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ABSTRACT

Invariant learning methods try to find an invariant predictor across several environ-
ments and have become popular in OOD generalization. However, in situations
where environments do not naturally exist in the data, they have to be decided by
practitioners manually. Environment partitioning, which splits the whole training
dataset into environments by algorithms, will significantly influence the perfor-
mance of invariant learning and has been left undiscussed. A good environment
partitioning method can bring invariant learning to applications with more general
settings and improve its performance. We propose to split the dataset into several
environments by finding low-correlated data subsets. Theoretical interpretations
and algorithm details are both introduced in the paper. Through experiments on
both synthetic and real data, we show that our Decorr method can achieve outstand-
ing performance, while some other partitioning methods may lead to bad, even
below-ERM results using the same training scheme of IRM.

1 INTRODUCTION

Machine learning methods achieve great successes in image classification, speech recognition, and
many other areas. However, these methods rely on the assumption that training and testing data
are independently and identically distributed. In many real application scenarios such as autopilot,
healthcare, and financial prediction, this i.i.d. assumption may not be satisfied. People are extremely
cautious in using machine learning models in these risk-sensitive applications since the performance
may drop severely in testing time, and the cost of failure is huge (Shen et al., 2021; Zhou et al.,
2021; Geirhos et al., 2020). Arjovsky et al. (2020) proposed Invariant Risk Minimization (IRM) to
tackle this so-called Out-of-Distribution (OOD) generalization problem. Its goal is to find a data
representation such that the optimal classifier is the same for all environments, to ensure the model
would generalize to any testing environment or distribution. This method succeeds on some datasets
such as Colored MNIST (CMNIST), an artificial dataset that has a distributional shift from training
set to testing set. Inspired by IRM, many other invariant learning methods (Rosenfeld et al., 2020;
Ahmed et al., 2020; Ahuja et al., 2020; Lu et al., 2021; Chattopadhyay et al., 2020) have been
proposed and achieved excellent OOD performance.

However, to implement these invariant learning methods, we first need to determine an environment
partition of the training set. In most existing works, the environment partition is determined simply
by the sources of the data or using the metadata. However, in many cases, such a natural partition
does not exist or is hard to determine, thus is not suitable for a lot of datasets (Sohoni et al., 2020).
For example, in CMNIST, two environments have corr(color, number) = 0.8, 0.9 respectively, and
we know each image belongs to which environment in training time. A more realistic setting is that
we do not know this environment information. Even if a natural environment partition is available,
we can still question whether this partition is the best for finding a well-generalized model since there
are numerous possible ways to split the data into several environments.

A few works are tackling this environment partitioning issue. Creager et al. (2021) proposed
Environment Inference for Invariant Learning (EIIL), which learns a reference classifier Φ using
ERM and then finds the partition that maximally violates the invariance principle (i.e., maximize
the IRMv1 penalty) on Φ. Just Train Twice (JTT) (Liu et al., 2021a) also trains a reference model
first, and trains a second model that simply upweights the training examples that are misclassified
by the reference model. However, the success of these two-step mistake-exploiting methods (Nam
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et al., 2020; Dagaev et al., 2021) relies heavily on the failure or not of the reference model. Another
straightforward idea for partitioning is through clustering. Matsuura & Harada (2020); Sohoni et al.
(2020); Thopalli et al. (2021) used standard clustering methods like k-means to split the dataset on
the feature space. Liu et al. (2021b) aimed to find a partition that maximizes the diversity of output
distribution P (Y |Φ) by clustering.

Though training and testing sets are not i.i.d in OOD setting, there should be some common properties
between these two sets that can help the generalization. A well-accepted and general OOD assumption
of covariate shift is Ptrain(Y |X) = Ptest(Y |X) (Shen et al., 2021). This implies that given X , the
outcome distribution should be the same in the training and testing distributions. IRM’s invariance
assumptionE[Y |Φ(Xe)] = E[Y |Φ(Xe′)] (Arjovsky et al., 2020) shares the similar idea. From either
of the two assumptions, we can derive that given X or extracted features Φ(X), the environment
label eX is independent of the outcome Y , because of the corollary P (X ∈ e|X,Y ) = P (X ∈ e|X).
However, most of the environment partitioning methods make use of the information of outcome Y .
When the data has a high signal-to-noise ratio (e.g., image data), using Y is not so harmful, since
X already contains most information of Y . But when we encounter noisy data (e.g., tabular data),
these methods often split the data points having similar, or even identical features, into different
environments due to the difference in Y . For example, two data points having the same X may be
partitioned into separate environments just because the error terms (irreducible and purely stochastic)
in their Y take distinct values. This causes different conditional distributions of the outcome across
environments, which violates the covariate shift assumption. The performances of these methods on
high-noise data are left untested indeed. Although k-means clustering does not rely on the information
of Y (only relies on feature space), there are few theoretical bases.

