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Abstract

Robust Markov decision processes (MDPs) tackle changing or partially known sys-
tem dynamics. To solve them, one typically resorts to robust optimization, which
can significantly increase computational complexity and limit scalability. On the
other hand, policy regularization improves learning stability without impairing time
complexity. Yet, it does not encompass uncertainty in the model dynamics. In this
work, we aim to learn robust MDPs using regularization. We first show that policy
regularization methods solve a particular instance of robust MDPs with uncertain re-
wards. We further extend this relationship to MDPs with uncertain transitions: this
leads to a regularization term with an additional dependence on the value function.
We then introduce twice regularized MDPs (R2 MDPs), i.e., MDPs with value and
policy regularization. The corresponding Bellman operators lead to planning and
learning schemes with convergence and generalization guarantees, thus reducing ro-
bustness to regularization. We numerically show this two-fold advantage on tabular
and physical domains, and illustrate the persistent efficacy of R2 regularization.

1 Introduction

MDPs provide a practical framework for solving sequential decision problems under uncertainty [36].
However, the chosen strategy can be overly sensitive to sampling errors or inaccurate model estimates.
This can lead to complete failure if the model parameters vary adversarially or are simply unknown
[31]. Robust MDPs mitigate such sensitivity by assuming that the transition and/or reward function
(P, r) varies arbitrarily inside a given uncertainty set U [24, 35]. In this setting, an optimal solution
maximizes return under the worst-case parameters, thus enhancing stability and generalization of
the learned policy [48]. Indeed, by construction, any MDP similar to the one the robust agent was
trained on would incur stable performance, where ‘similar’ means belonging to the uncertainty set.

The robust MDP objective can be thought of as a dynamic zero-sum game with an agent choosing
the best action while Nature imposes the most adversarial model. As such, solving robust MDPs
involves max-min problems, which can be computationally challenging and limit scalability. In
recent years, several methods have been developed to alleviate the computational concerns raised by
robust reinforcement learning (RL). Apart from [32, 33, 14] which consider specific types of coupled
uncertainty sets, all rely on a rectangularity assumption without which the problem can be NP-hard [2,
47]. This assumption is key to deriving tractable solvers of robust MDPs such as robust value iteration
[2, 15] or more general robust modified policy iteration (MPI) [27]. Yet, reducing time complexity
in robust Bellman updates remains challenging and is still researched today [20, 15, 3, 21, 22].

At the same time, the empirical success of regularization in policy search has motivated a wide range
of algorithms for improved exploration [16, 30] or stability [39, 17]. Geist et al. [13] proposed a
unified view from which many existing algorithms can be derived. Their regularized MDP formalism
allows for error propagation analysis in approximate MPI [38] and leads to the same bounds as for
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standard MDPs. Nevertheless, as we further show in Sec. 3, policy regularization accounts for reward
uncertainty only: it does not encompass uncertainty in the model dynamics. Despite a vast literature
on how regularized policy search works and convergence rates analysis [41, 8], little attention has been
given to understanding why it can generate strategies that are robust to external perturbations [17].

To our knowledge, the only works that relate robustness to regularization in RL are [9, 23, 12, 6]. In
Derman & Mannor [9], a distributionally robust optimization approach is employed to regularize an
empirical value function. Unfortunately, computing this empirical value necessitates several policy
evaluation procedures, which is quickly unpractical. The studies [23, 6] provide a dual relationship
with robust MDPs under uncertain reward. Their duality result applies to general regularization
methods and gives a robust interpretation of soft-actor-critic [17]. These two works show that
regularization ensures robustness, but do not enclose any algorithmic novelty. Similarly, [12] focuses
on maximum entropy methods and relates them to either reward or transition robustness.

As opposed to RL theory, the robustness-regularization duality is well established in statistical
learning [48, 40, 28]. In fact, standard setups such as classification or regression may be considered
as single-stage decision-making problems, i.e., one-step MDPs, a particular case of RL setting.
Extending this robustness-regularization duality to RL would yield cheaper learning methods with
robustness guarantees. As such, we introduce a regularization function ΩU that depends on the
uncertainty set U and is defined over both policy and value spaces, thus inducing a twice regularized
Bellman operator (see Sec. 5). We show that this regularizer yields an equivalence of the form
vπ,U = vπ,ΩU , where vπ,U is the robust value function for policy π and vπ,ΩU the regularized one.
This equivalence is derived through the objective function each value optimizes. More concretely, we
formulate the robust value function vπ,U as an optimal solution of the robust optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v ≤ inf

(P,r)∈U
Tπ
(P,r)v, (RO)

where Tπ
(P,r) is the evaluation Bellman operator [36]. Then, we show that vπ,U is also an optimal

solution of the convex (non-robust) optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v ≤ Tπ

(P0,r0)
v − ΩU (π, v), (CO)

where (P0, r0) is the nominal model. This establishes equivalence as the two problems admit the
same optimum for any policy. Moreover, the inequality constraint of (CO) enables us to derive a
twice regularized (R2) Bellman operator defined according to ΩU , a policy and value regularizer. For
ball-constrained uncertainty sets, ΩU has an explicit form and under mild conditions, the correspond-
ing R2 Bellman operators are contracting. The equivalence between the two problems (RO) and
(CO) together with the contraction properties of R2 Bellman operators enable to circumvent robust
optimization problems at each Bellman update. As such, it alleviates robust planning and learning
algorithms by reducing them to regularized ones, which are as complex as classical methods.

We make the following contributions: (i) We show that policy regularization leads to a specific
instance of robust MDPs with uncertain rewards, and explicitly formulate the uncertainty sets induced
by standard policy regularizers. (ii) We extend this duality to MDPs with uncertain transitions
and provide the first regularizer that recovers robust MDPs. (iii) We introduce twice regularized
MDPs (R2 MDPs) that apply both policy and value regularization to retrieve robust MDPs with
ball constraints. The corresponding Bellman operators are shown to be contracting, which leads
to a converging R2 MPI algorithm of similar time complexity as vanilla MPI. (iv) We introduce
R2 q-learning, a model-free algorithm that provably converges and efficiently solves robust MDPs.
(v) We extend R2 q-learning to a deep variant. In particular, we provide an easy method to estimate
the value regularization term when a tabular representation is no longer available. Experiments
on tabular and continuous domains prove the efficiency of R2 for both planning and learning, thus
opening new perspectives towards practical and scalable robust RL.

2 Preliminaries

This section describes the background material that we use throughout our work. We first define
general notations and recall useful properties in convex analysis. Secondly, we address classical
discounted MDPs. Thirdly, we briefly detail regularized MDPs and the associated operators, and
lastly, we focus on the robust MDP setting.
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2.1 Convex Analysis

We designate the extended reals by R := R∪{−∞,∞}. Given a finite set Z , the class of real-valued
functions (resp. probability distributions) over Z is denoted by RZ (resp. ∆Z ), while the constant
function equal to 1 over Z is denoted by 1Z . Similarly, for any set X , ∆X

Z denotes the class of
functions defined over X and valued in ∆Z . The inner product of two functions a,b ∈ RZ is
defined as ⟨a,b⟩ :=

∑
z∈Z a(z)b(z), which induces the ℓ2-norm ∥a∥ :=

√
⟨a,a⟩. The ℓ2-norm

coincides with its dual norm, i.e., ∥a∥ = max∥b∥≤1⟨a,b⟩ =: ∥a∥∗. Let a function f : RZ → R.
The Legendre-Fenchel transform (or convex conjugate) of f is f∗(y) := maxa∈RZ{⟨a,y⟩ − f(a)}.
Given a set Z ⊆ RZ , the characteristic function δZ : RZ → R is δZ(a) = 0 if a ∈ Z; +∞ otherwise.
The Legendre-Fenchel transform of δZ is the support function σZ(y) = maxa∈Z⟨a,y⟩ [4, Ex. 1.6.1].

Let C ⊂ RZ be a convex set and Ω : C → R a strongly convex function. In our study, the function
Ω plays the role of a policy and/or value regularizer. Our work uses the following result [19, 34]:

Proposition 1. Given Ω : C → R strongly convex, the following properties hold:
(i) ∇Ω∗ is Lipschitz and satisfies∇Ω∗(y) = argmaxa∈C⟨a,y⟩ − Ω(a),∀y ∈ RZ .
(ii) For any c ∈ R,y ∈ RZ , Ω∗(y+c1Z) = Ω∗(y) + c.
(iii) The Legendre-Fenchel transform Ω∗ is non-decreasing.

