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ABSTRACT

Flow matching is a simulation-free approach that scalably generates an Ordinary
Differential Equation (ODE), in which its path traverses between two different dis-
tributions. However, conventional flow matching relies on the training pairs drawn
independently, inducing high variance that might slow down training process and
degrade the performance upon training. To mitigate this, we propose Augmented
Flow Matching (AFM), a simple yet efficient framework that can be ubiquitously
applied to flow matching with slight modification to the models. We first find
that when some auxiliary variables are correlated to the training data, then they
contribute to variance reduction of the flow matching loss estimation, when used
together with the training data pair. With this observation, we construct auxiliary
variables that are correlated to the training pair, which is obtained by simple and
effective linear operation from the input data. Finally, we show that with this sim-
ple modification on the training phase, we achieve the improved model flexibility
and performance when the ODE is applied on the learned model.

1 INTRODUCTION

Deep generative modeling is considered as the problem of approximating the probability density and
sampling from the distribution. As the deep learning framework emerged, normalizing flows (Papa-
makarios et al., 2021; Rezende & Mohamed, 2015; Papamakarios et al., 2017; Chen et al., 2019),
a likelihood-based model developed from the variational autoencoder (Kingma & Welling, 2014),
constructed an invertible mapping between a tractable distribution that is easy to be sampled to a
complex distribution which is generally intractable. In spite of their successes, these models require
invertible modules to work, which prevents them from catching up with the state-of-the-art perfor-
mances that are achieved with Generative Adversarial Network (GAN) (Goodfellow et al., 2014) in
generating high-quality examples. The continuous normalizing flow (Chen et al., 2018; Grathwohl
et al., 2019) lifted those restrictions on invertible modules using neural ordinary differential equa-
tion (NODE), enabling the evaluation of free-form Jacobian on continuous-time ODE, in a memory-
efficient way. However, they also have scalability issues, as they use the adjoint sensitivity method
which runs a full simulation within the ODE trajectory in the training phase.

As a counterpart, diffusion models (Song et al., 2021; Ho et al., 2020; Sohl-Dickstein et al., 2015)
first process the forward stochastic processes which move data to noise, then trained the reverse
process by learning the score function of the data distribution. And Huang et al. (2021); Kingma et al.
(2021); Song et al. (2021) showed that the forward and reverse stochastic process, represented by
the Stochastic Differential Equation (SDE), has its equivalent ODE that induces the same evolution of
probability density function, according to the Fokker-Planck equation. Inspired by this observation,
flow matching Lipman et al. (2023); Liu et al. (2023) is a simulation-free method to learn the ODE
drift in a similar manner to diffusion models. By doing this, one can not only generate data from
noise, but also transfer the source distribution to target distributions.

However, training the ODE with flow matching suffers from high variance by randomized pairing
between the source and target dataset. Pooladian et al. (2023); Tong et al. (2024); Song et al. (2023)
generated the pair between those two distributions by constructing the Optimal Transport (OT) map-
ping between source and target data (Pooladian et al., 2023; Tong et al., 2024) or canonicalization
via the rotation matrix (Song et al., 2023). However, the optimal transport approach is costly to be
applied with larger minibatch size, as the complexity of matching algorithm, such as Hungarian al-
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(a) K = 1, σ = 0.039 (b) K = 2, σ = 0.074 (c) K = 3, σ = 0.096

Figure 1: CIFAR-10 generated images. The images are generated with 50-step Euler solver, from
the same initial data-space latents and varying augmented latents. Example images, their means, and
the pixel-wise standard deviations are drawn in left, upper right, and lower right, respectively.

gorithm, explodes in the polynomial degree of the minibatch size. Furthermore, the OT approach is
suboptimal for small minibatch size, that usually happens in the high-dimensional dataset in which
the number of minibatch sizes is limited because of memory budget.

To resolve this issue, we first observed that the training variance of flow matching can be effec-
tively mitigated by imposing a correlation between the training pairs. There have been a time-
honored line of works in the variance reduction on Monte Carlo estimation. For instance, Rao-
blackwellization (Rao, 1992; Blackwell, 1947) proposes that the conditional estimator for a given
sufficient statistic always has reduced variance compared to the original estimator. Inspired by this,
we first clarify that correlating the source and target distribution with augmented random variables
effectively reduces the training variance. Then, we propose an simple and effective method, Aug-
mented Flow Matching (AFM), that designs the random variables that augment a small number of
dimensions in both source and target. Finally, we show that the flow matching with augmented ran-
dom variables outperforms that of the naı̈ve flow matching in a variety of datasets, both qualitatively
and quantitatively. This approach can be plugged-in to other existing training methods that enhances
efficiency, such as optimal transport or curvature-minimizing approach (Lee et al., 2023).

To summarize, our contributions are the following:

• Inspired by the statistical perspective, we first propose the variance reduction theorem in flow
matching, such that the variance of the flow estimator reduces by introducing some auxiliary
random variables as conditions, which allows for more effective training.

• Then, we propose a simple and powerful method that entangles the training data pair, by
introducing the auxiliary variables. As this auxiliary variable is accessible in the training
phase, we can successfully take advantage of the variance reduction which happens in the
presence of those auxiliary variables. While a variety of choices are available for choosing
the auxiliary variable, we chose the simplest form for universality: the linear multiplication
between source and target data. These auxiliary variables are used together with the training
data for training, augmenting the data dimension of the model.

