NeuroSchedule: A Novel Effective GNN-based
Scheduling Method for High-level Synthesis

Jun Zeng* Mingyang Kou* Hailong Yao
Tsinghua University Tsinghua University Tsinghua University
Xu-Cheng Yin Haili Wang
University of Science and Technology Beijing Hercules Microelectronics Co., Ltd
Abstract

High-level synthesis (HLS) is widely used for transferring behavior-level specifi-
cations into circuit-level implementations. As a critical step in HLS, scheduling
arranges the execution order of operations for enhanced performance. However,
existing scheduling methods suffer from either exponential runtime or poor quality
of solutions.

This paper proposes an efficient and effective GNN-based scheduling method
called NeuroSchedule, with both fast runtime and enhanced solution quality. Major
features are as follows: (1) The learning problem for HLS scheduling is formulated
for the first time, and a new machine learning framework is proposed. (2) Pre-
training models are adopted to further enhance the scalability for various scheduling
problems with different settings. Experimental results show that NeuroSchedule
obtains near-optimal solutions while achieving more than 50,000 x improvement
in runtime compared with the ILP-based scheduling method. At the same time,
NeuroSchedule improves the scheduling results by 6.10% on average compared
with state-of-the-art entropy-directed method. To the best of our knowledge, this is
the first GNN-based scheduling method for HLS.

1 Introduction

Recently, FPGA has been playing an important role in accelerating computations from the cloud to
the edge [, 12} 13, 14, 15]. As a reconfigurable computing device, FPGA gains increasing popularity
for its high performance and great energy efficiency. However, developers are required to write
programs using the hardware description language (HDL) to implement applications in FPGAs,
which is time-consuming and error-prone. Therefore, the utilization of FPGA’s enormous computing
power is limited by the cumbersome developing process.

As aresult, the concept of high-level synthesis (HLS) is proposed in the EDA community to speed up
the developing process [6}[7,18]. HLS automatically transfers high-level specifications (written in high-
level languages like C/C++) to behavior-level implementations (written in HDLs like Verilog/VHDL).
Figure [I] presents the whole flow of HLS. As shown in the figure, HLS mainly comprises three parts:
compilation, synthesis, and generation. For compilation, high-level languages are transferred to
Control Data Flow Graphs (CDFGs) with the assistance of modern compilers like GCC or LLVM.
During the synthesis process, hardware resources (e.g. functional units, storage, and wires) are first
allocated. According to the allocated hardware resources, the operations in CDFG (such as ADD and
MUL) are scheduled to certain time steps. After scheduling, the allocated hardware resources are

“These authors contributed equally to this work.
"Corresponding author: Hailong Yao (hailongyao@tsinghua.edu.cn).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

SVn]hesis o

Generation | | VHDL /
__________ Verilog

I
I
| RTL
| Architec-
. ture

Generation

High-level language code Compilation‘ Allocation Scheduling Binding

int a@, ml, a2, a3, m4, Frontend Functional
a5;

Units
a0 = x0 + x1;

i
i
|
|
I
I
I
i
o & 8 O 5% > / LVMIR .‘5 >
a2 = x4 + x5; Y | Storage
I
I
I
I
i
|

a3 = a0 + ml; Opt
m4 = ml * az; ¥
a5 = a0 + a3; CDFG

Connectivity
Components

C ivity | ||
Components 1
|

e —
Hardware Library

Figure 1: High-level synthesis flow.

bound to corresponding operations and time steps. After synthesis, the generation process generates
corresponding HDLs according to the synthesized results.

Scheduling is one of the most critical stages in the HLS process, which arranges the execution
order of operations, and thus determines the performance of generated circuits. As depicted in
Figure[T} according to the allocated hardware resources and the dependencies between operations, the
operations in CDFG are arranged in different time steps. For example, during the scheduling process,
operation ADDO is scheduled to step O and bound to the adder. It is noteworthy that only one adder
is allocated to the scheduling task. So operation ADD2 could not be scheduled to step 0 same as
operation ADDO. Therefore, determining the scheduling priority for the operations is the key objective
of the scheduling problem. However, the scheduling problem has been proved to be NP-hard [9].
And existing algorithms suffer from either unbearable long runtime or poor quality of solutions.
Integer linear programming (ILP) formulation has been proposed to solve the scheduling problem
optimally [[10]. However, the exponential runtime of ILP is unbearable. Therefore, various heuristic
algorithms are proposed to obtain sub-optimal solutions within acceptable runtime. List scheduling is
one of the most famous heuristic algorithms [11]]. List scheduling stores ready operations in a list
and arranges them according to a heuristically defined priority function. Based on the list scheduling
algorithm, force-directed scheduling algorithm is proposed [[12], which builds a force-distribution
graph for representing the priority function. Inspired by the force-directed scheduling algorithm,
Entropy-Directed Scheduling (EDS) algorithm [13]] replaces the priority function with the entropy of
CDFGs to be scheduled. The utilization of the entropy function not only speeds up the scheduling
process, but also improves the quality of solutions. Different from the algorithms in the list scheduling
family, an algorithm based on the system of difference constraints (SDC) is proposed to speed up
the ILP-based algorithm. SDC-based algorithm transfers the scheduling constraints into a system
of difference constraints using heuristics, which greatly reduces the number of equations to be
solved. However, the SDC-based algorithm cannot guarantee the optimal solution. Therefore, the
aforementioned heuristic algorithms all trade quality of solutions for runtime, which leaves a large
optimization space to be explored.

