factors of variation in the underlying physical system given by Eq. 1 (Fig. 1).
We reason that a good map, ψ, is one that produces embeddings, zi, of testing data from which
governing equations can be faithfully decoded. Much in the way word embeddings are learned by
optimizing an embedding map on a self-supervised auxiliary task of context prediction (Mikolov
et al., 2013), we train our embedding map on a self-supervised auxiliary task of governing equation
prediction.

3.1 ARCHITECTURE

In practice, we evaluate each F on a (potentially different) phase space lattice, each of whose q
dimensions has resolution n, so that D is a set of nq × q arrays whose elements indicate the q-
dimensional velocity of equation 1 at each discrete location. We set n = 64 but found no qualitative
difference in performance when n was varied between 32 and 128 (Fig. A.14). We instantiate the
map, ψ, as three-layer convolutional architecture (with kernels having either 2 or 3 spatial dimen-
sions depending on q) terminating in one fully-connected layer mapping convolutional features to
the d-dimensional phase2vec.

Following (Brunton et al., 2016), embeddings are passed through a two-layer multi-layer perceptron,
producing a vector of estimated coefficients, Ξrecon ∈ Rp×q . These coefficients are used to form
linear combinations with a set of basis functions Φ(X) = [Φ1(X), . . . ,Φp(X)] for column vectors
Φi. The reconstructed equation is taken as

Ẋrecon = Φ(X)Ξrecon = Frecon(X,Ξrecon) (2)

where Φ(X) = {xaj

j } for
∑q

j=1 aj ≤ c are all possible unit-coefficient monomials up to a given
degree, c. We set c = 3 (cubic degree) so that for q = 2, Ξrecon ∈ R10×2 (Fig. 1). Other bases
of larger polynomial degree or of non-polynomial functions, e.g. including sin(x), are also possible
(Brunton et al., 2016). We chose c = 3 following earlier work (Iben & Wagner, 2021) which showed
this value was sufficient for the types of dynamical systems considered here.

3.2 LOSS AND TRAINING

Following (Champion et al., 2019), we train our system with a loss that balances reconstruction
fidelity with sparsity of the underlying equation. However, we also normalize our reconstruction
loss in a manner that emphasizes special “skeletal” points of the dynamics. In particular, we take
our reconstruction loss to be

L1(Ẋ, Ẋrecon) =
∥Ẋ − Ẋrecon∥2

∥Ẋ∥2 + ϵ
, (3)

for a small corrective constant, ϵ > 0. Here, L1 is especially large where Ẋ vanishes, lending special
emphasis to fixed points and “slow” regions in the dynamics, which are often the loci of important
dynamical phenomena (Tredicce & Lippi, 2004) (see Supp. A.1.1). These regions of low magnitude
in an array only have meaning in the physical setting (as opposed to, for example, in image data),
placing phave2vec under the “learning biases” rubric in physics-informed machine learning (Kar-
niadakis et al. (2021), Box 2). We use a simple sparsity penalty L2(Ẋ) = ∥Ξrecon(Ẋ)∥1 and train
ψ(Ẋ; γ) by approximating

γ∗ = argmin
γ

EF∈D

[
L(Ẋ, Ẋrecon)

]
(4)
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for L = L1 + βL2 with sparsity regularizer β. Note that the loss measures the discrepancy between
the true and reconstructed vector fields and not between the true and reconstructed parameters.

We investigated both q = 2 and q = 3 dimensional systems. The training set D in either case was
a collection of q-dimensional polynomial ODEs generated from the dictionary Φ with coefficients 0
with probability .75 and otherwise sampled uniformly on [−3, 3]. We then tested generalization on
two data sets, one measuring generalization to new parameter regimes for the training set and another
measuring generalization to new functional forms not observed during training. For the former, we
used a set of equations sampled from the same distribution generating D but having a disjoint set
of coefficients, and, for the latter, we used a collection of “classical”, real-world systems ranging
from the FitzHugh-Nagumo neuron (FitzHugh, 1955) to the Lotka Volterra model (Freedman, 1980)
to the Lorenz system (Lorenz, 1963). The functional form of equations from this latter set were
systematically excluded from the training set. For example, if a testing system had the form ẋ1 =
a+ bx21; ẋ2 = cx1x2, then this equation was never used to generate a training datum for any a, b, c
(see Sec. A.2).