2.2 Discounted MDPs

Consider an infinite horizon MDP (S,A, µ0, γ, P, r) with S and A finite state and action spaces
respectively, 0 < µ0 ∈ ∆S an initial state distribution and γ ∈ (0, 1) a discount factor. Denoting
X := S ×A, P ∈ ∆X

S is a transition kernel mapping each state-action pair to a probability
distribution over S and r ∈ RX is a reward function. A policy π ∈ ∆S

A maps any state s ∈ S to
an action distribution πs ∈ ∆A, and we evaluate its performance through the following measure:

ρ(π) := E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣ µ0, π, P

]
= ⟨vπ(P,r), µ0⟩. (1)

Here, the expectation is conditioned on the process distribution determined by µ0, π and P , and for
all s ∈ S, vπ(P,r)(s) = E[

∑∞
t=0 γ

tr(st, at)|s0 = s, π, P ] is the value function at state s. Maximizing
(1) defines the standard RL objective, which can be solved thanks to the Bellman operators:

Tπ
(P,r)v := rπ + γPπv ∀v ∈ RS , π ∈ ∆S

A,

T(P,r)v := max
π∈∆S

A

Tπ
(P,r)v ∀v ∈ RS ,

G(P,r)(v) := {π ∈ ∆S
A : Tπ

(P,r)v = T(P,r)v} ∀v ∈ RS ,

where rπ := [⟨πs, r(s, ·)⟩]s∈S and Pπ = [Pπ(s′|s)]s′,s∈S with Pπ(s′|s) := ⟨πs, P (s′|s, ·)⟩. Both
Tπ
(P,r) and T(P,r) are γ-contractions with respect to (w.r.t.) the supremum norm, so each admits a

unique fixed point vπ(P,r) and v∗(P,r), respectively. The set of greedy policies w.r.t. value v defines

G(P,r)(v), and any policy π ∈ G(P,r)(v
∗
(P,r)) is optimal [36]. For all v ∈ RS , the associated function

q ∈ RX is given by q(s, a) = r(s, a) + γ⟨P (·|s, a), v⟩ ∀(s, a) ∈ X . In particular, the fixed point
vπ(P,r) satisfies vπ(P,r) = ⟨πs, q

π
(P,r)(s, ·)⟩ where qπ(P,r) is its associated q-function.

2.3 Regularized MDPs

A regularized MDP is a tuple (S,A, µ0, γ, P, r,Ω) with (S,A, µ0, γ, P, r) an infinite horizon MDP
as above, and Ω := (Ωs)s∈S a finite set of functions such that for all s ∈ S, Ωs : ∆A → R is
strongly convex. Each function Ωs plays the role of a policy regularizer Ωs(πs). With a slight abuse
of notation, we shall denote by Ω(π) := (Ωs(πs))s∈S the family of state-dependent regularizers.2

2In the formalism of Geist et al. [13], Ωs is initially constant over S . However, later in the paper [13, Sec. 5],
it changes according to policy iterates. Here, we alternatively define a family Ω of state-dependent regularizers,
which accounts for state-dependent uncertainty sets (see Sec. 5 below).
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The regularized Bellman evaluation operator is given by

[Tπ,Ω
(P,r)v](s) := Tπ

(P,r)v(s)− Ωs(πs) ∀v ∈ RS , s ∈ S,

and the regularized Bellman optimality operator by T ∗,Ω
(P,r)v := maxπ∈∆S

A
Tπ,Ω
(P,r)v ∀v ∈ RS [13].

The unique fixed point of Tπ,Ω
(P,r) (respectively T ∗,Ω

(P,r)) is denoted by vπ,Ω(P,r) (resp. v∗,Ω(P,r)) and defines the
regularized value function (resp. regularized optimal value function). Although the regularized MDP
formalism stems from the aforementioned Bellman operators in [13], it turns out that regularized
MDPs are MDPs with modified reward. Indeed, for any policy π ∈ ∆S

A, the regularized value
function is vπ,Ω(P,r) = (IS − γPπ)−1(rπ − Ω(π)), which corresponds to a non-regularized value
with expected reward r̃π := rπ − Ω(π). Note that the modified reward r̃π(s) is no longer linear
in πs because of Ωs being strongly convex. Also, this modification does not apply to the reward
function r but only to its expectation rπ , as we cannot regularize the original reward without making
it policy-independent.

2.4 Robust MDPs

In general, the MDP model is not explicitly known but rather estimated from sampled trajectories.
Robust MDPs aim to mitigate over-sensitive outcomes this may yield [31]. Formally, a robust MDP
(S,A, µ0, γ,U) is an MDP with uncertain model belonging to U := P ×R, i.e., uncertain transition
P ∈ P ⊆ ∆X

S and reward r ∈ R ⊆ RX [24, 47]. The uncertainty set U is given and typically
controls the confidence level of a model estimate, which in turn determines the agent’s level of
robustness. The robust agent seeks to maximize performance under the worst-case model (P, r) ∈ U .
Although intractable in general, this problem can be solved in polynomial time for rectangular
uncertainty sets, i.e., when U = ×s∈SUs = ×s∈S(Ps × Rs) [47, 32]. For any policy π ∈ ∆S

A
and state s ∈ S, the robust value function at s is vπ,U (s) := min(P,r)∈U vπ(P,r)(s) and the robust
optimal value function v∗,U (s) := maxπ∈∆A

S
vπ,U (s). Each of them is the unique fixed point of the

contracting robust Bellman operators, respectively:

[Tπ,Uv](s) := min
(P,r)∈U

Tπ
(P,r)v(s) ∀v ∈ RS , s ∈ S, π ∈ ∆A

S ,

[T ∗,Uv](s) := max
π∈∆S

A

[Tπ,Uv](s) ∀v ∈ RS , s ∈ S .

3 Reward-robust MDPs

This section focuses on reward-robust MDPs, i.e., robust MDPs with uncertain reward but known
transition model. We first show that regularized MDPs represent a particular instance of reward-robust
MDPs, as both solve the same optimization problem. This equivalence provides a theoretical motiva-
tion for the heuristic success of policy regularization. Then, we explicit the uncertainty set underlying
some standard regularization functions, which formally explains their empirical robustness.

We first establish the following Prop. 2 that slightly extends [24][Lemma 3.2]. A proof is in Appx. A.1.
Proposition 2. For any policy π ∈ ∆S

A, the robust value function vπ,U is the optimal solution of the
robust optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v ≤ Tπ

(P,r)v for all (P, r) ∈ U . (PU )

In the robust optimization problem (PU ), the inequality constraint must hold over the whole uncertainty
set U . As such, a function v ∈ RS is said to be robust feasible for (PU ) if v ≤ Tπ

(P,r)v for all
(P, r) ∈ U or equivalently, if max(P,r)∈U{v(s)−Tπ

(P,r)v(s)} ≤ 0 for all s ∈ S . Therefore, checking
robust feasibility requires to solve a maximization problem. For properly structured uncertainty sets,
a closed form solution can be derived, as we shall see in the sequel. As standard in the robust RL
literature [37, 20, 1], the remaining of this work focuses on uncertainty sets centered around a known
nominal model. Formally, given P0 (resp. r0) a nominal transition kernel (resp. reward function), we
consider uncertainty sets of the form (P0 + P)× (r0 +R). The size of P ×R quantifies our level
of uncertainty or alternatively, the desired degree of robustness.
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3.1 Reward-robust and regularized MDPs: an equivalence

We now focus on reward-robust MDPs, i.e., robust MDPs with U = {P0} × (r0 + R). Thm. 1
establishes that reward-robust MDPs are in fact regularized MDPs whose regularizer is given by a
support function (see proof in Appx. A.2). This result brings two take-home messages: (i) policy
regularization is equivalent to reward uncertainty; (ii) policy iteration on reward-robust MDPs has the
same convergence rate as regularized MDPs, which in turn is the same as standard MDPs [13].
Theorem 1 (Reward-robust MDP). Assume that U = {P0}×(r0+R). Then, for any policy π ∈ ∆S

A,
the robust value function vπ,U is the optimal solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− σRs

(−πs) for all s ∈ S,

where σRs
is the support function of the reward uncertainty set (see definition in Sec. 2.1).

Thm. 1 highlights a convex regularizer Ωs(πs) := σRs
(−πs), and recovers a regularized MDP by

setting [Tπ,Ωv](s) = Tπ
(P0,r0)

v(s)− σRs(−πs) ∀s ∈ S. In particular, whenRs is a ball of radius
αr
s, the support function (or regularizer) becomes Ωs(πs) := αr

s∥πs∥, which is strongly convex. We
formalize this in Appx. A.3.

3.2 Related Algorithms

Thm. 1 shows that regularization induces reward-robustness. At the same time, specific reward-robust
MDPs recover well-known policy regularization methods. Consider a reward uncertainty set of the
form R := ×(s,a)∈XRs,a, i.e., an (s, a)-rectangular R whose rectangles Rs,a are independent at
each state-action pair. For the regularizers below, we deriveRs,a-s that produce the same regularized
value function. Detailed proofs are in Appx. A.4, along with a table comparing the properties of
some RL regularizers with ours (Sec. 5). Note that the reward uncertainty sets here depend on the
policy. This is due to the fact that standard regularizers are defined over the policy space and not
at each state-action pair. Similarly, the reward transformation induced by policy regularization does
not apply to the original function, as already mentioned in Sec. 2.3.

Negative Shannon entropy: Let RNS
s,a(π) := [ln (1/πs(a)) ,+∞) , ∀(s, a) ∈ X . The associated

support function gives:

σRNS
s (π)(−πs) = max

r(s,·):r(s,a′)∈RNS
s,a′ (π),a

′∈A

∑
a∈A
−r(s, a)πs(a) =

∑
a∈A

πs(a) ln(πs(a)),

which recovers the negative Shannon entropy Ω(πs) =
∑

a∈A πs(a) ln(πs(a)) [17].

Kullback-Leibler divergence: Given an action distribution 0 < d ∈ ∆A, letRKL
s,a(π) := ln (d(a)) +

RNS
s,a(π) ∀(s, a) ∈ X . It amounts to translating the intervalRNS

s,a by the given constant. Writing the
support function yields Ω(πs) =

∑
a∈A πs(a) ln (πs(a)/d(a)), which reveals the KL divergence [39].

