

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VP-MONOMF: VISUAL PROMPT GUIDED MONOCULAR 3D OBJECT DETECTION WITH MULTISCALE FUSION

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

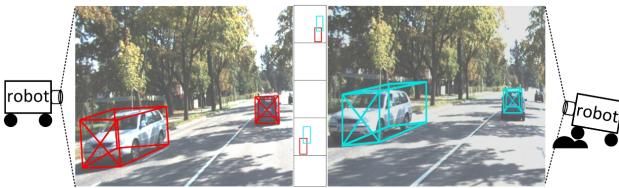
013 Depth estimation from a single image remains a challenging task in monocular 3D
014 object detection. Existing methods improve the detection accuracy by leveraging
015 more precise 2D and 3D information. However, they simultaneously train 2D and
016 3D detection branches, which inevitably affect each other. Meanwhile, they often
017 overlook the adverse effects caused by variations in camera pose. Furthermore,
018 although they achieve satisfactory detection accuracy on large objects, their ac-
019 curacy on small objects remains limited due to limited pixel areas. To address
020 these issues, we propose a Visual Prompt Guided Monocular 3D Object Detection
021 Method with Multiscale Fusion (VP-MonoMF). Specifically, we first develop a
022 Multi-Depth Fusion (MDF) module as the 3D detection branch, which integrates
023 multi-scale information from both global depth maps and local 3D depth infor-
024 mation. Then, we train MDF in the first stage and the 2D Detector in the second
025 stage to mitigate mutual interference. To minimize the impact of the camera pose
026 variance, MDF utilizes a 3D Depth Reconstruction (3DR) module to correct depth
027 map deviations. Furthermore, we introduce a Visual Prompt Fusion (VPF) module
028 to enhance small object features by adaptively adjusting weights based on object
029 size. We conduct experiments on the KITTI dataset. VP-MonoMF achieves state-
030 of-the-art performance in monocular 3D object detection task. The code will be
031 made available upon acceptance of the paper.

032 1 INTRODUCTION

033 3D object detection identifies and locates objects in a three-dimensional space using computer vision
034 techniques. It can pinpoint the spatial coordinates and orientations of objects using their depth
035 information in the real world. With the development of advanced technologies such as machine
036 learning and LiDAR, 3D object detection has become fundamental for machines to understand the
037 physical environment. For example, it has been widely used in autonomous driving (Mao et al.,
038 2022; Ma et al., 2022) and robot navigation (Chaturvedi et al., 2024; Wijesekara, 2022).

039 Monocular 3D object detection has attracted widespread attention due to its lower cost and simple
040 configuration compared to other 3D object detection methods (Zhang et al., 2024). It estimates the
041 3D information from a single 2D image based on 2D and 3D detection branches. Recent monocular
042 3D object detection methods can be divided into two groups: image based and image with
043 extra information based. Image based methods (Yan et al., 2024a; Zhu et al., 2023) only utilize a
044 single RGB image captured by the monocular camera for depth estimation. For image with extra
045 information based methods (Huang et al., 2024), they further utilize prior knowledge or auxiliary
046 information to improve the detection accuracy. Although these methods reduce the complexity, it is
047 still challenging to guarantee the performance.

048 First, the 2D and 3D detection branches share the same backbone for image feature extraction and
049 they are trained simultaneously. Unfortunately, the 2D and 3D detection branches inevitably af-
050 fect each other, which introduces non-negligible noise for 3D detection branches (Liu et al., 2020).
051 Second, current monocular 3D object detection methods only consider the scenarios with a fixed
052 camera. However, the camera position may change due to the surrounding environment. As shown
053 in Figure 1, the camera is unstable because of vibration. Thus, it leads to deviations in depth map



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
Figure 1: Impact of the environment on the camera pose. As shown in the left image, the camera maintains a fixed position on a robot car when the surrounding environment does not change. The right figure shows that the camera position changes due to the vibrations caused by the environment.

estimation. Third, images captured by monocular cameras usually include small objects that occupy limited areas. Thus, it is difficult to estimate the depth due to insufficient features.

Facing these challenges, we propose a Visual Prompt Guided Monocular 3D Object Detection Method with Multiscale Fusion (VP-MonoMF). It consists of three modules: Multi-Depth Fusion (MDF), 3D Depth Reconstruction (3DR), and Visual Prompt Fusion (VPF). In the first stage, the MDF module first estimates the depth map and the dimensions of objects. Then the dimensions and the 2D height from ground truth (GT) are used to estimate the 3D depth information. Meanwhile, the 3DR module reconstructs the depth map based on the camera pose estimation. Finally, we fuse the reconstructed depth map with the 3D depth information to obtain the accurate depth. In the second stage, we freeze the MDF module and train the 2D Detector using the enhanced features from VPF. Then we combine the outputs of the MDF and 2D Detector to get 3D detection results.

Specifically, for the first challenge, we build an MDF module based on the depth and dimension detectors. The detectors generate a global depth map and local 3D depth information of objects, which are further refined and fused to build an accurate depth. Then we train the MDF module and the 2D detector in different stages to avoid the influence. For the second challenge, we design a 3DR module based on the camera pose variance for the 3D detection branch. First, the camera transformation matrix that reflects the camera pose variance is obtained by the estimated vanishing point and horizon information of images. Then, we use it to correct the depth map. For the third challenge, we train the 2D Detector in the second stage and design a VPF module for the 2D detector to optimize the detection performance of the object’s 2D properties. We first convolve the features to get the attention map. Meanwhile, we generate a visual prompt to adaptively adjust the attention map according to the size of objects from GT. Finally, we use the adjusted attention map to enhance the object features for different image areas. Thus, the 2D detector can better extract the features of objects.

The contributions of this paper are summarized as follows:

- We propose a 3D detection module MDF to fuse the global depth map and the local 3D depth information of each object. This module is trained in separate stages from the 2D detector.
- We propose a 3DR module considering the camera position and orientation. It utilizes the camera transformation matrix to correct the depth map and effectively reduces the deviation in the depth map.
- We propose a VPF module based on the visual prompt. The visual prompt adjusts the attention map dynamically. To the best of our knowledge, this is the first work that explores GT-based visual prompt for the task of monocular 3D object detection.
- Experiments demonstrate that our method achieves state-of-the-art performance on the KITTI 3D detection benchmark without using additional data.

2 RELATED WORK

2.1 IMAGE BASED METHODS

Image based methods (Lin et al., 2024; Zhang et al., 2025) estimate 3D and 2D information of objects from RGB images instead of external data or pre-trained models. The estimated 2D and 3D

108 information are combined to obtain the 3D bounding boxes. For example, MonoPGC (Wu et al.,
 109 2023) introduced pixel depth estimation as the auxiliary task and designed a depth cross-attention
 110 pyramid module to inject local and global depth geometry knowledge into visual features. By in-
 111 corporating depth information into the masking process, MonoMAE (Jiang et al., 2024a) enhanced
 112 feature representation, enabling the model to better capture spatial relationships and object geo-
 113 metry. WeakMono3D (Tao et al., 2023) incorporated projection and multi-view consistencies to guide
 114 the prediction of 3D bounding boxes by two consistency losses. They also proposed a 2D direction
 115 label to replace the 3D rotation label marked on the point cloud data. Although these methods im-
 116 prove the accuracy and robustness of monocular 3D object detection, they still have limitations in
 117 complex scenarios and detecting incomplete objects.