4 RESULTS

Generalization to held-out systems Embeddings were trained on an auxiliary task of equation
reconstruction before being evaluated on a sequence of dynamics classification tasks. In order to
ensure phase2vec could indeed learn this auxiliary task, we verified that we could reconstruct
the equations of held-out dynamical systems compared to the simplest per-equation fitting baseline
incorporating sparsity, LASSO (Tibshirani, 1996). The same sparsity regularizer of β = 1 × 10−3

was used in both models. We measured both the euclidean error from the true parameters and the
fixed-point normalized reconstruction error (Eq. 3) on the vector fields.

Saddle-Node (1) Pitchfork (1) Transcritical (1) Simple Oscillator (1) Lotka-Volterra (1)
Par: LASSO 2.15× 10−1 2.30× 10−1 2.33× 10−1 6.54× 10−1 7.00× 10−1

Par: Phase2Vec 1.60× 10−1 1.61× 10−1 1.78× 10−1 5.37× 10−1 4.51× 10−1

Recon: LASSO 4.16× 10−1 7.13× 10−3 4.12× 10−3 9.13× 10−3 1.99× 100

Recon: Phase2Vec 1.75× 10−1 1.78× 10−1 1.71× 10−1 1.53× 10−1 1.26× 100

Homoclinic (1) Van Der Pol (1) Selkov (2) FitzHugh-Nagumo (4) Polynomial (20)
Par: LASSO 3.45× 100 1.68× 101 6.53× 100 1.16× 101 3.11× 100

Par: Phase2Vec 2.93× 100 1.15× 10−3 5.52× 100 6.07× 100 1.78× 100

Recon: LASSO 2.32× 10−3 2.39× 101 2.97× 100 2.93× 10−1 5.26× 10−1

Recon: Phase2Vec 1.93× 10−1 3.26× 10−1 8.52× 10−1 4.62× 10−1 1.47× 10−1

Table 1: Euclidean parameter estimation error and reconstruction loss of phase2vec or LASSO
on two-dimensional systems.

Saddle-Node 3d (1) Lorenz System (3)
Par: LASSO 7.16× 10−2 2.14× 101

Par: Phase2Vec 5.65× 10−2 1.42× 101

Recon: LASSO 1.83× 10−1 8.10× 10−1

Recon: Phase2Vec 2.28× 10−1 6.20× 10−1

Table 2: Euclidean parameter estimation error and re-
construction loss of phase2vec or LASSO for three-
dimensional systems.

For two-dimensional systems (Ta-
ble 1), our generalizable approach
was found to outperform the per-
equation LASSO baseline on aver-
age across the testing set of “clas-
sical” equations (see Sec. A.2; Pa-
rameter error: phase2vec, 2.70±
0.29 v.s. LASSO, 3.96 ± 0.44.
Reconstruction error: phase2vec,
0.37 ± 0.06 v.s. LASSO, 0.6 ±
0.12; standard deviation bounds), al-
though performance per-class varied widely. These results were quantitatively maintained even
when fixed-point normalization was turned off (Reconstruction error: phase2vec, 0.28 ± 0.09
v.s. LASSO, 0.89 ± 0.15). Further, in order to assess the ability of phase2vec to reconstruct
systems which are not expressible in the output basis, we also included one system, the “simple os-
cillator”, whose equation has no closed polynomial form (see Sec. A.2). Nevertheless, phase2vec
was also found to fit this data comparably well to the LASSO baseline (Table 1, ”Simple Oscillator
(1)”). Again, none of the functional forms of the testing systems were observed during training,
meaning that even out-of-distribution dynamics were encoded and decoded correctly.
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To evaluate phase2vec embeddings in the three-dimensional case, we evaluated our architecture
on equations having qualitatively similar behavior to the two-dimensional case (a three-dimensional
extension of the saddle-node family; see Sec. A.2) as well as on equations giving rise to dynamics
only possible for q > 2 (i.e. the chaotic behavior produced by the Lorenz system in three dimen-
sions). As in the two-dimensional case, we found that three-dimensional reconstruction performance
favored phase2vec (Parameter error: phase2vec, 4.78 ± 0.27 v.s. LASSO, 7.17 ± 0.51. Re-
construction error: phase2vec, 0.36± 0.08 v.s. LASSO, 0.39± 0.15; standard deviation bounds;
see Table 2). An example reconstruction is given in Fig. A.15.