• Finally, we verify that by training with these auxiliary variables, we achieve improved perfor-
mance in various datasets, both in qualitative and quantitative ways, with sparse modifications
on the baseline networks.

2 BACKGROUND: CONTINUOUS NORMALIZING FLOW AND FLOW
MATCHING

In this section, we provide the background on continuous normalizing flow and the flow matching
framework in Section 2.1 and Section 2.2, respectively.

2.1 CONTINUOUS NORMALIZING FLOWS

Normalizing flow (Rezende & Mohamed, 2015; Papamakarios et al., 2021) is designed to learn
complex probability density functions, by the change of variables in the probability densities via
invertible transformation. Normalizing flow enables sampling from a tractable, easy-to-sample prior
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K = 0

K = 2

K = 8

K = 20

Figure 2: Augmented flow matching on 2D synthetic datasets. From time t = 0 (left) to t = 1
(right), black clouds are trained to go outside of the center, while red clouds are trained to get into
the center. K denotes the additional dimensions concatenated to the input, where auxiliary random
variables lie. As K gets higher, the learned dynamics become more flexible, making both red and
black clouds possible to propagate. The detailed problem setting is described in Appendix A.

distribution (i.e., Gaussian distribution), to the complex function fθ : RD → RD. For instance,
suppose the tractable prior distribution be Gaussian, i.e., π0 ∼ N (0, I), and let the learned complex
distribution be pθ ∈ C1(RD), where C1 denotes to the continuously differentiable distribution over
RD.

Then, this pθ is obtained through the push-forward equation, (i.e., (generalized) change-of-variables)

pθ(x) = N (f−1
θ (x)|0, I)

∣∣∣∣det [∂f−1
θ (x)

∂x

]∣∣∣∣ . (1)

Even though the normalizing flow provides a strong tool in designing the complex distribution from
a simple distribution, it remains difficult to construct an invertible function fθ (Chen et al., 2019),
as equation 1 requires the Jacobian determinant of the inverse function of fθ. To mitigate this, Chen
et al. (2018); Grathwohl et al. (2019) proposed the normalizing flows derived from the ODE. To
form the ODE, the function fθ is now parameterized from the vector field vθ : RD × [0, 1] → RD

recursively, as follows.

fθ(x) = gθ(x, 1), gθ(x, t) = x+

∫ t

0

vθ(gθ(x0, t
′), t′)dt′ with x0 ∼ π0, (2)

which is reduced to dxt = vθ(xt, t)dt with xt = gθ(x0, t) if represented with differential form.
Like in equation 1, vθ generates the flow ϕt if it satisfies the push-forward equation

pt = [ϕt]∗ π0, ([ϕt]∗ π0) (x) = π0(ϕ
−1
t (x))

∣∣∣∣det [∂ϕ−1
t

∂x
(x)

]∣∣∣∣ , (3)

which enables fθ to be invertible, without requiring the full Jacobian determinant of the inverse
function f−1

θ , but just the inverse flow ϕ−1
t .

2.2 FLOW MATCHING

Despite these advantages of the Continuous Normalizing Flow (CNF), this requires the costly for-
ward propagation of neural ODEs. To avoid this, Lipman et al. (2023); Liu et al. (2023) proposed the
simulation-free (i.e., do not demand the full ODE computation) method called flow matching, which
enables fast and scalable generation of ODE through light computational budget.

The flow matching objective directly regresses the vector field vθ into the (true) vector field u(x, t)
as follows:

LFM(θ) = Et∼[0,1],xt∼pt(xt)

[
∥vθ(xt, t)− u(xt, t)∥2

]
(4)

where pt is defined in Equation 3. However, u(x, t) is generally intractable, hence we instead use
the following conditional flow matching (CFM) objective

LCFM(θ) = Et∼[0,1],xt∼pt(xt|z),z∼q(x0,x1)

[
∥vθ(xt, t)− u(xt, t|z)∥2

]
, (5)
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Algorithm 1 Training of Augmented Flow Matching

Require: Noise distribution π(x0), data distribution p1(x1), number of augmented dimension K,
Number of channels C, Hyperparameters λ1, λ2. Neural network parameters θ
Draw projection matrix P ∈ RK×C , Pi,j ∼ N (0, I) for all i, j.
Initialize parameters θ of neural network ṽθ.
while Not converged do

Draw (x0, x1) ∼ π(x0)× p1(x1), t ∈ (0, 1).
Draw y0 ∼ N (0, IC)
y1 ← λ1y0 + λ2P (x0 + x1)
x̃t ← (1− t)x̃0 + tx̃1, x̃0 = [x0, y0] and x̃1 = [x1, y1]

Update θ to minimize Ex̃t,t

[
∥ṽθ(x̃t, t)− (x̃1 − x̃0)∥22

]
end while

with efficient formulation of q(·). For example, in Liu et al. (2023), the condition z is independently
drawn from the source and target distribution z ∼ q(x0, x1) = π0(x0)p1(x1). Lipman et al. (2023)
showed that the gradient of LFM(θ) is equal to that of LCFM(θ); i.e., ∇θLFM(θ) = ∇θLCFM(θ),
which implies that the CFM objective can be utilized instead of the intractable FM objective for
training vθ(x, t) to simulate u(x, t). Furthermore, to provide stability and training efficiency, Tong
et al. (2024); Pooladian et al. (2023) used the optimal transport (OT) approach to find the coupling
between the samples from q(x0) and q(x1) that minimizes the Wasserstein distance. Nevertheless,
the following issues remain: it takes polynomial time to obtain the coupling between two different
distributions via the optimal transport algorithm, which explodes in time when using a large number
of minibatch sizes, and the coupling obtained from the minibatch coupling becomes uninformative
in the entire dataset (Albergo et al., 2024).

