
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AUGMENTED FLOW MATCHING VIA VARIANCE RE-
DUCTION WITH AUXILIARY VARIABLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Flow matching is a simulation-free approach that scalably generates an Ordinary
Differential Equation (ODE), in which its path traverses between two different dis-
tributions. However, conventional flow matching relies on the training pairs drawn
independently, inducing high variance that might slow down training process and
degrade the performance upon training. To mitigate this, we propose Augmented
Flow Matching (AFM), a simple yet efficient framework that can be ubiquitously
applied to flow matching with slight modification to the models. We first find
that when some auxiliary variables are correlated to the training data, then they
contribute to variance reduction of the flow matching loss estimation, when used
together with the training data pair. With this observation, we construct auxiliary
variables that are correlated to the training pair, which is obtained by simple and
effective linear operation from the input data. Finally, we show that with this sim-
ple modification on the training phase, we achieve the improved model flexibility
and performance when the ODE is applied on the learned model.

1 INTRODUCTION

Deep generative modeling is considered as the problem of approximating the probability density and
sampling from the distribution. As the deep learning framework emerged, normalizing flows (Papa-
makarios et al., 2021; Rezende & Mohamed, 2015; Papamakarios et al., 2017; Chen et al., 2019),
a likelihood-based model developed from the variational autoencoder (Kingma & Welling, 2014),
constructed an invertible mapping between a tractable distribution that is easy to be sampled to a
complex distribution which is generally intractable. In spite of their successes, these models require
invertible modules to work, which prevents them from catching up with the state-of-the-art perfor-
mances that are achieved with Generative Adversarial Network (GAN) (Goodfellow et al., 2014) in
generating high-quality examples. The continuous normalizing flow (Chen et al., 2018; Grathwohl
et al., 2019) lifted those restrictions on invertible modules using neural ordinary differential equa-
tion (NODE), enabling the evaluation of free-form Jacobian on continuous-time ODE, in a memory-
efficient way. However, they also have scalability issues, as they use the adjoint sensitivity method
which runs a full simulation within the ODE trajectory in the training phase.

As a counterpart, diffusion models (Song et al., 2021; Ho et al., 2020; Sohl-Dickstein et al., 2015)
first process the forward stochastic processes which move data to noise, then trained the reverse
process by learning the score function of the data distribution. And Huang et al. (2021); Kingma et al.
(2021); Song et al. (2021) showed that the forward and reverse stochastic process, represented by
the Stochastic Differential Equation (SDE), has its equivalent ODE that induces the same evolution of
probability density function, according to the Fokker-Planck equation. Inspired by this observation,
flow matching Lipman et al. (2023); Liu et al. (2023) is a simulation-free method to learn the ODE
drift in a similar manner to diffusion models. By doing this, one can not only generate data from
noise, but also transfer the source distribution to target distributions.

However, training the ODE with flow matching suffers from high variance by randomized pairing
between the source and target dataset. Pooladian et al. (2023); Tong et al. (2024); Song et al. (2023)
generated the pair between those two distributions by constructing the Optimal Transport (OT) map-
ping between source and target data (Pooladian et al., 2023; Tong et al., 2024) or canonicalization
via the rotation matrix (Song et al., 2023). However, the optimal transport approach is costly to be
applied with larger minibatch size, as the complexity of matching algorithm, such as Hungarian al-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) K = 1, σ = 0.039 (b) K = 2, σ = 0.074 (c) K = 3, σ = 0.096

Figure 1: CIFAR-10 generated images. The images are generated with 50-step Euler solver, from
the same initial data-space latents and varying augmented latents. Example images, their means, and
the pixel-wise standard deviations are drawn in left, upper right, and lower right, respectively.

gorithm, explodes in the polynomial degree of the minibatch size. Furthermore, the OT approach is
suboptimal for small minibatch size, that usually happens in the high-dimensional dataset in which
the number of minibatch sizes is limited because of memory budget.

To resolve this issue, we first observed that the training variance of flow matching can be effec-
tively mitigated by imposing a correlation between the training pairs. There have been a time-
honored line of works in the variance reduction on Monte Carlo estimation. For instance, Rao-
blackwellization (Rao, 1992; Blackwell, 1947) proposes that the conditional estimator for a given
sufficient statistic always has reduced variance compared to the original estimator. Inspired by this,
we first clarify that correlating the source and target distribution with augmented random variables
effectively reduces the training variance. Then, we propose an simple and effective method, Aug-
mented Flow Matching (AFM), that designs the random variables that augment a small number of
dimensions in both source and target. Finally, we show that the flow matching with augmented ran-
dom variables outperforms that of the naı̈ve flow matching in a variety of datasets, both qualitatively
and quantitatively. This approach can be plugged-in to other existing training methods that enhances
efficiency, such as optimal transport or curvature-minimizing approach (Lee et al., 2023).

To summarize, our contributions are the following:

• Inspired by the statistical perspective, we first propose the variance reduction theorem in flow
matching, such that the variance of the flow estimator reduces by introducing some auxiliary
random variables as conditions, which allows for more effective training.

• Then, we propose a simple and powerful method that entangles the training data pair, by
introducing the auxiliary variables. As this auxiliary variable is accessible in the training
phase, we can successfully take advantage of the variance reduction which happens in the
presence of those auxiliary variables. While a variety of choices are available for choosing
the auxiliary variable, we chose the simplest form for universality: the linear multiplication
between source and target data. These auxiliary variables are used together with the training
data for training, augmenting the data dimension of the model.

• Finally, we verify that by training with these auxiliary variables, we achieve improved perfor-
mance in various datasets, both in qualitative and quantitative ways, with sparse modifications
on the baseline networks.

2 BACKGROUND: CONTINUOUS NORMALIZING FLOW AND FLOW
MATCHING

In this section, we provide the background on continuous normalizing flow and the flow matching
framework in Section 2.1 and Section 2.2, respectively.