Effects of normalization and sparsity We found that fixed-point normalization was crucial for
accurate vector field reconstruction of testing data, especially for systems with complex dynamical
features, such as cohabitating fixed points and cycles (Fig. 2a). For example, we compared the
quality of reconstruction of the normalized and un-normalized models of a dynamical system ex-
hibiting a homoclinic bifurcation in which a limit cycle collides with a saddle point as one of its
coefficients is tuned from ξ = −1.2 to about .8645 (see Sec. A.2). We found that un-normalized
reconstruction error was, naturally, lower for the model trained with the un-normalized loss. How-
ever, the ability of the normalized model to predict the ground truth system behavior near dynamical
key points (such as fixed points) was much greater than the un-normalized model (Fig. 2a). To

(a) (b)

Figure 2: Fixed-point normalization and sparsity. (a) The euclidean distance between trajectories
simulated by a phase2vecmodel trained with (red) or without (blue) physically-informed normal-
ization, and the ground truth model, in the case of a system nearing a homoclinic bifurcation (Sec.
A.2). Relative performance near the fixed point is evident from stream plot reconstructions (black
inset: ground true; blue inset: unnormalized; red inset: normalized.) (b) Parameter prediction error,
P , as a function of the proportion of ground truth (noisy) parameters sparsified, S, over different
settings of the sparsity regularizer, β. Low reconstruction error is obtained despite sparsification up
to 25% (green box).

observe the necessity of the normalization more closely, we generated 20 reconstructions for each
of the normalized and un-normalized model corresponding to 20 evenly spaced parameter values in
the interval ξ ∈ [−1.2,−.8645]. We then simulated 1000 trajectories from all of these systems with
initial conditions sampled from a circle of radius .1 surrounding the fixed point at the origin. As
the trajectories advanced in time, we measured the euclidean deviation of simulated vs true trajecto-
ries, averaged across all initial conditions (Fig. 2a). We found that trajectories starting near the fixed
point diverged much more rapidly from their true course when simulated based on the un-normalized
model compared to those based on the normalized model. This is especially noticeable when the
reconstructions are viewed as streamline plots (Fig. 2a: ground truth, black border inset; blue border
inset, un-normalized reconstruction, and red border inset, normalized-reconstruction). In this sense,
the normalized loss is critical for inferring meaningful dynamical features while ignoring irrelevant
details which influence the euclidean loss (details in Sec. A.1.1).

Furthermore, we expect meaningful and useful representations of dynamical systems to correspond
to the simplest system that generates the underlying input dynamics, i.e. the system with the sparsest
parameter values. Therefore, we next investigated the role of sparsity in the auxiliary equation
prediction task by measuring parameter reconstruction error on a new version of the classical system
testing set (i.e. the systems of Table 1) whose underlying parameters, Ξpert, were perturbed by zero-
mean gaussian noise with standard deviation σ = .1. We varied β from 1 × 10−3 to 1 × 10−1 in
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20 steps and for each β measured the average euclidean distance between the inferred parameters
and the true (unperturbed) parameters, P , versus the average proportion of the perturbed parameters
which were sparsified, S:

P = Eµ [∥Ξrecon − Ξ∥2] , S = Eµ

[
∥Ξrecon∥1
∥Ξpert∥1

]
. (5)

for Ξpert ∼ µ. We found that the perturbed parameters could be substantially sparsified (approxi-
mately over the range β ∈ [1× 10−3, 1× 10−2]) without incurring a large reconstruction error (Fig.
2b, green box). This provides evidence that the model has learned to distinguish between parameters
that contribute to dynamical structures of the systems and irrelevant nuisance parameters.