3 AUGMENTED FLOW MATCHING

In this section, we propose our main method, Augmented Flow Matching (AFM), a simple yet effi-
cient method that improves the training and sampling processes of flow matching with constructing
auxiliary random variables that bootstraps training and is also used for sampling. First, in § 3.1,
we justify how using other random variables, that are correlated to the training pair, improve the
training process by reducing the training variance. Then, in § 3.2, we introduce the framework of
using both the original pair and the generated pair into learning the flow matching model. Finally,
in § 3.3, we propose an algorithm to generate the pair, where the source part is tractable to be sam-
pled and target part is also easy to be sampled with linear models. The overall algorithm pseudocode
of Augmented Flow Matching (AFM) is sketched in Algorithm 1. And for more convenience, we also
addressed the required code fragment, constructed with JAX/Flax package with python language,
in Appendix D.

3.1 CONDITIONAL VARIANCE REDUCTION FOR FLOW MATCHING ESTIMATOR

In this section, we assume the independent CFM (I-CFM) case with σ → 0, which is proposed
and analyzed in Liu et al. (2023). According to Equation 5, the flow u(xt, t) is learned through the
estimator u(xt, t|X0, X1), where X0 is drawn from (X0, X1) ∼ q(x0, x1). Then, the variance of
the estimator u(xt, t|X0, X1) is given by

Varp0(X0,X1|xt)(u(xt, t)|X0, X1) = Ep0(X0,X1|xt)

[
∥u(xt, t)− (X1 −X0)∥2

]
. (6)

Then, suppose that there is a random variable Y which is correlated to (X0, X1). We let Y =
(Y0, Y1) to be pairwisely concatenated to X0 and X1, respectively. Then, we denote û([Xt, Yt], t)
to be the augmented flow estimator, where Yt = (1 − t)Y0 + tY1. And let the conditional flow
estimator that constructs the ODE between the probability density functions of random variables
X̂0 = [X0, Y0] and X̂1 = [X1, Y1] be given as û(Xt, t|Yt). Applying yt = (1 − t)y0 + ty1 with
(y0, y1) ∼ (Y0, Y1), let ũ(Xt, t|Yt) be the flow matching estimator u(Xt, t) conditioned on Y = Yt.
Then the conditional variance of the flow matching estimator ũ(Xt, t|Yt = yt), defined by u(Xt, t)
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conditioned on Yt = yt, is given by

Varp0(X0,X1|xt,yt)(ũ(xt, t|yt)|X0, X1) = Ep0(X0,X1|xt,yt)

[
∥ũ(xt, t|yt)− (X1 −X0)∥2

]
. (7)

Then the following statement on conditional variance bound implies that the variance of the flow
matching estimator is mitigated when averaged over Y .
Proposition 1 (The law of conditional variance). Let the conditional variance of u(xt, t) and
û(xt, t|yt) be defined as in Equation 6 and Equation 7. Then the variance of conditional flow
on Y = yt is always less than the marginal flow.

Varp0(X0,X1|xt)(u(xt, t)|X0, X1) ≥ Eyt∼Yt

[
Varp0(X0,X1|xt,yt)(ũ(xt, t|yt)|X0, X1)

]
. (8)

Proof. Please refer to Appendix B.1. The sketch of proof comes from the law of total variance
applied to conditional distributions on (X0, X1).

Table 1: Dimension for
Auxiliary variables vs.
variance with Proposi-
tion 1.

AugDim Variance

0 6.627
1 5.633
2 2.417
5 1.343

10 0.571

This proposition shows that conditioning the flow matching loss on Y
about the input distribution (X0, X1) reduces the variance of the flow
matching estimator, and hence makes the training process more efficient.

Validation of Proposition 1 We take the evaluation of the flow match-
ing estimator with the following motivating example. Let (X0, X1)
be drawn from N (−2, 12) and N (2, 12). Then we use Sampling-
Importance-Resampling (SIR) to draw from p(X0, X1|xt, yt) to get
(X0, X1).

pt(X0, X1|xt, yt) =
pt(X0, X1|xt)pt(yt|X0, X1, xt)

pt(yt)

∝ pt(X0, X1|xt)pt(yt|X0, X1)

(9)

where pt(yt|X0, X1, xt) = pt(yt|X0, X1) since xt is deterministic with (X0, X1). And

pt(yt|X0, X1) = N (0.5(P0X0 + P1X1), 0.5
2I), (10)

Then, we sample from pt(X0, X1|xt, yt) as follows.

• For pt(X0, X1|xt), we draw (X0, X1) with Sampling-Importance-Resampling (SIR).
• For pt(X0, X1|xt, yt), we reweight the sampled (X0, X1) with pt(yt|X0, X1).

Then, Table 1 shows that the variance of the flow matching estimator decreases with higher aug-
mented dimensions.

We also clarify the variance reduction effect by comparing the loss convergence property. Figure 3
shows the training curve of flow matching loss with augmented random variables. For details, please
refer to Section 5.1.