This paper aims to find an environment partitioning method for relatively high-noise data that can
make IRM achieve better OOD generalization performance. We notice that a model trained on a
dataset with uncorrelated features would generalize well against correlation shift. Meanwhile, IRM
aims to find an invariant predictor across environments, ensuring that the predictor performs well in
any environment. Motivated by these facts and some theoretical analysis made by us, we propose
Decorr, a method to find several subsets with low correlation in features as the environment partition.
Our method has low computational cost and does not rely on the outcome Y at all. Through synthetic
data and real data experiments, we show that Decorr achieves superior performance combined with
IRM in most OOD scenarios set by us, while using IRM with some other partitioning methods may
lead to bad, even below-ERM results.

2 BACKGROUND

Invariant Risk Minimization. IRM (Arjovsky et al., 2020) considers the dataset De = {(xei , yei )}
collected from multiple training environments e ∈ Etr, and tries to find a model that performs
well across a large set of environments Eall where Etr ⊂ Eall. Mathematically speaking, that is to
minimize the worst-case risk Rood(f) = max

e∈Eall

Re(f), where Re(f) = Ee[l(f(x), y)] is the risk

under environment e. The specific goal of IRM is to find a data representation Φ and a classifier w,
such that w is the optimal classifier for all the training environments Etr under data representation Φ.
It can be expressed as a constrained optimization problem:

min
w,Φ

∑
e∈Etr

Re(w ◦ Φ),

subject to w ∈ arg min
w̄

Re(w̄ ◦ Φ), for all e ∈ Etr.
(1)

To make the problem solvable, the practical version IRMv1 is expressed as

min
f

∑
e∈Etr

Re(f) + λ||∇w|w=1R
e(w · f)||2, (2)

where f indicates the entire invariant predictor, and w = 1 is a fixed dummy scalar. The gradient
norm penalty can be interpreted as the invariance of the predictor f .

Environment Partitioning Methods. To our best knowledge, there are mainly two types of
partitioning methods in previous literature. We briefly introduce the idea of each here. Clustering
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methods for environment partitioning have been introduced in Matsuura & Harada (2020); Sohoni
et al. (2020); Thopalli et al. (2021). Their idea is to first extract features from data, then cluster
the samples based on the features into multiple groups. All proposed methods use k-means as the
clustering algorithm. EIIL (Creager et al., 2021) proposes an adversarial method that partitions and
obtains two environments such that they achieve the highest IRM penalty with an ERM model. In
detail, the environment inference step tries to find a probability distribution qi(e

′) := q(e′|xi, yi) to
maximize the IRMv1 regularizer CEI(Φ,q) = ||∇w|w=1R̃

e(w ◦Φ,q)||, where R̃e is the q-weighted
risk. Once q∗ has been found, the inferenced environment can be drawn by putting data in one
environment with probability q∗ and the remaining in the other environment.

Feature Decorrelation. The use of correlation for feature selection has been widely applied in ma-
chine learning (Hall et al., 1999; Yu & Liu, 2003; Hall, 2000; Blessie & Karthikeyan, 2012). Recently,
decorrelation method has been introduced to the field of stable learning and OOD generalization.
Zhang et al. (2021) proposed to do feature decorrelation via learning weights for training samples.
Shen et al. (2020) first clustered the variables according to the stability of their correlations, then
decorrelated the pair of variables in different clusters only. Kuang et al. (2020) jointly optimized
the regression coefficient and the sample weight that controls the correlation. However, as far as we
know, there is no discussion on the decorrelation for dataset partitioning for better invariant learning,
which is what we focus in the following sections.

3 UNCORRELATED TRAINING SET

Our work is directly related to the concept of uncorrelated training set. To give an insight into why we
endeavor to find nearly uncorrelated subsets of samples as environments, we show in the following
that this would benefit OOD generalization in many common OOD data-generating regimes.

Linear regression. We start by giving an insight into the merit of using uncorrelated features to do
linear regression. We consider the linear regression from features Z ∈ Rn×p to targets y ∈ Rn, where
Z and y are de-meaned by preprocessing. If ZTZ is non-singular, the regression coefficients will be
β∗ = (ZTZ)−1ZT y. If one of the features zi is uncorrelated with all the other features, then zTi Z
is 0 except for the i-th component. We can calculate β∗i = (zTi zi)

−1zTi y = cov(zi, zi)
−1cov(zi, y)

by block diagonal matrix inversion. Therefore, the coefficient of zi is only determined by y and zi
itself. So the correct coefficient can be found even if the data contain any environment features, and
the coefficient is robust against possible spurious correlations. In ideal situations where any two
features in Z are uncorrelated (i.e., ZTZ is a diagonal matrix), then any β∗i will be determined by y
and zi only. In this case, we can treat the whole multivariate linear regression as p separate univariate
linear regressions. So the regression coefficients stay correct for any other distribution of Z. If Z is
highly correlated, the linear model may be wrong if the distribution of Z has shifted. From another
perspective, the estimation β∗ will have a low variance if there is little correlation in Z.