On the one hand, the complicated dependencies of operations in the CDFG bring great challenges to
the scheduling process. On the other hand, Graph Neural Networks (GNNs) [[14} 1516, |17] have
great representational power of complicated graphs, which is suitable for extracting complicated
relations between operations in CDFGs. Therefore, a natural idea is to adopt GNNss to tackle the
scheduling problem for both fast runtime and high-quality solutions. This paper proposes the first
GNN-based scheduling algorithm called NeuroSchedule. Inspired by algorithms in the list scheduling
family, NeuroSchedule builds a GNN model to predict the priorities of operations in the CDFG. The
predicted priorities are then used to arrange the operations in CDFG to obtain the scheduling results.
Major contributions of this paper are summarized as follows:

* A learning problem for the HLS scheduling is first formulated, and then a GNN-based
learning framework is proposed to effectively and efficiently solve the problem.

* Pre-training models are adopted to further enhance the scalability for different scheduling
problems with different settings.

» Experimental results indicate that NeuroSchedule obtains near-optimal solutions while
achieving more than 50,000x speedup compared with the ILP-based algorithm [10]. At the
same time, NeuroSchedule improves the scheduling results by 6.10% on average compared
with the state-of-the-art EDS algorithm [13]].

The rest of this paper is organized as follows. Section [2] gives a motivating example for the GNN-
based scheduling method. Section |3| gives preliminaries and the formulation of the GNN-based

scheduling problem. The proposed machine learning framework is presented in Section[d] Section[5.2]
introduces NeuroSchedule, as well as the pre-training models adopted for enhancing the scalability.
Section [6] presents the experimental results. Finally, conclusion is drawn in Section[7}

X ooe QA
ee eo eo eo \eo
5
ADD MU ADD MU ADD U|.

Node|Type Manual EDS L L L\ ADD | MUL
0 [ADD 0
1 Ihoc 0 o Step 0 Step 0 Step 0 @ Step 0 @ @
2 |ADD 1 3 Step 1 Step 1 @ Step 1 [@[| Step 1 A 2 ‘
3 |ADD 2 1
Slaoot 2 11 step2 Step2 sten2[(3] [(a) sten2|(3) |4
5 |ADD 3 2 Step 3 Step 3 Step 3 Step 3 @
(@)
0 @ Q@® a0
9 O e 5 e 5 \o \®
® . O
ADD MUL ADD MUL ADD MUL ADD | MUL ADD | MUL
Step 0 Step 0 Step o Step 0 0 Step 0 0
Step 1 Step 1 e Step 1 e Step 1 e Step 1 e
Step 2 Step 2 step2(5) step2|(5) step2|(5) @ Fished odes
Step 3 Step 3 Step 3 Step 3 @ Step3| (2 O Ready Nodes
Step 4 Step 4 Step 4 Step 4 Step 4 4) O unscheduled Nodes

(c)

Figure 2: A motivating Example. (a) CDFG and the priority of nodes. (b) Manually designed list
scheduling result (4 cycles). (c) Entropy-directed scheduling result (5 cycles).

2 Motivation

As introduced in Section[I] the list scheduling algorithm stores ready operations in a list and schedules
them according to a heuristically defined priority function. Here, a ready operation means all of its
predecessing operations are finished and the operation could be scheduled for execution immediately.
For example, in Figure [2[(a), node 3 is ready when node 0 and node 1 are finished. The process of
list scheduling could be stated as follows. First, the ready operations are stored in a list. Next, the
operation with the highest priority in the list is picked to be scheduled to available hardware resources
(e.g. adders and multipliers) for execution. After the operation is finished, the newly generated ready
operations are stored in the list. The above process is iterated until all the operations are successfully
scheduled. From the list scheduling process, defining precise priority functions is crucial to obtain
good scheduling results.

A motivating example is given in Figure 2] Figure[2{a) presents the CDFG to be scheduled, which
consists of 6 operations with 2 types (ADD and MUL). And the available hardware resources for
scheduling are an adder (for ADD) and a multiplier (for MUL). Figure [2[c) depicts the entropy-
directed scheduling process, which takes the entropy function for the priority computation. In the
figure, ready operations are colored blue and finished operations are colored green. Since the entropy
priority of node 3 is higher than node 2, node 3 is scheduled before node 2. However, scheduling
node 3 first delays the scheduling of node 4, which makes the multiplier idle for 3 cycles (i.e. time
steps). Consequently, the final scheduling result is not optimal. In Figure[2[b), we assume there is
an optimal manually designed priority function. Based on the optimal priority function, node 2 is
scheduled before node 3, and thus the hardware resources are fully utilized. Therefore, the scheduling
algorithm based on the manual function gives the optimal solution.

