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ABSTRACT

Depth estimation from a single image remains a challenging task in monocular 3D
object detection. Existing methods improve the detection accuracy by leveraging
more precise 2D and 3D information. However, they simultaneously train 2D and
3D detection branches, which inevitably affect each other. Meanwhile, they often
overlook the adverse effects caused by variations in camera pose. Furthermore,
although they achieve satisfactory detection accuracy on large objects, their ac-
curacy on small objects remains limited due to limited pixel areas. To address
these issues, we propose a Visual Prompt Guided Monocular 3D Object Detection
Method with Multiscale Fusion (VP-MonoMF). Specifically, we first develop a
Multi-Depth Fusion (MDF) module as the 3D detection branch, which integrates
multi-scale information from both global depth maps and local 3D depth infor-
mation. Then, we train MDF in the first stage and the 2D Detector in the second
stage to mitigate mutual interference. To minimize the impact of the camera pose
variance, MDF utilizes a 3D Depth Reconstruction (3DR) module to correct depth
map deviations. Furthermore, we introduce a Visual Prompt Fusion (VPF) module
to enhance small object features by adaptively adjusting weights based on object
size. We conduct experiments on the KITTI dataset. VP-MonoMF achieves state-
of-the-art performance in monocular 3D object detection task. The code will be
made available upon acceptance of the paper.

1 INTRODUCTION

3D object detection identifies and locates objects in a three-dimensional space using computer vision
techniques. It can pinpoint the spatial coordinates and orientations of objects using their depth
information in the real world. With the development of advanced technologies such as machine
learning and LiDAR, 3D object detection has become fundamental for machines to understand the
physical environment. For example, it has been widely used in autonomous driving (Mao et al.,
2022; Ma et al., 2022) and robot navigation (Chaturvedi et al., 2024; Wijesekara, 2022).

Monocular 3D object detection has attracted widespread attention due to its lower cost and simple
configuration compared to other 3D object detection methods (Zhang et al., 2024). It estimates the
3D information from a single 2D image based on 2D and 3D detection branches. Recent monoc-
ular 3D object detection methods can be divided into two groups: image based and image with
extra information based. Image based methods (Yan et al., 2024a; Zhu et al., 2023) only utilize a
single RGB image captured by the monocular camera for depth estimation. For image with extra
information based methods (Huang et al., 2024), they further utilize prior knowledge or auxiliary
information to improve the detection accuracy. Although these methods reduce the complexity, it is
still challenging to guarantee the performance.

First, the 2D and 3D detection branches share the same backbone for image feature extraction and
they are trained simultaneously. Unfortunately, the 2D and 3D detection branches inevitably af-
fect each other, which introduces non-negligible noise for 3D detection branches (Liu et al., 2020).
Second, current monocular 3D object detection methods only consider the scenarios with a fixed
camera. However, the camera position may change due to the surrounding environment. As shown
in Figure 1, the camera is unstable because of vibration. Thus, it leads to deviations in depth map
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Figure 1: Impact of the environment on the camera pose. As shown in the left image, the camera
maintains a fixed position on a robot car when the surrounding environment does not change. The
right figure shows that the camera position changes due to the vibrations caused by the environment.

estimation. Third, images captured by monocular cameras usually include small objects that occupy
limited areas. Thus, it is difficult to estimate the depth due to insufficient features.

Facing these challenges, we propose a Visual Prompt Guided Monocular 3D Object Detection
Method with Multiscale Fusion (VP-MonoMF). It consists of three modules: Multi-Depth Fusion
(MDF), 3D Depth Reconstruction (3DR), and Visual Prompt Fusion (VPF). In the first stage, the
MDF module first estimates the depth map and the dimensions of objects. Then the dimensions and
the 2D height from ground truth (GT) are used to estimate the 3D depth information. Meanwhile,
the 3DR module reconstructs the depth map based on the camera pose estimation. Finally, we fuse
the reconstructed depth map with the 3D depth information to obtain the accurate depth. In the sec-
ond stage, we freeze the MDF module and train the 2D Detector using the enhanced features from
VPF. Then we combine the outputs of the MDF and 2D Detector to get 3D detection results.