Dynamically-informed reconstruction of noisy test data The applicability of our model to real
data depends on our ability to produce meaningful embeddings from noisy data, as vector fields are
typically acquired by binning derivatives from time series datasets which can be sparse or corrupted.
We do not propose phase2vec as a denoiser per se, rather intending to show that our learned
representations are robust to noise compared to a per-equation baseline. To evaluate this ability, we
measured reconstruction performance on the ”classical” system testing data subjected to four types
of noise: (1) independent, zero-mean gaussian noise added to input vector fields, (2) random zero
masking, (3) random sparsification arising from creating vector fields from binned trajectory data
and (4) gaussian noise added to the true parameter vector (for details, see Sec. A.2). The magnitude
of each type of noise was systematically varied as we probed the comparative ability of phase2vec
vs LASSO to reconstruct the uncorrupted data.

We found that phase2vec reconstructions degraded gracefully with noise compared to LASSO
over a wide range of noise parameter values (Fig. 3). For examples of phase2vec reconstructions,
see Sec. A.4. Crucially, as these were testing data, reconstruction is only possible if the embedding
map, ψ, has acquired a robust and general notion of how the geometry of vectors in phase space
relates to governing equations.
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Figure 3: Dynamically-informed denoising. The accuracy of phase2vec (green) in comparison to
LASSO (yellow) in reconstructing noisy testing data in four cases. From left to right: gaussian noise
applied to the input vector field, random zero masking applied to the input vector field, trajectory-
generated noise, and gaussian noise applied to the true parameter vector. For low values of noise
phase2vec was always the more robust method. For parameter noise, this trend continued for the
full range of noise examined.

Decoding the physics of embedded data Having ensured that governing equations for testing
data could be decoded from phase2vec embeddings with performance comparable to a per-
equation fitting method including under noisy conditions, we next sought to validate the quality
of these embeddings on a battery of physics classification tasks. We compared phase2vec to
three other representations: (1) the parameter vector of the underlying equation, (2) the first d PCA
eigenvalues of the raw vector fields where d is set to be the dimension of the embedding space,
and (3) time series features extracted by TapNet (Zhang et al., 2020), a state-of-the-art time se-
ries classifier. For all representations, except for TapNet (which has a built-in MLP classifier), we
trained a logistic regressor with a cross-validated ℓ2 penalty to predict the true classes of the un-
derlying dynamics. We ran three experiments with classes delineated according to either global
or local dynamical properties. For the global case, we classified: (1) whether the dynamics re-
spect conservation of energy or not (Conservatvity; two classes), and (2) whether the dynamics
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represent an incompressible flow or not (Incompressibility; two classes)2 For the local case, we
classified linear systems according to the five possible types of fixed points they can exhibit (Lin-
ear stability; five classes: stable node, unstable node, stable spiral, unstable spiral or saddle point
(Strogatz et al., 1994)). TapNet classifications came from voting over classifications made from
10 length-64 time-series. All systems were two-dimensional. For training details, see Sec. A.3.

Conservativity Incompressibility Linear stability0.0

0.2

0.4

0.6

0.8

Te
st

in
g
 F

1

Parameters Vector field PCA TapNet Phase2Vec

Figure 4: Classification performance of phase2vec vs. alter-
native representations. In physics classification, phase2vec
(green) outperformed competing representations: (1) the raw 20-
dimensional parameter vector of the true equation (red), (2) the
first d = 100 PCA eigenvalues of the input vector field (blue),
and (3) features extracted using the attentional time series model
TapNet (purple). Bars depict F1 score and errors are standard de-
viation across classes. Details in main text and Sec. A.3).

On all classification tasks, we
found that phase2vec embed-
dings outperformed the compet-
ing representations (Fig. 4),
achieving an F1 score of over
.93. The largest comparative
advantage for phase2vec was
achieved on the five-class lin-
ear stability task, where the oth-
erwise high-performing TapNet
achieved an F1 score of un-
der .3. The relative advan-
tage of phase2vec over Tap-
Net specifically in the cases
of conservation of energy and
incompressibility demonstrates
one of the important advan-
tages of a vector-field-based ap-
proach. Namely, these are
global system properties which
are naturally captured by the ex-
tensive coverage of phase space
as well as the aggregation of
phase information which are entailed by convolutional features.
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Figure 5: Climate embeddings. (a) Emergent clusters in wind data. Each point is a phase2vec
embedding of a vector field measuring wind velocity in a fixed spatial grid covering the eastern
hemisphere. Different points correspond to different times and pressures. Points are colored by
pressure from .01 to 1.0 Kb. Three clusters emerge, corresponding to the appearance of circumglobal
streamlines (insets) as a function of pressure. (b) Temperature gradient embeddings and Köppen
label prediction. Temperature gradient embeddings colored according to a coarse Köppen label,
indicating the general climatic zone which predominates in the crop. Labels were better predicted
using phase2vec than using raw vector fields matched for dimensionality by PCA.