Example proposed by IRM. Then we focus on more specific examples. An example originally
proposed by Wright (1921) and mentioned in Arjovsky et al. (2020); Aubin et al. (2021) can be
expressed as follows: for every environment e ∈ E , the data in De are generated by

x1 ∼ N (0, (σe)2I),

ỹ ∼ N (Wyxx1, (σ
e)2I),

x2 ∼ N (Wxy ỹ, I),

(3)

where x1, ỹ ∈ Rd1 , x2 ∈ Rd2 . For simplicity, we consider the case where d1 = d2 = d. The task
is to predict y = 1T ỹ given x = (x1, x2). We can write Wxy ỹ ∼ N (x2, I) if we ignore the causal
mechanics, so using x2 to predict y has a fixed noise. Therefore, if we train a model with data in
De with a small σe, the model would rely on x1 more because x1 has less noise for predicting y.
Combined with the following proposition stating that low correlation between x1 and x2 implies low
σe, we can show that training the model on low-correlated data is better for OOD generalization.

Proposition 1. The absolute value of correlation between any two elements respectively from x1 and
x2 increases as σe increases.
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Proof. Let Z1, Z2, Z3 ∼ Nd(0, I) be independent d-dimensional standard Gaussian variables. We
can express (3) as

x1 = σeZ1, ỹ = Wyxx1 + σeZ2, x2 = Wxy ỹ + Z3.

Then the covariance matrix between the two random vectors is

Cov(x1, x2) = E[x1x
T
2 ] = E[σeZ1(σeWxyWyxZ1 + σeWxyZ2 + Z3)T ]

= E[σeZ1σ
eZT

1 (WxyWyx)T ] = (σe)2(WxyWyx)T := (σe)2Γ.

Any element of x1 has variance (σe)2. The variance of the i-th element of x2 is (a2
i + b2i )(σe)2 + 1,

where a2
i , b

2
i are the (i, i)-th elements of the covariance matrix ofWxyWyxZ1andWxyZ2 respectively.

The correlation between the i-th element of x1 and the j-th element of x2 is

Covij(x1, x2)√
covii(x1, x1)covjj(x2, x2)

=
(σe)2Γij√

(σe)2[(a2
j + b2j )(σe)2 + 1]

=
σe√

(a2
j + b2j )(σe)2 + 1

Γij .

The absolute value of the above term is monotonically increasing as σe increases.

From the above proposition, an environment with low correlation between x1 and x2 implies low σe,
which makes it easier for models to learn the invariant relation.

Example proposed by the risks of IRM. Then we consider the Structural Equation Model proposed
by Rosenfeld et al. (2020), which gives a clear and general data generating model under the OOD
context. Assume data are drawn from E training environments E = {e1, e2, ..., eE}. For a given
environment e, a data point is obtained by first randomly drawing a label y, then drawing invariant
features zc ∈ Rdc and environmental features ze ∈ Rde based on the value of y. Finally, the
observation x is generated. The whole procedure is as follows:

y =

{
1, with probability η,
− 1, otherwise,

(4)
zc ∼ N (y · µc, σ

2
cI),

ze ∼ N (y · µe, σ
2
eI),

x = f(zc, ze).

(5)

We hope to find a classifier that only uses the invariant features and ignores all the environmental
features. Rosenfeld et al. (2020) pointed out if we can find a unit-norm vector p and a fixed scalar µ̃
such that pTµe = σ2

e µ̃, ∀e ∈ E , then the IRM classifier would have a coefficient 2µ̃ on the linear
combination of environment features pT ze. The condition is easily satisfied with a large de or a small
E, therefore the vulnerability of IRM is shown. However, we have the following lemma:
Lemma 1. If zc and ze are uncorrelated under a given environment e, then µe = 0.

Proof. Consider the correlation between any two elements p, q respectively from zc and ze:

p ∼ N (y · ac, σ2
c ), q ∼ N (y · ae, σ2

e), (6)

where ac, ae are the corresponding elements in µc, µe. Let z1, z2 be independent standard normal
variables, we can calculate the covariance between p and q:

cov(p, q) = E[(p− Ep)(q − Eq)] = E[(yac + σcz1 − (2η − 1)ac)(yae + σez2 − (2η − 1)ae)]

= E[(y − 2η + 1)2acae] = acaevar(y).