Specifically, for the first challenge, we build an MDF module based on the depth and dimension
detectors. The detectors generate a global depth map and local 3D depth information of objects,
which are further refined and fused to build an accurate depth. Then we train the MDF module
and the 2D detector in different stages to avoid the influence. For the second challenge, we design
a 3DR module based on the camera pose variance for the 3D detection branch. First, the camera
transformation matrix that reflects the camera pose variance is obtained by the estimated vanishing
point and horizon information of images. Then, we use it to correct the depth map. For the third
challenge, we train the 2D Detector in the second stage and design a VPF module for the 2D detector
to optimize the detection performance of the object’s 2D properties. We first convolve the features
to get the attention map. Meanwhile, we generate a visual prompt to adaptively adjust the attention
map according to the size of objects from GT. Finally, we use the adjusted attention map to enhance
the object features for different image areas. Thus, the 2D detector can better extract the features of
objects.

The contributions of this paper are summarized as follows:

• We propose a 3D detection module MDF to fuse the global depth map and the local 3D
depth information of each object. This module is trained in separate stages from the 2D
detector.

• We propose a 3DR module considering the camera position and orientation. It utilizes the
camera transformation matrix to correct the depth map and effectively reduces the deviation
in the depth map.

• We propose a VPF module based on the visual prompt. The visual prompt adjusts the
attention map dynamically. To the best of our knowledge, this is the first work that explores
GT-based visual prompt for the task of monocular 3D object detection.

• Experiments demonstrate that our method achieves state-of-the-art performance on the
KITTI 3D detection benchmark without using additional data.

2 RELATED WORK

2.1 IMAGE BASED METHODS

Image based methods (Lin et al., 2024; Zhang et al., 2025) estimate 3D and 2D information of ob-
jects from RGB images instead of external data or pre-trained models. The estimated 2D and 3D
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information are combined to obtain the 3D bounding boxes. For example, MonoPGC (Wu et al.,
2023) introduced pixel depth estimation as the auxiliary task and designed a depth cross-attention
pyramid module to inject local and global depth geometry knowledge into visual features. By in-
corporating depth information into the masking process, MonoMAE (Jiang et al., 2024a) enhanced
feature representation, enabling the model to better capture spatial relationships and object geome-
try. WeakMono3D (Tao et al., 2023) incorporated projection and multi-view consistencies to guide
the prediction of 3D bounding boxes by two consistency losses. They also proposed a 2D direction
label to replace the 3D rotation label marked on the point cloud data. Although these methods im-
prove the accuracy and robustness of monocular 3D object detection, they still have limitations in
complex scenarios and detecting incomplete objects.

2.2 IMAGE WITH EXTRA INFORMATION BASED METHODS

Image with extra information based methods (Li et al., 2024b; Choi et al., 2024) utilize extra infor-
mation to help the model better understand the 3D information of objects, which includes pre-trained
models, annotated keypoints, and Computer-Aided Design (CAD) models.

The pre-trained models estimate the extra information for 3D object detection. For example,
MonoNeRD (Xu et al., 2023) used a Neural Radiance Fields model to enable accurate 3D per-
ception and employ volume rendering to recover RGB images and depth maps. YOLOBU (Xiong
et al., 2024) used a Deformable DETR model with cross-attention mechanism to build the connec-
tions of pixels for detection. Although pre-trained models can obtain more accurate information to
help improve the detection performance, they are highly complex.

The annotated keypoints guide and supervise the model estimation results. For example,
LPCG (Peng et al., 2022) generated pseudo labels from unlabeled LiDAR point clouds which can
be applied for any monocular 3D detector to use massive unlabeled data. OVM3D (Huang et al.,
2024) automatically combined images with 3D object labels to utilize internet-scale data. However,
they require more annotations for training and are usually less generalized.

CAD models provide accurate 3D shape information for the network. MonoGRK (Barabanau et al.,
2019) combined region-based detectors and a geometric reasoning step over keypoints using real-
world images and CAD models. AutoShape (Liu et al., 2021) automatically fitted the 3D shape
to the visual observations and then generated GT annotations of 2D/3D keypoint pairs for the net-
work.Although CAD models help improve inspection performance, they have slow inference speeds.