3.2 AUGMENTED FLOW MATCHING

In the previous sections, we justified how introducing the auxiliary random variable Y improves the
flow matching. Our interest is to improve the basic form of independent conditional flow matching
(I-CFM), in which the source and target random variables in the input distribution z ∼ π(x0, x1)
in Equation 5 is given independently, i.e., π(x0, x1) = π0(x0)p1(x1). Then the conditional distribu-
tion is given as

pt(xt|z) = N (xt|tx1 + (1− t)x0, σ
2I), u(xt, t|z) = x1 − x0, (11)

and with σ → 0, the marginal vector field u(xt, t) constructs the transport mapping between the
distributions π0(x0) and p1(x1). As the source distribution should be endowed prior to running the
ODE, Y0, the fraction of Y to be concatenated to the source X0, should have a tractable form. In our
implementation, we first assumed Y0 ∼ N (0, I), i.e., the standard normal distribution for simplicity
that can be sampled easily with X0. Then, while Y1 = h(X0, X1, Y0) can have diverse forms, we
took g to be a linear function.
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Using the augmented data, we denote the IVP-ODE with the initial condition x̂0 = [x0, y0] as

dx̂t = û(x̂t, t)dt, (12)

where x̂t = [xt, yt] is the augmented data at time t and û is the corresponding the (true) augmented
vector field defined in Section 3.1 that correctly constructs the ODE between X̂0 = [X0, Y0] and
X̂1 = [X1, Y1].

With such (Y0, Y1), we use the following augmented flow matching loss:

LAFM(θ) = E(x̂0,x̂1)

[
∥v̂θ(x̂t, t)− (x̂1 − x̂0)∥22

]
= E(x0,x1)∼q(x0,x1)

[
∥vθ(xt, t)− (x1 − x0)∥22

+ Eq(x0,x1)EN (y0|0,I)×h(y1|x0,x1,y0) ∥v
′
θ(yt, t|xt)− (y1 − y0)∥

2
2

] (13)

where xt = (1 − t)x0 + tx1 (as σ approaches to 0) and v′θ(yt, t|xt) denotes the vector field
conditioned on xt. Our proposed method, Augmented Flow Matching (AFM), constructs the aux-
iliary variables Y0 and Y1, which are dependent to the original random variables X0 ∼ π(x0)

and X1 ∼ p1(x1). In our method, we show that the dependence between X̃0 = [X0, Y0] and
X̃1 = [X1, Y1] enables efficient training and better generation quality via flow matching.

3.3 DESIGN CHOICE AND SAMPLING WITH AUXILIARY VARIABLE

This section shows that while any free design of Y is available, even the simplest form of a single
randomized linear layer is versatile. As aforementioned, we take Y0 to be a standard multivariate
normal random variable, since the source distribution should be easy to be sampled. For Y1, when
X0, X1 ∈ Rd, We take the linear form to construct Y1 as a function h of (X0, X1, Y0), as

Y1 = h(X0, X1, Y0) = λ1Y0 + λ2P (X0 +X1) ∈ RK , (14)

where λ1, λ2 ∈ R+ are the hyperparameters and P is a channel-wise random projection matrix.
While there exists a wide range of choices of h, using h as a learnable function, for example, requires
a joint training process on learning the optimal h and v̂θ, which may cause the learning process
using Equation 13 to be more complex. So we unifiedly fixed the hyperparameters to λ1 = λ2 = 0.5
without any arbitrary hyperparameter tuning.

• In images with RGB channels, the projection matrix P functions as the 1×1 convolutional layer
without bias, with 3 input channels and K output channels.

• When (X0, X1) are D-dimensional vectors, P is defined as one dense layer without bias, which
outputs K-dimensional vector with a single matrix multiplication.

Finally, for sampling, we first define (x0, y0) ∼ X0×Y0 to be Gaussian and concatenate for the last
layer. Then if

([x1, y1]) = ODESolver([x0, y0], ṽ, 0, 1; θ) (15)
where ODESolver is the ODE solver defined in Chen et al. (2018), then x1 is the terminal solution
of this augmented ODE. We provide an example in Appendix C of using auxiliary random variables
Yt to be correlated or uncorrelated with (X0, X1) with K = 20. The result in Figure 7 shows that the
correlated auxiliary variables succeed in traversing the inner and outer circles, while the uncorrelated
variables fail.

4 RELATED WORKS

Normalizing Flows, Flow matching, and Rectified Flow The lines of work in generating the
differential equations, either deterministic or stochastic, have been studied actively. Rezende & Mo-
hamed (2015); Papamakarios et al. (2021) studied the generation of complex distributions that can be
mapped from the simple and tractable distributions. Even though they achieved significant progress
in the autoregressive generative modeling (Chen et al., 2019; Huang et al., 2018; Papamakarios et al.,
2017), these models require invertible functions to generate flows, so that heavily limits their neural
architectures. Chen et al. (2018); Grathwohl et al. (2019) mitigated this issue by introducing the
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Figure 3: Flow matching loss function over training epochs. Left to right: Left - losses on (λ1, λ2) =
(0.5, {0.1, 0.4, 0.6}) with K = 2. Middle - Comparison of correlated vs. uncorrelated auxiliary
variable. Right - Comparison over various K, the number of auxiliary dimensions.

modeling of continuous-time function through free-form Jacobian of the vector field with memory-
efficient adjoint sensitivity methods. Nevertheless, these approaches required the full simulation of
the neural ODE, which is both costly and cause cumulative error caused by the ODE solver. Hence,
Lipman et al. (2023); Liu et al. (2023) proposed a simulation-free approach to generate a training-
efficient ODE, combining the aspects of the continuous normalizing flow and the recently emerging
diffusion model (Song et al., 2021; Sohl-Dickstein et al., 2015; Ho et al., 2020).