Negative Tsallis entropy: Letting RT
s,a(π) := [(1−πs(a))/2,+∞) ∀(s, a) ∈ X , we recognize the

negative Tsallis entropy Ω(πs) =
1
2 (∥πs∥2 − 1) [30].

4 General robust MDPs

Now that we have established policy regularization as a reward-robust problem, we are interested
in the opposite question: can any robust MDP with uncertain reward and transition be solved using
regularization instead of robust optimization? If so, is the regularization function easy to determine?
This section answers positively to both questions. It greatly facilitates robust RL, as it avoids the
increased complexity of robust planning algorithms while still reaching robust performance.

The following theorem establishes that similarly to reward-robust MDPs, robust MDPs can be
formulated through regularization (see proof in Appx. B.1). The regularizer is also a support function
in that case, but it depends on the policy and the value objective.
Theorem 2 (General robust MDP). Assume that U = (P0 + P)× (r0 +R). Then, for any policy
π ∈ ∆S

A, the robust value function vπ,U is the optimal solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− σRs

(−πs)− σPs
(−γv · πs) for all s ∈ S, (2)
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where [v · πs](s
′, a) := v(s′)πs(a) ∀(s′, a) ∈ X .

The upper bound in the inequality constraint (2) is similar to the regularized Bellman operator except
that here, the regularization is a policy and value-dependent function. It further simplifies when the
uncertainty set is a ball, as shown below.

Corollary 1. Assume that U = (P0 + P) × (r0 +R) with Ps := {Ps ∈ RX : ∥Ps∥ ≤ αP
s } and

Rs := {rs ∈ RA : ∥rs∥ ≤ αr
s} for all s ∈ S. Then, the robust value function vπ,U is the optimal

solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− αr

s∥πs∥ − αP
s γ∥v∥∥πs∥ for all s ∈ S . (3)

5 R2 MDPs

In Sec. 4, we showed that for general robust MDPs, the optimization constraint involves a regularizer
that depends on the value function itself. This adds difficulty to the reward-robust case where the
regularization only depends on the policy. In this section, we focus on general robust MDPs that
are ball-constrained and introduce R2 MDPs, an extension of regularized MDPs that combines policy
with value regularization. The core idea is to regularize the Bellman operators twice and recover
the support functions derived in Secs. 3-4.

Definition 1 (R2 Bellman operators). For all v ∈ RS , define Ωv,R2 : ∆A → R as Ωv,R2(πs) :=

∥πs∥(αr
s + αP

s γ∥v∥). The R2 Bellman evaluation and optimality operators are defined as

[Tπ,R2
v](s) := Tπ

(P0,r0)
v(s)− Ωv,R2(πs) ∀s ∈ S,

[T ∗,R2
v](s) := max

π∈∆S
A

[Tπ,R2
v](s) = Ω∗

v,R2(qs) ∀s ∈ S .

For any function v ∈ RS , the associated unique greedy policy is defined as

πs = argmax
πs∈∆A

Tπ,R2
v(s) = ∇Ω∗

v,R2(qs), ∀s ∈ S,

that is, in vector form, π = ∇Ω∗
v,R2(q) =: GΩ

R2 (v) ⇐⇒ Tπ,R2
v = T ∗,R2

v.

The R2 Bellman evaluation operator is not linear because of the functional norm appearing in the
regularization function. Yet, under the following assumption, it is contracting and we can apply
Banach’s fixed point theorem to define the R2 value function (see proof in Appx. C.1).
Assumption 1 (Bounded radius). For all s ∈ S, there exists ϵs > 0 such that

αP
s ≤ min

1− γ − ϵs

γ
√
|S|

; min
uA∈RA

+ ,∥uA∥=1

vS∈RS
+,∥vS∥=1

u⊤
AP0(·|s, ·)vS

 .

Proposition 3. Suppose that Asm. 1 holds. Then, the following properties hold:
(i) Monotonicity: For all v1, v2 ∈ RS such that v1 ≤ v2, we have Tπ,R2

v1 ≤ Tπ,R2
v2 and

T ∗,R2
v1 ≤ T ∗,R2

v2.
(ii) Sub-distributivity: For all v1 ∈ RS , c ∈ R, we have Tπ,R2

(v1 + c1S) ≤ Tπ,R2
v1 + γc1S and

T ∗,R2
(v1 + c1S) ≤ T ∗,R2

v1 + γc1S , ∀c ∈ R.
(iii) Contraction: Let ϵ∗ := mins∈S ϵs > 0. Then, for all v1, v2 ∈ RS , we have
∥Tπ,R2

v1 − Tπ,R2
v2∥∞ ≤ (1− ϵ∗)∥v1 − v2∥∞ and ∥T ∗,R2

v1 − T ∗,R2
v2∥∞ ≤ (1− ϵ∗)∥v1 − v2∥∞.

The contracting coefficient 1−ϵ∗ from Prop. 3 is different from the original discount γ. Yet, as Asm. 1
suggests it, an intrinsic dependence between γ and ϵ∗ makes the R2 Bellman updates similar to the
standard ones: when γ tends to 0, the value of ϵ∗ required for Asm. 1 to hold increases, which makes
the contracting coefficient 1−ϵ∗ tend to 0 as well, i.e., the two contracting coefficients behave similarly.
The contracting feature of both R2 Bellman operators finally leads us to introduce R2 value functions.
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Definition 2 (R2 value functions). (i) The R2 value function vπ,R
2

is defined as the unique fixed
point of the R2 Bellman evaluation operator: vπ,R

2
= Tπ,R2

vπ,R
2
. The associated q-function is

qπ,R
2
(s, a) = r0(s, a)+γ⟨P0(·|s, a), vπ,R

2⟩. (ii) The R2 optimal value function v∗,R
2

is defined as the
unique fixed point of the R2 Bellman optimal operator: v∗,R

2
= T ∗,R2

v∗,R
2
. The associated q-function

is q∗,R
2
(s, a) = r0(s, a) + γ⟨P0(·|s, a), v∗,R

2⟩.

The monotonicity of R2 Bellman operators plays a key role in reaching an optimal R2 policy, as we
show in the following. A proof can be found in Appx. C.2.

Theorem 3 (R2 optimal policy). The greedy policy π∗,R2
= GΩ

R2 (v
∗,R2

) is the unique optimal

R2 policy, i.e., for all π ∈ ∆S
A, v

π∗,R2
= v∗,R

2 ≥ vπ,R
2
.

Remark 1. An optimal R2 policy may be stochastic. This is because our R2 MDP framework builds
upon the general s-rectangularity assumption. Robust MDPs with s-rectangular uncertainty sets may
similarly yield an optimal robust policy that is stochastic [47, Table 1]. Nonetheless, the R2 MDP
formulation recovers a deterministic optimal policy in the more specific (s, a)-rectangular case,
which is in accordance with the robust MDP setting (see proof in Appx. C.3). 3

6 Planning in R2 MDPs

Algorithm 1 R2 MPI

Initialize: vk ∈ RS

repeat
πk+1 ← GΩ

R2 (vk)

vk+1 ← (Tπk+1,R
2
)mvk

until convergence
Return: πk+1, vk+1

The results above ensure convergence of MPI in R2 MDPs, along
with the same geometric convergence rate as in standard and
robust MDPs. We call that method R2 MPI and provide its pseudo-
code in Alg. 1. R2 MPI reduces the computational complexity
of robust MPI by avoiding solving a max-min problem at each
iteration, which can take polynomial time for general convex
programs. The only optimization in R2 MPI appears in the greedy
step, which can efficiently be performed in linear time [11]. In
the (s, a)-rectangular case, it even suffices to choose a greedy
action (see Rmk. 1).

We compare the computing time of R2 MPI with that of MPI [36] and robust MPI [27]. The code
is available at https://github.com/EstherDerman/r2mdp. To do so, we run experiments on a
5× 5 grid-world domain: The agent starts from a random position and seeks to reach a goal state
in order to maximize reward. Thus, the reward function is zero in all states but two: one provides a
reward of 1 while the other gives 10. An episode ends when either one of those two states is attained.
Parameter values and other implementation details are deferred to Appx. E. Table 1 shows the time
spent by each algorithm until convergence. R2 PE converges in 0.02 seconds, whereas robust PE
takes 54.8 seconds to converge, i.e., 2740 times longer. R2 PE still takes 2.5 times longer than its
standard, non-regularized counterpart, because of the additional computation of regularization terms.

We then study the overall MPI process for each approach. We can see in Table 1 that the increased
complexity of robust MPI is even more prominent than its PE thread, as robust MPI takes 3953 (resp.
3270) times longer than R2 MPI when m = 1 (resp. m = 4). Robust MPI with m = 4 is a bit more
advantageous than m = 1, as it needs less iterations (31 versus 67), i.e., less optimization solvers to
converge. Interestingly, for both m ∈ {1, 4}, progressing from PE to MPI did not cost much more
computing time to either the vanilla or the R2 version: both take less than one second to run.