3 METHOD

3.1 OVERVIEW

Figure 2 shows the architecture of VP-MonoMF, a visual prompt Guided monocular 3D object
detection method with multiscale fusion. In the first stage, we focus on extracting depth information
from the monocular image Iin and training the MDF module. Iin is input into the backbone network
Deep Layer Aggregation (DLA) (Yu et al., 2017) to obtain the feature F ∈ RW×H×C , where W
and H are the width and height of the feature, and C is the number of channels. The 2D height from
GT is denoted as height∗. Then height∗ and F are input into MDF to obtain the fused depth Zcom

and the dimension dim of objects.

In the second stage, we also use DLA to get the feature F . Then we use the VPF module to enhance
object features. It helps the 2D detector to estimate the 2D properties. Specifically, VPF dynamically
generates a visual prompt to enhance the feature F , and the enhanced feature Fvp ∈ RW×H×C is
input to the 2D Detector. The 2D Detector generates 2D properties offset, center, orientation and
height and we input height to the MDF module for Zcom. Then, we combine the outputs of the 2D
Detector and the MDF module to generate the object’s 3D bounding boX. We freeze the DLA and
MDF modules, and train only VPF and the 2D Detector in this stage. Note that only the second
stage is used for testing.

3.2 MDF

We design a multiscale depth fusion module MDF. This module fuses the global depth map Zglo and
local depth Zloc for a comprehensive depth Zcom utilizing a two-branch architecture. It increases
the accuracy of the estimated depth to detect objects.
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Figure 2: The framework of VP-MonoMF. Our method consists of two stages. The training and
testing processes of the second stage are represented by green and red arrows, respectively. In the
first stage, we train the MDF module and backbone DLA to get accurate depth. The 3DR module
in MDF reconstructs the depth map. In the second stage, we train the 2D Detector and VPF to
avoid mutual influence. The enhanced features generated by VPF are fed into the 2D Detector. The
detection result Iout is obtained by combining the outputs of the 2D Detector and MDF module.

In the first branch, we get Zglo from the 3DR module. Specifically, we input F into the Depth
Detector to obtain an estimated depth map Zdir ∈ RW ′×H′

and the corresponding reliability score
σdir ∈ RW ′×H′

, where W ′ and H ′ are the width and height of the Zdir and σdir. σdir reflects the
confidence of the estimated depth. Then we input Zdir and F into the 3DR module to get Zglo. Note
that we also have the reliability score σglo for Zglo and it is set equal to σdir. We introduce the 3DR
module in the following section.

In the second branch, we get Zloc from the 3D property dim and the 2D height. dim includes the
object’s 3D properties: length, width, and height. Specifically, we first input F into the Dimension
Detector to obtain dim = {(dL, dW , dH)i|i = 1, 2, .., N}, where N is the number of objects.
Meanwhile, we get 2D height from the 2D detector or GT. It contains the projected height hi(i =
1, 2, 3, 4, c) of four vertical edges of the bounding box, and hc is for the center line. Their reliability
score is σi(i = 1, 2, 3, 4, c). We use dH of the object and its corresponding projected height hi to
calculate the depth of four vertical edges and the center line (Cai et al., 2020):

zi =
f × dH

hi
, (1)

where f is the focal length of the camera. To increase the estimation accuracy of the center line, we
calculate two average depths zd1 and zd2 based on the depths of four vertical edges zi(i = 1, 2, 3, 4):

zd1 =
z1 + z2

2
, zd2 =

z3 + z4
2

. (2)

Similarly, we calculate the reliability scores σd1 and σd2:

σd1 =
σ1 + σ2

2
, σd2 =

σ3 + σ4

2
. (3)

Thus, we have Zloc = {zd1, zd2, zc} for the depth of the object center (x′, y′).

We also get the depth zx′y′ from Zglo of the center (x′, y′) and the corresponding reliability score
σx′y′ . Then, we allocate different weights for zd1, zd2, zc, and zx′y′ based on their reliability scores
to get a more accurate depth Zcom. The formula is as follows:

Zcom =

∑
k∈{d1,d2,c,x′y′}

zk × σk∑
k∈{d1,d2,c,x′y′}

σk
, (4)
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where σk ∈ (0, 1].