Regularizing ODEs with Additional Variables While these enabled the flexible construction
of ODEs, Dupont et al. (2019) further widened the class of feasible ODEs by utilizing the latent
variables that enable the path to detour by the overlapping trajectory that occurs while constructing
the ODEs. Finlay et al. (2020) also augmented the continuous normalizing flow with kinetic energy
term for regularization. Other lines of research interpreted augmenting additional dimensions in the
dynamical systems as implementation of higher-order dynamics (Liu et al., 2021). In the diffusion
model context, Dockhorn et al. (2022); Chen et al. (2024) utilized the additional dimensions of the
training set as momentum or the optimal control to accelerate diffusion sampling. Some other works,
such as Xu et al. (2022; 2023a), introduced the concept of Poisson field in generative modeling,
and interpreted the generative modeling problem to the particle dynamics in the generalized multi-
dimensional Poisson fields.

Variance reduction in Machine Learning Methods Our method, AFM, lies on the line of vari-
ance reduction of the statistical estimates. Rao (1992); Blackwell (1947) showed that the variance of
the estimator can be reduced by conditioning to sufficient statistics. With this, Doucet et al. (2000)
used Rao-blackwellization for efficient particle filtering. Variance reduction techniques are also ap-
plied to improving diffusion models. For instance, Xu et al. (2023b); Niedoba et al. (2024) performed
multiple Monte Carlo estimates of the conditional score function for single loss evaluation to reduce
the training variance.

5 EXPERIMENTS

We clarified and validated our method, AFM, with various classes of datasets. First, we qualitatively
compare AFM and the baseline flow matching method qualitatively in the single embryonic cell
generation task, which deploys the fast and efficient evolution of the cell through days. Then, we
confirmed our method in CIFAR-10 images quantitatively, showing that augmented FM achieves
better FID. The precise description of datasets, model architecture, and training details are explained
in Appendix A. For all experiments, the augmented variables (Y0, Y1) are defined as explained in
Section 3.3.

5.1 2D SYNTHETIC EXPERIMENT

We first give insight into the augmented flow matching with a two-dimensional synthetic experiment.
The 2d synthetic distribution matching task, which is first introduced in Dupont et al. (2019), is a

7
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(a) K = 0 (baseline), NFE 4. (b) K = 2, NFE 4.

(c) K = 0 (baseline), NFE 8. (d) K = 2, NFE 8.

Figure 4: Visualization of embryonic cell evolution task. For each augmented dimension K and
NFE, the left and right figures represent the evolution trajectory and final points. In the left figures,
the red line demonstrates the evolution of the simulated single embryonic cell from the given initial
condition to the terminal point, which is pointed out in the right figures. In the right figures, the red
and blue points stand for the features from true and generated terminal evolutions, respectively.

task of constructing a mapping between two non-overlapping distributions within a single flow. We
initialize with two density functions (the foremost left figure in Figure 2) such that the black cloud
gets out of the inner circle to the outer circle, and red cloud get into the inner circle from the outer
circle. Each column of each row corresponds to ∆t = 0.1.
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Figure 5: Wasserstein-p distances (Left: p = 1, Right:
p = 2) between true and generated distributions in the sin-
gle embryonic cell evolution tasks.

Figure 2 shows that with K = 0,
(e.g., no augmentation) one cannot
fully recover the dynamics. This is
reasonable because the vector fields
from the black and red points over-
lap. On the other hand, larger K im-
plies that there are more paths to de-
tour the conflict. Finally, when K
increases up to 20, one can almost
fully recover the dynamics with by-
passing the other point cloud family.
We see that this distribution match-
ing task is a representative example
of constructing a flow that cannot
be learned through a non-augmented
flow matching, but can be learned
from augmented flow matching.

Augmented flow matching also reduces the loss function of the conditional flow matching estimator.
Figure 3 demonstrates the first two-coordinate (x-y) loss, which is the primary part of the sampling
process, as other dimensions are redundant after generation finishes. Figure 3 shows that the first
two-coordinate loss significantly decreases as K increases. This also implies that we can achieve
more efficient training with augmented dimensions.

We validated that as the number of auxiliary dimensions increases, the convergence of the flow es-
timator becomes faster, when applied with the same optimizer. The exception is the baseline FM,
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Table 2: CIFAR-10 image generation result (in FID) with Euler and 2nd-order Heun solvers in the
baseline (marked with †) and augmented flow matching models, evaluated with respect to the number
of augmented dimensions. Every model is trained with the same model and hyperparameters, except
for the first layer and the projection matrix that generates Y1. The best and second best results for
each NFE are highlighted with bold and italic faces, respectively. In addition, with the Heun table,
we also included the computational cost, including the number of parameters and the computational
cost (in terms of FLOPs) of each model.