2.1 CONTINUOUS NORMALIZING FLOWS

Normalizing flow (Rezende & Mohamed, 2015; Papamakarios et al., 2021) is designed to learn
complex probability density functions, by the change of variables in the probability densities via
invertible transformation. Normalizing flow enables sampling from a tractable, easy-to-sample prior

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

K = 0

K = 2

K = 8

K = 20

Figure 2: Augmented flow matching on 2D synthetic datasets. From time t = 0 (left) to t = 1
(right), black clouds are trained to go outside of the center, while red clouds are trained to get into
the center. K denotes the additional dimensions concatenated to the input, where auxiliary random
variables lie. As K gets higher, the learned dynamics become more flexible, making both red and
black clouds possible to propagate. The detailed problem setting is described in Appendix A.

distribution (i.e., Gaussian distribution), to the complex function fθ : RD → RD. For instance,
suppose the tractable prior distribution be Gaussian, i.e., π0 ∼ N (0, I), and let the learned complex
distribution be pθ ∈ C1(RD), where C1 denotes to the continuously differentiable distribution over
RD.

Then, this pθ is obtained through the push-forward equation, (i.e., (generalized) change-of-variables)

pθ(x) = N (f−1
θ (x)|0, I)

∣∣∣∣det [∂f−1
θ (x)

∂x

]∣∣∣∣ . (1)

Even though the normalizing flow provides a strong tool in designing the complex distribution from
a simple distribution, it remains difficult to construct an invertible function fθ (Chen et al., 2019),
as equation 1 requires the Jacobian determinant of the inverse function of fθ. To mitigate this, Chen
et al. (2018); Grathwohl et al. (2019) proposed the normalizing flows derived from the ODE. To
form the ODE, the function fθ is now parameterized from the vector field vθ : RD × [0, 1] → RD

recursively, as follows.

fθ(x) = gθ(x, 1), gθ(x, t) = x+

∫ t

0

vθ(gθ(x0, t
′), t′)dt′ with x0 ∼ π0, (2)

which is reduced to dxt = vθ(xt, t)dt with xt = gθ(x0, t) if represented with differential form.
Like in equation 1, vθ generates the flow ϕt if it satisfies the push-forward equation

pt = [ϕt]∗ π0, ([ϕt]∗ π0) (x) = π0(ϕ
−1
t (x))

∣∣∣∣det [∂ϕ−1
t

∂x
(x)

]∣∣∣∣ , (3)

which enables fθ to be invertible, without requiring the full Jacobian determinant of the inverse
function f−1

θ , but just the inverse flow ϕ−1
t .

2.2 FLOW MATCHING

Despite these advantages of the Continuous Normalizing Flow (CNF), this requires the costly for-
ward propagation of neural ODEs. To avoid this, Lipman et al. (2023); Liu et al. (2023) proposed the
simulation-free (i.e., do not demand the full ODE computation) method called flow matching, which
enables fast and scalable generation of ODE through light computational budget.

The flow matching objective directly regresses the vector field vθ into the (true) vector field u(x, t)
as follows:

LFM(θ) = Et∼[0,1],xt∼pt(xt)

[
∥vθ(xt, t)− u(xt, t)∥2

]
(4)

where pt is defined in Equation 3. However, u(x, t) is generally intractable, hence we instead use
the following conditional flow matching (CFM) objective

LCFM(θ) = Et∼[0,1],xt∼pt(xt|z),z∼q(x0,x1)

[
∥vθ(xt, t)− u(xt, t|z)∥2

]
, (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 Training of Augmented Flow Matching

Require: Noise distribution π(x0), data distribution p1(x1), number of augmented dimension K,
Number of channels C, Hyperparameters λ1, λ2. Neural network parameters θ
Draw projection matrix P ∈ RK×C , Pi,j ∼ N (0, I) for all i, j.
Initialize parameters θ of neural network ṽθ.
while Not converged do

Draw (x0, x1) ∼ π(x0)× p1(x1), t ∈ (0, 1).
Draw y0 ∼ N (0, IC)
y1 ← λ1y0 + λ2P (x0 + x1)
x̃t ← (1− t)x̃0 + tx̃1, x̃0 = [x0, y0] and x̃1 = [x1, y1]

Update θ to minimize Ex̃t,t

[
∥ṽθ(x̃t, t)− (x̃1 − x̃0)∥22

]
end while

with efficient formulation of q(·). For example, in Liu et al. (2023), the condition z is independently
drawn from the source and target distribution z ∼ q(x0, x1) = π0(x0)p1(x1). Lipman et al. (2023)
showed that the gradient of LFM(θ) is equal to that of LCFM(θ); i.e., ∇θLFM(θ) = ∇θLCFM(θ),
which implies that the CFM objective can be utilized instead of the intractable FM objective for
training vθ(x, t) to simulate u(x, t). Furthermore, to provide stability and training efficiency, Tong
et al. (2024); Pooladian et al. (2023) used the optimal transport (OT) approach to find the coupling
between the samples from q(x0) and q(x1) that minimizes the Wasserstein distance. Nevertheless,
the following issues remain: it takes polynomial time to obtain the coupling between two different
distributions via the optimal transport algorithm, which explodes in time when using a large number
of minibatch sizes, and the coupling obtained from the minibatch coupling becomes uninformative
in the entire dataset (Albergo et al., 2024).

3 AUGMENTED FLOW MATCHING

In this section, we propose our main method, Augmented Flow Matching (AFM), a simple yet effi-
cient method that improves the training and sampling processes of flow matching with constructing
auxiliary random variables that bootstraps training and is also used for sampling. First, in § 3.1,
we justify how using other random variables, that are correlated to the training pair, improve the
training process by reducing the training variance. Then, in § 3.2, we introduce the framework of
using both the original pair and the generated pair into learning the flow matching model. Finally,
in § 3.3, we propose an algorithm to generate the pair, where the source part is tractable to be sam-
pled and target part is also easy to be sampled with linear models. The overall algorithm pseudocode
of Augmented Flow Matching (AFM) is sketched in Algorithm 1. And for more convenience, we also
addressed the required code fragment, constructed with JAX/Flax package with python language,
in Appendix D.