3.3 3DR

Camera pose variance may lead to the camera’s optical axis not being parallel to the ground, which
introduces deviations when estimating the depth map. The 3DR module corrects the deviations using
a camera transformation matrix and reconstructs the depth map based on the camera projection.

We first convert Zdir into points Pdir in the camera coordinate system:

x =
(u− cu)zuv

f
, y =

(v − cv)zuv
f

, (5)

where (u, v) is the pixel coordinate in Zdir; zuv is the depth value at (u, v); x and y are the coor-
dinates of the camera coordinate system; (cu, cv) is the center coordinate of the image. The center
coordinate and focal length are intrinsic camera parameters.

Meanwhile, we input F into the Pose Detector Zhou et al. (2022) to obtain the horizon and vanishing
point. The horizon is a straight line where the ground and sky meet in the image. It is represented by
the linear equation y = ax+ b. The vanishing point is the point where the parallel road boundaries
converge. Its coordinate is (xvp, yvp). Then, we get the roll angle θR and pitch angle θP of the
camera from the horizon and vanishing point:

θR = arctan(a), θp = arctan(
xvp − cu

f
) . (6)

Then we get the transformation matrix A based on θR and θP :

AR =

[
cosθR − sin θR 0
sin θR cos θR 0

0 0 1

]
, AP =

[
1 0 0
0 cos θP − sin θP
0 sin θP cos θP

]
, (7)

A = ARAP . (8)
After we get A and Pdir, we use A to convert Pdir to Pglo. The formula is as follows:

(x̄, ȳ, z̄u′v′) = (x, y, zuv)A , (9)

where (x, y, zuv) is the coordinate of Pdir and (x̄, ȳ, z̄u′v′) is the coordinate of Pglo after correction.

Finally, we convert Pglo to Zglo using formula (5).

3.4 VPF

The VPF module enhances object features using the visual prompt. As shown in Figure 2, the visual
prompt is a mask that reflects the distribution of feature attention. Note that the visual prompt is
only used during training to facilitate the training of the 2D Detector.

We obtain the attention map F ′ ∈ RW×H through dual Conv-BN-SiLU paths with a skip connection
and a Conv-Sigmoid layer. Meanwhile, we obtain object sizes from the 2D bounding boxes in GT.
Then we employ a learnable sigmoid-based weighting mechanism to assign weights ωi ∈ (0, 1)
based on object sizes:

wi =
1

1 + e(β·si−b)/T
, (10)

where Si ∈ (0,+∞) represents the size of the i-th object. β ∈ (0,+∞) indicates the sensitivity
to object size, where a larger value emphasizes smaller objects. b ∈ (0,+∞) adjusts the weight
baseline and a positive value elevate the weight distribution. T ∈ (0,+∞) is initialized to 1.0.
A larger value generates more uniform weight distributions. Note that β, b, and T are learnable
parameters.

We create a visual prompt mask Wm ∈ RŴ×Ĥ , where Ŵ and Ĥ are consistent with the width and
height of the input image Iin. We assign 1 + wi to each area covered by the 2D bounding box of
the i-th object, and set the area not covered by objects to 1 to preserve its attention values. For areas
with multiple objects, we use the maximum value of wi. We obtain a visual prompt VP ∈ RW×H

by performing a maximum pooling on Wm to be consistent with the size of F ′.
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Then we multiply F ′ and VP to obtain the adjusted attention map VF ′ ∈ RW×H . Finally, we
multiply VF ′ with the feature F to obtain the enhanced feature Fvp. Note that during testing, we
do not need a visual prompt and there is no GT in the testing dataset. Thus, Fvp is obtained by
multiplying F ′ and F , where F ′ serves as the attention map.

3.5 LOSS FUNCTION

The loss function for the first stage is denoted as LMDF . It is defined as follows:

LMDF = Ldir + Ldim + Lpose . (11)

Ldir represents the L1 loss of the Depth Detector in the MDF module. It is defined as follows:

Ldir = |Zdir − Z∗| × σdir + log(
1

σdir
) , (12)

where Z∗ represents the depth map of GT.

Ldim represents the L1 loss of the Dimension Detector in the MDF module. It is defined as follows:

Ldim =
∑

k∈{H,W,L}

|dk − d∗k| , (13)

where d∗k represents the 3D height, width, and length properties of objects from GT.