2These are two important dynamical classes since Helmholtz’s Theorem holds that, under mild assumptions,
every vector field can be decomposed as the sum of a conservative and incompressible component.

3We also confirmed that we could decode the identities of the “classical” systems used above as test recon-
struction data (F1 score, .814).
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Embeddings of climate data To investigate whether our embeddings could identify meaningful
structure in real data, we computed representations of two types of climate data. For a first, qual-
itative, demonstration, we computed embeddings for global wind vectors taken from (Blumenthal
et al., 2005). Measurements were indexed by month and by year, from 1960 to 2022, as well as
by pressure (Kb). We used wind vector measurements from a fixed spatial grid comprising roughly
the eastern hemisphere which exhibits distinct visual patterns in the form of horizontal streamlines
emerging at low pressures (Fig. 5a; brown inset for .07 Kb and green inset for .01 Kb). We found
that phase2vec embeddings could easily identify these pressure-dependent bands in the form of
the red, brown, and green clusters (Fig. 5a).

For a second, quantitative experiment, we computed embeddings for world average temperature data
taken from (Fick & Hijmans, 2017) which were accompanied by so-called Köppen labels which in-
dicate to which of five coarse temperature zones a given spatial location belongs (Köppen, 1884;
Beck et al., 2018). The ability to make quantitative predictions about these data is especially impor-
tant since they have been recently shown to produce accurate forecasts of changing climate zones as
a result of global warming (Beck et al., 2018).

To demonstrate the ability of phase2vec to classify data taken from a real physical system, we
generated embeddings of random spatial crops (sized 153◦×153◦ latitude by longitude) of tempera-
ture gradient fields and used them to predict each crop’s expected Köppen label. As these fields were
indexed by month and labels were not, we used month-averaged embeddings as our representation
of a given location. We found that phase2vec embeddings of these data (first two PCs, Fig. 5b,
left) were substantially more predictive of the expected Köppen label than the raw vector field (Fig.
5b right, VF F1 testing score: .484± .011 vs phase2vec F1 testing score: .627± .079), indicating
that phase2vec had extracted dynamical structure relevant to climate annotations.

5 CONCLUSION

phase2vec is a physics-informed convolutional network for high-quality, low-dimensional repre-
sentations of dynamical systems. Learned features are trained on an auxiliary task of generalized
equation prediction and are demonstrated to be robust to noise. Importantly, phase2vec can gen-
eralize to held-out systems and learn the underlying semantics of dynamical systems, which can
be used to decode general physical characteristics from data with greater fidelity than competing
methods.

A clear area for future work is the extension of our framework to high-dimensional systems. This
could be accomplished in a straightforward way with the use of higher-dimensional convolutions,
which have been used up to several tens of dimensions (Choy et al., 2020). For higher dimensional
real-world systems, like neural circuits or chemical signaling pathways, potential approaches could
use architectures taking advantage of sparse measurements in phase space, such as graph neural
networks.

In its current form, phase2vec makes minimal assumptions about input data, namely, that dynam-
ics are qualitatively invariant to translations of the input coordinate system, that “slow” dynamics
are important, and that dynamics generally change stably with input parameters. The first two of
these assumptions are encoded by our use of a convolutional architecture and fixed-point normal-
ization, respectively. The stability assumption is encoded by the fact that the embedding map is
continuous and validated by showing that embeddings are robust to noise. Future work could in-
troduce new assumptions, for instance by enforcing additional types of symmetry (e.g. rotational
symmetry). Existing assumptions could also be adapted, for instance, by making embeddings sen-
sitive to qualitative changes in dynamics (i.e. bifurcations, see (Kuznetsov, 1998)) which result
from otherwise small changes in parameters. The choice of dictionary functions is also an area for
future exploration, and we are intrigued by the use of other bases, like Legendre polynomials or
biologically-meaningful components, like Hill functions (Frank, 2013; Ingalls, 2013).