Under the natural assumption that ac 6= 0 and var(y) > 0, it is obvious that cov(p, q) = 0 ⇐⇒
ae = 0. Applying this result to all the elements in µe, we have µe = 0.

If µe = 0, then it is only possible that µ̃ = 0. Now the coefficient of IRM classifier on pT ze is also 0,
which rescues the above failure of IRM. Moreover, this lemma can lead to the following result:
Theorem 1. Assume features of one training environment e0 are uncorrelated, and there exists an
IRM representation that can be written as Φ = Af−1, A = (Ap×dc

1 , Ap×de

2 ) ∈ Rp×(dc+de) . If
there exists a matrix T such that TA = (A1, 0), then the IRM classifier w1×p does not use the
environmental features ze.
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Proof. Our full model can be written as w ◦ Φ(x) = wAf−1(x) = wA(zTc , z
T
e )T . We prove by

contradiction. If w uses ze, i.e., the last de elements of wA is not all 0, then we can find a better
classifier w∗ = wT . Now w∗ ◦ Φ(x) = w(A1, 0)(zTc , z

T
e )T = wA(zTc , 0

T )T . From Lemma 1, we
know ze ∼ N (0, σ2

eI) in environment e0. Therefore, w ◦ Φ(x) and w∗ ◦ Φ(x) are both normal
variables with the same mean, and the former has more variance (so more risk under e0) than the latter
one. Therefore, w does not satisfy the constraint in Equation (1), so w is not an IRM classifier.

Note that A is a p× (dc + de) matrix. The existence of T can be ensured if Rank(A) = dc + de,
so the condition of this theorem is satisfied as long as p ≥ dc + de. Actually, the existence of T
implies that Φ can be linearly transformed to the invariant-features-only version. Furthermore, one
uncorrelated environment is already enough to eliminate environment features. We again see the
power of uncorrelated training set.

Based on the insight that IRM trained on environments with lower correlation would have great merit,
we propose to obtain the environments by finding low-correlated subsets from the whole dataset. In
this paper, we focus on non-image data. So we treat observations X itself as features Z, and the
problem now becomes to finding environments from observations X that have low correlation.

4 PROPOSED METHOD

In this section, we focus on how to find a subset of data X̃ ⊂ X , such that X̃ has low correlation
and thus is suitable for IRM learning. For a given matrix of observations Xn×p, its correlation
matrix is denoted as RX = (rij)p×p. Then we use the distance between RX and the identity
matrix I to evaluate how uncorrelated X is. We use the square of Frobenius distance d2(RX , I) =∑p

i,j=1(rij − δij)2 as the optimization objective. Our target can be expressed as follows:

min
X̃⊂X

d2(RX̃ , I), (7)

with some constraints on the size of X̃ . The above subset choosing problem has a large feasible set
and is hard to solve, so we try to minimize an alternative soft version that turns the choice of subset
into the optimization of sample weights. Given a weight vector wn×1 for the observations in X , the
weighted correlation matrix Rw

X = (rwij) is calculated as in Costa (2011). Now we can summarize the
correlation minimization problem as

min
w∈[0,1]n

d2(Rw
X , I), with constraints on w, (8)

which can be optimized. Note that the i-th element of the weight vector w can be seen as the
probability of sampling the i-th point to the new environment X̃ from the full set X . With the
restriction of w ∈ {0, 1}n, (8) degenerates to the original form (7).

The above target is hard to converge due to the lack of restrictions on w. Now we propose two
restrictions on w. Let k be the number of environments we decide to obtain, we first restrict the mean
of weight 1

n1Tw = 1
k . This restriction prevents too many small elements in w, which causes small

sample size and high variance in partitioned environments. We implement this restriction by adding a
penalty term λ( 1

n1Tw − 1
k )2 on the objective. Also, we restrict wi ∈ [p0, 1] instead of wi ∈ [0, 1],

where p0 is a small number close to 0. This restriction boosts the convergence of optimization and
ensures that all the data in the training set can be chosen for the partitioned set, so that the model
trained on the partitioned set can be adapted to the full distribution of observations instead of a
restricted area. This can also be interpreted as the leverage between diversity shift and correlation
shift (Ye et al., 2021).

To split the training dataset into environments ∪kj=1Xj = X , we repeatedly optimize the target in
Equation (8) for the remaining sample set, and choose the samples to form one new environment at
a time. We summarize our method in Algorithm 1. After environments have been decided, we use
IRM as the learning scheme for OOD generalization.