118 2.2 IMAGE WITH EXTRA INFORMATION BASED METHODS

120 Image with extra information based methods (Li et al., 2024b; Choi et al., 2024) utilize extra infor-
 121 mation to help the model better understand the 3D information of objects, which includes pre-trained
 122 models, annotated keypoints, and Computer-Aided Design (CAD) models.

123 The pre-trained models estimate the extra information for 3D object detection. For example,
 124 MonoNeRD (Xu et al., 2023) used a Neural Radiance Fields model to enable accurate 3D per-
 125 ception and employ volume rendering to recover RGB images and depth maps. YOLOBU (Xiong
 126 et al., 2024) used a Deformable DETR model with cross-attention mechanism to build the connec-
 127 tions of pixels for detection. Although pre-trained models can obtain more accurate information to
 128 help improve the detection performance, they are highly complex.

129 The annotated keypoints guide and supervise the model estimation results. For example,
 130 LPCG (Peng et al., 2022) generated pseudo labels from unlabeled LiDAR point clouds which can
 131 be applied for any monocular 3D detector to use massive unlabeled data. OVM3D (Huang et al.,
 132 2024) automatically combined images with 3D object labels to utilize internet-scale data. However,
 133 they require more annotations for training and are usually less generalized.

134 CAD models provide accurate 3D shape information for the network. MonoGRK (Barabananu et al.,
 135 2019) combined region-based detectors and a geometric reasoning step over keypoints using real-
 136 world images and CAD models. AutoShape (Liu et al., 2021) automatically fitted the 3D shape
 137 to the visual observations and then generated GT annotations of 2D/3D keypoint pairs for the net-
 138 work. Although CAD models help improve inspection performance, they have slow inference speeds.

140 3 METHOD

141 3.1 OVERVIEW

143 Figure 2 shows the architecture of VP-MonoMF, a visual prompt Guided monocular 3D object
 144 detection method with multiscale fusion. In the first stage, we focus on extracting depth information
 145 from the monocular image I_{in} and training the MDF module. I_{in} is input into the backbone network
 146 Deep Layer Aggregation (DLA) (Yu et al., 2017) to obtain the feature $F \in R^{W \times H \times C}$, where W
 147 and H are the width and height of the feature, and C is the number of channels. The 2D height from
 148 GT is denoted as $height^*$. Then $height^*$ and F are input into MDF to obtain the fused depth Z_{com}
 149 and the dimension dim of objects.

150 In the second stage, we also use DLA to get the feature F . Then we use the VPF module to enhance
 151 object features. It helps the 2D detector to estimate the 2D properties. Specifically, VPF dynamically
 152 generates a visual prompt to enhance the feature F , and the enhanced feature $F_{vp} \in R^{W \times H \times C}$ is
 153 input to the 2D Detector. The 2D Detector generates 2D properties $offset$, $center$, $orientation$ and
 154 $height$ and we input $height$ to the MDF module for Z_{com} . Then, we combine the outputs of the 2D
 155 Detector and the MDF module to generate the object’s 3D bounding box. We freeze the DLA and
 156 MDF modules, and train only VPF and the 2D Detector in this stage. Note that only the second
 157 stage is used for testing.

158 3.2 MDF

160 We design a multiscale depth fusion module MDF. This module fuses the global depth map Z_{glo} and
 161 local depth Z_{loc} for a comprehensive depth Z_{com} utilizing a two-branch architecture. It increases
 the accuracy of the estimated depth to detect objects.

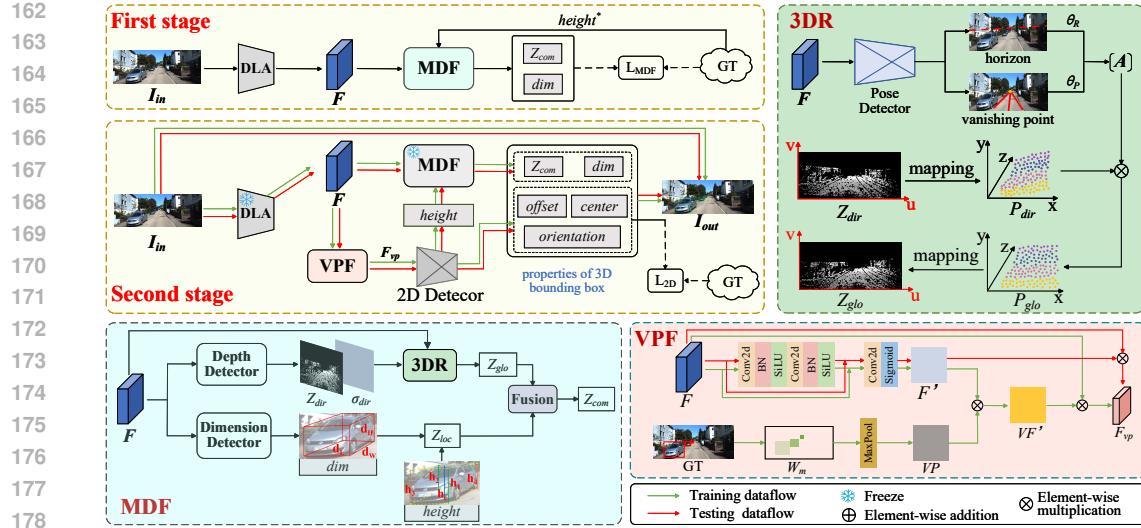


Figure 2: The framework of VP-MonoMF. Our method consists of two stages. The training and testing processes of the second stage are represented by green and red arrows, respectively. In the first stage, we train the MDF module and backbone DLA to get accurate depth. The 3DR module in MDF reconstructs the depth map. In the second stage, we train the 2D Detector and VPF to avoid mutual influence. The enhanced features generated by VPF are fed into the 2D Detector. The detection result I_{out} is obtained by combining the outputs of the 2D Detector and MDF module.

In the first branch, we get Z_{glo} from the 3DR module. Specifically, we input F into the Depth Detector to obtain an estimated depth map $Z_{dir} \in R^{W' \times H'}$ and the corresponding reliability score $\sigma_{dir} \in R^{W' \times H'}$, where W' and H' are the width and height of the Z_{dir} and σ_{dir} . σ_{dir} reflects the confidence of the estimated depth. Then we input Z_{dir} and F into the 3DR module to get Z_{glo} . Note that we also have the reliability score σ_{glo} for Z_{glo} and it is set equal to σ_{dir} . We introduce the 3DR module in the following section.

In the second branch, we get Z_{loc} from the 3D property dim and the 2D $height$. dim includes the object's 3D properties: length, width, and height. Specifically, we first input F into the Dimension Detector to obtain $dim = \{(d_L, d_W, d_H)_i | i = 1, 2, \dots, N\}$, where N is the number of objects. Meanwhile, we get 2D $height$ from the 2D detector or GT. It contains the projected height $h_i (i = 1, 2, 3, 4, c)$ of four vertical edges of the bounding box, and h_c is for the center line. Their reliability score is $\sigma_i (i = 1, 2, 3, 4, c)$. We use d_H of the object and its corresponding projected height h_i to calculate the depth of four vertical edges and the center line (Cai et al., 2020):

$$z_i = \frac{f \times d_H}{h_i}, \quad (1)$$

where f is the focal length of the camera. To increase the estimation accuracy of the center line, we calculate two average depths z_{d1} and z_{d2} based on the depths of four vertical edges $z_i (i = 1, 2, 3, 4)$:

$$z_{d1} = \frac{z_1 + z_2}{2}, z_{d2} = \frac{z_3 + z_4}{2}. \quad (2)$$

Similarly, we calculate the reliability scores σ_{d1} and σ_{d2} :

$$\sigma_{d1} = \frac{\sigma_1 + \sigma_2}{2}, \sigma_{d2} = \frac{\sigma_3 + \sigma_4}{2}. \quad (3)$$

Thus, we have $Z_{loc} = \{z_{d1}, z_{d2}, z_c\}$ for the depth of the object center (x', y') .