The ability of phase2vec to encode meaningful dynamical features from data makes it a useful
and promising model for the recovery of minimal physical systems and the design of new dynamical
systems across biological and engineering applications. Chief among these applications are the
design and real-time control of dynamical systems across the sciences.
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A APPENDIX

All experiments were carried out using pytorch v. 1.12 using an NVIDIA RTX 3060 GPU.

A.1 ARCHITECTURE AND TRAINING

Here, we describe the embedding architecture of phase2vec specifically for the two-dimensional
case (q = 2). The three-dimensional case is identical, except that the number of spatial dimensions
of kernels is one larger (q = 3) and the embedding dimension, d, was larger. The convolutional part
of the phase2vec embedding pipeline consisted of three convolutional blocks, each with kernel
size 3×3, stride 2×2 and 128 channels. This resulted in a sequence of convolutional blocks of sizes
(128 × 31 × 31), (128 × 15 × 15), (128 × 7 × 7). Convolutional blocks were interleaved by ReLU
non-linearities and batch norm layers. The final convolutional activations were mapped by a single
linear layer to a d = 100-dimensional embedding space (d = 256 for three-dimensional case).

To compute predicted coefficients, these embeddings were mapped by a 2-layer MLP whose hidden
layers had 128 units to 20-dimensional vectors representing the 10 coefficients possible for each
of the 2 dimensions in the ODE. For the three-dimensional case, embeddings were mapped to 60-
dimensional vectors representing 20 coefficients for each of the 3 dimensions. MLP layers were
alternated with batch norm layers as well as dropout layers whose rate we set to p = .1 during
training.

The model was trained with an ADAM optimizer using a learning rate of 1 × 10−4 over 200 itera-
tions.

A.1.1 PHYSICALLY-INFORMED LOSS NORMALIZATION

We provide a visualization of the physically-informed normalized loss in comparison to the unnor-
malized loss showcasing its importance in capturing meaningful dynamics. Considering the saddle-
node bifurcation system Fig. A.6a we observe that the normalized loss landscape across phase space
captures the properties of the system, visually represented by the fixed points Fig. A.6b. In contrast,
these can not be identified in the unnormalized representation Fig. A.6c.

(a) (b) (c)

Figure A.6: Fixed-point normalization. (a) Saddle-node vector field used for evaluation of the loss
landscape (b)-(c). Gaussian noise was added to the true vector field and losses were measured at
each spatial location. (b) shows the physically-informed normalization and (c) the unnormalized
loss.

A.2 DATA, TRAINING AND EVALUATION

A.2.1 SYNTHETIC DATA

The training set D was a collection of polynomial ODEs generated from the dictionary Φ with
coefficients that were 0 with probability .75 and were otherwise sampled uniformly on [−3, 3] and
consisted of 10k examples. For evaluation in all settings, a test set of 1000 samples was used.

Network hyperparameters were selected to minimize validation loss on two data sets:
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1. Polynomial equations: For generalization to new parameter regimes. A set of equations
sampled from the same distribution generating D but having a disjoint set of coefficients.

2. Real-world systems: For generalization to new functional forms not observed during train-
ing. The real-world systems, their parameter ranges and labels are given in Table A.3.

All equations were re-centered to be on the square [−1, 1]2 on the phase plane and discrete vector
fields were computed by measuring the continuous system on an evenly-spaced grid of 64 × 64
points. We only investigated equation reconstruction for two 3-d systems as a proof of concept and
did not classify them. They therefore do not have labels.