To visualize the effects of several environment partitioning methods, we run EIIL, k-means, and
Decorr on a two-dimensional toy dataset where x0 and x1 are positively correlated, and y equals x0

plus an error term. We draw their partitioning in Figure 1. We can see no apparent patterns in EIIL
partition, implying that EIIL heavily relies on the label y. Such a partition is far from what we expect
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Algorithm 1: The Decorr Algorithm
Input: training set X = {xi}, number of environments partitioned k, restriction parameter p0,

learning rate α, max epochs T , and λ (suggested to be 100)

Output: environments
k
∪

j=1
Xj = X

Initialization: remaining set Xr = X
for j = 1, 2, . . . , k − 1 do

Initialization: re-denote Xr = {xi}|Xr|
i=1 , and randomly initialize

wi ∼ Uniform [p0, 1], i = 1, 2, . . . , |Xr|; let t = 0
while not converged and t < T do

L(w) = d2(Rw
Xr
, I) + λ( 1

|Xr|1
Tw − 1

k−j+1 )2

w = w − α∂L(w)
∂w

t← t+ 1
end
Let xi ∈ Xj with probability wi, for i = 1, 2, . . . , |Xr|
Xr ← Xr −Xj

end
Xk ← Xr

EIIL k-means Decorr

Figure 1: Partitioning results of two environments given by different methods on a toy dataset.

the environments would be. k-means and our Decorr both display some spacial features. Decorr splits
the data into two kinds of covariate relations: positively correlated (triangle) and nearly not correlated
(round), with a huge difference between these two environments. Though k-means also splits the
data into two parts in covariate space, these two parts of data share similar properties as covariates
are positively correlated in both of the environments. Therefore, we can expect k-means partitioning
may have less effect for IRM since there is only a mean shift between the two environments.

5 EXPERIMENTS

We evaluate four different environment partitioning methods: pure random, EIIL (Creager et al.,
2021), k-means, and Decorr for IRM, and the whole procedure of HRM (Heterogeneous Risk
Minimization, Liu et al. (2021b)) on some experiments. Meanwhile, we also implement the original
IRM (and V-REx (Krueger et al., 2021) in real data experiments only) when environments naturally
exist, and ERM for comparison as well. In all experiments, we set p0 = 0.1, α = 0.1, T = 5000,
and λ = 100 for Decorr and set different k for different situations. For example, in synthetic data
experiments, k is the true number of environments in training data (from 2 to 8). In most cases,
k = 2 or 3 in our experiments. Comparatively, in related works such as EIIL, HRM, or those using
k-means, the number of training environments was set to be 2 or 3. We use the original or popular
implementations of IRM1, EIIL2, and HRM3.

1https://github.com/facebookresearch/InvarianceUnitTests
2https://github.com/ecreager/eiil
3https://github.com/LJSthu/HRM
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Table 1: IRM example: MSE between linear regression coefficients and the ground truth.

number of envs = 2 number of envs = 3

Method d = 2 d = 5 d = 10 d = 20 d = 2 d = 5 d = 10 d = 20

ERM 0.28(0.01) 0.28(0.02) 0.29(0.02) 0.28(0.02) 0.46(0.01) 0.46(0.01) 0.46(0.02) 0.46(0.02)
random+IRM 0.28(0.06) 0.27(0.04) 0.27(0.02) 0.29(0.02) 0.45(0.06) 0.49(0.10) 0.49(0.04) 0.46(0.04)

EIIL 0.29(0.05) 0.35(0.06) 0.36(0.03) 0.38(0.04) 0.17(0.08) 0.31(0.08) 0.34(0.03) 0.37(0.04)
k-means+IRM 0.21(0.05) 0.27(0.04) 0.27(0.03) 0.28(0.02) 0.33(0.08) 0.33(0.10) 0.38(0.07) 0.35(0.04)

HRM 0.38(0.17) 0.43(0.06) 0.44(0.04) 0.47(0.02) 0.50(0.00) 0.50(0.00) 0.50(0.00) 0.49(0.01)
Decorr (ours) 0.13(0.03) 0.16(0.09) 0.16(0.06) 0.09(0.02) 0.25(0.02) 0.29(0.04) 0.26(0.05) 0.25(0.03)
IRM (oracle) 0.02(0.00) 0.02(0.01) 0.02(0.00) 0.02(0.00) 0.07(0.03) 0.04(0.01) 0.04(0.02) 0.02(0.00)

Although dealing with image data is not the main purpose of this paper, we also implement Decorr
on two image datasets CMNIST and Waterbirds to show that our method is capable of applying on
different types of datasets. The results on image datasets are shown in Appendix A, in which the
success of Decorr is exhibited.