We also get the depth $z_{x'y'}$ from Z_{glo} of the center (x', y') and the corresponding reliability score $\sigma_{x'y'}$. Then, we allocate different weights for z_{d1}, z_{d2}, z_c , and $z_{x'y'}$ based on their reliability scores to get a more accurate depth Z_{com} . The formula is as follows:

$$Z_{com} = \frac{\sum_{k \in \{d1, d2, c, x'y'\}} z_k \times \sigma_k}{\sum_{k \in \{d1, d2, c, x'y'\}} \sigma_k}, \quad (4)$$

216 where $\sigma_k \in (0, 1]$.
 217

218 3.3 3DR
 219

220 Camera pose variance may lead to the camera's optical axis not being parallel to the ground, which
 221 introduces deviations when estimating the depth map. The 3DR module corrects the deviations using
 222 a camera transformation matrix and reconstructs the depth map based on the camera projection.

223 We first convert Z_{dir} into points P_{dir} in the camera coordinate system:
 224

$$225 \quad x = \frac{(u - c_u)z_{uv}}{f}, y = \frac{(v - c_v)z_{uv}}{f}, \quad (5)$$

226 where (u, v) is the pixel coordinate in Z_{dir} ; z_{uv} is the depth value at (u, v) ; x and y are the coordinates of the camera coordinate system; (c_u, c_v) is the center coordinate of the image. The center coordinate and focal length are intrinsic camera parameters.
 227

228 Meanwhile, we input F into the Pose Detector Zhou et al. (2022) to obtain the horizon and vanishing
 229 point. The horizon is a straight line where the ground and sky meet in the image. It is represented by
 230 the linear equation $y = ax + b$. The vanishing point is the point where the parallel road boundaries
 231 converge. Its coordinate is (x_{vp}, y_{vp}) . Then, we get the roll angle θ_R and pitch angle θ_P of the
 232 camera from the horizon and vanishing point:
 233

$$236 \quad \theta_R = \arctan(a), \theta_P = \arctan\left(\frac{x_{vp} - c_u}{f}\right). \quad (6)$$

237 Then we get the transformation matrix A based on θ_R and θ_P :
 238

$$239 \quad A_R = \begin{bmatrix} \cos \theta_R & -\sin \theta_R & 0 \\ \sin \theta_R & \cos \theta_R & 0 \\ 0 & 0 & 1 \end{bmatrix}, A_P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_P & -\sin \theta_P \\ 0 & \sin \theta_P & \cos \theta_P \end{bmatrix}, \quad (7)$$

$$242 \quad A = A_R A_P. \quad (8)$$

243 After we get A and P_{dir} , we use A to convert P_{dir} to P_{glo} . The formula is as follows:
 244

$$245 \quad (\bar{x}, \bar{y}, \bar{z}_{u'v'}) = (x, y, z_{uv})A, \quad (9)$$

246 where (x, y, z_{uv}) is the coordinate of P_{dir} and $(\bar{x}, \bar{y}, \bar{z}_{u'v'})$ is the coordinate of P_{glo} after correction.
 247

248 Finally, we convert P_{glo} to Z_{glo} using formula (5).
 249

250 3.4 VPF
 251

252 The VPF module enhances object features using the visual prompt. As shown in Figure 2, the visual
 253 prompt is a mask that reflects the distribution of feature attention. Note that the visual prompt is
 254 only used during training to facilitate the training of the 2D Detector.

255 We obtain the attention map $F' \in R^{W \times H}$ through dual Conv-BN-SiLU paths with a skip connection
 256 and a Conv-Sigmoid layer. Meanwhile, we obtain object sizes from the 2D bounding boxes in GT.
 257 Then we employ a learnable sigmoid-based weighting mechanism to assign weights $\omega_i \in (0, 1)$
 258 based on object sizes:
 259

$$260 \quad \omega_i = \frac{1}{1 + e^{(\beta \cdot s_i - b)/T}}, \quad (10)$$

261 where $S_i \in (0, +\infty)$ represents the size of the i -th object. $\beta \in (0, +\infty)$ indicates the sensitivity
 262 to object size, where a larger value emphasizes smaller objects. $b \in (0, +\infty)$ adjusts the weight
 263 baseline and a positive value elevate the weight distribution. $T \in (0, +\infty)$ is initialized to 1.0.
 264 A larger value generates more uniform weight distributions. Note that β , b , and T are learnable
 265 parameters.

266 We create a visual prompt mask $W_m \in R^{\hat{W} \times \hat{H}}$, where \hat{W} and \hat{H} are consistent with the width and
 267 height of the input image I_{in} . We assign $1 + \omega_i$ to each area covered by the 2D bounding box of
 268 the i -th object, and set the area not covered by objects to 1 to preserve its attention values. For areas
 269 with multiple objects, we use the maximum value of ω_i . We obtain a visual prompt $VP \in R^{W \times H}$
 by performing a maximum pooling on W_m to be consistent with the size of F' .

270 Then we multiply F' and VP to obtain the adjusted attention map $VF' \in R^{W \times H}$. Finally, we
 271 multiply VF' with the feature F to obtain the enhanced feature F_{vp} . Note that during testing, we
 272 do not need a visual prompt and there is no GT in the testing dataset. Thus, F_{vp} is obtained by
 273 multiplying F' and F , where F' serves as the attention map.
 274

275 3.5 LOSS FUNCTION

277 The loss function for the first stage is denoted as L_{MDF} . It is defined as follows:

$$278 \quad L_{MDF} = L_{dir} + L_{dim} + L_{pose}. \quad (11)$$

280 L_{dir} represents the L_1 loss of the Depth Detector in the MDF module. It is defined as follows:

$$281 \quad L_{dir} = |Z_{dir} - Z^*| \times \sigma_{dir} + \log\left(\frac{1}{\sigma_{dir}}\right), \quad (12)$$

283 where Z^* represents the depth map of GT.
 284

285 L_{dim} represents the L_1 loss of the Dimension Detector in the MDF module. It is defined as follows:

$$286 \quad L_{dim} = \sum_{k \in \{H, W, L\}} |d_k - d_k^*|, \quad (13)$$

289 where d_k^* represents the 3D height, width, and length properties of objects from GT.
 290

291 L_{pose} represents the loss of the Pose Detector in the 3DR module. It is defined as follows:

$$292 \quad L_{pose} = \|A - A^*\|_F, \quad (14)$$

293 where A^* represents the transformation matrix of GT and $\|\cdot\|_F$ represents the Frobenius norm.
 294