Vanilla R2 Robust
PE 0.008± 0. 0.02± 0. 54.8± 1.2

MPI (m = 1) 0.01± 0. 0.03± 0. 118.6± 1.3
MPI (m = 4) 0.01± 0. 0.03± 0. 98.1± 4.1

Table 1: Computing time (in sec.) of planning algorithms using vanilla, R2 and robust approaches.
Each cell displays the mean ± std obtained from 5 running seeds.

3The stochasticity of an optimal entropy-regularized policy as in the examples of Sec. 3.1 is not contradicting.
Indeed, even though the corresponding uncertainty set is (s, a)-rectangular there, it is policy-dependent.
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7 Learning in R2 MDPs

In general, we do not know the nominal model (P0, r0) and can only interact with the underlying
system. Thus, we are interested in devising a model-free method that achieves a robust optimal policy
with low time complexity. In the remainder, we assume that U = ×(s,a)∈XUs,a so there exists a de-
terministic policy which is R2 optimal. We introduce R2 q-learning, which provably converges to the
optimal robust q-value. Then, we extend R2 q-learning to a deep variant. In particular, we introduce
an easy method for estimating the norm of the R2 value regularizer in non-tabular settings. The source
code for R2 q-learning and its deep extension is available at https://github.com/yevgm/r2rl.

7.1 R2 q-learning

R2 q-learning is an R2 variant of vanilla q-learning [46] aiming to learn a robust optimal policy. Its
pseudo-code can be found in Alg. 2 and its convergence in Appx. D.1. The difference with standard
q-learning is that we update an R2 temporal difference (TD) to target an R2 Bellman recursion. Unlike
robust q-learning [37], R2 q-learning does not involve an optimization problem at each R2 TD update.

Algorithm 2 R2 q-learning

Input: Uncertainty levels αP , αr ∈ RX
+ ; Learning rates (βt)t∈N with βt ∈ [0, 1]X ;

Initialize: t = 0; q = q0 - Arbitrary q-function;
repeat

Act ϵ-greedily according to at ← argmaxb∈A qt(st, b), observe st+1 and obtain rt
Set vt = maxb∈A qt(·, b)
Set δR2

t = rt + γmaxb∈A qt(st+1, b)− αr
stat
− γαP

stat
∥vt∥ − qt(st, at)

Update qt+1(st, at) = qt(st, at) + βt(st, at)δ
R2

t
until convergence
Return: R2 value q

7.2 Deep R2 Learning

The expression of R2 TD (line 6 of Alg. 2) requires to have access to the whole q-table for computing
the current value’s norm. This is not possible for infinite or even continuous state-space. Instead, we
need to estimate the norm based on sampled observations. We thus keep track of a replay buffer that
memorizes and updates past information online. At each iteration, we sample a batch Bt to which
we derive an empirical norm estimate. Formally, ∥vt∥2Bt

:=
∑

s∈Bt
vt(s)

2, where ∥·∥Bt
indicates the

empirical nature of the norm. Finally, our approximate setting motivates us to stabilize value norm esti-
mates. Thus, in the same spirit as [26, 45], we use a moving average mixing the previous estimate with
the current one, i.e., at iteration t+1, the value norm squared is given by β∥vt∥2Bt

+(1−β)∥vt+1∥2Bt+1
.

We thus scale tabular R2 q-learning to a deep variant we name R2 double DQN (DDQN) and compare
it to vanilla and robust baselines. R2 DDQN (resp. robust DDQN) is similar to DDQN [18], except
that it minimizes an R2 TD (resp. robust TD) when updating the q-network. For the three algorithmic
variants, we use a fully connected network with an input size of the state space dimension, 2 hidden
layers of size 256, and an output size corresponding to the dimension of the action space (see Appx. F).
We select three physical environments from OpenAI Gym [7]. In each environment, the underlying
transition model is directly affected by the physical properties assigned to the agent. Therefore,
changing these properties implicitly introduces transition uncertainty into the MDP. We train the
three agents on one nominal environment and five different seeds. For a fair comparison, each seed
set is taken to be the same for vanilla, robust and R2 DDQN. Robust and R2 DDQN are trained under
the same uncertainty level, namely, αP = αr = 10−4. Fig. 1 shows that all three agents converge
to similar performance while in Mountaincar, R2 DDQN outperforms vanilla and robust DDQN.

To check the computational advantage of R2 DDQN over robust DDQN, we calculate the average
time each algorithm takes to perform one update of the q-network. As we see in Tab. 2, one learning
step of robust DDQN is slower than one R2 update by an order of magnitude. On the other hand, one
R2 update is approximately four times slower than vanilla because of the additional computations it re-
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Figure 1: Convergence graphs of vanilla, R2 and robust DDQN algorithms. Each graph displays the
mean ± standard deviation obtained from 5 running seeds in each environment. The graphs
were smoothed with an exponential moving average.

quires. This confirms the results we obtained previously for R2 MPI and R2 q-learning: robust updates
take much longer than R2 updates, themselves being slightly slower than standard, non-robust updates.

Vanilla R2 Robust
Cartpole 2.5± 0.1 8.3± 1.0 76.9± 15.3
Acrobot 2.3± 0.1 8.1± 0.2 73.0± 15.3
Mountaincar 2.5± 0.8 8.2± 0.5 77.6± 16.0

Table 2: Average computing time (in 0.1· ms) of a learning step for vanilla, R2 and robust DDQN.
Each cell displays the mean ± std obtained from 1000 iterations.

We aim to check the generalization properties of each algorithm to new dynamics. After training,
we select two environment parameters across a range of values and evaluate the average performance
over several episodes run under the corresponding dynamics. Fig. 2 displays the performance
obtained by each agent undergoing such treatment: R2 and robust DDQN generalize better than
vanilla DDQN, while R2 is more robust to changing gravity than the other two agents.

(a) Evaluation on Mountaincar: Left - ’gravity’, right - ’force’ parameter.

Figure 2: Comparison of the average reward over 5 seeds of Vanilla, R2 and Robust algorithms. The
black vertical line represents the nominal parameter value each algorithm was trained on.

8 Discussion

This study settles the theoretical foundations for scalable robust RL. We should note that our results
naturally extend to continuous but compact action spaces in the same manner as standard MDPs
do [36]. Theoretical extension to infinite state space would be more involved because of the state-
dependent regularizer in R2 MDPs. In fact, it would be interesting to study the R2 MDP setting
under function approximation, as such approximation would have a direct effect on the regularizer.
Similarly, one could analyze approximate dynamic programming for R2 MDPs in light of its robust
analog [42, 1]. Apart from its practical effect, we believe our work opens the path to more theoretical
contributions in robust RL. For example, extending R2 MPI to the approximate case [38] would be an
interesting problem to solve because of the R2 evaluation operator being non-linear. So would be a
sample complexity analysis for R2 MDPs with a comparison to robust MDPs [49]. Another line of
research is to extend policy-gradient to R2 MDPs, as this would avoid parallel learning of adversarial
models [10, 44] and be very useful for continuous control.
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Appendix: Robustness and Regularization in Reinforcement Learning

This appendix provides proofs for all of the results stated in the paper. We first recall the following
theorem used in the sequel and referred to as Fenchel-Rochafellar duality [5, Thm 3.3.5].

Theorem (Fenchel-Rockafellar duality). Let X,Y two Euclidean spaces, f : X → R and g : Y → R
two proper, convex functions, and A : X → Y a linear mapping such that 0 ∈ core(dom(g) −
A(dom(f))).4 Then, it holds that

min
x∈X

f(x) + g(Ax) = max
y∈Y
−f∗(−A∗y)− g∗(y). (4)

A Reward-Robust MDPs

A.1 Proof of Proposition 2

Proposition. For any policy π ∈ ∆S
A, the robust value function vπ,U is the optimal solution of the

robust optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v ≤ Tπ

(P,r)v for all (P, r) ∈ U . (PU )

Proof. Let v∗ an optimal point of (PU ). By definition of the robust value function, vπ,U =
Tπ,Uvπ,U = min(P,r)∈U Tπ

(P,r)v
π,U . In particular, vπ,U ≤ Tπ

(P,r)v
π,U for all (P, r) ∈ U , so the

robust value is feasible and by optimality of v∗, we get ⟨v∗, µ0⟩ ≥ ⟨vπ,U , µ0⟩. Now, we aim to show
that any feasible v ∈ RS satisfies v ≤ vπ,U . Let an arbitrary ϵ > 0. By definition of Tπ,U , there
exists (Pϵ, rϵ) ∈ U such that

Tπ,Uvπ,U + ϵ > Tπ
(Pϵ,rϵ)

vπ,U . (5)

This yields:

v − vπ,U = v − Tπ,Uvπ,U [vπ,U = Tπ,Uvπ,U ]

< v + ϵ− Tπ
(Pϵ,rϵ)

vπ,U [By Eq. (5)]

≤ Tπ,Uv + ϵ− Tπ
(Pϵ,rϵ)

vπ,U [v is feasible for (PU )]

≤ Tπ
(Pϵ,rϵ)

v + ϵ− Tπ
(Pϵ,rϵ)

vπ,U [Tπ,Uv ≤ Tπ
(P,r)v for all (P, r) ∈ U ]

= Tπ
(Pϵ,rϵ)

(v − vπ,U ) + ϵ. [By linearity of Tπ
(Pϵ,rϵ)

]

Thus, v − vπ,U ≤ Tπ
(Pϵ,rϵ)

(v − vπ,U ) + ϵ, which we iteratively apply as follows:

v − vπ,U ≤ Tπ
(Pϵ,rϵ)

(v − vπ,U ) + ϵ

≤ Tπ
(Pϵ,rϵ)

(Tπ
(Pϵ,rϵ)

(v − vπ,U ) + ϵ) + ϵ [u ≤ w =⇒ Tπ
(Pϵ,rϵ)

u ≤ Tπ
(Pϵ,rϵ)

w]

= (Tπ
(Pϵ,rϵ)

)2(v − vπ,U ) + γϵ+ ϵ

≤ (Tπ
(Pϵ,rϵ)

)2(Tπ
(Pϵ,rϵ)

(v − vπ,U ) + ϵ) + γϵ+ ϵ

...