The success of the manually designed function motivates us to build a machine learning framework,
which learns the priority function automatically. GNNs are an effective framework for representation
learning of graphs, which follow a neighborhood aggregation scheme. In GNNs, representation
vectors of nodes are computed by recursively aggregating and transforming representation vectors
of their neighboring nodes [[14]. Therefore, GNNSs are suitable to learn the CDFG embeddings for
obtaining the priority function. As a result, a GNN-based machine learning framework is proposed to
learn the priority function. Experiments verify the effectiveness of the proposed scheduling method
based on GNN.

D S’
Train Data e GNN Model < Model Input <€— List Scheduling —> Schedule Solution

Train 'T‘ \,s ————— / \
e —
Train Label by ILP —> Loss Function él— Priority Predicted I Hardware Library Input CDFG

Si L | P |

Figure 3: Framework for NeuroSchedule.

3 Preliminaries and Problem Formulation

CDFG. In high-level synthesis, the program in high-level language is first translated into CDFG, a
graph-based representation defined as follows:

Definition 1 A CDFG G = (V, E) is a directed graph with node set V and edge set E. Each node
v € V represents an operation, e.g. add or load. Each directed edge e = (v;,v;) € E,i,j €
1,...,|V| represents a dependency relationship between operation v; and v;, i.e., operation v; must
be executed after the execution of operation v;.

ASAP and ALAP. The As-Soon-As-Possible (ASAP) algorithm and the As-Late-As-Possible (ALAP)
algorithm give the information about node flexibility during the scheduling process. For node v; € V,
the result of ASAP and ALAP can be formulated as follows:

_ maXASAP(Uj) +1 El(vj,vi) € E,Uj eV
ASAP(v;) = { 0 Bvj,v;)) € E,v; €V M
minALAP(vj) -1 H(Ui,vj) € F, v; € \%4
ALAP(v;) = max ASAP(vg) B(vi,vj) € E,v; €V 2
VK€

Resource-constrained scheduling problem. Based on the CDFG, we have to solve the resource-
constrained scheduling problem: given the number of resources, find the scheduling solution with
the minimum number of execution cycles, while satisfying the given set of scheduling and resource
constraints. Given a functional unit set U, where u; € U represents a functional unit, such as an
adder. Denote d,,; as the cycle delay of functional unit u;. Given a CDFG G = (V, E), and let
n = |V, a schedule can be defined as S = (t1,t2, ..., tn, f1, f2, .- fn), Where Vi € 1,2, ..., n, (1)
t; € N*, denoting the start cycle of operation v; € V, (2) f; € U, denoting the functional unit used

by operation v;. Let L = max t; + dg, — 1 denote the total number of execution cycles. The
1el,..., n

resource-constrained scheduling problem minimizes L, which can be defined as follows:

Definition 2 Find an optimal schedule S" = (t\,ty, ..., fi, f4, ..., f}), such that:
a) Ve = (vi,vj) € E,i,j € 1,2,...,n, t] +dy < 1]
b) Vi,j € 1,2,...ni # j, fi = fj = |[t; —tj| > dyp
¢) L= max t;+dy — 1is minimized.

i€1l,...,n

List scheduling. As introduced in Section 2] list scheduling is an effective scheduling algorithm. It

divides the node set V into three sets, finished nodes Vr, ready nodes Vg, and unscheduled nodes

V. Given the node priority function F, where F(v;) < F(v;),v;,v; € Vg indicates that operation

v; has a higher priority than operation v;. At each step, list scheduling algorithm chooses the node

vy, € VR to schedule, where F(vy,) = Hél‘r/l F(vy). A better priority function in the list scheduling
Ur R

algorithm corresponds to a better scheduling solution. As the ILP-based scheduling algorithm can get
the optimal scheduling results, the scheduling result S; = (¢;1,¢s2, ..., t1n,...) is a good candidate
for the priority function, where F(v,) = t1,, v, € V. However, for large scheduling problems, the
runtime of the ILP-based algorithm is not acceptable. Therefore, we propose the GNN model to
predict the priority function.

Neural Network Model. Denoting the input data as D, our model can be formulated as:
P(i) = MLP(GIN_EMBED(D;)) 3)
Our loss function can be formulated as:

L= L(P,51) 4)

op type op encoding
encoder

(Regression)
ASAP — — Predicted
opAAR A\ /1 1 I YMY | e Priorit
Learned v
Node-level
op ALAP embeddings

Node-level
embeddings

Figure 4: Model Architecture.

Details of our loss function will be introduced in Section[d] Figure [3]shows the framework of our
NeuroSchedule algorithm. The ILP-based scheduling algorithm is adopted to generate the training
labels for our GNN model. The output of the GNN model, i.e. P, is used by the list scheduling
algorithm as the priority function, which obtains significantly enhanced scheduling solution.