295 The loss function for the second stage is L_{2D} , which constrains the 2D Detector to learn the *offset*,
 296 *center*, *orientation*, and *height* properties. It is defined as follows:
 297

$$298 \quad L_{2D} = L_{cen} + L_{off} + L_{hei} + L_{ori} = \frac{1}{N} \sum_{i=1}^N (|x_i - x_i^*| + |y_i - y_i^*|) \\ 299 \quad + \frac{1}{N} \sum_{i=1}^N (|o_i^x - o_i^{x*}| + |o_i^y - o_i^{y*}|) \\ 300 \quad + \frac{1}{N} \sum_{i=1}^N |h_i - h_i^*| \cdot \sigma_i + \log(\sigma_i) + \frac{1}{N} \sum_{i=1}^N |\theta_i - \theta_i^*|, \\ 301 \quad 302 \quad 303 \quad 304 \quad 305 \quad (15)$$

306 where L_{cen} represents the center loss, L_{off} represents the offset loss, L_{hei} represents the height loss,
 307 and L_{ori} represents the orientation loss; h_i^* is the GT of the 2D *height*, σ_i is the reliability score
 308 generated by the 2D Detector; (x_i^*, y_i^*) , (o_i^{x*}, o_i^{y*}) , and θ_i^* represent the center coordinates, offset
 309 and the orientation angle from GT, respectively.
 310

311 4 EXPERIMENT

312 4.1 EXPERIMENTAL SETUP

313 **Datasets and Metrics.** Our experiments are conducted on the widely used KITTI dataset (Geiger
 314 et al., 2012). The dataset includes 7,481 annotated images, split into a training set (3,712 images)
 315 and a validation set (3,769 images). It also has a separate test set of 7,518 images. Objects are
 316 categorized into three difficulty levels: Easy, Moderate (Mod), and Hard, which are determined
 317 by factors such as the height of bounding boxes, occlusion, and truncation. KITTI also provides
 318 evaluation protocols including Average Precision (AP) for 3D detection and bird’s eye view (BEV)
 319 detection. We evaluate the performance using AP_{3D} and AP_{BEV} for the 3D bounding box and
 320 BEV, respectively. We focus on the car category with *easy*, *mod*, and *hard*. To facilitate comparison
 321 with previous studies, we report detection results with an IoU threshold of 0.7 for the car category.
 322 Note that we also have results on the nuScenes dataset in the supplementary material.
 323

324

325

Table 1: AP_{3D} and AP_{BEV} of different methods on the KITTI test set.

326

327

Methods	Extra data	Test — $AP_{3D}(\%)$			Test — $AP_{BEV}(\%)$		
		Easy	Mod.	Hard	Easy	Mod.	Hard
AutoShape (Liu et al., 2021) <i>ICCV’21</i>	CAD	22.47	14.17	11.36	30.66	20.08	13.10
DCD (Li et al., 2022) <i>ECCV’22</i>		23.81	15.90	13.21	32.55	21.50	18.25
MonoRun (Chen et al., 2021) <i>CVPR’21</i>	LiDAR	19.65	12.30	10.58	27.94	17.34	15.24
MonoDTR (Huang et al., 2022a) <i>CVPR’22</i>		21.99	15.39	12.73	28.59	20.38	17.14
SMOKE (Liu et al., 2020) <i>CVPR’20</i>	None	14.03	9.76	7.84	20.83	14.49	12.75
MonoPair (Chen et al., 2020) <i>CVPR’20</i>		16.28	12.30	10.42	24.12	18.17	15.76
MonoDLE (Ma et al., 2021) <i>CVPR’21</i>		17.23	12.26	10.29	24.79	18.89	16.00
MonoFlex (Zhang et al., 2021) <i>CVPR’21</i>		19.94	13.89	12.07	28.23	19.75	16.89
MonoCon (Liu et al., 2022a) <i>AAAI’22</i>		22.50	16.46	13.95	31.12	22.10	19.00
MonoGround (Qin & Li, 2022) <i>CVPR’22</i>		21.37	14.36	12.62	30.07	20.47	17.74
MPMonoD (Shi et al., 2023) <i>WACV’23</i>		20.08	13.72	11.34	-	-	-
GRAMO (Guan et al., 2024) <i>FC’24</i>		22.34	15.67	13.12	32.44	21.74	18.38
MonoCD (Yan et al., 2024a) <i>CVPR’24</i>		25.53	16.59	14.53	33.41	22.81	19.57
MonoMAE (Jiang et al., 2024a) <i>NeurIPS’24</i>		25.60	<u>18.84</u>	<u>16.78</u>	34.15	24.93	21.76
MonoDGP (Zhang et al., 2025) <i>CVPR’25</i>		26.35	18.72	15.97	35.24	25.23	22.02
VP-MonoMF(Ours)	None	<u>25.81</u>	18.92	16.92	<u>35.15</u>	25.36	22.67

340

Implementation Details. We implement our method based on DLA34 (Yu et al., 2017) following the settings in Yan et al. (2024a). The input image resolution is 1280×384 . The feature map of the backbone is $320 \times 96 \times 64$. The Depth Detector, Dimension Detector, and 2D Detector attached to the backbone consist of one Conv ($3 \times 3 \times 256$)-BN-ReLU and another Conv ($1 \times 1 \times C'$) layer, where C' is the output channel. In the training stage, we use the Adam optimizer with a batch size of 8 for 100 epochs. The initial learning rate is 3×10^{-4} and the decay weight is 1×10^{-5} . We run the experiments on a PC with a single RTX 4090 GPU.

349

350

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

351

352

Table 1 shows the AP_{3D} and AP_{BEV} obtained on the KITTI test dataset. Note that the best results are in **bold** and the second-best are underlined. Compared to all the methods, our method achieves the best performance except for the *easy* objects in AP_{3D} . Specifically, compared with the Mono-MAE method, our method increases the AP_{3D} by 0.21%, 0.08%, and 0.14% for *easy*, *mod*, and *hard*, respectively. The AP_{BEV} also increases by 1%, 0.43%, and 0.91%. In addition, our method achieves 0.2%/0.13%, and 0.95%/0.65% improvement in AP_{3D}/AP_{BEV} than the state-of-the-art MonoDGP method for *mod* and *hard*. The results demonstrate that VP-MonoMF benefits from fusing multiple depths and the visual prompt for 3D detection.

353

354

4.3 ABLATION STUDY

355

356

We verify the effectiveness of each module, the contribution of different depths, and the utility of the two-stage strategy and visual prompt on the KITTI.

357

358

Contribution of each module. Table 2 shows the contribution of each module, where “Baseline” means that we do not use MDF, 3DR, and VPF modules. “MDF-” means that the 3DR module is not included. The third line indicates that the MDF module achieves 4.92%/5.27%, 4.83%/4.56%, and 3.99%/5.11% improvement in AP_{3D}/AP_{BEV} on three levels of difficulty compared with “Baseline”. This indicates that our 3D detection branches generate an accurate depth. In addition, the 3DR module improves a significant 1.59%/3.28%, 2.73%/2.32%, and 2.37%/2.45% in AP_{3D}/AP_{BEV} compared with “MDF-”. It highlights the importance of reconstructing the depth map. When adding the VPF module, it contributes to 2.9%/1.86%, 2.36%/2.29%, and 2.56%/1.58% improvement in AP_{3D}/AP_{BEV} , which demonstrates the effectiveness of the VPF module.