≤ (Tπ
(Pϵ,rϵ)

)n+1(v − vπ,U ) +

n∑
k=0

γkϵ

= (Tπ
(Pϵ,rϵ)

)n+1(v − vπ,U ) +
1− γn+1

1− γ
ϵ.

4Given C ⊆ RS , we say that x ∈ core(C) if for all d ∈ RS there exists a small enough t ∈ R such that
x+ td ∈ C [5].
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By definition of the sup-norm and applying the triangular inequality we obtain:

v − vπ,U ≤
∥∥∥(Tπ

(Pϵ,rϵ)
)n+1(v − vπ,U )

∥∥∥
∞

+
1− γn+1

1− γ
ϵ

≤ γn+1∥v − vπ,U∥∞ +
1− γn+1

1− γ
ϵ [Tπ

(Pϵ,rϵ)
is γ-contracting]

Setting n→∞ yields v−vπ,U ≤ ϵ
1−γ . Since both ϵ > 0 and v were taken arbitrarily, v∗−vπ,U ≤ 0,

while we have already shown that ⟨v∗, µ0⟩ ≥ ⟨vπ,U , µ0⟩. By positivity of the probability distribution
µ0, it results that ⟨v∗, µ0⟩ = ⟨vπ,U , µ0⟩, and since µ0 > 0, vπ,U = v∗.

A.2 Proof of Theorem 1

Theorem (Reward-robust MDP). Assume that U = {P0} × (r0 +R). Then, for any policy π ∈ ∆S
A,

the robust value function vπ,U is the optimal solution of the convex optimization problem:
max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− σRs(−πs) for all s ∈ S .

Proof. For all s ∈ S, define: F (s) := max(P,r)∈U {v(s)− rπ(s)− γPπv(s)}. It corresponds to
the robust counterpart of (PU ) at s ∈ S . Thus, the robust value function vπ,U is the optimal solution
of:

max
v∈RS
⟨v, µ0⟩ s. t. F (s) ≤ 0 for all s ∈ S . (6)

Based on the structure of the uncertainty set U = {P0}×(r0+R), we compute the robust counterpart:
F (s) = max

r′∈r0+R
{v(s)− r′π(s)− γPπ

0 v(s)}

= max
r′:r′=r0+r,r∈R

{v(s)− r′π(s)− γPπ
0 v(s)}

= max
r∈R
{v(s)− (rπ0 (s) + rπ(s))− γPπ

0 v(s)} [(r0 + r)π = rπ0 + rπ ∀π ∈ ∆S
A]

= max
r∈R
{v(s)− rπ(s)− rπ0 (s)− γPπ

0 v(s)}

= max
r∈R

{
v(s)− rπ(s)− Tπ

(P0,r0)
v(s)

}
[Tπ

(P0,r0)
v(s) = rπ0 (s) + γPπ

0 v(s)]

= max
r∈R
{−rπ(s)}+ v(s)− Tπ

(P0,r0)
v(s)

= max
r∈RX

{−rπ(s)− δR(r′)}+ v(s)− Tπ
(P0,r0)

v(s)

= − min
r∈RX

{rπ(s) + δR(r)}+ v(s)− Tπ
(P0,r0)

v(s)

= − min
r∈RX

{⟨rs, πs⟩+ δR(r)}+ v(s)− Tπ
(P0,r0)

v(s). [rπ(s) = ⟨rs, πs⟩]

By the rectangularity assumption,R = ×s∈SRs and for all r := (rs)s∈S ∈ RX , we have δR(r) =∑
s′∈S δRs′ (rs′). As such,

F (s) = − min
r∈RX

{⟨rs, πs⟩+
∑
s′∈S

δRs′ (rs′)}+ v(s)− Tπ
(P0,r0)

v(s)

= − min
r∈RX

{⟨rs, πs⟩+ δRs(rs)}+ v(s)− Tπ
(P0,r0)

v(s),

where the last equality holds since the objective function is minimal if and only if rs ∈ Rs.

We now aim to apply Fenchel-Rockafellar duality to the minimization problem. Let the function
f : RA → R defined as rs 7→ ⟨rs, πs⟩, and consider the support function δRs

: RA → R together
with the identity mapping IdA : RA → RA. Clearly, dom(f) = RA, dom(δRs

) = Rs, and
dom(δRs

) − IdA(dom(f)) = Rs − RA = RA. Therefore, core(dom(δRs
) − A(dom(f))) =

core(RA) = RA and 0 ∈ RA. We can thus apply Fenchel-Rockafellar duality: noting that IdA =
(IdA)

∗ and (δRs
)∗(y) = σRs

(y), we get
min

rs∈RA
{f(rs) + δRs

(rs)} = − min
y∈RA

{f∗(−y) + (δRs
)∗(y)} = − min

y∈RA
{f∗(−y) + σRs

(y)}.
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It remains to compute

f∗(−y) = max
rs∈RA

−⟨rs, y⟩ − ⟨rs, πs⟩ = max
rs∈RA

⟨rs,−y − πs⟩ =
{
0 if − y − πs = 0

+∞ otherwise
,

and obtain

F (s) = min
y∈RA

{f∗(−y) + σRs
(y)}+ v(s)− Tπ

(P0,r0)
v(s) = σRs

(−πs) + v(s)− Tπ
(P0,r0)

v(s).

We can thus rewrite the optimization problem (6) as:

max
v∈RS
⟨v, µ0⟩ s. t. σRs

(−πs) + v(s)− Tπ
(P0,r0)

v(s) ≤ 0 for all s ∈ S,

which concludes the proof.

A.3 Reward uncertainty: the ball constraint case

Corollary. Let π ∈ ∆S
A and U = {P0} × (r0 +R). Further assume that for all s ∈ S, the reward

uncertainty set at s is Rs := {rs ∈ RA : ∥rs∥ ≤ αr
s}. Then, the robust value function vπ,U is the

optimal solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− αr

s∥πs∥ for all s ∈ S .

Proof. We evaluate the support function:

σRs(−πs) = max
rs∈RA:∥rs∥≤αr

s

⟨rs,−πs⟩
(1)
= αr

s∥−πs∥ = αr
s∥πs∥,

where equality (1) holds by definition of the dual norm. Applying Thm. 1, the robust value function
vπ,U is the optimal solution of: maxv∈RS ⟨v, µ0⟩ s. t. αr

s∥πs∥+v(s)−Tπ
(P0,r0)

v(s) ≤ 0 for all s ∈ S,
which concludes the proof.

Ball-constraint with arbitrary norm. In the case where reward ball-constraints are defined according
to an arbitrary norm ∥·∥a with dual norm ∥·∥a∗ , the support function becomes:

σRs
(−πs) = max

rs∈RA:∥rs∥a≤αr
s

⟨rs,−πs⟩ = αr
s∥−πs∥a∗ = αr

s∥πs∥a∗ .

A.4 Related Algorithms: Uncertainty sets from regularizers

Negative Shannon entropy. Each (s, a)-reward uncertainty set isRNS
s,a(π) := [ln (1/πs(a)) ,+∞). We

compute the associated support function:

σRNS
s (π)(−πs) = max

rs∈RNS
s (π)
⟨rs,−πs⟩

= max
r(s,a′):r(s,a′)∈RNS

s,a′ (π),a
′∈A

∑
a∈A
−r(s, a)πs(a)

= max
r(s,a′):r(s,a′)≥ln(1/πs(a)),a′∈A

−
∑
a∈A

πs(a)r(s, a)

=
∑
a∈A

πs(a) ln(πs(a)), (7)

where the last equality results from the fact that πs ≥ 0, and −r(s, a)πs(a) is maximal when r(s, a)
is minimal. We thus obtain the negative Shannon entropy.
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Negative Shannon KL divergence Negative Tsallis R2 function

Regularizer Ω ∑
a∈A

πs(a) ln(πs(a))
∑
a∈A

πs(a) ln

(
πs(a)

d(a)

) 1

2
(∥πs∥2 − 1) ∥πs∥(αr

s+αP
s γ∥v∥)

Conjugate Ω∗

ln

(∑
a∈A

eqs(a)
)

ln

(∑
a∈A

d(a)eqs(a)
)

1

2
+
1

2

∑
a∈A

(qs(a)
2−τ(qs)

2)

Not in closed-form

Gradient ∇Ω∗

πs(a) =
eqs(a)∑
b∈A eqs(b)

πs(a) =
eqs(a)∑
b∈A eqs(b)

πs(a) = (qs(a)−τ(qs))+

Not in closed-form

Reward Uncer-
tainty

(s, a)-rectangular (s, a)-rectangular (s, a)-rectangular s-rectangular

RNS
s,a(π) =[
ln
(

1
πs(a)

)
,+∞

)
ln (d(a)) +RNS

s,a(π)
[
1− πs(a)

2
,+∞

)
B∥·∥(r0s, α

r
s)

Transition Un-
certainty

(s, a)-rectangular (s, a)-rectangular (s, a)-rectangular s-rectangular

{P0(·|s, a)} {P0(·|s, a)}
{P0(·|s, a)}

B∥·∥(P0s, α
P
s )

Table 3: Summary table of existing policy regularizers and generalization to our R2 function.