5.1 SYNTHETIC DATA EXPERIMENTS

IRM example. Following Aubin et al. (2021), we test the performance of different methods on
IRM example generated by Equation (3) with Wxy = Wyx = I and σe = 0.1, 1.5, 2 for three
different e. In each environment e, 1,000 samples are generated. We want the model to learn the true
causal relation, which is y = 1Td x1 + ε, instead of using the spurious correlation between x2 and y.
So we evaluate the performance of models by calculating MSE between linear regression coefficients
and the ground-truth coefficients β∗ = (1d, 0d). We evaluate in cases with different numbers of
original environments (e.g., the first two σe) and different data dimensions d. The penalty weight is
β = 10 for IRM. Results are shown in Table 1, with 10 trials to calculate the standard deviation. In
most cases, Decorr provides the closest coefficients to β∗. Original IRM (the last row) with known
true environments certainly can produce the true coefficients.

Risks of IRM. Next, we do the experiment on data generated by Equation (4) and (5). We let the
number of environments in training data vary from 2 to 8, and for each case, do training and testing
10 times for averaging for evaluating different methods. The results are shown in Figure 2. In each
training and testing, the settings are η = 0.5, µc = Z1 + 0.5sign(Z1), µe = 1.5Z2 + Ze, σ2

c = 2,
σ2
e = 0.1, where Z1 ∈ R3, Z2 ∈ R6, Ze ∈ R6 are all sampled from standard normal. Z1, Z2 are

shared across environments and Ze is not. In each environment e, we sample 1,000 points. After
training with the fixed number of environments, 5,000 different test environments (5,000 different
new Ze) are generated to compute the worst-case error with them. In this experiment, f is the identity
function and logistic classifiers are learned. The penalty weight is β = 104 for IRM. Most of the
hyper-parameters are the same as in the experiment in Rosenfeld et al. (2020), except an additional
sign(Z1) term to make invariant features worth learning, and a lower σ2

e to make it more difficult to
capture invariant features. Figure 2 shows that Decorr can produce stable low error rate.

5.2 REAL DATA EXPERIMENTS

Implementation details. For each task, we use MLPs with two hidden layers with tanh activations
and dropout (p = 0.5) after each hidden layer. The size of each hidden layer is 2int(log2 p)+2, where
p is the input dimension. The output layer is linear or logistic. We optimize the binary cross-entropy
loss for classification and MSE for regression using Adam (Kingma & Ba, 2015) with default settings
(learning rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8). niter = 20000 and an L2 penalty
term with weight 0.001 is added. For IRM, the penalty weight is β = 104. Except for occupancy
estimation, all the other experiments use k = 2 for Decorr and other methods. If not mentioned,
the original environment partitions for IRM and REx are naturally decided by timestamps of the
observations.
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Table 2: Financial indicators: task set 1 uses three environments as training set, and task set 2 uses
one environment as training set.

Task Set 1 Task Set 2

Method Avg. Error Worst Error STD Avg. Error Worst Error STD

ERM 45.02(0.00) 52.92(0.12) 5.20 46.79(0.01) 51.05(0.05) 2.44
random+IRM 45.95(0.28) 53.77(0.58) 4.27 46.57(0.26) 52.03(0.79) 2.57

EIIL 48.95(0.16) 57.37(0.65) 4.52 48.97(0.38) 54.62(0.70) 2.71
k-means+IRM 45.20(0.34) 53.64(0.44) 6.19 46.79(0.28) 54.72(1.22) 3.43

HRM 44.64(0.00) 53.52(0.03) 5.71 46.71(0.00) 51.17(0.00) 2.48
Decorr (ours) 43.99(0.10) 51.61(0.04) 5.33 43.96(0.25) 50.23(1.17) 2.81

IRM 45.86(0.14) 56.38(0.21) 6.27
V-REx 44.08(0.02) 55.41(0.12) 6.30

Figure 2: Risks of IRM. Figure 3: Adult: using race
as the bias feature.

Figure 4: Adult: using sex
as the bias feature.

Financial indicators. The task for financial indicators dataset4 is to predict if the price of a stock
will increase in the next whole year, given the financial indicators of the stock. The dataset is split
into five years from 2014 to 2018. We follow the implementation details in Krueger et al. (2021),
consider each year as a baseline environment, and use any three environments as the training set, one
environment as the validation set for early stopping, and one environment as the testing set. There is
a set of 20 different tasks in total. We also collect another set of 20 tasks, using only one environment
as the training set, one as the validation set, and three as the testing set in each task. The original
IRM and REx cannot work now because there is only one explicit environment in training data. We
follow Shen et al. (2021), evaluate all methods with average error rate, worst-case error rate, and
standard deviation on these two task sets. Results are shown in Table 2, where Decorr wins the best
performance.