3.1 CONDITIONAL VARIANCE REDUCTION FOR FLOW MATCHING ESTIMATOR

In this section, we assume the independent CFM (I-CFM) case with σ → 0, which is proposed
and analyzed in Liu et al. (2023). According to Equation 5, the flow u(xt, t) is learned through the
estimator u(xt, t|X0, X1), where X0 is drawn from (X0, X1) ∼ q(x0, x1). Then, the variance of
the estimator u(xt, t|X0, X1) is given by

Varp0(X0,X1|xt)(u(xt, t)|X0, X1) = Ep0(X0,X1|xt)

[
∥u(xt, t)− (X1 −X0)∥2

]
. (6)

Then, suppose that there is a random variable Y which is correlated to (X0, X1). We let Y =
(Y0, Y1) to be pairwisely concatenated to X0 and X1, respectively. Then, we denote û([Xt, Yt], t)
to be the augmented flow estimator, where Yt = (1 − t)Y0 + tY1. And let the conditional flow
estimator that constructs the ODE between the probability density functions of random variables
X̂0 = [X0, Y0] and X̂1 = [X1, Y1] be given as û(Xt, t|Yt). Applying yt = (1 − t)y0 + ty1 with
(y0, y1) ∼ (Y0, Y1), let ũ(Xt, t|Yt) be the flow matching estimator u(Xt, t) conditioned on Y = Yt.
Then the conditional variance of the flow matching estimator ũ(Xt, t|Yt = yt), defined by u(Xt, t)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

conditioned on Yt = yt, is given by

Varp0(X0,X1|xt,yt)(ũ(xt, t|yt)|X0, X1) = Ep0(X0,X1|xt,yt)

[
∥ũ(xt, t|yt)− (X1 −X0)∥2

]
. (7)

Then the following statement on conditional variance bound implies that the variance of the flow
matching estimator is mitigated when averaged over Y .
Proposition 1 (The law of conditional variance). Let the conditional variance of u(xt, t) and
û(xt, t|yt) be defined as in Equation 6 and Equation 7. Then the variance of conditional flow
on Y = yt is always less than the marginal flow.

Varp0(X0,X1|xt)(u(xt, t)|X0, X1) ≥ Eyt∼Yt

[
Varp0(X0,X1|xt,yt)(ũ(xt, t|yt)|X0, X1)

]
. (8)

Proof. Please refer to Appendix B.1. The sketch of proof comes from the law of total variance
applied to conditional distributions on (X0, X1).

Table 1: Dimension for
Auxiliary variables vs.
variance with Proposi-
tion 1.

AugDim Variance

0 6.627
1 5.633
2 2.417
5 1.343

10 0.571

This proposition shows that conditioning the flow matching loss on Y
about the input distribution (X0, X1) reduces the variance of the flow
matching estimator, and hence makes the training process more efficient.

Validation of Proposition 1 We take the evaluation of the flow match-
ing estimator with the following motivating example. Let (X0, X1)
be drawn from N (−2, 12) and N (2, 12). Then we use Sampling-
Importance-Resampling (SIR) to draw from p(X0, X1|xt, yt) to get
(X0, X1).

pt(X0, X1|xt, yt) =
pt(X0, X1|xt)pt(yt|X0, X1, xt)

pt(yt)

∝ pt(X0, X1|xt)pt(yt|X0, X1)

(9)

where pt(yt|X0, X1, xt) = pt(yt|X0, X1) since xt is deterministic with (X0, X1). And

pt(yt|X0, X1) = N (0.5(P0X0 + P1X1), 0.5
2I), (10)

Then, we sample from pt(X0, X1|xt, yt) as follows.

• For pt(X0, X1|xt), we draw (X0, X1) with Sampling-Importance-Resampling (SIR).
• For pt(X0, X1|xt, yt), we reweight the sampled (X0, X1) with pt(yt|X0, X1).

Then, Table 1 shows that the variance of the flow matching estimator decreases with higher aug-
mented dimensions.

We also clarify the variance reduction effect by comparing the loss convergence property. Figure 3
shows the training curve of flow matching loss with augmented random variables. For details, please
refer to Section 5.1.

3.2 AUGMENTED FLOW MATCHING

In the previous sections, we justified how introducing the auxiliary random variable Y improves the
flow matching. Our interest is to improve the basic form of independent conditional flow matching
(I-CFM), in which the source and target random variables in the input distribution z ∼ π(x0, x1)
in Equation 5 is given independently, i.e., π(x0, x1) = π0(x0)p1(x1). Then the conditional distribu-
tion is given as

pt(xt|z) = N (xt|tx1 + (1− t)x0, σ
2I), u(xt, t|z) = x1 − x0, (11)

and with σ → 0, the marginal vector field u(xt, t) constructs the transport mapping between the
distributions π0(x0) and p1(x1). As the source distribution should be endowed prior to running the
ODE, Y0, the fraction of Y to be concatenated to the source X0, should have a tractable form. In our
implementation, we first assumed Y0 ∼ N (0, I), i.e., the standard normal distribution for simplicity
that can be sampled easily with X0. Then, while Y1 = h(X0, X1, Y0) can have diverse forms, we
took g to be a linear function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Using the augmented data, we denote the IVP-ODE with the initial condition x̂0 = [x0, y0] as

dx̂t = û(x̂t, t)dt, (12)

where x̂t = [xt, yt] is the augmented data at time t and û is the corresponding the (true) augmented
vector field defined in Section 3.1 that correctly constructs the ODE between X̂0 = [X0, Y0] and
X̂1 = [X1, Y1].

With such (Y0, Y1), we use the following augmented flow matching loss:

LAFM(θ) = E(x̂0,x̂1)

[
∥v̂θ(x̂t, t)− (x̂1 − x̂0)∥22

]
= E(x0,x1)∼q(x0,x1)

[
∥vθ(xt, t)− (x1 − x0)∥22

+ Eq(x0,x1)EN (y0|0,I)×h(y1|x0,x1,y0) ∥v
′
θ(yt, t|xt)− (y1 − y0)∥

2
2

] (13)

where xt = (1 − t)x0 + tx1 (as σ approaches to 0) and v′θ(yt, t|xt) denotes the vector field
conditioned on xt. Our proposed method, Augmented Flow Matching (AFM), constructs the aux-
iliary variables Y0 and Y1, which are dependent to the original random variables X0 ∼ π(x0)

and X1 ∼ p1(x1). In our method, we show that the dependence between X̃0 = [X0, Y0] and
X̃1 = [X1, Y1] enables efficient training and better generation quality via flow matching.