KL divergence. Similarly, given d ∈ ∆A, letRKL
s,a(π) := ln(d(a)) +RNS

s,a(π) ∀(s, a) ∈ X . Then

σRKL
s (π)(−πs) = max

r(s,a′):r(s,a′)∈RKL
s,a′ (π),a

′∈A

∑
a∈A
−r(s, a)πs(a)

= max
r(s,a′)+ln(d(a)):

r(s,a′)∈RNS
s,a′ (π),a

′∈A

∑
a∈A
−r(s, a)πs(a)

= max
r(s,a′):

r(s,a′)∈RNS
s,a′ (π),a

′∈A

∑
a∈A
−(r(s, a) + ln(d(a))πs(a)

= max
r(s,a′):

r(s,a′)∈RNS
s,a′ (π),a

′∈A

{−
∑
a∈A

πs(a)r(s, a)} −
∑
a∈A

πs(a) ln(d(a))

=
∑
a∈A

πs(a) ln(πs(a))−
∑
a∈A

πs(a) ln(d(a)),

where the last equality uses Eq. (7). We thus recover the KL divergence Ω(πs) =∑
a∈A πs(a) ln (πs(a)/d(a)).
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Negative Tsallis entropy. GivenRT
s,a(π) :=

[
1−πs(a)

2 ,+∞
)
∀(s, a) ∈ X , we compute:

σRT
s(π)

(−πs) = max
r(s,a′):r(s,a′)∈RT

s,a′ (π),a
′∈A

∑
a∈A
−r(s, a)πs(a)

= max
r(s,a′):r(s,a′)∈

[
1−πs(a′)

2 ,+∞
)
,a′∈A

∑
a∈A
−r(s, a)πs(a)

=
∑
a∈A
−1− πs(a)

2
πs(a) (8)

= −1

2

∑
a∈A

πs(a) +
1

2

∑
a∈A

πs(a)
2 = −1

2
+

1

2
∥πs∥2,

where Eq. (8) also comes from the fact that πs ≥ 0, and −r(s, a)πs(a) is maximal when r(s, a) is
minimal. We thus obtain the negative Tsallis entropy Ω(πs) =

1
2 (∥πs∥2 − 1).

The reward uncertainty sets associated to both KL and Shannon entropy are similar, as the former
amounts to translating the latter by a negative constant (translation to the left). As such, both yield
reward values that can be either positive or negative. This is not the case of the negative Tsallis, as its
minimal reward is 0, attained for a deterministic action policy, i.e., when πs(a) = 1.

Table 3 summarizes the properties of each regularizer. For the Tsallis entropy, we denote
by τ : RA → R the function qs 7→

∑
a∈A(qs) qs(a)−1

|A(qs)| , where A(qs) ⊆ A is a subset

of actions: A(qs) = {a ∈ A : 1 + iqs(a(i)) >
∑i

j=0 qs(a(j)), i ∈ {1, · · · , |A|}}, and
a(i) is the action with the i-th maximal value [30].

B General robust MDPs

B.1 Proof of Theorem 2

Theorem (General robust MDP). Assume that U = (P0 + P) × (r0 +R). Then, for any policy
π ∈ ∆S

A, the robust value function vπ,U is the optimal solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− σRs

(−πs)− σPs
(−γv · πs) for all s ∈ S,

where [v · πs](s
′, a) := v(s′)πs(a) ∀(s′, a) ∈ X .

Proof. The robust value function vπ,U is the optimal solution of:

max
v∈RS
⟨v, µ0⟩ s. t. F (s) ≤ 0 for all s ∈ S, (9)
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where F (s) := max(P,r)∈U {v(s)− rπ(s)− γPπv(s)} is the robust counterpart of (PU ) at s ∈ S.
Let’s compute it based on the structure of the uncertainty set U = (P0 + P)× (r0 +R):
F (s) = max

(P ′,r′)∈(P0+P)×(r0+R)
{v(s)− r′π(s)− γP ′πv(s)}

= max
P ′:P ′=P0+P,P∈P
r′:r′=r0+r,r∈R

{v(s)− r′π(s)− γP ′πv(s)}

= max
P∈P,r∈R

{v(s)− (rπ0 (s) + rπ(s))− γ(Pπ
0 + Pπ)v(s)} [(P0 + P )π = Pπ

0 + Pπ,

(r0 + r)π = rπ0 + rπ]

= max
P∈P,r∈R

{v(s)− rπ0 (s)− rπ(s)− γPπ
0 v(s)− γPπv(s)}

= max
P∈P,r∈R

{
v(s)− Tπ

(P0,r0)
v(s)− rπ(s)− γPπv(s)

}
[Tπ

(P0,r0)
v(s) = rπ0 (s) + γPπ

0 v(s)]

= max
P∈P
{−γPπv(s)}+max

r∈R
{−rπ(s)}+ v(s)− Tπ

(P0,r0)
v(s)

= −min
P∈P
{γPπv(s)} −min

r∈R
{rπ(s)}+ v(s)− Tπ

(P0,r0)
v(s)

= − min
P∈RX ×S

{γPπv(s) + δP(P )} − min
r∈RX

{rπ(s) + δR(r)}

+ v(s)− Tπ
(P0,r0)

v(s)

= − min
P∈RX ×S

{γ⟨Pπ
s , v⟩+ δP(P )} − min

r∈RX
{⟨rs, πs⟩+ δR(r)}

+ v(s)− Tπ
(P0,r0)

v(s). [Pπv(s) = ⟨Pπ
s , v⟩, rπ(s) = ⟨rs, πs⟩]

As shown in the proof of Thm. 1, minr∈RX {⟨rs, πs⟩ + δR(r)} = minrs∈RA{⟨rs, πs⟩ + δRs
(rs)}

thanks to the rectangularity assumption. Similarly, by rectangularity of the transition uncertainty set,
for all P := (Ps)s∈S ∈ RX , we have δP(P ) =

∑
s′∈S δPs′ (Ps′). As such,

min
P∈RX ×S

{γ⟨Pπ
s , v⟩+ δP(P )} = min

P∈RX ×S
{γ⟨Pπ

s , v⟩+
∑
s′∈S

δPs′ (Ps′)}

= min
Ps∈RX

{γ⟨Pπ
s , v⟩+ δPs(Ps)},

where the last equality holds since the objective function is minimal if and only if Ps ∈ Ps. Finally,

F (s) = − min
Ps∈RX

{γ⟨Pπ
s , v⟩+ δPs

(Ps)} − min
rs∈RA

{⟨rs, πs⟩+ δRs
(rs)}+ v(s)− Tπ

(P0,r0)
v(s).

Referring to the proof of Thm. 1, we know that −minr∈RX {⟨rs, πs⟩+ δR(r)} = σRs(−πs), so

F (s) = − min
Ps∈RX

{γ⟨Pπ
s , v⟩+ δPs

(Ps)}+ σRs
(−πs) + v(s)− Tπ

(P0,r0)
v(s).

Let the matrix v · πs ∈ RX defined as [v · πs](s
′, a) := v(s′)πs(a) for all (s′, a) ∈ X . Further define

φ(Ps) := γ⟨Pπ
s , v⟩, which we can rewrite as φ(Ps) = γ⟨Ps, v · πs⟩. Then, we have that:

min
Ps∈RX

{γ⟨Pπ
s , v⟩+ δPs(Ps)} = min

Ps∈RX
{φ(Ps) + δPs(Ps)} = − min

B∈RX
{φ∗(−B) + σPs(B)},

where the last equality results from Fenchel-Rockafellar duality and the fact that (δPs
)∗ = σPs

. It
thus remains to compute the convex conjugate of φ:

φ∗(−B) = max
Ps∈RX

{⟨Ps,−B⟩ − φ(Ps)}

= max
Ps∈RX

{⟨Ps,−B⟩ − γ⟨Ps, v · πs⟩}

= max
Ps∈RX

⟨Ps,−B−γv · πs⟩

=

{
0 if −B−γv · πs = 0

+∞ otherwise,

which yields minB∈RX {φ∗(−B) + σPs(B)} = σPs(−γv · πs). Finally, the robust counterpart
rewrites as: F (s) = σPs(−γv · πs) + σRs(−πs) + v(s) − Tπ

(P0,r0)
v(s), and plugging it into the

optimization problem (9) yields the desired result.
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B.2 Proof of Corollary 1

Corollary. Assume that U = (P0 + P) × (r0 + R) with Ps := {Ps ∈ RX : ∥Ps∥ ≤ αP
s } and

Rs := {rs ∈ RA : ∥rs∥ ≤ αr
s} for all s ∈ S. Then, the robust value function vπ,U is the optimal

solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− αr

s∥πs∥ − αP
s γ∥v∥∥πs∥ for all s ∈ S .