Method NFE (number of function evaluations)
5 10 15 20 25 30 40 50 75 100

Euler
AugDim=0† 38.649 14.235 9.592 7.647 6.585 5.910 5.024 4.571 3.938 3.625
AugDim=1 37.435 13.907 9.415 7.522 6.491 5.702 5.056 4.571 3.976 3.691
AugDim=2 39.601 14.478 9.473 7.421 6.277 5.564 4.861 4.412 3.870 3.637
AugDim=3 41.912 15.164 9.640 7.469 6.280 5.519 4.789 4.332 3.820 3.583
AugDim=4 39.848 14.620 9.730 7.674 6.573 5.863 5.063 4.569 4.022 3.746
AugDim=8 39.738 14.814 9.839 7.794 6.693 5.913 5.149 4.655 4.021 3.721

Method Comp. Cost NFE (number of function evaluations)
# Params FLOPs 10 20 30 40 50 60

2nd-order Heun
AugDim=0† 247.217 M 8.502 G 85.023 30.697 14.826 8.130 4.982 3.709
AugDim=1 + 9,223 + 2.753 M 81.795 27.296 13.238 7.298 4.838 3.717
AugDim=2 + 18,446 + 6.586 M 90.195 27.084 12.403 6.877 4.558 3.605
AugDim=3 + 27,669 + 11.01 M 103.227 29.414 13.871 7.732 5.219 4.024
AugDim=4 + 36,892 + 16.02 M 86.036 26.961 12.638 6.925 4.568 3.574
AugDim=8 + 73,784 + 41.98 M 90.658 30.870 14.646 7.768 4.921 3.688

K = 0, where the relative loss is lower than K = 2 or higher case. In K = 0 or K = 1 cases,
the constructed flows are stuck in the local minimum, because of the topological issues on the ODE
trajectory, leading the flow estimator to converge in the sub-optimal point. The variance-reducing
effect is more clearly observed when K becomes higher. Further analysis with relative loss is con-
tained in Appendix C, that verifies the variance reduction property as fast convergence of the loss
function.

5.2 IMAGE GENERATION

For quantitative analysis, we take empirical evaluation on the image generation task with CIFAR-10
datasets, compared to the independent flow matching without augmented dimensions. As mentioned
in Appendix A, we used JAX/Flax packages on TPU v2-8 nodes. Table 2 demonstrates that the
quality of images concerning FID measure has improved using both the Euler and 2nd-order Heun
solver in the wide range of number of function evaluations.

Figure 1 showed an (uncurated) example image that implies the consistency of the generated image
with augmented flow matching. In Figure 1, we demonstrated 64 different images, their mean and
pixel-wise standard deviations with K = 1, 2, 3. The image part x0 ∈ R32×32×3 start with the same
random noise, and the auxiliary part y0 ∈ R32×32×K start with arbitrary random normal variables.
The auxiliary randomness gives the stochasticity of the generated images, as shown in the image
with K = 3 which starts from the same random variable and use deterministic Euler solver (which
implies that the terminal point will be near to the initial point) but let the generated images to vary
more. In addition, we also demonstrate the diversity and coverage of our generated data compared
to the original data. The detailed derivation of precision and recall are introduced in (Kynkäänniemi
et al., 2019).

In addition, we have reported the additional computational cost of augmented flow matching in Ta-
ble 2. It shows that the amount of additional computation is negligible, costs less than 0.5% of the
total computational cost in both memory consumption and floating-point operations (FLOPs). This

9
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Method M = 1 M = 2 M = 5
Pre Rec Pre Rec Pre Rec

AugDim-0 (FM) 0.499 0.142 0.628 0.214 0.796 0.358
AugDim-1 (AFM) 0.527 0.144 0.664 0.226 0.824 0.343
AugDim-2 (AFM) 0.532 0.156 0.691 0.241 0.835 0.363

Table 3: The Precision-Recall metric of CIFAR-10 dataset with 10000 generated images. M stands
for the hyperparameter for nearest neighbor estimation proposed in Kynkäänniemi et al. (2019).

implies that our method is extremely lightweight and easy to implement, which is ubiquitously ap-
plied to existing flow-based methods. We also report the wall-clock time of our generation in Table 4.

5.3 SINGLE EMBRYONIC CELL EVOLUTION

We perform our analysis with a qualitative interpretation of the evolution of single embryonic cell
dynamics, proposed in Schiebinger et al. (2019). This data consists of the evolution of cells in four
consecutive weeks. Then the output is projected to D-dimensional latent vectors for visualization.
This task denotes the “distribution matching” between the initial Day 0 data distribution (the latent
vector of the initial cells) and Day 27 data distribution (the latent vector of the final cells) (See Fig-
ure 6). If this task successfully constructs the flow between those two distributions, this implies that
when the latent cell vector is initialized with Day 0 states, then the Day 27 state will be generated
with running the ODE. The evolution trajectory and the distribution of generated terminal points
with the true terminal points are demonstrated in Figure 4.

In Figure 4, we compared K = 0 and K = 2 cases, where K is the number of augmented dimen-
sions. As depicted in Figure 4, the generated terminal points with K = 0 case does not follow the
true terminal points, while the generated points with K = 2 case, which utilizes two auxiliary di-
mensions, better follows the distribution of true points. We also measured the Wasserstein-1 (EMD)
and Wasserstein-2 distance between the generated and true points in Figure 5. As AFM achieves
better distribution matching, (i.e., lower Wasserstein distances) one can match the target density
function more efficiently with AFM. For further results on the path on embryonic cell evolution,
please refer to Appendix F.