3.3 DESIGN CHOICE AND SAMPLING WITH AUXILIARY VARIABLE

This section shows that while any free design of Y is available, even the simplest form of a single
randomized linear layer is versatile. As aforementioned, we take Y0 to be a standard multivariate
normal random variable, since the source distribution should be easy to be sampled. For Y1, when
X0, X1 ∈ Rd, We take the linear form to construct Y1 as a function h of (X0, X1, Y0), as

Y1 = h(X0, X1, Y0) = λ1Y0 + λ2P (X0 +X1) ∈ RK , (14)

where λ1, λ2 ∈ R+ are the hyperparameters and P is a channel-wise random projection matrix.
While there exists a wide range of choices of h, using h as a learnable function, for example, requires
a joint training process on learning the optimal h and v̂θ, which may cause the learning process
using Equation 13 to be more complex. So we unifiedly fixed the hyperparameters to λ1 = λ2 = 0.5
without any arbitrary hyperparameter tuning.

• In images with RGB channels, the projection matrix P functions as the 1×1 convolutional layer
without bias, with 3 input channels and K output channels.

• When (X0, X1) are D-dimensional vectors, P is defined as one dense layer without bias, which
outputs K-dimensional vector with a single matrix multiplication.

Finally, for sampling, we first define (x0, y0) ∼ X0×Y0 to be Gaussian and concatenate for the last
layer. Then if

([x1, y1]) = ODESolver([x0, y0], ṽ, 0, 1; θ) (15)
where ODESolver is the ODE solver defined in Chen et al. (2018), then x1 is the terminal solution
of this augmented ODE. We provide an example in Appendix C of using auxiliary random variables
Yt to be correlated or uncorrelated with (X0, X1) with K = 20. The result in Figure 7 shows that the
correlated auxiliary variables succeed in traversing the inner and outer circles, while the uncorrelated
variables fail.

4 RELATED WORKS

Normalizing Flows, Flow matching, and Rectified Flow The lines of work in generating the
differential equations, either deterministic or stochastic, have been studied actively. Rezende & Mo-
hamed (2015); Papamakarios et al. (2021) studied the generation of complex distributions that can be
mapped from the simple and tractable distributions. Even though they achieved significant progress
in the autoregressive generative modeling (Chen et al., 2019; Huang et al., 2018; Papamakarios et al.,
2017), these models require invertible functions to generate flows, so that heavily limits their neural
architectures. Chen et al. (2018); Grathwohl et al. (2019) mitigated this issue by introducing the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2000 4000 6000 8000
Epochs

4

6

8

10
Av

er
ag

e
lo

ss

0.1
0.4
0.6

2000 4000 6000 8000
Epochs

0

5

10

15

20

Av
er

ag
e

lo
ss

correlated
uncorrelated

2000 4000 6000 8000
Epochs

0

5

10

15

Av
er

ag
e

lo
ss

K = 0
K = 1
K = 2
K = 8
K = 20
K = 100

Figure 3: Flow matching loss function over training epochs. Left to right: Left - losses on (λ1, λ2) =
(0.5, {0.1, 0.4, 0.6}) with K = 2. Middle - Comparison of correlated vs. uncorrelated auxiliary
variable. Right - Comparison over various K, the number of auxiliary dimensions.

modeling of continuous-time function through free-form Jacobian of the vector field with memory-
efficient adjoint sensitivity methods. Nevertheless, these approaches required the full simulation of
the neural ODE, which is both costly and cause cumulative error caused by the ODE solver. Hence,
Lipman et al. (2023); Liu et al. (2023) proposed a simulation-free approach to generate a training-
efficient ODE, combining the aspects of the continuous normalizing flow and the recently emerging
diffusion model (Song et al., 2021; Sohl-Dickstein et al., 2015; Ho et al., 2020).

Regularizing ODEs with Additional Variables While these enabled the flexible construction
of ODEs, Dupont et al. (2019) further widened the class of feasible ODEs by utilizing the latent
variables that enable the path to detour by the overlapping trajectory that occurs while constructing
the ODEs. Finlay et al. (2020) also augmented the continuous normalizing flow with kinetic energy
term for regularization. Other lines of research interpreted augmenting additional dimensions in the
dynamical systems as implementation of higher-order dynamics (Liu et al., 2021). In the diffusion
model context, Dockhorn et al. (2022); Chen et al. (2024) utilized the additional dimensions of the
training set as momentum or the optimal control to accelerate diffusion sampling. Some other works,
such as Xu et al. (2022; 2023a), introduced the concept of Poisson field in generative modeling,
and interpreted the generative modeling problem to the particle dynamics in the generalized multi-
dimensional Poisson fields.

Variance reduction in Machine Learning Methods Our method, AFM, lies on the line of vari-
ance reduction of the statistical estimates. Rao (1992); Blackwell (1947) showed that the variance of
the estimator can be reduced by conditioning to sufficient statistics. With this, Doucet et al. (2000)
used Rao-blackwellization for efficient particle filtering. Variance reduction techniques are also ap-
plied to improving diffusion models. For instance, Xu et al. (2023b); Niedoba et al. (2024) performed
multiple Monte Carlo estimates of the conditional score function for single loss evaluation to reduce
the training variance.

5 EXPERIMENTS

We clarified and validated our method, AFM, with various classes of datasets. First, we qualitatively
compare AFM and the baseline flow matching method qualitatively in the single embryonic cell
generation task, which deploys the fast and efficient evolution of the cell through days. Then, we
confirmed our method in CIFAR-10 images quantitatively, showing that augmented FM achieves
better FID. The precise description of datasets, model architecture, and training details are explained
in Appendix A. For all experiments, the augmented variables (Y0, Y1) are defined as explained in
Section 3.3.

5.1 2D SYNTHETIC EXPERIMENT

We first give insight into the augmented flow matching with a two-dimensional synthetic experiment.
The 2d synthetic distribution matching task, which is first introduced in Dupont et al. (2019), is a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) K = 0 (baseline), NFE 4. (b) K = 2, NFE 4.