Lpose represents the loss of the Pose Detector in the 3DR module. It is defined as follows:

Lpose = ||A−A∗||F , (14)

where A∗ represents the transformation matrix of GT and || · ||F represents the Frobenius norm.

The loss function for the second stage is L2D, which constrains the 2D Detector to learn the offset,
center, orientation, and height properties. It is defined as follows:

L2D = Lcen + Loff + Lhei + Lori =
1

N

N∑
i=1

(|xi − x∗
i |+ |yi − y∗i |)

+
1

N

N∑
i=1

(|oxi − ox∗i |+ |oyi − oy∗i |)

+
1

N

N∑
i=1

|hi − h∗
i | · σi + log(σi) +

1

N

N∑
i=1

|θi − θ∗i | ,

(15)

where Lcen represents the center loss, Loff represents the offset loss, Lhei represents the height loss,
and Lori represents the orientation loss; h∗

i is the GT of the 2D height, σi is the reliability score
generated by the 2D Detector; (x∗

i , y
∗
i ), (o

x
i
∗, oyi

∗
), and θ∗i represent the center coordinates, offset

and the orientation angle from GT, respectively.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. Our experiments are conducted on the widely used KITTI dataset (Geiger
et al., 2012). The dataset includes 7,481 annotated images, split into a training set (3,712 images)
and a validation set (3,769 images). It also has a separate test set of 7,518 images. Objects are
categorized into three difficulty levels: Easy, Moderate (Mod), and Hard, which are determined
by factors such as the height of bounding boxes, occlusion, and truncation. KITTI also provides
evaluation protocols including Average Precision (AP) for 3D detection and bird’s eye view (BEV)
detection. We evaluate the performance using AP3D and APBEV for the 3D bounding box and
BEV, respectively. We focus on the car category with easy, mod, and hard. To facilitate comparison
with previous studies, we report detection results with an IoU threshold of 0.7 for the car category.
Note that we also have results on the nuScenes dataset in the supplementary material.
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Table 1: AP3D and APBEV of different methods on the KITTI test set.
Methods Extra data Test — AP3D(%) Test — APBEV (%)

Easy Mod. Hard Easy Mod. Hard
AutoShape (Liu et al., 2021) ICCV’21 CAD 22.47 14.17 11.36 30.66 20.08 13.10
DCD (Li et al., 2022) ECCV’22 23.81 15.90 13.21 32.55 21.50 18.25
MonoRun (Chen et al., 2021) CVPR’21 LiDAR 19.65 12.30 10.58 27.94 17.34 15.24
MonoDTR (Huang et al., 2022a) CVPR’22 21.99 15.39 12.73 28.59 20.38 17.14
SMOKE (Liu et al., 2020) CVPR’20

None

14.03 9.76 7.84 20.83 14.49 12.75
MonoPair (Chen et al., 2020) CVPR’20 16.28 12.30 10.42 24.12 18.17 15.76
MonoDLE (Ma et al., 2021) CVPR’21 17.23 12.26 10.29 24.79 18.89 16.00
MonoFlex (Zhang et al., 2021) CVPR’21 19.94 13.89 12.07 28.23 19.75 16.89
MonoCon (Liu et al., 2022a) AAAI’22 22.50 16.46 13.95 31.12 22.10 19.00
MonoGround (Qin & Li, 2022) CVPR’22 21.37 14.36 12.62 30.07 20.47 17.74
MPMonoD (Shi et al., 2023) WACV’23 20.08 13.72 11.34 - - -
GRAMO (Guan et al., 2024) FC’24 22.34 15.67 13.12 32.44 21.74 18.38
MonoCD (Yan et al., 2024a) CVPR’24 25.53 16.59 14.53 33.41 22.81 19.57
MonoMAE (Jiang et al., 2024a) NeurIPS’24 25.60 18.84 16.78 34.15 24.93 21.76
MonoDGP (Zhang et al., 2025) CVPR’25 26.35 18.72 15.97 35.24 25.23 22.02
VP-MonoMF(Ours) None 25.81 18.92 16.92 35.15 25.36 22.67