359

360

361

362

363

364

365

Contribution of different depths. Table 3 shows the contribution of different depths. Z_{loc} , Z_{dir} , Z_{glo} , and Z_{com} indicate that we use them separately as outputs of the MDF module. We find that Z_{loc} and Z_{dir} have minor performance differences. However, compared to Z_{dir} , Z_{glo} significantly achieves 3.4%/3.85%, 2.62%/2.48%, and 1.85%/1.14% improvement in AP_{3D}/AP_{BEV} . It

378

379 Table 2: Contribution of each module.

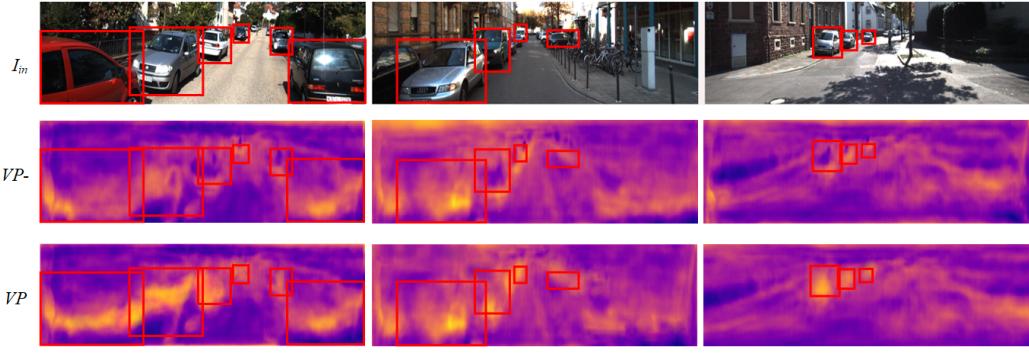
Baseline	MDF-	3DR	VPF	Val — $AP_{3D}(\%)$			Val — $AP_{BEV}(\%)$		
				Easy	Mod.	Hard	Easy	Mod.	Hard
✓	✗	✗	✗	22.60	13.74	11.19	31.45	21.95	18.32
✓	✓	✗	✗	25.93	15.84	12.81	33.44	24.19	20.98
✓	✓	✓	✗	27.52	18.57	15.18	36.72	26.51	23.43
✓	✓	✓	✓	30.42	20.93	17.74	38.58	28.80	25.01

385

386 Table 3: Contribution of different depths.

Depth	Val — $AP_{3D}(\%)$			Val — $AP_{BEV}(\%)$		
	Easy	Mod.	Hard	Easy	Mod.	Hard
Z_{loc}	22.92	15.46	13.75	30.56	23.49	21.11
Z_{dir}	23.51	16.24	14.32	31.96	23.89	22.62
Z_{glo}	26.91	18.86	16.17	35.81	26.37	23.76
Z_{com}	30.42	20.93	17.74	38.58	28.80	25.01

393



394

395

396

397

398

399

400

401

402

403

404

405 Figure 3: The heatmaps without and with the visual prompt. The visual prompt focuses on the
 406 area where objects are located. The red rectangle represents the 2D bounding box of the object.
 407 The brighter color indicates a higher attention score. VP -/ VP represents the original attention map
 408 without/with a visual prompt, respectively.

409

410 shows the effectiveness of 3DR. In addition, Z_{com} contributes to 3.51%/2.77%, 2.07%/2.43%, and
 411 1.57%/1.25% improvement in AP_{3D} / AP_{BEV} compared with Z_{glo} , which proves the effectiveness
 412 of depth fusion.

413

414

415

416

417

418

419

420

421

422

423

4.4 QUALITATIVE RESULTS

424

425 Figure 3 shows the visualization of the visual prompt. I_{in} is the input image. VP -/ VP is the original
 426 attention map without/with a visual prompt, respectively. We use heatmaps to reflect the attention
 427 in the image, in which a brighter color indicates higher attention scores. We find that VP has higher
 428 attention for objects, especially for small objects. As shown in Figure 3, the color of small targets is
 429 brighter than VP -, which validates the effectiveness of the visual prompt.

430

431

432 Figure 4 shows the 3D detection bounding boxes and the BEV obtained from different estimated
 433 depths. S_{loc} , S_{dir} , S_{com} mean that we use Z_{loc} , Z_{dir} , Z_{com} as the depth, respectively. $S_{loc} + S_{dir}$
 434 means using fused Z_{loc} and Z_{dir} as the depth. We find a large deviation between the predicted box

432

433

Table 4: Contribution of the two-stage and the visual prompt.

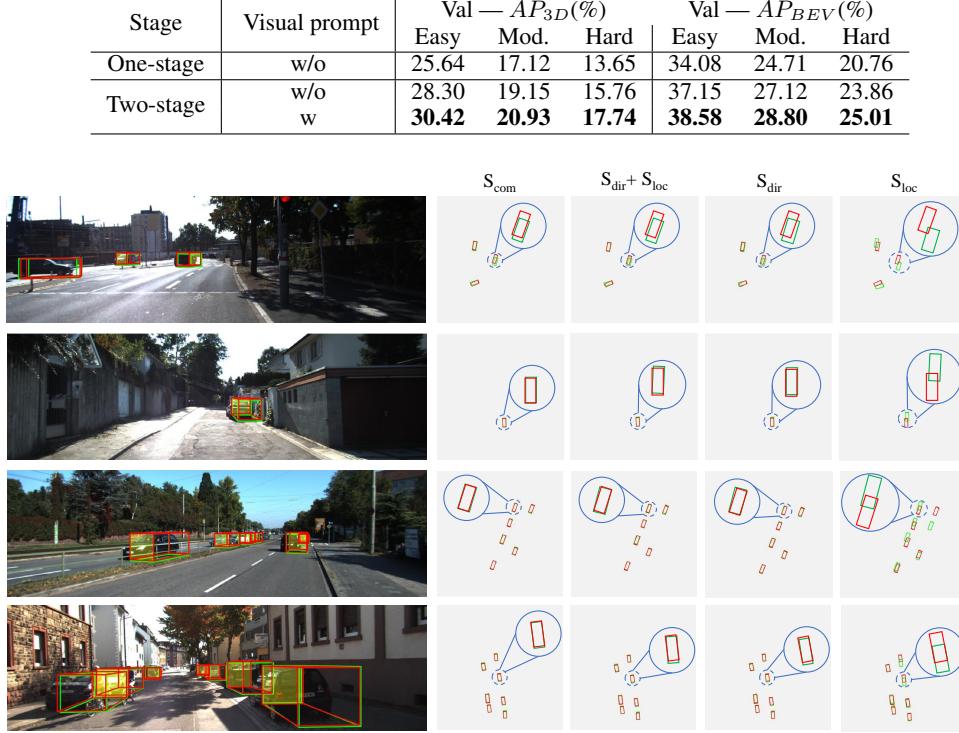
434

435

436

437

438



439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

Figure 4: Qualitative examples on the KITTI validation set. Each row displays a 3D scene detection result along with four BEV visualizations. The BEV visualizations reflect the differences in depth. From left to right: S_{com} , $S_{loc} + S_{dir}$, S_{loc} , S_{dir} . Red represents the GT of the box and green represents the prediction box.

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

5 CONCLUSION

473

474

475

476

477

478

479

480

481

482

483

484

485

In this paper, we propose a two-stage multiscale monocular 3D object detection method with a visual prompt. In the first stage, we train an MDF module that extracts depth information on a multiscale scale to enhance accuracy. In the second stage, we focus on training the 2D Detector with the enhanced features from VPF. In addition, we reconstruct a more accurate depth map by correcting the camera pose using the camera transformation matrix. To improve the performance on small objects, we use a visual prompt to enhance the features of the object area, which dynamically adjusts the feature enhancement. Extensive results demonstrate that our method achieves state-of-the-art results on the KITTI dataset.