(c) K = 0 (baseline), NFE 8. (d) K = 2, NFE 8.

Figure 4: Visualization of embryonic cell evolution task. For each augmented dimension K and
NFE, the left and right figures represent the evolution trajectory and final points. In the left figures,
the red line demonstrates the evolution of the simulated single embryonic cell from the given initial
condition to the terminal point, which is pointed out in the right figures. In the right figures, the red
and blue points stand for the features from true and generated terminal evolutions, respectively.

task of constructing a mapping between two non-overlapping distributions within a single flow. We
initialize with two density functions (the foremost left figure in Figure 2) such that the black cloud
gets out of the inner circle to the outer circle, and red cloud get into the inner circle from the outer
circle. Each column of each row corresponds to ∆t = 0.1.

0 50 100 150 200
NFE

0.2

0.4

0.6

0.8

1.0

W
1

Di
st

an
ce

K=0
K=1
K=2
K=3

0 50 100 150 200
NFE

0.4

0.6

0.8

1.0

W
2

Di
st

an
ce

K=0
K=1
K=2
K=3

Figure 5: Wasserstein-p distances (Left: p = 1, Right:
p = 2) between true and generated distributions in the sin-
gle embryonic cell evolution tasks.

Figure 2 shows that with K = 0,
(e.g., no augmentation) one cannot
fully recover the dynamics. This is
reasonable because the vector fields
from the black and red points over-
lap. On the other hand, larger K im-
plies that there are more paths to de-
tour the conflict. Finally, when K
increases up to 20, one can almost
fully recover the dynamics with by-
passing the other point cloud family.
We see that this distribution match-
ing task is a representative example
of constructing a flow that cannot
be learned through a non-augmented
flow matching, but can be learned
from augmented flow matching.

Augmented flow matching also reduces the loss function of the conditional flow matching estimator.
Figure 3 demonstrates the first two-coordinate (x-y) loss, which is the primary part of the sampling
process, as other dimensions are redundant after generation finishes. Figure 3 shows that the first
two-coordinate loss significantly decreases as K increases. This also implies that we can achieve
more efficient training with augmented dimensions.

We validated that as the number of auxiliary dimensions increases, the convergence of the flow es-
timator becomes faster, when applied with the same optimizer. The exception is the baseline FM,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: CIFAR-10 image generation result (in FID) with Euler and 2nd-order Heun solvers in the
baseline (marked with †) and augmented flow matching models, evaluated with respect to the number
of augmented dimensions. Every model is trained with the same model and hyperparameters, except
for the first layer and the projection matrix that generates Y1. The best and second best results for
each NFE are highlighted with bold and italic faces, respectively. In addition, with the Heun table,
we also included the computational cost, including the number of parameters and the computational
cost (in terms of FLOPs) of each model.

Method NFE (number of function evaluations)
5 10 15 20 25 30 40 50 75 100

Euler
AugDim=0† 38.649 14.235 9.592 7.647 6.585 5.910 5.024 4.571 3.938 3.625
AugDim=1 37.435 13.907 9.415 7.522 6.491 5.702 5.056 4.571 3.976 3.691
AugDim=2 39.601 14.478 9.473 7.421 6.277 5.564 4.861 4.412 3.870 3.637
AugDim=3 41.912 15.164 9.640 7.469 6.280 5.519 4.789 4.332 3.820 3.583
AugDim=4 39.848 14.620 9.730 7.674 6.573 5.863 5.063 4.569 4.022 3.746
AugDim=8 39.738 14.814 9.839 7.794 6.693 5.913 5.149 4.655 4.021 3.721

Method Comp. Cost NFE (number of function evaluations)
Params FLOPs 10 20 30 40 50 60

2nd-order Heun
AugDim=0† 247.217 M 8.502 G 85.023 30.697 14.826 8.130 4.982 3.709
AugDim=1 + 9,223 + 2.753 M 81.795 27.296 13.238 7.298 4.838 3.717
AugDim=2 + 18,446 + 6.586 M 90.195 27.084 12.403 6.877 4.558 3.605
AugDim=3 + 27,669 + 11.01 M 103.227 29.414 13.871 7.732 5.219 4.024
AugDim=4 + 36,892 + 16.02 M 86.036 26.961 12.638 6.925 4.568 3.574
AugDim=8 + 73,784 + 41.98 M 90.658 30.870 14.646 7.768 4.921 3.688

K = 0, where the relative loss is lower than K = 2 or higher case. In K = 0 or K = 1 cases,
the constructed flows are stuck in the local minimum, because of the topological issues on the ODE
trajectory, leading the flow estimator to converge in the sub-optimal point. The variance-reducing
effect is more clearly observed when K becomes higher. Further analysis with relative loss is con-
tained in Appendix C, that verifies the variance reduction property as fast convergence of the loss
function.

5.2 IMAGE GENERATION

For quantitative analysis, we take empirical evaluation on the image generation task with CIFAR-10
datasets, compared to the independent flow matching without augmented dimensions. As mentioned
in Appendix A, we used JAX/Flax packages on TPU v2-8 nodes. Table 2 demonstrates that the
quality of images concerning FID measure has improved using both the Euler and 2nd-order Heun
solver in the wide range of number of function evaluations.

Figure 1 showed an (uncurated) example image that implies the consistency of the generated image
with augmented flow matching. In Figure 1, we demonstrated 64 different images, their mean and
pixel-wise standard deviations with K = 1, 2, 3. The image part x0 ∈ R32×32×3 start with the same
random noise, and the auxiliary part y0 ∈ R32×32×K start with arbitrary random normal variables.
The auxiliary randomness gives the stochasticity of the generated images, as shown in the image
with K = 3 which starts from the same random variable and use deterministic Euler solver (which
implies that the terminal point will be near to the initial point) but let the generated images to vary
more. In addition, we also demonstrate the diversity and coverage of our generated data compared
to the original data. The detailed derivation of precision and recall are introduced in (Kynkäänniemi
et al., 2019).