4 Model Design

A machine learning framework is proposed to learn the priority function in the list scheduling
algorithm. In the proposed framework, the CDFG is taken as input, and a GNN model is trained to
predict the priorities of the operations. This section gives the model input, the model architecture,
and the selection of loss function.

4.1 Model Input

The input of a GNN model includes an adjacency matrix representing graph connections and a tensor
representing node features. Different node features will be selected for different problems. In the
scheduling problem, the node features consist of operation type, number of cycles of the operation,
along with the above-defined ASAP and ALAP.

Operation’s type and number of cycles. As the operation type is categorical and discrete, inspired
by the graph-based program representation [18]], the operation type is encoded by one-hot encoding.
For the number of cycles of an operation, the cycle number is directly used in the encoding. For
example, if there are two types of operations (MUL, ADD) and the cycle number of MUL operation
is 1, the node feature of MUL operation could be represented as [1, 0, 1]. Here, “10" from the first
“1" and second “0" in the feature denotes MUL.

Operation’s ASAP and ALAP. Except for operation’s type and number of cycles, ASAP and ALAP
are also adopted in the node features. As introduced in Section[3] ASAP and ALAP represent the
earliest step and the latest step that an operation could be scheduled, respectively. The ASAP and
ALAP of an operation indicate the operation’s flexibility during scheduling. For example, the ASAP
of node ADD2 in Figure [3]is step 0 and the ALAP is step 1, which means node ADD2 could be
scheduled between step 0 and step 1. Different from node ADD2, the ASAP and ALAP of node
ADD3 in Figure[5]are both step 1, which means node ADD3 could only be scheduled to step 1. The
reason why ASAP and ALAP are adopted in the node features is that the flexibility of an operation
affects its priority during scheduling. Operations with low flexibility during scheduling tend to be the
bottlenecks [13]], which should be scheduled with high priority to fully utilize the hardware resources.

Finally, the operation’s type, operation’s number of cycles, along with normalized ASAP and ALAP,
are concatenated as a tensor representing node features. For example, there are two operations in

Figure 5: An example for ASAP, ALAP, and multi-cycle operations. (a) The CDFG. (b) The result of
ASAP. (c) The result of ALAP. (d) A special scheduling example with multi-cycle operations.

5

Figure 5] MUL and ADD, and the number of cycles of operations MUL and ADD are both 1. So
node ADD3 could be encoded as [0, 1, 1, 0.5, 0.5]. It is noteworthy that the ASAP and ALAP of
an operation are normalized according to the maximum ASAP value among all the operations. The
normalization is conducted because the number of operations in the CDFG varies such that using the
absolute ASAP and ALAP values will bring noises.

4.2 Model Architecture

Figure [] presents the architecture of the proposed model. As shown in the figure, the proposed
model is composed of a GNN model and a feed-forward network (FFN) model. The GNN model is
adopted to learn the embedding of each operation from the operation features and graph structure,
while the FFN model is utilized to conduct regression tasks for predicting operations’ priorities. The
workflow of the model is presented as follows. First, operation features including the operation’s type,
operation’s number of cycles, along with normalized ASAP and ALAP are concatenated into a feature
tensor as introduced in Section [f.I] Next, a GNN model is adopted to learn operation embedding
from the feature tensor and graph structure. Graph Isomorphism Network (GIN) is used as the GNN
model for its strong power of learning embeddings from graph structures [[14]. Finally, the learned
operation embedding is fed into the FFN model for predicting the operations’ priorities. In the FFN
model, there are three fully-connected layers, and ReL.U is adopted as the activation function [19].

4.3 Training Settings

As depicted in Figure [d] the proposed model outputs the operations’ priorities by regression. To
effectively train the proposed model, a dedicated training pipeline is proposed. The proposed training
pipeline mainly focuses on two questions: 1. How to acquire the regression labels; 2. How to select
the training objective function (a.k.a loss function).

Training label. As formulated in Section |3] training the priority prediction task requires a collection
of data D = {g;, pi, ¢;}, where g; denotes CDFG’s graph structure, p; denotes operation properties
(such as ASAP and ALAP), and c; denotes the training label. In the proposed training pipeline,
the ILP-based method is used to generate the regression labels [10]. The details are presented as
follows. The ILP-based method gives the optimal solution, which arranges CDFG’s operations into
suitable time steps. Obviously, operations arranged in later time steps have lower priorities than those
arranged in earlier time steps. Therefore, in the proposed training pipeline, the time step obtained
by the ILP-based method (i.e. t7; in Section@) is taken as the regression label ¢;. As mentioned in
Section[4.T} the time step of an operation is also normalized based on the maximum time step, which
reduces the impact of noises. Figure 2] gives an example. In the manually designed priority function,
the time step could be solved by the ILP-based method. As shown in the figure, the ILP-solved time
steps [0, 0, 1,2, 2, 3] are assigned to corresponding operations. After normalization, the ILP-solved
time steps are computed as [0, 0, 0.33,0.66, 0.66, 1].