Limitations. However, the performance on *easy* is not the best. This is because our method pays more attention to small objects. We believe that it can be improved by adjusting the weights of different objects. Meanwhile, the reliability scores estimated by the detectors may be biased, which affects the accuracy of the fused depth map. However, our method can also achieve satisfactory performance when using accurate reliability scores. In the future, we will focus on the aforementioned problems and apply it to scenarios where there are severe changes in the environment.

486 REFERENCES
487

488 Ivan Barabanau, Alexey Artemov, Evgeny V. Burnaev, and Vyacheslav Murashkin. Monocular 3d
489 object detection via geometric reasoning on keypoints. *Imaging and Computer Graphics Theory and Applications*, pp. 652–659, 2019. URL <https://api.semanticscholar.org/CorpusID:153312580>.

490

491 Yingjie Cai, Buyu Li, Zeyu Jiao, Hongsheng Li, Xingyu Zeng, and Xiaogang Wang. Monocular
492 3d object detection with decoupled structured polygon estimation and height-guided depth es-
493 timation. *AAAI Conference on Artificial Intelligence*, pp. 10478–10485, 2020. URL <https://api.semanticscholar.org/CorpusID:211031872>.

494

495 Chin-Kai Chang, Jiaping Zhao, and Laurent Itti. Deepvp: Deep learning for vanishing point de-
496 tection on 1 million street view images. *2018 IEEE International Conference on Robotics and*
497 *Automation*, pp. 1–8, 2018. URL <https://api.semanticscholar.org/CorpusID:52283725>.

498

499 Saket S. Chaturvedi, Lan Zhang, Wenbin Zhang, Pan He, and Xiaoyong Yuan. Badfusion: 2d-
500 oriented backdoor attacks against 3d object detection. *International Joint Conference on Ar-
501 tificial Intelligence*, pp. 349–357, 2024. URL <https://api.semanticscholar.org/CorpusID:269613871>.

502

503 Hansheng Chen, Yuyao Huang, Wei Tian, Zhong Gao, and Lu Xiong. Monorun: Monocular 3d
504 object detection by reconstruction and uncertainty propagation. *2021 IEEE/CVF Conference on*
505 *Computer Vision and Pattern Recognition (CVPR)*, pp. 10374–10383, 2021. URL <https://api.semanticscholar.org/CorpusID:232341195>.

506

507 Yongjiang Chen, Lei Tai, Kai-Lung Sun, and Mingyang Li. Monopair: Monocular 3d ob-
508 ject detection using pairwise spatial relationships. *2020 IEEE/CVF Conference on Computer*
509 *Vision and Pattern Recognition (CVPR)*, pp. 12090–12099, 2020. URL <https://api.semanticscholar.org/CorpusID:211677402>.

510

511 Wonhyeok Choi, Mingyu Shin, and Sunghoon Im. Depth-discriminative metric learning for monoc-
512 ular 3d object detection. *Neural Information Processing Systems (NeurIPS)*, 36:80165–80177,
513 2024.

514

515 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
516 vision benchmark suite. *2012 IEEE/CVF Conference on Computer Vision and Pattern Recog-
517 nition (CVPR)*, pp. 3354–3361, 2012. URL <https://api.semanticscholar.org/CorpusID:6724907>.

518

519 He Guan, Chunfeng Song, and Zhaoxiang Zhang. Gramo: geometric resampling augmentation for
520 monocular 3d object detection. *Frontiers Journal of Scientific Computing*, 18:185706, 2024. URL
521 <https://api.semanticscholar.org/CorpusID:267005153>.

522

523 Wencheng Han, Runzhou Tao, Haibin Ling, and Jianbing Shen. Weakly supervised monocular
524 3d object detection by spatial-temporal view consistency. *IEEE Transactions on Pattern Analysis*
525 *and Machine Intelligence*, 47:84–98, 2024. URL <https://api.semanticscholar.org/CorpusID:272853422>.

526

527 Kuan-Chih Huang, Tsung-Han Wu, Hung-Ting Su, and Winston H. Hsu. Monodtr: Monocu-
528 lar 3d object detection with depth-aware transformer. *2022 IEEE/CVF Conference on Com-
529 puter Vision and Pattern Recognition (CVPR)*, pp. 4002–4011, 2022a. URL <https://api.semanticscholar.org/CorpusID:247595279>.

530

531 Kuan-Chih Huang, Tsung-Han Wu, Hung-Ting Su, and Winston H. Hsu. Monodtr: Monocu-
532 lar 3d object detection with depth-aware transformer. *2022 IEEE/CVF Conference on Com-
533 puter Vision and Pattern Recognition (CVPR)*, pp. 4002–4011, 2022b. URL <https://api.semanticscholar.org/CorpusID:247595279>.

534

535 Rui Huang, Henry Zheng, Yan Wang, Zhuofan Xia, Marco Pavone, and Gao Huang. Train-
536 ing an open-vocabulary monocular 3d object detection model without 3d data. *Neural Infor-
537 mation Processing Systems Conference (NeurIPS)*, pp. 72145–72169, 2024. URL <https://api.semanticscholar.org/CorpusID:274233773>.

540 Xueying Jiang, Sheng Jin, Xiaoqin Zhang, Ling Shao, and Shijian Lu. Monomae: Enhancing
 541 monocular 3d detection through depth-aware masked autoencoders. *Neural Information Processing Systems (NeurIPS)*, pp. 11392–11411, 2024a. URL <https://api.semanticscholar.org/CorpusID:269757488>.

544 Xueying Jiang, Sheng Jin, Xiaoqin Zhang, Ling Shao, and Shijian Lu. Monomae: Enhancing
 545 monocular 3d detection through depth-aware masked autoencoders. *Neural Information Processing Systems (NeurIPS)*, pp. 11392–11411, 2024b. URL <https://api.semanticscholar.org/CorpusID:269757488>.

548 Yingyan Li, Yuntao Chen, Jiawei He, and Zhaoxiang Zhang. Densely constrained depth estimator
 549 for monocular 3d object detection. *European Conference on Computer Vision (ECCV)*, pp. 718–
 550 734, 2022.

552 Zhiqi Li, Wenhui Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and Jifeng
 553 Dai. Bevformer: Learning bird’s-eye-view representation from lidar-camera via spatiotemporal
 554 transformers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47:2020–2036,
 555 2024a. URL <https://api.semanticscholar.org/CorpusID:274679971>.

556 Zhuoling Li, Xiaogang Xu, Ser-Nam Lim, and Hengshuang Zhao. Unimode: Unified monocular
 557 3d object detection. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16561–16570, 2024b. URL <https://api.semanticscholar.org/CorpusID:273102044>.

560 Hongbin Lin, Yifan Zhang, Shuaicheng Niu, Shuguang Cui, and Zhen Li. Fully test-time adaptation
 561 for monocular 3d object detection. *European Conference on Computer Vision (ECCV)*, 2024.
 562 URL <https://api.semanticscholar.org/CorpusID:270123810>.

564 Xianpeng Liu, Nan Xue, and Tianfu Wu. Learning auxiliary monocular contexts helps monocular
 565 3d object detection. *AAAI Conference on Artificial Intelligence*, 36(2):1810–1818, 2022a.