In addition, we have reported the additional computational cost of augmented flow matching in Ta-
ble 2. It shows that the amount of additional computation is negligible, costs less than 0.5% of the
total computational cost in both memory consumption and floating-point operations (FLOPs). This

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Method M = 1 M = 2 M = 5
Pre Rec Pre Rec Pre Rec

AugDim-0 (FM) 0.499 0.142 0.628 0.214 0.796 0.358
AugDim-1 (AFM) 0.527 0.144 0.664 0.226 0.824 0.343
AugDim-2 (AFM) 0.532 0.156 0.691 0.241 0.835 0.363

Table 3: The Precision-Recall metric of CIFAR-10 dataset with 10000 generated images. M stands
for the hyperparameter for nearest neighbor estimation proposed in Kynkäänniemi et al. (2019).

implies that our method is extremely lightweight and easy to implement, which is ubiquitously ap-
plied to existing flow-based methods. We also report the wall-clock time of our generation in Table 4.

5.3 SINGLE EMBRYONIC CELL EVOLUTION

We perform our analysis with a qualitative interpretation of the evolution of single embryonic cell
dynamics, proposed in Schiebinger et al. (2019). This data consists of the evolution of cells in four
consecutive weeks. Then the output is projected to D-dimensional latent vectors for visualization.
This task denotes the “distribution matching” between the initial Day 0 data distribution (the latent
vector of the initial cells) and Day 27 data distribution (the latent vector of the final cells) (See Fig-
ure 6). If this task successfully constructs the flow between those two distributions, this implies that
when the latent cell vector is initialized with Day 0 states, then the Day 27 state will be generated
with running the ODE. The evolution trajectory and the distribution of generated terminal points
with the true terminal points are demonstrated in Figure 4.

In Figure 4, we compared K = 0 and K = 2 cases, where K is the number of augmented dimen-
sions. As depicted in Figure 4, the generated terminal points with K = 0 case does not follow the
true terminal points, while the generated points with K = 2 case, which utilizes two auxiliary di-
mensions, better follows the distribution of true points. We also measured the Wasserstein-1 (EMD)
and Wasserstein-2 distance between the generated and true points in Figure 5. As AFM achieves
better distribution matching, (i.e., lower Wasserstein distances) one can match the target density
function more efficiently with AFM. For further results on the path on embryonic cell evolution,
please refer to Appendix F.

6 CONCLUSION

In this paper, we analyzed some of the limitations of conditional flow matching, which is caused
by the high variance of independent conditional flow matching methods. To mitigate this issue,
we introduced a simple and effective method, Augmented Flow Matching (AFM), which correlates
the training pair by concatenating auxiliary variables to them and enables variance reduction in
the flow matching problem, making the training process more efficient and widening the class of
ODEs to have more flexibility. Finally, with our experiment, we demonstrated the improvement
in the sampling performance of the ODE constructed with the augmented variables, especially in
low-NFE regimes.

Limitations. Although our method is able to increase the sampling efficiency of the flow-matching
method, the use of the auxiliary variables result in additional parameters for the flow estimator. As
shown in the experiments, the effect of the variance reduction saturates as the dimension of the
auxiliary variables grows. Hence it is crucial to balance the gain from the auxiliary variables and the
cost from the additional parameters.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement. While flow matching can be utilized for developing large-scale image genera-
tive models that may have negative societal impacts, our paper primarily addresses the theoretical
aspects of the method. As such, the content of our paper is unlikely to cause any direct negative
societal effects.

Reproducibility Statement. First, we have submitted the implementation of our method in the
supplementary materials, to enable reproduction of our main results with the established configura-
tions. And we also revealed the code fragments in the appendix for further research of flow-based
models and related fields such as bridge matching or diffusion model researches.

REFERENCES

Michael S. Albergo, Mark Goldstein, Nicholas M. Boffi, Rajesh Ranganath, and Eric Vanden-
Eijnden. Stochastic interpolants with data-dependent couplings. In International Conference
on Learning Representations (ICLR), 2024.

David Blackwell. Conditional Expectation and Unbiased Sequential Estimation. The Annals of
Mathematical Statistics, 1947.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018.

Tian Qi Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for in-
vertible generative modeling. In Advances in Neural Information Processing Systems 32 (NeurIPS
2019), 2019.

Tianrong Chen, Jiatao Gu, Laurent Dinh, Evangelos A. Theodorou, Josh M. Susskind, and Shuangfei
Zhai. Generative modeling with phase stochastic bridges. In International Conference on Learn-
ing Representations (ICLR), 2024.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion. In International Conference on Learning Representations (ICLR),
2022.

Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart Russell. Rao-blackwellised particle
filtering for dynamic bayesian networks. In UAI, 2000.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Advances in
Neural Information Processing Systems 32 (NeurIPS 2019), 2019.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam M. Oberman. How to train your
neural ODE: the world of jacobian and kinetic regularization. In Proceedings of The 37th Inter-
national Conference on Machine Learning (ICML 2020), 2020.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27 (NIPS 2014), 2014.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
FFJORD: free-form continuous dynamics for scalable reversible generative models. In Inter-
national Conference on Learning Representations (ICLR), 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances
in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. Neural autoregressive
flows. In Proceedings of The 35th International Conference on Machine Learning (ICML 2018),
2018.

Chin-Wei Huang, Jae Hyun Lim, and Aaron C. Courville. A variational perspective on diffusion-
based generative models and score matching. In Advances in Neural Information Processing
Systems 34 (NeurIPS 2021), 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations (ICLR), 2014.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. On density estimation with diffu-
sion models. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. In Advances in Neural Information
Processing Systems 32 (NeurIPS 2019), 2019.

Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing trajectory curvature of ode-based gener-
ative models. In Proceedings of The 40th International Conference on Machine Learning (ICML
2023), 2023.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023.

Guan-Horng Liu, Tianrong Chen, and Evangelos A. Theodorou. Second-order neural ODE opti-
mizer. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In International Conference on Learning Representations (ICLR),
2023.

Matthew Niedoba, Dylan Green, Saeid Naderiparizi, Vasileios Lioutas, Jonathan Wilder Lavington,
Xiaoxuan Liang, Yunpeng Liu, Ke Zhang, Setareh Dabiri, Adam Ścibior, Berend Zwartsenberg,
and Frank Wood. Nearest neighbour score estimators for diffusion generative models, 2024.