Training objective function. The mean square error (MSE) function is commonly adopted for
training a regression task. Given dataset D = {g;, p;, ¢; }, the output of our GNN model has the form
P(i) = P(gi,pi). The MSE function }_,(P (i) — ¢;)* guides the model to accurately predict the
operations’ priorities. However, the scheduling task cares more about the operations’ relative order
rather than the absolute priority values of the operations. Moreover, it takes more effort for training a
model to predict the absolute value than to predict the rank. Therefore, inspired by AutoTVM [20], the
following rank loss function is adopted to train the model for predicting the rank of all operations [21]]:

L= Z log(1 4 e~ sign(ei—¢)(P()=P())) 5)
i.J
During training, the above rank loss function keeps the relative order of operations’ priorities with
reduced training efforts.

5 NeuroSchedule

5.1 Pre-training for Different Scheduling Settings

As introduced in Sectiond.1] the input of our model consists of the operation’s type and operation’s
number of cycles, along with normalized ASAP and ALAP. It works well when the numbers of

Algorithm 1 NeuroSchedule algorithm.

Input: Trained network model P, CDFG G = (V, E), functional unit set U, delay array d
Output: Generated schedule Sp

1 Ve, VR ¢, Vu < V,Sp + ¢, Time + 0

2: D <« encodeData(G)

3: F < runModel(P, D)

4: for v; in V do

5 if v;.inDegree() = 0 then

6: VR<—VRUU7;,Vu<—VU\’U¢
7. while |[Vp| < [V] do
8.
9

for u; in U do
M < MAX_FLOAT, Vchosen < ¢

10: for v; in Vi do

11: if 7(v;) < M and v;.canU se(u;) then

12: M +]:('Ui), Vchosen < Uj

13: if Vehosen = @ Or uj.unavailable(Time) then
14: continue

15: Sp.insert(Vehosen, Uj, Time)

16: uj.setUnavailable(Time, Time + dy; — 1)
17: VR <~ VR \ Uchosen VF <~ VF U Vchosen

18: for v; in Vg do

19: if (Vchosen, Vi) € F then

20: E+—FE \ (Uchosen7 U'L')

21: if v; € Vi and v;.inDegree() = 0 then
22: VR<—VRUU1',VU{—VU\’U1'

23: Time < Time + 1

functional units are fixed. However, there are various scheduling settings in real HLS cases including:
(1) different operation types, (2) different number of functional units for each type, and (3) different
number of cycles for different operation types. Figure[5[d) gives a scheduling example with 2 adders,
1 multiplexer, and multi-cycle operations, i.e., the MUL operation takes 2 cycles. Therefore, for
scheduling problems with different settings, specified GNN models are required to get valid solutions.
However, it is infeasible to train a GNN model for each scheduling setting due to the unbearable
training efforts. Therefore, we build a dataset of CDFGs with different scheduling settings, and
pre-train our model with the dataset. To specify the scheduling setting, we add the number of the
corresponding functional units into the node features of each operation. While dealing with a specific
scheduling setting, we fine-tune the model using the randomly generated data from the setting.
Compared with direct training, the fine-tuning takes fewer efforts with enhanced scheduling solutions.

5.2 NeuroSchedule Algorithm

Algorithm [T] gives an overview of the proposed NeuroSchedule algorithm, which is based on the
traditional list scheduling algorithm and our neural network models. The symbols in Algorithm T]
are defined in Section |3} We use trained network model P as priority function F (line 3), and run
the loop until each node in the CDFG is successfully scheduled (line 7). In each cycle, we try to
schedule every available functional unit using the node v¢posen, With the highest priority. After the
node vcposen 18 selected from the ready set Vg, we update the schedule Sp, and the sets Vi and Vg
(line 16). Then we delete all the out edges (v;, Vehosen) Of Uehosen (line 20). If the in-degree of v;
equals 0, we add v; into the ready set V. Finally, the scheduling solution is obtained in Sp.

6 Experiments

The proposed GNN-based scheduler is implemented in Python (version 3.9.12), and the GNN model
is designed and trained with Pytorch [22] (version 1.8.0) and pyG [23]] (version 2.0.4). To train
the GNN model, we build a dataset including 50,000 CDFGs. The operations in the CDFGs are
annotated with the priorities solved by the ILP-based method (as introduced in Section [4.3)). For
efficiency, Gurobi [24] is adopted as the ILP solver. Details of dataset preparation are presented
in supplementary materials. We conduct all the experiments on a Ubuntu 20.04 LTS Linux Server
with a CPU (Intel(R) Xeon(R) Gold 5218 CPU@2.30GHz) and a GPU (NVIDIA Tesla V100). The
experiments are conducted to answer the following questions:

Table 1: Results of NeuroSchedule.