Adult. Adult is a tabular dataset extracted from a census in USA. The task is to classify if the
individual’s yearly income is above or below 50,000 USD based on given characteristics.5 We remove
all the categorical variables except race and sex, both of which are transformed into binary values
{0, 1}. To make a distributional shift from training data to testing data, we sample from the data as
follows. First we choose the race or sex as the biased feature, denoted as xb, and split the whole
dataset into four groups: {xb = 0, y = 0}, {xb = 1, y = 1}, {xb = 0, y = 1}, and {xb = 1, y = 0}.
For the training set, we use 90% of the data in the first two groups but only use α proposition of the
data in the last two groups. The remaining data goes to the testing set. Lower α leads to a greater
distributional shift, and when α rises to 0.9, there is no distributional shift at all. We expect those
IRM-based methods to learn the spurious correlation (xb = 1 causes y = 1) under small α. Error
rate results are shown in Figure 3 and 4. Original environments are decided by the biased feature.

Occupancy estimation. Occupancy estimation dataset contains data from different types of sensors
(temperature, light, sound, CO2, etc.) in a room every minute. The task is to estimate the occupancy

4https://www.kaggle.com/datasets/cnic92/200-financial-indicators-of-us-stocks-20142018
5https://archive.ics.uci.edu/ml/datasets/adult
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Table 3: Occupancy Estimation

Method Training Error Testing Error

ERM 0.026(0.000) 0.773(0.000)
random+IRM 0.587(0.053) 0.824(0.093)

EIIL 0.191(0.203) 0.690(0.048)
k-means+IRM 0.044(0.001) 0.352(0.009)

HRM 0.166(0.000) 1.154(0.000)
Decorr (ours) 0.143(0.009) 0.268(0.011)

IRM 0.420(0.006) 0.840(0.021)
V-REx 0.060(0.001) 0.686(0.030)

Table 4: Stock

Method Average
Error

Worst-Case
Error STD

ERM 50.33(0.10) 56.65(0.26) 3.86
random+IRM 50.11(0.35) 54.54(0.81) 2.62

EIIL 49.70(0.33) 52.29(0.44) 1.65
k-means+IRM 50.02(0.30) 54.92(0.23) 2.68

HRM 50.22(0.00) 55.97(0.00) 4.78
Decorr (ours) 49.13(0.34) 53.50(0.75) 3.66

in the room varying between 0 and 3 people.6 We regard this as a regression task, transform the time
into real numbers in [0, 1], standardized the features, and train the models with the given training and
testing sets. The training errors are high for all the environment partitioning methods when k = 2, so
we set k = 3 and the MSE on testing set are shown in Table 3. Decorr again performs the best on the
testing error. Original environments are decided by the collection time of the samples.

Stock. Stock dataset contains market data and technical indicators of 10 US stocks from 2005
to 2020.7 We try to use technical indicators today to predict whether the close price of one stock
tomorrow is higher than today’s. For each stock, we use the first 70% of the data as training set, 10%
as validation set for early stopping, and the last 20% as testing set. The modeling is done stock-wisely.
Again, we evaluate methods by average error rate, worst-case error rate, and standard deviation across
different stocks. Results are shown in Table 4, where we can see Decorr performs the best on the
average error. Because there are no original environments, the origianl IRM and REx are not applied.

5.3 SUMMARY

In this section, we briefly summarize the characteristics of the tested methods. IRM has excellent
performance with environment partition that reflects the true data-generating mechanics. However,
usually it is not the case in most of the real datasets. We can see that the simple and natural split-by-
time partition has no significant advantage compared to ERM. While EIIL has good performance
on image data, our experiments show that it may not be suitable for some other types of data. Too
much noise can indeed affect the performance of this mistake-exploration method greatly, just as we
mentioned in the introduction section.

k-means is an easy and direct way to do environment partitioning and has consistently good perfor-
mance in several experiments. However, the illustration in Figure 1 shows that k-means may not be
the optimal partitioning method. Our Decorr algorithm achieves the best performance overall in the
above experiments. We notice that Decorr does not recover the original data sources, but tries to find
a partition that outperforms the original/natural partition instead.

6 CONCLUSION

Invariant learning is an effective framework for OOD generalization. Environment partitioning is
indeed an important problem for invariant learning, and crucially determines the performance of IRM.
While existing partitioning methods have good OOD generalization performance on image data, we
show that the performance does not hold on some other types of data. Motivated by the benefits of
low-correlated training set, we propose Decorr algorithm to split the data into several environments
with low correlation inside. We also theoretically prove that uncorrelated environments make OOD
generalization easier. Our environment partitioning method has advantages over the existing ones.
Across different types of tasks (including image tasks), we verify that our method can significantly
and consistently improve the performance of IRM, making IRM more generally applicable.

6https://archive.ics.uci.edu/ml/datasets/Room+Occupancy+Estimation
7https://www.kaggle.com/datasets/nikhilkohli/us-stock-market-data-60-extracted-features
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A IMAGE DATA EXPERIMENTS

To show that our method is applicable on different types of data, we implement Decorr and other
baseline methods on two image datasets. With some minor modifications on Decorr based on the
characteristics of image data, our method can outperform others as well. Unless stated otherwise, the
implementation details are the same as in Section 5.2.
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Figure 5: CMNIST training set: most of 0-4
are green, most of 5-9 are red.