Implementation Details. We implement our method based on DLA34 (Yu et al., 2017) following
the settings in Yan et al. (2024a). The input image resolution is 1280 × 384. The feature map of the
backbone is 320 × 96 × 64. The Depth Detector, Dimension Detector, and 2D Detector attached to
the backbone consist of one Conv (3 × 3 × 256)-BN-ReLU and another Conv (1 × 1 × C ′) layer,
where C ′ is the output channel. In the training stage, we use the Adam optimizer with a batch size
of 8 for 100 epochs. The initial learning rate is 3× 10−4 and the decay weight is 1× 10−5. We run
the experiments on a PC with a single RTX 4090 GPU.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1 shows the AP3D and APBEV obtained on the KITTI test dataset. Note that the best results
are in bold and the second-best are underlined. Compared to all the methods, our method achieves
the best performance except for the easy objects in AP3D. Specifically, compared with the Mono-
MAE method, our method increases the AP3D by 0.21%, 0.08%, and 0.14% for easy, mod, and
hard, respectively. The APBEV also increases by 1%, 0.43%, and 0.91%. In addition, our method
achieves 0.2%/0.13%, and 0.95%/0.65% improvement in AP3D/APBEV than the state-of-the-art
MonoDGP method for mod and hard. The results demonstrate that VP-MonoMF benefits from
fusing multiple depths and the visual prompt for 3D detection.

4.3 ABLATION STUDY

We verify the effectiveness of each module, the contribution of different depths, and the utility of
the two-stage strategy and visual prompt on the KITTI.

Contribution of each module. Table 2 shows the contribution of each module, where “Baseline”
means that we do not use MDF, 3DR, and VPF modules. “MDF-” means that the 3DR module is
not included. The third line indicates that the MDF module achieves 4.92%/5.27%, 4.83%/4.56%,
and 3.99%/5.11% improvement in AP3D/APBEV on three levels of difficulty compared with “Base-
line”. This indicates that our 3D detection branches generate an accurate depth. In addition, the 3DR
module improves a significant 1.59%/3.28%, 2.73%/2.32%, and 2.37%/2.45% in AP3D/APBEV

compared with “MDF-”. It highlights the importance of reconstructing the depth map. When adding
the VPF module, it contributes to 2.9%/1.86%, 2.36%/2.29%, and 2.56%/1.58% improvement in
AP3D/APBEV , which demonstrates the effectiveness of the VPF module.

Contribution of different depths. Table 3 shows the contribution of different depths. Zloc, Zdir,
Zglo, and Zcom indicate that we use them separately as outputs of the MDF module. We find
that Zloc and Zdir have minor performance differences. However, compared to Zdir, Zglo signif-
icantly achieves 3.4%/3.85%, 2.62%/2.48%, and 1.85%/1.14% improvement in AP3D/APBEV . It
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Table 2: Contribution of each module.
Baseline MDF- 3DR VPF Val — AP3D(%) Val — APBEV (%)

Easy Mod. Hard Easy Mod. Hard
✓ × × × 22.60 13.74 11.19 31.45 21.95 18.32
✓ ✓ × × 25.93 15.84 12.81 33.44 24.19 20.98
✓ ✓ ✓ × 27.52 18.57 15.18 36.72 26.51 23.43
✓ ✓ ✓ ✓ 30.42 20.93 17.74 38.58 28.80 25.01

Table 3: Contribution of different depths.

Depth Val — AP3D(%) Val — APBEV (%)
Easy Mod. Hard Easy Mod. Hard

Zloc 22.92 15.46 13.75 30.56 23.49 21.11
Zdir 23.51 16.24 14.32 31.96 23.89 22.62
Zglo 26.91 18.86 16.17 35.81 26.37 23.76
Zcom 30.42 20.93 17.74 38.58 28.80 25.01

Figure 3: The heatmaps without and with the visual prompt. The visual prompt focuses on the
area where objects are located. The red rectangle represents the 2D bounding box of the object.
The brighter color indicates a higher attention score.VP -/VP represents the original attention map
without/with a visual prompt, respectively.

shows the effectiveness of 3DR. In addition, Zcom contributes to 3.51%/2.77%, 2.07%/2.43%, and
1.57%/1.25% improvement in AP3D/APBEV compared with Zglo, which proves the effectiveness
of depth fusion.