567 Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun. Petr: Position embedding transformation
 568 for multi-view 3d object detection. *European conference on computer vision(ECCV)*, pp. 531–
 569 548, 2022b.

570 Zechen Liu, Zizhang Wu, and Roland T’oth. Smoke: Single-stage monocular 3d object detection
 571 via keypoint estimation. *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4289–4298, 2020. URL <https://api.semanticscholar.org/CorpusID:211258916>.

574 Zongdai Liu, Dingfu Zhou, Feixiang Lu, Jin Fang, and Liangjun Zhang. Autoshape: Real-time
 575 shape-aware monocular 3d object detection. *2021 IEEE/CVF International Conference on Com-
 576 puter Vision (ICCV)*, pp. 15621–15630, 2021. URL <https://api.semanticscholar.org/CorpusID:237292876>.

578 Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, and Wanli Ouyang.
 579 Delving into localization errors for monocular 3d object detection. *2021 IEEE/CVF Conference
 580 on Computer Vision and Pattern Recognition (CVPR)*, pp. 4719–4728, 2021. URL <https://api.semanticscholar.org/CorpusID:232417834>.

583 Xinzhu Ma, Wanli Ouyang, Andrea Simonelli, and Elisa Ricci. 3d object detection from images
 584 for autonomous driving: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelli-
 585 gence*, pp. 3537–3556, 2022. URL <https://api.semanticscholar.org/CorpusID:246634645>.

588 Jiageng Mao, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. 3d object detection for au-
 589 tonomous driving: A comprehensive survey. *International Journal of Computer Vision*, pp. 1909–
 590 1963, 2022. URL <https://api.semanticscholar.org/CorpusID:257921140>.

591 Rishabh Parihar, Srinjay Sarkar, Sarthak Vora, Jogendra Nath Kundu, and R Venkatesh Babu. Mono-
 592 place3d: Learning 3d-aware object placement for 3d monocular detection. In *Proceedings of the
 593 Computer Vision and Pattern Recognition Conference*, pp. 6531–6541, 2025.

594 Liang Peng, Fei Liu, Zhengxu Yu, Senbo Yan, Dan Deng, and Deng Cai. Lidar point cloud guided
 595 monocular 3d object detection. *European Conference on Computer Vision (ECCV)*, pp. 123–139,
 596 2022. URL <https://api.semanticscholar.org/CorpusID:233296938>.

597

598 Fanqi Pu, Yifan Wang, Jiru Deng, and Wenming Yang. Monodgp: Monocular 3d object detection
 599 with decoupled-query and geometry-error priors. In *Proceedings of the Computer Vision and*
 600 *Pattern Recognition Conference*, pp. 6520–6530, 2025.

601

602 Zequn Qin and Xi Li. Monoground: Detecting monocular 3d objects from the ground. 2022
 603 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3783–3792,
 604 2022. URL <https://api.semanticscholar.org/CorpusID:249674431>.

605

606 senrui Zhang, Han Qiu, Tai Wang, Ziyu Guo, Ziteng Cui, Xuan Xu, Yu Jiao Qiao, Peng Gao, and
 607 Hongsheng Li. Monodetr: Depth-guided transformer for monocular 3d object detection. 2023
 608 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9121–9132, 2023. URL
 609 <https://api.semanticscholar.org/CorpusID:249191827>.

610

611 Xuepeng Shi, Zhixiang Chen, and Tae-Kyun Kim. Multivariate probabilistic monocular 3d object
 612 detection. 2023 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 4270–
 613 4279, 2023. URL <https://api.semanticscholar.org/CorpusID:256660727>.

614

615 Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated, and Emmett
 616 Witchel. Gpynet: Networking abstractions for gpu programs. *Transactions on Computer Systems*
 617 (*TOCS*), 34(3):1–31, 2016.

618

619 Yunlei Tang, Sebastian Dorn, and Chiragkumar Savani. Center3d: Center-based monocular 3d
 620 object detection with joint depth understanding. pp. 289–302, 2020.

621

622 Runzhou Tao, Wencheng Han, Zhongying Qiu, Chengfeng Xu, and Jianbing Shen. Weakly super-
 623 vised monocular 3d object detection using multi-view projection and direction consistency. 2023
 624 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 17482–17492,
 625 2023. URL <https://api.semanticscholar.org/CorpusID:257532724>.

626

627 Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin. Fcos3d: Fully convolutional one-stage
 628 monocular 3d object detection. *Proceedings of the IEEE/CVF International Conference on Com-*
 629 *puter Vision (ICCV)*, pp. 913–922, 2021.

630

631 Patikiri Arachchige Don Shehan Nilmantha Wijesekara. Deep 3d dynamic object detection towards
 632 successful and safe navigation for full autonomous driving. *The Open Transportation Journal*, 16
 633 (1):e187444782208191, 2022.

634

635 Zizhang Wu, Yuan-Zhu Gan, Lei Wang, Gui Chen, and Jian Pu. Monopgc: Monocular 3d ob-
 636 ject detection with pixel geometry contexts. 2023 *IEEE International Conference on Robotics*
 637 *and Automation*, pp. 4842–4849, 2023. URL <https://api.semanticscholar.org/CorpusID:257050865>.

638

639 Kaixin Xiong, Dingyuan Zhang, Dingkang Liang, Zhe Liu, Hongcheng Yang, Wondimu Dikubab,
 640 Jianwei Cheng, and Xiang Bai. You only look bottom-up for monocular 3d object detec-
 641 tion. *IEEE Robotics and Automation Letters*, 8:7464–7471, 2024. URL <https://api.semanticscholar.org/CorpusID:261650876>.

642

643 Jun Xu, Liang Peng, Haoran Cheng, Hao Li, Wei Qian, Kejie Li, Wenxiao Wang, and Deng
 644 Cai. Mononerd: Nerf-like representations for monocular 3d object detection. 2023 *IEEE/CVF*
 645 *International Conference on Computer Vision (ICCV)*, pp. 6791–6801, 2023. URL <https://api.semanticscholar.org/CorpusID:261030329>.

646

647 Longfei Yan, Pei Yan, Shengzhou Xiong, Xuanyu Xiang, and Yihua Tan. Monocd: Mono-
 648 3d object detection with complementary depths. 2024 *IEEE/CVF Conference on Com-*
 649 *puter Vision and Pattern Recognition (CVPR)*, pp. 10248–10257, 2024a. URL <https://api.semanticscholar.org/CorpusID:268889749>.

648 Longfei Yan, Pei Yan, Shengzhou Xiong, Xuanyu Xiang, and Yihua Tan. Monocd: Monocular
 649 3d object detection with complementary depths. *2024 IEEE/CVF Conference on Com-*
 650 *puter Vision and Pattern Recognition (CVPR)*, pp. 10248–10257, 2024b. URL <https://api.semanticscholar.org/CorpusID:268889749>.

652 Fisher Yu, Dequan Wang, and Trevor Darrell. Deep layer aggregation. *2018 IEEE/CVF Conference*
 653 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 2403–2412, 2017. URL <https://api.semanticscholar.org/CorpusID:30834643>.

655 Jiacheng Zhang, Jiaming Li, Xiangru Lin, Wei Zhang, Xiao Tan, Junyu Han, Errui Ding, Jingdong
 656 Wang, and Guanbin Li. Decoupled pseudo-labeling for semi-supervised monocular 3d object
 657 detection. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 658 pp. 16923–16932, 2024. URL <https://api.semanticscholar.org/CorpusID:268692167>.