George Papamakarios, Iain Murray, and Theo Pavlakou. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017.

George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. J. Mach. Learn.
Res., 2021.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
man, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch
couplings. In Proceedings of The 40th International Conference on Machine Learning (ICML
2023), 2023.

C. Radhakrishna Rao. Information and the Accuracy Attainable in the Estimation of Statistical
Parameters, pp. 235–247. Springer New York, 1992.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Proceedings of The 32nd International Conference on Machine Learning (ICML 2015), 2015.

Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya Subramanian, Aryeh Solomon,
Joshua Gould, Siyan Liu, Stacie Lin, Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh,
Philippe Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and Eric S. Lander.
Optimal-transport analysis of single-cell gene expression identifies developmental trajectories
in reprogramming. Cell, 2019. URL https://www.sciencedirect.com/science/
article/pii/S009286741930039X.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Proceedings of The 32nd International
Conference on Machine Learning (ICML 2015), 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

12

https://www.sciencedirect.com/science/article/pii/S009286741930039X
https://www.sciencedirect.com/science/article/pii/S009286741930039X

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou, and
Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule gen-
eration. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023), 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport, 2024.

Yilun Xu, Ziming Liu, Max Tegmark, and Tommi S. Jaakkola. Poisson flow generative models. In
Advances in Neural Information Processing Systems 35 (NeurIPS 2022), 2022.

Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and Tommi S. Jaakkola.
PFGM++: unlocking the potential of physics-inspired generative models. In Proceedings of The
40th International Conference on Machine Learning (ICML 2023), 2023a.

Yilun Xu, Shangyuan Tong, and Tommi S. Jaakkola. Stable target field for reduced variance score
estimation in diffusion models. In International Conference on Learning Representations (ICLR),
2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASETS AND ARCHITECTURES

For reproducibility and convenience, we introduce the datasets and architectures that are used in our
paper.

2d synthetic distribution matching For 2d synthetic distribution matching task which is depicted
in Figure 2, we defined two random variables as follows.

Xin = (φ cos θ, φ sin θ), θ ∼ U(0, 2π), φ ∼ N (0, 1).

Xout = (ϕ cos θ′, ϕ sin θ′), θ′ ∼ U(0, 2π), ϕ ∼ N (8, 0.52).
(16)

Then we define the flow matching problem by defining the source and target pairs as follows:

(X0, X1) = (Xin, Xout) with probability p =
1

2

(X0, X1) = (Xout, Xin) with probability p =
1

2
.

(17)

Then the flow traverses the points in the inner cloud to the outer cloud, and vice versa. The archi-
tecture is MLP with two hidden layers, 64 hidden neurons with cosine and sine embedding of times
in each layer, using Swish activation function. Also in this problem, we constructed the auxiliary
variables (Y0, Y1) as introduced in § 3.2.

Single cell evolution The embryonic stem cell dataset is proposed by Schiebinger et al. (2019),
and is accessible in https://data.mendeley.com/datasets/hhny5ff7yj/1. The full
evolution from day 0 to 27 is demonstrated in Figure 6, starting from the right blue density clouds
to the left purple clouds.

We used a neural network with 3 hidden layers, each with 64 neurons and swish activation functions.
The minibatch size and the number of steps are given as (256, 30000), respectively.

Figure 6: Single cell.

CIFAR-10 image generation For CIFAR-10 image generation, we borrowed the same NCSN++
architecture from score sde repository (Song et al., 2021). Also, for all K, we used the same
training hyperparameters. We used the AdamW optimizer of learning rate 2 × 10−4 with cosine
warmup of 5, 000 steps and gradient clipping. The training and sampling batch size is given as
128 and 2, 048, respectively, as a higher batch size degraded the sampling performance and caused
overfitting. The total number of iteration steps is 1.3 M, and the checkpoint with the best FID is
restored, among the checkpoints that are saved every 50, 000 steps. The 50, 000 training split is used
for training the model. With the v2-8 TPU, the full training costs 86 hours to run 1.3 M steps, and
the sampling costs 0.4 sec per forward pass to generate 2, 048 samples.

14

https://data.mendeley.com/datasets/hhny5ff7yj/1
https://github.com/yang-song/score_sde

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1 (The law of conditional variance). Let the conditional variance of u(xt, t) and
û(xt, t|yt) be defined as in (6) and (7). Then the variance of conditional flow on Y = yt is al-
ways lower than the marginal flow, i.e.,

Varp0(X0,X1|xt)(u(xt, t)|X0, X1) ≥ Eyt∼Yt

[
Varp0(X0,X1|xt,yt)(ũ(xt, t|yt)|X0, X1)

]
. (18)

with equality when Yt is independent to (X0, X1).

Proof. For simplicity, we let u(xt, t|X0, X1) = Z.

Varp0(X0,X1|xt)(Z) = Ep0(X0,X1|xt)

[
Z2

]
−
(
Ep0(X0,X1|xt) [Z]

)2
= EY Ep0(X0,X1|xt,Yt)

[
Z2|Yt

]
−
(
Ep0(X0,X1|xt) [Z]

)2
.

= EY

(
Varp0(·|X0,X1) [u(xt, t)|Yt] + Ep0

[Z|Yt]
2
)
−

(
Ep0(X0,X1|xt) [Z]

)2
(19)

As u(xt, t) conditioned on Yt is equal to ũ(xt, t|Yt), then Equation 19 becomes

(19) = EYt
Ep0(X0,X1|xt,Yt) [ũ(xt, t|Yt)|X0, X1] +

(
EYt

[
Ep0

[u(xt, t)|Yt]
2 − u(xt, t)|Yt

])
= EYtEp0(X0,X1|xt,Yt) [ũ(xt, t|Yt)|X0, X1] + VarYtEp0(X0,X1|xt,Yt)[u(xt, t)|Yt]

≥ EYt
Ep0(X0,X1|xt,Yt) [ũ(xt, t|Yt)|X0, X1] ,

(20)

with equality condition when VarYt
Ep0(X0,X1|xt,Y)[u(xt, t)|Y] = 0. This includes the case of inde-

pendent conditional flow matching case described in Liu et al. (2023), where Yt is an empty random
variable.