6 CONCLUSION

In this paper, we analyzed some of the limitations of conditional flow matching, which is caused
by the high variance of independent conditional flow matching methods. To mitigate this issue,
we introduced a simple and effective method, Augmented Flow Matching (AFM), which correlates
the training pair by concatenating auxiliary variables to them and enables variance reduction in
the flow matching problem, making the training process more efficient and widening the class of
ODEs to have more flexibility. Finally, with our experiment, we demonstrated the improvement
in the sampling performance of the ODE constructed with the augmented variables, especially in
low-NFE regimes.

Limitations. Although our method is able to increase the sampling efficiency of the flow-matching
method, the use of the auxiliary variables result in additional parameters for the flow estimator. As
shown in the experiments, the effect of the variance reduction saturates as the dimension of the
auxiliary variables grows. Hence it is crucial to balance the gain from the auxiliary variables and the
cost from the additional parameters.

10
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Ethics Statement. While flow matching can be utilized for developing large-scale image genera-
tive models that may have negative societal impacts, our paper primarily addresses the theoretical
aspects of the method. As such, the content of our paper is unlikely to cause any direct negative
societal effects.

Reproducibility Statement. First, we have submitted the implementation of our method in the
supplementary materials, to enable reproduction of our main results with the established configura-
tions. And we also revealed the code fragments in the appendix for further research of flow-based
models and related fields such as bridge matching or diffusion model researches.
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A DATASETS AND ARCHITECTURES

For reproducibility and convenience, we introduce the datasets and architectures that are used in our
paper.

2d synthetic distribution matching For 2d synthetic distribution matching task which is depicted
in Figure 2, we defined two random variables as follows.

Xin = (φ cos θ, φ sin θ), θ ∼ U(0, 2π), φ ∼ N (0, 1).

Xout = (ϕ cos θ′, ϕ sin θ′), θ′ ∼ U(0, 2π), ϕ ∼ N (8, 0.52).
(16)

Then we define the flow matching problem by defining the source and target pairs as follows:

(X0, X1) = (Xin, Xout) with probability p =
1

2

(X0, X1) = (Xout, Xin) with probability p =
1

2
.

(17)

Then the flow traverses the points in the inner cloud to the outer cloud, and vice versa. The archi-
tecture is MLP with two hidden layers, 64 hidden neurons with cosine and sine embedding of times
in each layer, using Swish activation function. Also in this problem, we constructed the auxiliary
variables (Y0, Y1) as introduced in § 3.2.

Single cell evolution The embryonic stem cell dataset is proposed by Schiebinger et al. (2019),
and is accessible in https://data.mendeley.com/datasets/hhny5ff7yj/1. The full
evolution from day 0 to 27 is demonstrated in Figure 6, starting from the right blue density clouds
to the left purple clouds.

We used a neural network with 3 hidden layers, each with 64 neurons and swish activation functions.
The minibatch size and the number of steps are given as (256, 30000), respectively.

Figure 6: Single cell.

CIFAR-10 image generation For CIFAR-10 image generation, we borrowed the same NCSN++
architecture from score sde repository (Song et al., 2021). Also, for all K, we used the same
training hyperparameters. We used the AdamW optimizer of learning rate 2 × 10−4 with cosine
warmup of 5, 000 steps and gradient clipping. The training and sampling batch size is given as
128 and 2, 048, respectively, as a higher batch size degraded the sampling performance and caused
overfitting. The total number of iteration steps is 1.3 M, and the checkpoint with the best FID is
restored, among the checkpoints that are saved every 50, 000 steps. The 50, 000 training split is used
for training the model. With the v2-8 TPU, the full training costs 86 hours to run 1.3 M steps, and
the sampling costs 0.4 sec per forward pass to generate 2, 048 samples.
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B PROOFS

B.1 PROOF OF PROPOSITION 1

Proposition 1 (The law of conditional variance). Let the conditional variance of u(xt, t) and
û(xt, t|yt) be defined as in (6) and (7). Then the variance of conditional flow on Y = yt is al-
ways lower than the marginal flow, i.e.,

Varp0(X0,X1|xt)(u(xt, t)|X0, X1) ≥ Eyt∼Yt

[
Varp0(X0,X1|xt,yt)(ũ(xt, t|yt)|X0, X1)

]
. (18)

with equality when Yt is independent to (X0, X1).

Proof. For simplicity, we let u(xt, t|X0, X1) = Z.

Varp0(X0,X1|xt)(Z) = Ep0(X0,X1|xt)

[
Z2

]
−
(
Ep0(X0,X1|xt) [Z]

)2
= EY Ep0(X0,X1|xt,Yt)

[
Z2|Yt

]
−
(
Ep0(X0,X1|xt) [Z]

)2
.

= EY

(
Varp0(·|X0,X1) [u(xt, t)|Yt] + Ep0

[Z|Yt]
2
)
−

(
Ep0(X0,X1|xt) [Z]

)2
(19)

As u(xt, t) conditioned on Yt is equal to ũ(xt, t|Yt), then Equation 19 becomes

(19) = EYt
Ep0(X0,X1|xt,Yt) [ũ(xt, t|Yt)|X0, X1] +

(
EYt

[
Ep0

[u(xt, t)|Yt]
2 − u(xt, t)|Yt

])
= EYtEp0(X0,X1|xt,Yt) [ũ(xt, t|Yt)|X0, X1] + VarYtEp0(X0,X1|xt,Yt)[u(xt, t)|Yt]

≥ EYt
Ep0(X0,X1|xt,Yt) [ũ(xt, t|Yt)|X0, X1] ,

(20)

with equality condition when VarYt
Ep0(X0,X1|xt,Y )[u(xt, t)|Y ] = 0. This includes the case of inde-

pendent conditional flow matching case described in Liu et al. (2023), where Yt is an empty random
variable.