Contribution of two-stage and visual prompt. Table 4 shows the impact of the two-stage and
the visual prompt. Without the visual prompt indicates that we only include the testing data flow
in the VPF module. One-stage refers to training 3D detection branches and 2D detection branches
simultaneously. Specifically, we train them in the second stage without freezing the DLA and MDF
modules. We find that the performance of the one-stage is lower than that of the two-stage on
all levels of difficulty. It indicates that the two-stage pipeline reduces the mutual impact during
training. We also find that the visual prompt improves a significant 2.12%/1.43%, 1.78%/1.68%,
and 1.98%/1.15% in AP3D/APBEV , which justifies the effectiveness of the visual prompt.

4.4 QUALITATIVE RESULTS

Figure 3 shows the visualization of the visual prompt. Iin is the input image.VP -/VP is the original
attention map without/with a visual prompt, respectively. We use heatmaps to reflect the attention
in the image, in which a brighter color indicates higher attention scores. We find that VP has higher
attention for objects, especially for small objects. As shown in Figure 3, the color of small targets is
brighter than VP -, which validates the effectiveness of the visual prompt.

Figure 4 shows the 3D detection bounding boxes and the BEV obtained from different estimated
depths. Sloc, Sdir, Scom mean that we use Zloc, Zdir, Zcom as the depth, respectively. Sloc+Sdir

means using fused Zloc and Zdir as the depth. We find a large deviation between the predicted box
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Table 4: Contribution of the two-stage and the visual prompt.

Stage Visual prompt Val — AP3D(%) Val — APBEV (%)
Easy Mod. Hard Easy Mod. Hard

One-stage w/o 25.64 17.12 13.65 34.08 24.71 20.76

Two-stage w/o 28.30 19.15 15.76 37.15 27.12 23.86
w 30.42 20.93 17.74 38.58 28.80 25.01

Scom
Sdir+ Sloc Sdir Sloc

Figure 4: Qualitative examples on the KITTI validation set. Each row displays a 3D scene detection
result along with four BEV visualizations. The BEV visualizations reflect the differences in depth.
From left to right: Scom, Sloc+Sdir, Sloc, Sdir. Red represents the GT of the box and green
represents the prediction box.

and the GT when using Sloc or Sdir. For example, the prediction box is obviously non-overlapped
with the GT for Sloc and Sdir. However, we find that Sloc+Sdir reduces the deviation. When using
Scom, the predicted box is closer to the GT. This visualizes the effectiveness of our depth fusion and
the 3DR module.

5 CONCLUSION

In this paper, we propose a two-stage multiscale monocular 3D object detection method with a
visual prompt. In the first stage, we train an MDF module that extracts depth information on a
multiscale scale to enhance accuracy. In the second stage, we focus on training the 2D Detector
with the enhanced features from VPF. In addition, we reconstruct a more accurate depth map by
correcting the camera pose using the camera transformation matrix. To improve the performance on
small objects, we use a visual prompt to enhance the features of the object area, which dynamically
adjusts the feature enhancement. Extensive results demonstrate that our method achieves state-of-
the-art results on the KITTI dataset.

Limitations. However, the performance on easy is not the best. This is because our method pays
more attention to small objects. We believe that it can be improved by adjusting the weights of
different objects. Meanwhile, the reliability scores estimated by the detectors may be biased, which
affects the accuracy of the fused depth map. However, our method can also achieve satisfactory per-
formance when using accurate reliability scores. In the future, we will focus on the aforementioned
problems and apply it to scenarios where there are severe changes in the environment.
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SUPPLEMENTARY MATERIAL

A NETWORK ARCHITECTURE OF THE POSE DETECTOR

Figure 5: Structure of the Pose Detector.