661 Tingyu Zhang, Xinyu Yang, Zhigang Liang, Yanzhao Yang, and Jian Wang. Multi-scale grid at-
 662 tention and probabilistic refinement for accurate roi-based monocular 3d object detection. *IEEE*
 663 *Transactions on Intelligent Transportation Systems*, 2025.

664 Yunpeng Zhang, Jiwen Lu, and Jie Zhou. Objects are different: Flexible monocular 3d
 665 object detection. *2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
 666 nition (CVPR)*, pp. 3288–3297, 2021. URL <https://api.semanticscholar.org/CorpusID:233033411>.

669 Yunsong Zhou, Quan Liu, Hongzi Zhu, Yunzhe Li, Shan Chang, and Minyi Guo. Mogde: Boost-
 670 ing mobile monocular 3d object detection with ground depth estimation. *Neural Information*
 671 *Processing Systems (NeurIPS)*, 35:2033–2045, 2022.

672 Yunsong Zhou, Quan Liu, Hongzi Zhu, Yunzhe Li, Shan Chang, and Minyi Guo. Exploit-
 673 ing ground depth estimation for mobile monocular 3d object detection. *IEEE Transactions*
 674 *on Pattern Analysis and Machine Intelligence*, 47:3079–3093, 2025. URL <https://api.semanticscholar.org/CorpusID:275715898>.

677 Minghan Zhu, Lingting Ge, Panqu Wang, and Huei Peng. Monoedge: Monocular 3d object detec-
 678 tion using local perspectives. *2023 IEEE/CVF Winter Conference on Applications of Computer*
 679 *Vision*, pp. 643–652, 2023. URL <https://api.semanticscholar.org/CorpusID:255440628>.

681
 682 **SUPPLEMENTARY MATERIAL**

684 **A NETWORK ARCHITECTURE OF THE POSE DETECTOR**

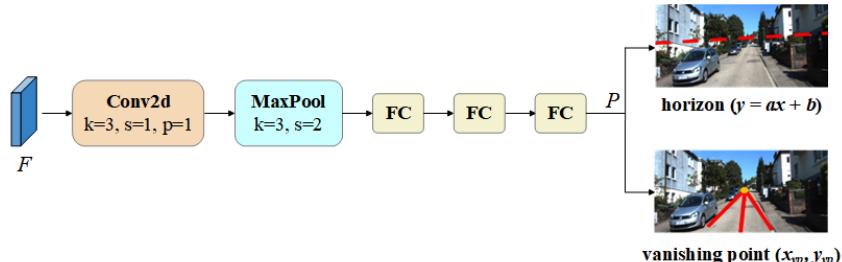


Figure 5: Structure of the Pose Detector.

699 In section of 3DR, we utilize the Pose Detector to obtain the horizon and vanishing point in 3DR.
 700 The detailed structure of the Pose Detector is shown in Figure 5. It consists of a 3×3 Convolution
 701 layer, a Max Pooling layer, and three Fully Connected layers. The input of the Pose Detector is the
 feature map F from the backbone network DLA. The output vector $P = (a, b, x_{vp}, y_{vp})$, which is

702
703 **Table 5: Inference Time, computation cost, and parameter size of VP-MonoMF**
704

Methods	Inference Time	FLOPs	Param.
MonoDETR (senrui Zhang et al., 2022)	43ms	62.12G	-
GUPNet (Silberstein et al., 2016)	40ms	<u>62.32G</u>	-
MonoDTR (Huang et al., 2022b)	37ms	120.48G	-
MonoMAE (Jiang et al., 2024b)	36ms	-	-
MonoCD (Yan et al., 2024b)	19ms	142.89G	16.52M
MonoDGP (Pu et al., 2025)	42ms	68.99G	38.90M
Ours	<u>20ms</u>	153.05G	<u>17.67M</u>

711
712 **Table 6: Evaluation on the nuScenes validation set.**
713

Methods	mAP \uparrow	NDS \uparrow	mATE \downarrow	mASE \downarrow	mAOE \downarrow
CenterNet3D (Tang et al., 2020)	0.306	0.328	0.716	0.264	0.609
FCOS3D (Wang et al., 2021)	0.343	0.415	0.725	0.263	0.422
PETR (Liu et al., 2022b)	0.370	0.442	0.711	<u>0.251</u>	0.433
WeakPETRv2 (Han et al., 2024)	0.375	0.421	0.809	0.272	-
BEVFormer (Li et al., 2024a)	0.416	0.517	<u>0.673</u>	0.274	<u>0.372</u>
FCOS3D+MonoPlace3D (Parihar et al., 2025)	0.370	0.440	-	-	-
Ours	<u>0.394</u>	<u>0.464</u>	0.645	0.247	0.364

720
721 $R^{1 \times 4}$. This Pose Detector has achieved state-of-the-art performance and has been widely used in
722 3D object detection (Chang et al., 2018; Zhou et al., 2025).
723724

EXPERIMENT

725726

B.1 EVALUATION OF RUNNING SPEED, COMPUTATION COST, AND PARAMETER SIZE

727728 Table 5 shows the inference time, computation cost, and number of model parameters. We achieve
729 better performance compared with MonoDGP in terms of inference time and parameters. Mean-
730 while, our performance is similar to MonoCD. Note that we achieve the best performance consider-
731 ing AP3D and APBEV for *mod* and *hard* in Table 1 of the paper. For *easy*, we achieve the second
732 best performance.
733734

B.2 EVALUATION ON NUSCENES DATASET

735736 To further prove the effectiveness of our method, we evaluate it on another popular dataset nuScenes.
737 nuScenes comprises 1,000 video scenes, including RGB images captured by 6 surround-view cam-
738 eras. The dataset has a training set (700 scenes), a validation set (150 scenes), and a test set (150
739 scenes). We report detection results on the validation set following the same setup (Tang et al., 2020;
740 Wang et al., 2021; Liu et al., 2022b; Han et al., 2024) to facilitate comparison with previous studies.
741 The performance of different methods is reported in Table 6.
742743 Table 6 shows the mean Average Precision (mAP), nuScenes Detection Score (NDS), mean Average
744 Translation Error (mATE), mean Average Scale Error (mASE) and mean Average Orientation Error
745 (mAOE). mASE evaluates how accurately the dimension detector predicts the size of objects
746 compared to their ground-truth annotations. Our method achieves the best performance in mASE due
747 to the two-stage training framework which reduces the negative impact of the 2D detection branch
748 on the dimension detector. mATE quantifies how well our method predicts the center position of
749 detected objects compared to their ground-truth locations. mAOE quantifies the angular error be-
750 tween the predicted orientation and the true orientation of detected objects. We also achieve the best
751 results on mAOE and mATE because our visual prompt effectively contributes to accurate center
752 localization and orientation.
753754

B.3 MORE VISUAL RESULTS

755756 This is an extension of the results in Section of Qualitative Results of the paper. Figure 6 shows more
757 visualization results. We observe that the detection accuracy of the target using Z_{com} is higher, and
758

Figure 6: More visual results of 3D bounding boxes and BEV.

it has a satisfactory detection effect on small targets. This is because the operations of reconstructing depth and fusing depth through reliability scores improve the generalization ability of the estimated depth in different environments, making it more accurate when locating objects.

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809