C ADDITIONAL RESULTS

Effect of correlation of auxiliary variable Y with data variables (X0, X1) This part provides
additional rationale that supports the usage of correlated auxiliary variables in Section 3.3. With the
same setting as Figure 2 with K = 20, we validated the effect of correlation between the source
and target variables (X0, X1) and the augmented variable Yt. According to Figure 7, using corre-
lated auxiliary random variables is more beneficial, succeeding in constructing the path between the
source and target distributions.

Figure 7: Up: correlated (λ1 = λ2 = 0.5, Down: uncorrelated (Y is independent to (X0, X1).) with
K = 20.

Fast convergence of relative loss For fair comparison, we observe the convergence properties of
the loss function in Figure 8, which is the modification of Figure 3 where the relative loss compared
to the converging checkpoint rather than the absolute loss is use, to verify the variance reduction
property. In the left figure, we fix the λ1 coefficient, which determines the randomness of the starting
point, and varied λ2 coefficient, which stands for the correlation between X1 and Yt. Not only the
absolute loss (as shown in Figure 3, but also the relative loss converges faster if λ2 is higher, i.e., the
random variable is more correlated.

In the middle figure shows that using the uncorrelated auxiliary variable (λ1 = λ2 = 0.0) has much
slower converging property than correlated (λ1 = λ2 = 0.5) case. Last, right figure compares the
convergence property for various K. This shows that with higher K, the relative loss converges
faster, which implies the variance reduction property holds.
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Figure 8: Left to right: Left - losses on (λ1, λ2) = (0.5, {0.1, 0.4, 0.6}) with K = 2. Middle -
Comparison of correlated vs. uncorrelated auxiliary variable. Right - Revised Figure 3 with relative
loss vs. convergence.

Wall-clock time of CIFAR-10 generation In addition to the cost in terms of FLOPs and memory
in Table 2, we also report the wall-clock time of our CIFAR-10 generation in Table 4. We used a
single TPU v3-8 node and used 2, 048 minibatch size.

Method Wall-clock time Time per image per NFE

AugDim-0 (FM) 39.944 s 0.813 ms
AugDim-1 (AFM) 39.366 s 0.801 ms
AugDim-2 (AFM) 39.448 s 0.802 ms

Table 4: The wall-clock time of our CIFAR-10 generation.
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D PYTHON CODE FOR AFM

Augmented flow matching, especially in a linear form, is extremely easy to implement, with just a
few line of codes. We provide the fragment of codes, written by JAX/Flax.

D.1 DEFINE THE AFM MODULE.

1 import flax.linen as nn
2 import jax
3 import jax.numpy as jnp
4 import functools
5

6 aug_dim = 10 # Modify this.
7 seed = 9999 # Modify this.
8 rng = jax.random.PRNGKey(seed)
9 DenseLayer = nn.Dense(aug_dim, use_bias=False)

10 rng, step_rng = jax.random.split(rng)
11 kernel_arr = jax.random.normal(step_rng, shape=(n_channels, aug_dim))
12 afm_fn = functools.partial(afm_model.apply, {’params’: {’kernel’:

kernel_arr}}

D.2 USE AFM MODULE TO PERTURB DATA

1 def afm_data(rng, x0, x1, aug_dim, afm_fn, lambda1=0.5, lambda2=0.5):
2 """
3 Input
4 x0: data drawn from source distribution.
5 x1: data drawn from target distribution.
6 aug_dim: augmented dimension.
7 afm_fn: AFM function.
8 lambda1, lambda2: weights
9 Return

10 y0: augmented source data. Should be easily sampled.
11 y1: augmented target data. Function output of y0, x0, x1.
12 """
13 rng, step_rng = jax.random.split(rng)
14 y0 = jax.random.normal(step_rng, shape=x0.shape[:-1] + (aug_dim,))
15 y1 = lambda1 * y0 + lambda2 * afm_fn(x0 + x1)
16 y0 = jnp.concatenate([x0, y0], axis=-1)
17 y1 = jnp.concatenate([x1, y1], axis=-1)
18 return y0, y1
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E MORE UNCURATED IMAGE EXAMPLES

In this section, we cover more image examples generated by AFM.

Figure 9: Up→Down: Augmented dimension {0, 1, 2, 3}. Left→Right: NFE {10, 20, 50} with 2nd-
order Heun solver.
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F MORE RESULTS ON EMBRYONIC CELL EVOLUTIONS.

In this section, we report extensive results of Figure 4 on various auxiliary dimensions K and number
of function evaluations (NFE). We find that in the high NFE case (NFE = 400), the generated data
with baseline (K = 0) is limited to the low-dimensional manifold, while K = 1 and K = 2 succeed
to find diverse cells.

(a) K = 0 (baseline), NFE 20. (b) K = 0, NFE 400.

(c) K = 2, NFE 20. (d) K = 2, NFE 400.

(e) K = 1, NFE 4. (f) K = 1, NFE 8.

(g) K = 1, NFE 20. (h) K = 1, NFE 400.
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