Proof. As we already showed in Appx. A.3, the support function of the reward uncertainty set is
σRs

(−πs) = αr
s∥πs∥. For the transition uncertainty set, we similarly have:

σPs(−γv · πs) = max
Ps∈RX :
∥Ps∥≤αP

s

⟨Ps,−γv · πs⟩

= αP
s ∥−γv · πs∥

= αP
s γ∥v · πs∥

= αP
s γ∥v∥∥πs∥. [∥v · πs∥2 =

∑
(s′,a)∈X

(v(s′)πs(a))
2

=
∑
s′∈S

v(s′)2
∑
a∈A

πs(a)
2 = ∥v∥2∥πs∥2]

Now we apply Thm. 1 and replace each support function by their explicit form to get that the robust
value function vπ,U is the optimal solution of:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− αr

s∥πs∥ − αP
s ∥πs∥ · γ∥v∥ for all s ∈ S .

Ball-constraints with arbitrary norms. As seen in the proof of Thm. 1 and in Appx. A.3, for ball-
constrained rewards defined with an arbitrary norm ∥·∥a of dual ∥·∥a∗ , the corresponding support
function is σRs

(−πs) = αr
s∥πs∥a∗ . Similarly, for ball-constrained transitions based on a norm ∥·∥b

of dual ∥·∥b∗ , we have:

σPs(−γv · πs) = max
Ps∈RX :

∥Ps∥b≤αP
s

⟨Ps,−γv · πs⟩ = αP
s ∥−γv · πs∥b∗ ,

in which case the robust value function vπ,U is the optimal solution of:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− αr

s∥πs∥a∗ − αP
s ∥−γv · πs∥b∗ for all s ∈ S .

C R2 MDPs

C.1 Proof of Proposition 3

Proposition. Suppose that Asm. 1 holds. Then, we have the following properties:
(i) Monotonicity: For all v1, v2 ∈ RS such that v1 ≤ v2, we have Tπ,R2

v1 ≤ Tπ,R2
v2 and

T ∗,R2
v1 ≤ T ∗,R2

v2.
(ii) Sub-distributivity: For all v1 ∈ RS , c ∈ R, we have Tπ,R2

(v1 + c1S) ≤ Tπ,R2
v1 + γc1S and

T ∗,R2
(v1 + c1S) ≤ T ∗,R2

v1 + γc1S , ∀c ∈ R.
(iii) Contraction: Let ϵ∗ := mins∈S ϵs > 0. Then, for all v1, v2 ∈ RS ,
∥Tπ,R2

v1 − Tπ,R2
v2∥∞ ≤ (1− ϵ∗)∥v1 − v2∥∞ and ∥T ∗,R2

v1 − T ∗,R2
v2∥∞ ≤ (1− ϵ∗)∥v1 − v2∥∞.
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Proof. Proof of (i). Consider the evaluation operator and let v1, v2 ∈ RS such that v1 ≤ v2. For all
s ∈ S,

[Tπ,R2
v1 − Tπ,R2

v2](s)

= Tπ
(P0,r0)

v1(s)− αr
s∥πs∥ − αP

s γ∥v1∥∥πs∥

− (Tπ
(P0,r0)

v2(s)− αr
s∥πs∥ − αP

s γ∥v2∥∥πs∥)

= Tπ
(P0,r0)

v1(s)− Tπ
(P0,r0)

v2(s) + αP
s γ∥πs∥(∥v2∥ − ∥v1∥)

= γPπ
0 (v1 − v2)(s) + αP

s γ∥πs∥(∥v2∥ − ∥v1∥)

= γ⟨πs, P0s(v1 − v2)⟩+ αP
s γ∥πs∥(∥v2∥ − ∥v1∥) [∀v ∈ RS , Pπ

0 v(s) =
∑

(s′,a)∈X

πs(a)P0(s
′|s, a)v(s′)

=
∑
a∈A

πs(a)[P0sv](a) = ⟨πs, P0sv⟩]

= γ∥πs∥
(〈

πs

∥πs∥
, P0s(v1 − v2)

〉
+ αP

s (∥v2∥ − ∥v1∥)
)

≤ γ∥πs∥
(〈

πs

∥πs∥
, P0s(v1 − v2)

〉
+ αP

s (∥v2 − v1∥)
)

[∀v, w ∈ RS , ∥v∥ − ∥w∥ ≤ |∥v∥ − ∥w∥| ≤ ∥v − w∥].

By Asm. 1, we also have

αP
s ≤ min

uA∈RA
+ ,∥uA∥=1

vS∈RS
+,∥vS∥=1

u⊤
AP0(·|s, ·)vS = min

uA∈RA
+ ,∥uA∥=1

vS∈RS
+,∥vS∥=1

⟨uA, P0(·|s, ·)vS⟩ ≤
〈

πs

∥πs∥
, P0(·|s, ·)

(v2 − v1)

∥v2 − v1∥

〉
,

so that

[Tπ,R2
v1 − Tπ,R2

v2](s) ≤ γ∥πs∥
(〈

πs

∥πs∥
, P0s(v1 − v2)

〉
+

〈
πs

∥πs∥
, P0(·|s, ·)

(v2 − v1)

∥v2 − v1∥

〉
∥v2 − v1∥

)
= γ∥πs∥

(〈
πs

∥πs∥
, P0s(v1 − v2)

〉
+

〈
πs

∥πs∥
, P0(·|s, ·)(v2 − v1)

〉)
= 0,

where we switch notations to designate P0(·|s, ·) = P0s ∈ RA×S . This proves monotonicity.

Proof of (ii). We now prove the sub-distributivity of the evaluation operator. Let v ∈ RS , c ∈ R. For
all s ∈ S,

[Tπ,R2
(v + c1S)](s)

=[Tπ
(P0,r0)

(v + c1S)](s)− αr
s∥πs∥ − αP

s γ∥v + c1S∥∥πs∥

=Tπ
(P0,r0)

v(s) + γc− αr
s∥πs∥ − αP

s γ∥v + c1S∥∥πs∥ [Tπ
(P0,r0)

(v + c1S) = Tπ
(P0,r0)

v + γc1S ]

≤Tπ
(P0,r0)

v(s) + γc− αr
s∥πs∥ − αP

s γ∥πs∥(∥v∥+ ∥c1S∥)

=Tπ
(P0,r0)

v(s) + γc− αr
s∥πs∥ − αP

s γ∥πs∥∥v∥

− αP
s γ∥πs∥∥c1S∥

=[Tπ,R2
v](s) + γc− αP

s γ∥πs∥∥c1S∥

≤[Tπ,R2
v](s) + γc. [γ > 0, αP

s > 0, ∥·∥ ≥ 0]

Proof of (iii). We prove the contraction of a more general evaluation operator with ℓp regularization,
p ≥ 1. This will establish contraction of the R2 operator Tπ,R2

by simply setting p = 2. Define as q
the conjugate value of p, i.e., such that 1

p + 1
q = 1. As seen in the proof of Thm. 2, for balls that are

constrained according to the ℓp-norm ∥·∥p, the robust value function vπ,U is the optimal solution of:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)− αr

s∥πs∥q − αP
s ∥−γv · πs∥q for all s ∈ S,

because ∥·∥q is the dual norm of ∥·∥p, and we can define the R2 operator accordingly:

[Tπ,R2

q v](s) := Tπ
(P0,r0)

v(s)− αr
s∥πs∥q − αP

s γ∥v · πs∥q ∀v ∈ RS , s ∈ S .
We make the following assumption:
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Assumption (Aq). For all s ∈ S, there exists ϵs > 0 such that αP
s ≤

1−γ−ϵs

γ|S|
1
q
.

Let v1, v2 ∈ RS . For all s ∈ S,∣∣∣[Tπ,R2

q v1](s)− [Tπ,R2

q v2](s)
∣∣∣

= | Tπ
(P0,r0)

v1(s)− αr
s∥πs∥q − αP

s γ∥v1 · πs∥q
− (Tπ

(P0,r0)
v2(s)− αr

s∥πs∥q − αP
s γ∥v2 · πs∥q) |

=
∣∣∣Tπ

(P0,r0)
v1(s)− Tπ

(P0,r0)
v2(s)

∣∣∣+ ∣∣αP
s γ(∥v2 · πs∥q − ∥v1 · πs∥q)

∣∣
=
∣∣∣Tπ

(P0,r0)
v1(s)− Tπ

(P0,r0)
v2(s)

∣∣∣+ αP
s γ|∥v2 · πs∥q − ∥v1 · πs∥q|

≤
∣∣∣Tπ

(P0,r0)
v1(s)− Tπ

(P0,r0)
v2(s)

∣∣∣+ αP
s γ∥v2 · πs − v1 · πs∥q

[∀A,B ∈ RX , |∥A∥q − ∥B∥q| ≤ ∥A−B∥q]
≤γ∥v1 − v2∥∞ + αP

s γ∥v2 · πs − v1 · πs∥q
[∥Tπ

(P0,r0)
v1 − Tπ

(P0,r0)
v2∥∞ ≤ γ∥v1 − v2∥∞]

=γ∥v1 − v2∥∞ + αP
s γ∥(v2 − v1) · πs∥q

[∀v, w ∈ RS , v · πs − w · πs = (v − w) · πs]

≤γ∥v1 − v2∥∞ + αP
s γ∥v2 − v1∥q [∀v ∈ RS , ∥v · πs∥q ≤ ∥v∥q]

≤γ∥v1 − v2∥∞ + αP
s γ|S|

1
q ∥v1 − v2∥∞ [∀v, w ∈ RS , ∥v − w∥q ≤ |S|

1
q ∥v − w∥∞]

=γ(1 + αP
s |S|

1
q )∥v1 − v2∥∞

≤γ
(
1 +

1− γ − ϵs
γ

)
∥v1 − v2∥∞ [αP

s ≤
1− γ − ϵs

γ|S|
1
q

by Asm. (Aq)]

=(1− ϵs)∥v1 − v2∥∞
≤(1− ϵ∗)∥v1 − v2∥∞,

where ϵ∗ := mins∈S ϵs. Setting q = 2 and remarking that: (i) the first bound in Asm. 1 recovers
Asm. (Aq); (ii) Tπ,R2

2 = Tπ,R2
, establishes contraction of the R2 evaluation operator. For the

optimality operator, the proof is exactly the same as that of [13, Prop. 3], using Prop. 1.