Testcase [CDFG size | NeuroSchedule | Entropy-directed | ILP-based [Result
Dataset Name Basic Block [Node [Edge [Cycle [Time [Cycle [Time [Cycle [Time [51 Imp.2
CHStone adpcm main 78 174 52 0.019 54 0.004 52 2.842 0.00% | 3.70%
CHStone aes ARK_InvCol 79 192 77 0.013 77 0.005 77 2.430 0.00% | 0.00%
CHStone | blowfish | BF_set_key 147 456 80 0.107 81 0.010 80 14.67 0.00% | 1.23%
CHStone dfadd R&PFloat64 92 238 49 0.013 50 0.005 48 3.570 2.04% | 2.00%
CHStone dfdiv float64_div 433 1252 | 235 0.060 256 0.027 N/A >107 / 8.20%
CHStone dfmul float64_mul 339 914 192 0.115 207 0.019 N/A >107 / 7.25%
CHStone dfsin float64_div 392 1187 203 0.063 224 0.026 N/A >107 / 9.38%
CHStone gsm main 68 148 41 0.029 41 0.003 40 2.121 2.44% | 0.00%
CHStone jpeg write4Blocks | 213 692 127 0.022 132 0.014 N/A >107 / 3.79%
CHStone mips main 364 | 1433 200 0.038 200 0.025 200 2207 0.00% | 0.00%
CHStone | motion mt_Vectors 25 59 14 0.010 16 0.003 14 0.509 0.00% | 12.5%
CHStone sha final 79 202 49 0.012 55 0.004 49 4.141 0.00% | 10.9%
MiBench | cosinel cosinel 66 76 43 0.025 44 0.006 43 41.95 0.00% | 2.27%
MiBench | cosine2 cosine2 82 91 57 0.100 58 0.003 57 11.07 0.00% | 1.72%
MiBench firl firl 44 43 34 0.098 34 0.002 34 1.244 0.00% | 0.00%
MiBench fir2 fir2 40 39 31 0.028 32 0.002 31 1.478 0.00% | 3.13%
MiBench | idctcol dfg_3 114 164 69 0.103 69 0.004 69 16.22 0.00% | 0.00%
MiBench write bmp_7 88 202 68 0.097 69 0.004 68 5.759 0.00% | 1.45%
Total 2761 [7448 [1621 [0952 | 1699 [0.167 [/ [>5x10"
Optimal Rate | 88.89% | 16.67% | N/A
Average Improvement 0.30% [6.10%°

! § = (NeuroSchedule - ILP) / ILP.
2 Improvement = (EDS - NeuroSchedule) / EDS.
3 Average Improvement = (¥ Cycle_NeuroSchedule - ¥ Cycle_ILP) / 3 Cycle_ILP. The optimal solutions (Imp. = 0.00%) are not counted in.
Q1: Could NeuroSchedule obtain better solutions than the entropy-directed algorithm?
Q2: Could NeuroSchedule obtain optimal solutions with respect to the ILP-based method?
Q3: How fast is the proposed algorithm compared against the ILP-based method?
Q4: How do the pre-training methods work in enhancing the algorithm’s scalability?
Q5: What are the differences between different loss functions?

6.1 Quality of Solutions

To answer Q1, we evaluate the performance of NeuroSchedule against state-of-the-art entropy-
directed scheduling algorithm [13]] and ILP-based method [10] using the benchmarks from CH-
Stone [25]] and MiBench [26]. The experimental results are presented in Tablem As shown in the
table, NeuroSchedule improves the scheduling results by 6.10% on average compared with EDS.
Moreover, compared with the ILP-based method, NeuroSchedule obtains optimal solutions in 88.89%
of the benchmarks and near-optimal solutions in the rest, while EDS can only obtain 16.67% optimal
solutions in all benchmarks.

To answer Q2, we synthesize a benchmark suite including large CDFGs with complex dependencies
among the operations. The entangled dependencies make it hard for scheduling algorithms to find
an optimal solution. We evaluate NeruoSchedule, entropy-directed algorithm [13]] and ILP-based
algorithm [10] on the synthesized complex benchmark suite. The results are presented in Figure [6]
Figure[6] gives the heatmaps for comparing the scheduling results among NeuroSchedule, entropy-
directed algorithm, and ILP-based algorithm. As shown in Figure [6{a), NeuroSchedule obtains
optimal solutions on 90% of the synthesized complex benchmarks. While in Figure[6{b), the entropy-
directed algorithm fails to obtain optimal solutions on all of the benchmarks due to the complex
operation dependencies. Moreover, as shown in Figure @c), NeuroSchedule obtains better solutions
on 94% of the synthesized complex benchmarks compared with the entropy-directed algorithm.

6.2 Execution Time

To answer Q3, we evaluate the runtime of NeuroSchedule against state-of-the-art entropy-directed
scheduling algorithm and ILP-based method [10] using benchmarks from CHStone [25] and
MiBench [26]. The results are presented in Table|ll As shown in the table, NeuroSchedule achieves
more than 50,000 speedup compared with the ILP-based method, while obtaining near-optimal
solutions. Moreover, the ILP-based method fails to solve certain benchmarks within 10,000 seconds
due to the exponential runtime overhead. Besides, since NeuroSchedule needs to launch CUDA
kernels to compute operation priorities, it runs a little slower than the entropy-directed algorithm.