Name Equation Parameter ranges Class labels
Saddle-node ẋ1 = a− x2; ẋ2 = −1 a ∈ [−1, 1] 0 if a < 0; 1 if a ≥ 0

Pitchfork ẋ1 = ax1 − x31; ẋ2 = −1 a ∈ [−1, 1] 2 if a < 0;3 if a ≥ 0
Transcritical ẋ1 = ax1 − x21; ẋ2 = −1 a ∈ [−1, 1] 4 if a < 0; 5 if a ≥ 0

Simple Oscillator ṙ = r(a− r2); θ̇ = −1 (polar) a ∈ [−1, 1] 6 if a < 0; 7 if a ≥ 0
Lotka-Volterra ẋ1 = x1(1− x2); ẋ2 = ax2(x1 − 1) a ∈ [−1, 1] 8 for all a

Homoclinic ẋ1 = x2; ẋ2 = ax2 + x1 − x21 + x1x2 a ∈ [−1.2,−.7] 9 if a < −.8645; 10 if a ≥ −.8645
Van Der Pol ẋ1 = x2; ẋ2 = a(1− x21)x2 − x1 a ∈ [.1, 4] 11 for all a

Selkov ẋ1 = x1 + ax2 + x21x2; ẋ2 = b− ax2 − x21x2 a ∈ [.05, .15], b ∈ [.2, 1.0] 12 if a < .3; 13 if a ≥ .3

FitzHugh-Nagumo ẋ1 = x1 − x3
1

3 − x2 + a; ẋ2 = 1
b (x1 + c− dx2) a ∈ [.1, .5]; b ∈ [10, 15]; c ∈ [.6, .7]; d ∈ [.7, .8] 14 if a < .35; 15 if a ≥ .35

Saddle-node (3-d) ẋ1 = a− x2; ẋ2 = −1; ẋ3 = −1 a ∈ [−1, 1] N/A
Lorenz (3-d) ẋ1 = a(x2 − x1); ẋ2 = x1(b− x3)− x2; ẋ3 = x1x2 − cx3 a ∈ [9, 11]; b ∈ [14, 28]; c ∈ [2, 4] N/A

Table A.3: Real-world systems, their equations and class boundaries. Systems having two classes
exhibit a bifurcation (i.e. the emergence of a new topological structure in the dynamics: a fixed
point, limit cycle, etc.)

A.2.2 REAL DATA

Global wind vectors Data was downloaded from IRI/LDEO Climate Data Library (https://
iridl.ldeo.columbia.edu/). Measurements were indexed by month and by year, from
1960 to 2022, as well as by pressure (Kb). We used wind vector measurements from a fixed spatial
grid comprising roughly the entire eastern hemisphere. A set of 2000 samples was used for testing.

World climate data We took climate data from WorldClim V2 (http://www.worldclim.
org). We used monthly temperature averages, taken over a temporal span of 1970–2000 at a spa-
tial resolution of 0.083◦. Corresponding Köppen labels were downloaded from GloH2O, Köppen-
Geiger (http://www.gloh2o.org/koppen/). We used a coarse-grained level of the labels
amounting to five temperature zones (tropical, arid, temperate, cold and polar). A set of 2000×12
(per month) samples was used for testing.

A.3 PHYSICS CLASSIFICATION

All data sets had 1000 samples with equal numbers of class exemplars. Embeddings were acquired
for all data using the model trained on polynomials systems as described above. We considered three
problems:

Conservativity A conservative system represents a physical system which respects conservation
of energy. Every conservative system can be represented as the gradient of a scalar field. To gen-
erate conservative systems, we first generated scalar fields by sampling the coefficients of a single
polynomial equation with basis functions in Φ according to the same distribution as used to generate
training coefficients. We then manually calculated gradients of these scalar fields. The opposing
class were 500 samples from the training set which we ensured were not conservative. We did so
by calculating the curl of each counter datum and checking it was nonzero (on a simple connected
phase space a system is conservative if and only if it is irrotational, i.e., has zero curl.

Incompressibility A system is incompressible if it represents the flow of a fluid which cannot be
“compressed” into or out of phase space. In other words, the divergence of the field is zero. To
generate divergence-free fields, we first identified the phase plane with C so that each point (x1, x2)
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was identified with z = x1+ix2. We again created a polynomial (automatically holomorphic) using
the same distribution on parameters and having the form

f(z) = f(x1 + ix2) = a+ ib. (6)

We then defined the vector field df
dz = v − iw where

v =
∂a

∂x1
(7)

and
w =

∂a

∂x2
. (8)

The component b automatically satisfies the equivalence of mixed partials,

∂2b

∂x1∂x2
=

∂2b

∂x2∂x1
, (9)

which gives ∇v̇ = 0 and so v was taken as our divergence-free, incompressible system.