In section of 3DR, we utilize the Pose Detector to obtain the horizon and vanishing point in 3DR.
The detailed structure of the Pose Detector is shown in Figure 5. It consists of a 3 × 3 Convolution
layer, a Max Pooling layer, and three Fully Connected layers. The input of the Pose Detector is the
feature map F from the backbone network DLA. The output vector P = (a, b, xvp, yvp) , which is

13

https://api.semanticscholar.org/CorpusID:268889749
https://api.semanticscholar.org/CorpusID:268889749
https://api.semanticscholar.org/CorpusID:30834643
https://api.semanticscholar.org/CorpusID:30834643
https://api.semanticscholar.org/CorpusID:268692167
https://api.semanticscholar.org/CorpusID:268692167
https://api.semanticscholar.org/CorpusID:233033411
https://api.semanticscholar.org/CorpusID:233033411
https://api.semanticscholar.org/CorpusID:275715898
https://api.semanticscholar.org/CorpusID:275715898
https://api.semanticscholar.org/CorpusID:255440628
https://api.semanticscholar.org/CorpusID:255440628


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Inference Time, computation cost, and parameter size of VP-MonoMF
Methods Inference Time FLOPs Param.

MonoDETR (senrui Zhang et al., 2022) 43ms 62.12G -
GUPNet (Silberstein et al., 2016) 40ms 62.32G -
MonoDTR (Huang et al., 2022b) 37ms 120.48G -
MonoMAE (Jiang et al., 2024b) 36ms - -

MonoCD (Yan et al., 2024b) 19ms 142.89G 16.52M
MonoDGP (Pu et al., 2025) 42ms 68.99G 38.90M

Ours 20ms 153.05G 17.67M

Table 6: Evaluation on the nuScenes validation set.
Methods mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓
CenterNet3D (Tang et al., 2020) 0.306 0.328 0.716 0.264 0.609
FCOS3D (Wang et al., 2021) 0.343 0.415 0.725 0.263 0.422
PETR (Liu et al., 2022b) 0.370 0.442 0.711 0.251 0.433
WeakPETRv2 (Han et al., 2024) 0.375 0.421 0.809 0.272 -
BEVFormer (Li et al., 2024a) 0.416 0.517 0.673 0.274 0.372
FCOS3D+MonoPlace3D (Parihar et al., 2025) 0.370 0.440 - - -
Ours 0.394 0.464 0.645 0.247 0.364

R1×4. This Pose Detector has achieved state-of-the-art performance and has been widely used in
3D object detection (Chang et al., 2018; Zhou et al., 2025).

B EXPERIMENT

B.1 EVALUATION OF RUNNING SPEED, COMPUTATION COST, AND PARAMETER SIZE

Table 5 shows the inference time, computation cost, and number of model parameters. We achieve
better performance compared with MonoDGP in terms of inference time and parameters. Mean-
while, our performance is similar to MonoCD. Note that we achieve the best performance consider-
ing AP3D and APBEV for mod and hard in Table 1 of the paper. For easy, we achieve the second
best performance.

B.2 EVALUATION ON NUSCENES DATASET

To further prove the effectiveness of our method, we evaluate it on another popular dataset nuScenes.
nuScenes comprises 1,000 video scenes, including RGB images captured by 6 surround-view cam-
eras. The dataset has a training set (700 scenes), a validation set (150 scenes), and a test set (150
scenes). We report detection results on the validation set following the same setup (Tang et al., 2020;
Wang et al., 2021; Liu et al., 2022b; Han et al., 2024) to facilitate comparison with previous studies.
The performance of different methods is reported in Table 6.

Table 6 shows the mean Average Precision (mAP), nuScenes Detection Score (NDS), mean Average
Translation Error (mATE), mean Average Scale Error (mASE) and mean Average Orientation Error
(mAOE). mASE evaluates how accurately the dimension detector predicts the size of objects com-
pared to their ground-truth annotations. Our method achieves the best performance in mASE due
to the two-stage training framework which reduces the negative impact of the 2D detection branch
on the dimension detector. mATE quantifies how well our method predicts the center position of
detected objects compared to their ground-truth locations. mAOE quantifies the angular error be-
tween the predicted orientation and the true orientation of detected objects. We also achieve the best
results on mAOE and mATE because our visual prompt effectively contributes to accurate center
localization and orientation.

B.3 MORE VISUAL RESULTS

This is an extension of the results in Section of Qualitative Results of the paper. Figure 6 shows more
visualization results. We observe that the detection accuracy of the target using Zcom is higher, and
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Figure 6: More visual results of 3D bounding boxes and BEV.

it has a satisfactory detection effect on small targets. This is because the operations of reconstructing
depth and fusing depth through reliability scores improve the generalization ability of the estimated
depth in different environments, making it more accurate when locating objects.
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