(a)
Figure 6: Evaluations on synthesized complex benchmark suite. The values in the heatmaps represent
the relative scheduling results between different algorithms. (a) NeuroSchedule relative to ILP-based
algorithm. (b) Entropy-directed algorithm relative to ILP-based algorithm. (c) Entropy-directed
algorithm relative to NeuroSchedule.

0.90
0.85
0.85
2 20.80
e ®0.75
E‘”S 507
- 0.70 -~ 0.65
b +
So.65 —— from-scratch S0.60 —— MSE Loss
0.60 — fine-tune 0.55 —— Rank Loss
0.50
3 5 10 15 20 25 0 5 10 15 20 25
Epoch Epoch

(a) (b)
Figure 7: Optimal rate curve during training. Optimal rate indicates the number of benchmarks in

the synthesized suite with optimal solutions obtained by NeuroSchedule. (a) Fine-tuning method
compared against training from scratch. (b) Training with rank loss function compared against
training with MSE loss function.

Nevertheless, NeuroSchedule is still fast and the difference in runtime between NeuroSchedule and
entropy-directed algorithm could be ignored.

6.3 Pre-training and Fine-tuning

To answer Q4, we synthesize a small dataset that consists of 1000 CDFGs. Details of the small dataset
are presented in supplementary materials. Based on the synthesized small dataset, NeuroSchedule
is trained in two different ways: from scratch and fined-tuned from the pre-training model. The
synthesized benchmark suite in Section[6.1]is adopted to evaluate the two models trained in different
ways. Besides, the optimal rate is selected as the metric, which indicates the number of benchmarks
in the synthesized suite with optimal solutions obtained by NeuroSchedule. Figure [7] depicts the
optimal rate curve during training. As shown in the figure, NeuroSchedule fine-tuned from the
pre-training model achieves 3% improvement in the optimal rate compared with that trained from
scratch. Moreover, NeuroSchedule fine-tuned from the pre-training model achieves a better optimal
rate while costing reduced training efforts compared with that trained from scratch.

6.4 Training Settings

To answer QS, NeuroSchedule is trained with MSE loss and Rank loss [21] on the synthesized
small dataset described in Section[6.3} The synthesized benchmark suite in Section[6.1]is adopted to
evaluate the two models trained with different loss functions. Besides, the optimal rate is selected
as the metric. Figure [7] depicts the optimal curves during training. As shown in the figure, rank
loss behaves slightly better than MSE loss, which indicates that training a model for predicting the
absolute value requires more effort than training a model for predicting the rank. Therefore, the rank
loss is chosen as the default training objective function.

7 Conclusion

This paper presents NeuroSchedule, a novel and effective GNN-based scheduling method for HLS.
NeuroSchedule learns to predict operation priorities using GNN models. The predicted priorities
are adopted in list scheduling process. Besides, to enhance NeuroSchedule’s scalability for various
scheduling problems with different settings, pre-training methods are adopted. Experimental results

indicate that NeuroSchedule achieves significantly enhanced solutions compared with the state-of-
the-art method. Moreover, NeuroSchedule obtains near-optimal solutions while achieving more than
50,000 speedup compared with the ILP-based algorithm. Future work includes elaborations on the
training details for better tuning, supporting operation chaining, and testing of NeuroSchedule on
larger and more complicated benchmarks.

Acknowledgments and Disclosure of Funding

This work was supported in part by the Key R&D Program of China (No.2019YFB2205002), the
Key Program of NSFC (No. 62034005), the NSFC (No. 61974084), and Beijing Municipal Science
& Technology Commission (No. Z191100007519015).

References

(1]

(2]

(3]

(4]

(51

(6]

(71

(8]

(9]

Xiaofan Zhang, Hanchen Ye, Junsong Wang, Yonghua Lin, Jinjun Xiong, Wen-Mei Hwu, and
Deming Chen. Dnnexplorer: A framework for modeling and exploring a novel paradigm of
fpga-based DNN accelerator. In IEEE/ACM International Conference On Computer Aided
Design, ICCAD 2020, San Diego, CA, USA, November 2-5, 2020, pages 61:1-61:9. IEEE, 2020.

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie, Hong
Luo, Song Yao, Yu Wang, Huazhong Yang, and William (Bill) J. Dally. ESE: efficient speech
recognition engine with sparse LSTM on FPGA. In Jonathan W. Greene and Jason Helge
Anderson, editors, Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2017, Monterey, CA, USA, February 22-24, 2017, pages
75-84. ACM, 2017.

Xiaofan Zhang, Anand Ramachandran, Chuanhao Zhuge, Di He, Wei Zuo, Zuofu Cheng, Kyle
Rupnow, and Deming Chen. Machine learning on fpgas to face the iot revolution. In Sri

Parameswaran, editor, 2017 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2017, Irvine, CA, USA, November 13-16, 2017, pages 819-826. IEEE, 2017.