Figure 6: CMNIST testing set: most of 0-4
are red, most of 5-9 are green.

Decorr for images. Image data have much higher dimensions than tabular data. Therefore, directly
decorrelate the raw image data is not applicable. We need to extract features before the process of
decorrelation. We train a convolutional neural network or MLP (just as we do in ERM) and take
the output of the last full-connection layer as the features of the data. With these low-dimensional
extracted features, we can now do decorrelation as before (we also implement k-means in this way).
After the dataset partitioning, we still use the raw image data for IRM training. For Decorr, we do not
impose the restriction of same sample size for partitioned environments (i.e., λ = 0 in Algorithm 1),
so that Decorr can split image datasets into more diversified environments.

A.1 COLORED MNIST

Colored MNIST (CMNIST), proposed by Arjovsky et al. (2020) to validate IRM’s ability to learn
nonlinear invariant predictors, is an image dataset derived from MNIST. CMNIST is constructed by
coloring each MNIST image into red or green and making the image’s color strongly but spuriously
correlates with the class label. Regular deep learning models would fail, for they will classify the
image by color rather than shape.

In detail, CMNIST is a binary classification task. We follow the construction of CMNIST in Arjovsky
et al. (2020). Images are first labeled ỹ = 0 for digits 0-4 and ỹ = 1 for digits 5-9. Then the final label
y is obtained by flipping ỹ with probability 0.1 (can be regarded as data noise). Next, they sample
the color ID z by flipping y with probability pe, where pe = 0.2 in the first training environment
and 0.1 in the second. However, pe = 0.9 for the test environment, implying a huge converse in the
correlation between color and label. Finally, they color the images based on their color ID z. Please
see Figure 5 and 6 for an intuitive illustration.

Following Arjovsky et al. (2020), we use an MLP with two hidden layers as our base model. The
architecture of the network and all the hyperparameters are the same. We evaluate the error rate on
the testing set as well as the percentage of data with rare patterns (i.e., red, labeled in 0-4; or green,
labeled in 5-9) in each partitioned environment. If the percentages of two environments have a huge
gap, the environments are more diversified, which is better for invariant learning. Each model is
trained for 5000 epochs, of which the first 100 epochs are trained without IRM penalty. The results
are shown in Table 5, where the superiority of Decorr is illustrated.

A.2 WATERBIRDS

Waterbirds dataset is proposed by Sagawa et al. (2019)8. It is a dataset that combines the CUB
dataset (Wah et al., 2011) and the Places dataset (Zhou et al., 2017). The task is to predict the type of
bird (waterbird or landbird) from the CUB dataset. However, the combination of CUB and Places

8https://github.com/kohpangwei/group_DRO
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Table 5: CMNIST error rate on testing set and the percentage of rare patterns in each of the two
partitioned environments.

% of rare patterns

Method Average Error Environment 1 Environment 2

ERM 43.33(0.14) ————– ————–
random+IRM 40.16(0.16) 15.15(0.08) 14.83(0.10)

EIIL 76.95(3.46) 29.59(2.14) 14.07(0.09)
k-means+IRM 41.93(0.52) 15.32(0.21) 14.68(0.19)
Decorr (ours) 34.89(6.24) 40.24(0.49) 4.72(0.26)
IRM (oracle) 30.18(0.94) 19.89(0.13) 10.09(0.12)

V-REx (oracle) 34.22(0.04) 19.89(0.13) 10.09(0.12)

Table 6: Waterbirds error rate on testing set.

Method Average Error

ERM 25.76(0.23)
random+IRM 22.96(0.43)

EIIL 27.43(7.25)
k-means+IRM 24.32(0.65)
Decorr (ours) 22.70(0.44)
IRM (oracle) 22.36(0.08)

V-REx (oracle) 33.53(7.84)

produces a spurious correlation. In the training set, most of the landbirds are in land backgrounds,
and most of the waterbirds are in water backgrounds. 95% of the data are in this regular pattern.
Nevertheless, in the testing set, only half of the data are in this regular pattern, and the other half are
not. So the correlation in training set does not exist anymore. More details about the dataset can be
found in Sagawa et al. (2019).

Following Sagawa et al. (2019), we use pretrained ResNet50 as our base model, and the L2 penalty
weight is set to be 10−4. Each model is trained for 50 epochs. We also implement IRM and V-REx
with the optimal environment partition: one environment consists of all the regular pattern data
(waterbirds in water and landbirds in land), and the other one consists of all the rare pattern data. We
implement each method and report the error rate. The results are shown in Table 6, in which Decorrr
gives the best performance among all partitioning methods.
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