Linear stability A linear planar system ẋ = Ax exhibits a stable node, unstable node, stable
spiral, unstable spiral or saddle point as a function of the trace and determinant of A. We randomly
sampled A until 200 exemplars of each stability class were acquired.

For each task we computed the relevant embeddings and then trained a logistic regressor on 80% of
the data. The remaining 20% was held out for testing, using a stratified train-test split. An ℓ2 penalty
was cross-validated using leave-one-out cross-validation on validation data split from the training
set. We searched for an optimal regularizer over 11 values spread logarithmically between 1× 10−5

and 1× 105. For multi-class settings, we used a one-versus-rest scheme.

A.4 VECTOR FIELD RECONSTRUCTIONS

We provide phase2vec reconstructions over test data. Starting with a demonstration of the differ-
ent classes, (1) Conservative (Fig. A.7) (2) Incompressible (Fig. A.8) and (3) Linear (Fig. A.9).

Figure A.7: Conservative dynamics, ground truth vs. reconstruction
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Figure A.8: Incompressible dynamics, ground truth vs. reconstruction

Figure A.9: Linear stability dynamics, ground truth vs. reconstruction
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To assess the stability of phase2vec to noise, we perturbed testing data with four types of noise
and compared the ability of our method to reconstruct the unperturbed data to that of a LASSO
baseline. These noise types were:

• Gaussian: Zero-mean, independent gaussian noise was added to the vector fields. The
standard deviation of the noise was set to σ ∗ σtrue, where σtrue was the true standard
deviation of the data to be perturbed. This was done to scale the noise to each data class.
We varied σ from 0 to .3 in 20 steps.

• Zero-masking: A proportion of each vector field was randomly zero-masked. The propor-
tion was varied between 0 and .3 in 20 steps.

• Trajectory: Data was generated by simulating a certain number of trajectories which were
run for 100 steps with a step size of .01 and then calculating velocities by binning and
averaging. The number of trajectories was used to control the amount of noise. We used
between 10 and 2000 random initial conditions in 20 steps. Empty bins were filled with
zeros.

• Parameter: We added zero-mean gaussian noise to the true parameter vector of the data,
varying the standard deviation between 0 and .3 in 20 steps.

Figure A.10: Added gaussian noise of order of .3 times the ground-truth standard deviation of each
vector field. Rows, top to bottom, depict the ground truth dynamics, noisy, LASSO reconstruction
and phase2vec reconstruction.
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Figure A.11: Random zeroing out of 30% of the vectors. Rows, top to bottom, depict the ground
truth dynamics, noisy, LASSO reconstruction and phase2vec reconstruction.

Last, we consider the reconstruction for different resolutions of the data, taking only n = 32, 64, 128
lattice points. Of note, the losses averaged over the simple oscillator test case were identical, but it
took longer to train each resolution: 50, 100 and 150 iterations respectively.
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Figure A.12: Reconstruction based on limited trajectory set (100 initial conditions). Rows, top to
bottom, depict the ground truth dynamics, noisy, LASSO reconstruction and phase2vec reconstruc-
tion.
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Figure A.13: Added gaussian noise of order of .3 times the standard deviation of the true parameter
vector to the parameters vector. Rows, top to bottom, depict the ground truth dynamics, noisy,
LASSO reconstruction and phase2vec reconstruction.
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Figure A.14: Reconstruction based on different resolutions of the data. Columns to correspond to
the number of lattice points taken, n = 32 (left) n = 64 (center) n = 128 (right). The top row
presents the ground truth dynamics and the bottom row the reconstruction

Figure A.15: Example reconstructions. Three vector fields from a 3-d saddle-node system are de-
picted. Arrows represent velocity at a given location and their color represents deviation from the
true velocity, with red being the highest error and green being the lowest error. (Left) Ground truth
(i.e. zero error); (Center) LASSO reconstruction having high error; (Right) phase2vec recon-
struction with relatively low error.
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