Suhaib A. Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized FPGA accelerators
for efficient cloud computing. In 7th IEEE International Conference on Cloud Computing
Technology and Science, CloudCom 2015, Vancouver, BC, Canada, November 30 - December 3,
2015, pages 430-435. IEEE Computer Society, 2015.

Shaojie Xiang, Yi-Hsiang Lai, Yuan Zhou, Hongzheng Chen, Niansong Zhang, Debjit Pal, and
Zhiru Zhang. Heteroflow: An accelerator programming model with decoupled data placement
for software-defined fpgas. In Michael Adler and Paolo Ienne, editors, FPGA ’22: The 2022
eCM/SIGDA International Symposium on Field-Programmable Gate Arrays, Virtual Event,
USA, 27 February 2022 - 1 March 2022, pages 78-88. ACM, 2022.

Jennifer Pearl Smith, John I. Bailey III, John Tuthill, Leandro Stefanazzi, Gustavo Cancelo,
Ken Treptow, and Benjamin A. Mazin. A high-throughput oversampled polyphase filter bank
using vivado HLS and PYNQ on a rfsoc. IEEE Open J. Circuits Syst., 2:241-252, 2021.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason Helge
Anderson, Stephen Dean Brown, and Tomasz S. Czajkowski. Legup: high-level synthesis for
fpga-based processor/accelerator systems. In John Wawrzynek and Katherine Compton, editors,
Proceedings of the ACM/SIGDA 19th International Symposium on Field Programmable Gate
Arrays, FPGA 2011, Monterey, California, USA, February 27, March 1, 2011, pages 33-36.
ACM, 2011.

Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito,
Marco Lattuada, Marco Minutoli, Christian Pilato, and Antonino Tumeo. Invited: Bambu: an
open-source research framework for the high-level synthesis of complex applications. In 58th
ACM/IEEE Design Automation Conference, DAC 2021, San Francisco, CA, USA, December
5-9, 2021, pages 1327-1330. IEEE, 2021.

Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46:259-271, 1990.

10

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Cheng-Tsung Hwang, Jiahn-Humg Lee, and Yu-Chin Hsu. A formal approach to the schedul-
ing problem in high level synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
10(4):464-475, 1991.

Alice C. Parker, Jorge T. Pizarro, and Mitch J. Mlinar. MAHA: a program for datapath synthesis.
In Don Thomas, editor, Proceedings of the 23rd ACM/IEEE Design Automation Conference.
Las Vegas, NV, USA, June, 1986, pages 461-466. IEEE Computer Society Press, 1986.

Pierre G. Paulin and John P. Knight. Force-directed scheduling for the behavioral synthesis of
asics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 8(6):661-679, 1989.

Minghua Shen, Hongzheng Chen, and Nong Xiao. Entropy-directed scheduling for FPGA
high-level synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 39(10):2588-2601,
2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Zeyang Zhang, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning to solve travelling salesman
problem with hardness-adaptive curriculum. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intel-
ligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 9136-9144. AAAI Press, 2022.

Chris Cummins, Zacharias V. Fisches, Tal Ben-Nun, Torsten Hoefler, Michael F. P. O’Boyle,
and Hugh Leather. Programl: A graph-based program representation for data flow analysis and
compiler optimizations. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 2244-2253. PMLR, 2021.

Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR, abs/1803.08375,
2018.

Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos
Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 3393-3404, 2018.

Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Gregory N. Hullender. Learning to rank using gradient descent. In Luc De Raedt and Stefan
Wrobel, editors, Machine Learning, Proceedings of the Twenty-Second International Conference
(ICML 2005), Bonn, Germany, August 7-11, 2005, volume 119 of ACM International Conference
Proceeding Series, pages 89-96. ACM, 2005.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing

11

Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024-8035,
2019.

[23] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
CoRR, abs/1903.02428, 2019.

[24] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[25] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii. Chstone: A
benchmark program suite for practical c-based high-level synthesis. In International Symposium
on Circuits and Systems (ISCAS 2008), 18-21 May 2008, Sheraton Seattle Hotel, Seattle,
Washington, USA, pages 1192-1195. IEEE, 2008.

[26] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and
Richard B Brown. Mibench: A free, commercially representative embedded benchmark suite.
In Proceedings of the fourth annual IEEE international workshop on workload characterization.
WWC-4 (Cat. No. 01EX538), pages 3—14. IEEE, 2001.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section[6and Section
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [IN/A |

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? Our Neu-
roSchedule will be open-sourced once the paper is accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 4] and the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [IN/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
We put the large CDFG dataset into our supplementary materials.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] The benchmarks used in our paper are open-sourced, and we cite
them in our paper.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Motivation
	Preliminaries and Problem Formulation
	Model Design
	Model Input
	Model Architecture
	Training Settings

	NeuroSchedule
	Pre-training for Different Scheduling Settings
	NeuroSchedule Algorithm

	Experiments
	Quality of Solutions
	Execution Time
	Pre-training and Fine-tuning
	Training Settings

	Conclusion