C ADDITIONAL RESULTS

Effect of correlation of auxiliary variable Y with data variables (X0, X1) This part provides
additional rationale that supports the usage of correlated auxiliary variables in Section 3.3. With the
same setting as Figure 2 with K = 20, we validated the effect of correlation between the source
and target variables (X0, X1) and the augmented variable Yt. According to Figure 7, using corre-
lated auxiliary random variables is more beneficial, succeeding in constructing the path between the
source and target distributions.

Figure 7: Up: correlated (λ1 = λ2 = 0.5, Down: uncorrelated (Y is independent to (X0, X1).) with
K = 20.

Fast convergence of relative loss For fair comparison, we observe the convergence properties of
the loss function in Figure 8, which is the modification of Figure 3 where the relative loss compared
to the converging checkpoint rather than the absolute loss is use, to verify the variance reduction
property. In the left figure, we fix the λ1 coefficient, which determines the randomness of the starting
point, and varied λ2 coefficient, which stands for the correlation between X1 and Yt. Not only the
absolute loss (as shown in Figure 3, but also the relative loss converges faster if λ2 is higher, i.e., the
random variable is more correlated.

In the middle figure shows that using the uncorrelated auxiliary variable (λ1 = λ2 = 0.0) has much
slower converging property than correlated (λ1 = λ2 = 0.5) case. Last, right figure compares the
convergence property for various K. This shows that with higher K, the relative loss converges
faster, which implies the variance reduction property holds.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2000 4000 6000 8000
Epochs

0

2
Re

la
tiv

e
lo

ss
 v

s.
Fin

al

0.1
0.4
0.6

2000 4000 6000 8000
Epochs

0

2

4

6

8

10

Re
la

tiv
e

lo
ss

 v
s.

Co
nv

er
ge

nc
e correlated

uncorrelated

2000 4000 6000 8000
Epochs

0

2

4

Re
la

tiv
e

lo
ss

 v
s.

Co
nv

er
ge

nc
e K = 0

K = 1
K = 2
K = 8
K = 20
K = 100

Figure 8: Left to right: Left - losses on (λ1, λ2) = (0.5, {0.1, 0.4, 0.6}) with K = 2. Middle -
Comparison of correlated vs. uncorrelated auxiliary variable. Right - Revised Figure 3 with relative
loss vs. convergence.

Wall-clock time of CIFAR-10 generation In addition to the cost in terms of FLOPs and memory
in Table 2, we also report the wall-clock time of our CIFAR-10 generation in Table 4. We used a
single TPU v3-8 node and used 2, 048 minibatch size.

Method Wall-clock time Time per image per NFE

AugDim-0 (FM) 39.944 s 0.813 ms
AugDim-1 (AFM) 39.366 s 0.801 ms
AugDim-2 (AFM) 39.448 s 0.802 ms

Table 4: The wall-clock time of our CIFAR-10 generation.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D PYTHON CODE FOR AFM

Augmented flow matching, especially in a linear form, is extremely easy to implement, with just a
few line of codes. We provide the fragment of codes, written by JAX/Flax.

D.1 DEFINE THE AFM MODULE.

1 import flax.linen as nn
2 import jax
3 import jax.numpy as jnp
4 import functools
5

6 aug_dim = 10 # Modify this.
7 seed = 9999 # Modify this.
8 rng = jax.random.PRNGKey(seed)
9 DenseLayer = nn.Dense(aug_dim, use_bias=False)

10 rng, step_rng = jax.random.split(rng)
11 kernel_arr = jax.random.normal(step_rng, shape=(n_channels, aug_dim))
12 afm_fn = functools.partial(afm_model.apply, {’params’: {’kernel’:

kernel_arr}}

D.2 USE AFM MODULE TO PERTURB DATA

1 def afm_data(rng, x0, x1, aug_dim, afm_fn, lambda1=0.5, lambda2=0.5):
2 """
3 Input
4 x0: data drawn from source distribution.
5 x1: data drawn from target distribution.
6 aug_dim: augmented dimension.
7 afm_fn: AFM function.
8 lambda1, lambda2: weights
9 Return

10 y0: augmented source data. Should be easily sampled.
11 y1: augmented target data. Function output of y0, x0, x1.
12 """
13 rng, step_rng = jax.random.split(rng)
14 y0 = jax.random.normal(step_rng, shape=x0.shape[:-1] + (aug_dim,))
15 y1 = lambda1 * y0 + lambda2 * afm_fn(x0 + x1)
16 y0 = jnp.concatenate([x0, y0], axis=-1)
17 y1 = jnp.concatenate([x1, y1], axis=-1)
18 return y0, y1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E MORE UNCURATED IMAGE EXAMPLES

In this section, we cover more image examples generated by AFM.

Figure 9: Up→Down: Augmented dimension {0, 1, 2, 3}. Left→Right: NFE {10, 20, 50} with 2nd-
order Heun solver.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F MORE RESULTS ON EMBRYONIC CELL EVOLUTIONS.

In this section, we report extensive results of Figure 4 on various auxiliary dimensions K and number
of function evaluations (NFE). We find that in the high NFE case (NFE = 400), the generated data
with baseline (K = 0) is limited to the low-dimensional manifold, while K = 1 and K = 2 succeed
to find diverse cells.

(a) K = 0 (baseline), NFE 20. (b) K = 0, NFE 400.

(c) K = 2, NFE 20. (d) K = 2, NFE 400.

(e) K = 1, NFE 4. (f) K = 1, NFE 8.

(g) K = 1, NFE 20. (h) K = 1, NFE 400.

19

	Introduction
	Background: Continuous Normalizing Flow and Flow Matching
	Continuous normalizing flows
	Flow matching

	Augmented Flow Matching
	Conditional Variance Reduction for Flow Matching Estimator
	Augmented flow matching
	Design choice and sampling with auxiliary variable

	Related works
	Experiments
	2D synthetic experiment
	Image generation
	Single embryonic cell evolution

	Conclusion
	Datasets and Architectures
	Proofs
	TEXT

	Additional Results
	TEXT
	Define the AFM module.
	Use AFM module to perturb data

	More Uncurated Image Examples
	More results on embryonic cell evolutions.