C.2 Proof of Theorem 3

Theorem (R2 optimal policy). The greedy policy π∗,R2
= GΩ

R2 (v
∗,R2

) is the unique optimal R2 policy,

i.e., for all π ∈ ∆S
A, v

π∗,R2
= v∗,R

2 ≥ vπ,R
2
.

Proof. By strong convexity of the norm, the R2 function Ωv,R2 : πs 7→ ∥πs∥(αr
s + αP

s γ∥v∥) is

strongly convex in πs. As such, we can invoke Prop. 1 to state that the greedy policy π∗,R2
is the

unique maximizing argument for v∗,R
2
. Moreover, by construction,

Tπ∗,R2
,R2

v∗,R
2
= T ∗,R2

v∗,R
2
= v∗,R

2
.

Supposing that Asm. 1 holds, the evaluation operator Tπ∗,R2
,R2

is contracting and has a unique fixed

point vπ
∗,R2

,R2
. Therefore, v∗,R

2
being also a fixed point, we have vπ

∗,R2
,R2

= v∗,R
2
. It remains to

show the last inequality: the proof is exactly the same as that of [13, Thm. 1], and relies on the
monotonicity of the R2 operators.

C.3 Proof of Remark 1

Remark 2. An optimal R2 policy may be stochastic. This is due to the fact that our R2 MDP
framework builds upon the general s-rectangularity assumption. Robust MDPs with s-rectangular un-
certainty sets similarly yield an optimal robust policy that is stochastic [47, Table 1]. Nonetheless, the
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R2 MDP formulation recovers a deterministic optimal policy in the more specific (s, a)-rectangular
case, which is in accordance with the robust MDP setting.

Proof. In the (s, a)-rectangular case, the uncertainty set is structured as U = ×(s,a)∈XU(s, a), where
U(s, a) := P0(·|s, a)× r0(s, a) + P(s, a)×R(s, a). The robust counterpart of problem (PU ) is:

F (s) = max
(P,r)∈U

{v(s)− rπ(s)− γPπv(s)}

= max
(P (·|s,a),r(s,a))∈P(s,a)×R(s,a)

{v(s)− rπ0 (s)− rπ(s)− γPπ
0 v(s)− γPπv(s)}

= max
(P (·|s,a),r(s,a))∈P(s,a)×R(s,a)

{−rπ(s)− γPπv(s)}+ v(s)− rπ0 (s)− γPπ
0 v(s)

= max
r(s,a)∈R(s,a)

{−rπ(s)}+ γ max
P (·|s,a)∈P(s,a)

{−Pπv(s)}+ v(s)− Tπ
(P0,r0)

v(s)

= max
r(s,a)∈R(s,a)

{
−
∑
a∈A

πs(a)r(s, a)

}
+ γ max

P (·|s,a)∈P(s,a)

{
−
∑
a∈A

πs(a)⟨P (·|s, a), v⟩

}
+ v(s)− Tπ

(P0,r0)
v(s)

=
∑
a∈A

πs(a)

(
max

r(s,a)∈R(s,a)
{−r(s, a)}+ γ max

P (·|s,a)∈P(s,a)
{⟨P (·|s, a),−v⟩}

)
+ v(s)− Tπ

(P0,r0)
v(s).

In particular, if we have ball uncertainty sets P(s, a) := {P (·|s, a) ∈ RS : ∥P (·|s, a)∥ ≤ αP
s,a} and

R(s, a) := {r(s, a) ∈ R : |r(s, a)| ≤ αr
s,a} for all (s, a) ∈ X , then we can explicitly compute the

support functions:

max
r(s,a):|r(s,a)|≤αr

s,a

−r(s, a) = αr
s,a and max

P (·|s,a):∥P (·|s,a)∥≤αP
s,a

⟨P (·|s, a),−v⟩ = αP
s,a∥v∥.

Therefore, the robust counterpart rewrites as:

F (s) =
∑
a∈A

πs(a)(α
r
s,a + γαP

s,a∥v∥) + v(s)− Tπ
(P0,r0)

v(s),

and the robust value function vπ,U is the optimal solution of the convex optimization problem:

max
v∈RS
⟨v, µ0⟩ s. t. v(s) ≤ Tπ

(P0,r0)
v(s)−

∑
a∈A

πs(a)(α
r
s,a + γαP

s,a∥v∥) for all s ∈ S .

This derivation enables us to derive an R2 Bellman evaluation operator for the (s, a)-rectangular case.
Indeed, the R2 regularization function now becomes

Ωv,R2(πs) :=
∑
a∈A

πs(a)(α
r
s,a + γαP

s,a∥v∥),

which yields the following R2 operator:

[Tπ,R2
v](s) := Tπ

(P0,r0)
v(s)− Ωv,R2(πs), ∀s ∈ S .

We aim to show that we can find a deterministic policy πd ∈ ∆S
A such that [Tπd,R2

v](s) = [T ∗,R2
v](s)

for all s ∈ S. Given an arbitrary policy π ∈ ∆S
A, we first rewrite:

[Tπ,R2
v](s) = rπ0 (s) + γPπ

0 v(s)− Ωv,R2(πs)

=
∑
a∈A

πs(a)r0(s, a) + γ
∑
a∈A

πs(a)⟨P0(·|s, a), v⟩ −

(∑
a∈A

πs(a)(α
r
s,a + γαP

s,a∥v∥)

)

=
∑
a∈A

πs(a)

(
r0(s, a)− αr

s,a + γ(⟨P0(·|s, a), v⟩ − αP
s,a∥v∥)

)
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By [36, Lemma 4.3.1], we have that:∑
a∈A

πs(a)

(
r0(s, a)− αr

s,a + γ(⟨P0(·|s, a), v⟩ − αP
s,a∥v∥)

)
≤ max

a∈A

{
r0(s, a)− αr

s,a + γ(⟨P0(·|s, a), v⟩ − αP
s,a∥v∥)

}
,

and since the action set is finite, there exists an action a∗ ∈ A reaching the maximum. Setting
πd(a∗) = 1 thus gives the desired result. We just derived a regularized formulation of robust MDPs
with (s, a)-rectangular uncertainty set and ensured that the corresponding R2 Bellman operators yield
a deterministic optimal policy. In that case, the optimal R2 Bellman operator becomes:

[T ∗,R2
v](s) = max

a∈A

{
r0(s, a)− αr

s,a + γ(⟨P0(·|s, a), v⟩ − αP
s,a∥v∥)

}
.

D R2 q-learning

D.1 The R2 q-function

Theorem 4. Assume that U = ({P0} + P) × ({r0} + R) and U is (s, a)-rectangular. Then, its
corresponding robust action-value function is an optimal solution of:
max
q∈RX

⟨q, µ0 · π⟩ s.t. q(s, a) ≤ Tπ
(P0,r0)

q(s, a)− σR(s,a)(−1)− σP(s,a)(−γq · π) for all (s, a) ∈ X ,

(10)

where [q · π](s′) :=
∑

a′∈A πs′(a
′)q(s′, a′),∀s′ ∈ S.

Proof. It is known from [24] that the robust action-value function is an optimal solution of:
max
q∈RX

⟨q, µ0 · π⟩ s.t. q(s, a) ≤ Tπ
(P,r)q(s, a) for all (s, a) ∈ X , (P (·|s, a), r(s, a)) ∈ U(s, a),

which can be rewritten as:
max
q∈RX

⟨q, µ0 · π⟩ s.t. q(s, a) ≤ Tπ
(P0,r0)

q(s, a) + r(s, a) + γ⟨P (·|s, a) · π, q⟩

for all (s, a) ∈ X , (P (·|s, a), r(s, a)) ∈ U(s, a),
with [P (·|s, a) · π](s′, a′) := πs′(a

′)P (s′|s, a),∀(s′, a′ ∈ X ). More synthetically, the robust action-
value function is an optimal solution of:

max
q∈RX

⟨q, µ0 · π⟩

s.t. max
(P (·|s,a),r(s,a))∈U(s,a)

{
q(s, a)− Tπ

(P0,r0)
q(s, a)− r(s, a)− γ⟨P (·|s, a) · π, q⟩

}
≤ 0

for all (s, a) ∈ X . (11)

We now compute the robust counterpart. For any (s, a) ∈ X and policy π ∈ ∆S
A, denote by:

Fπ(s, a) := max
(P (·|s,a),r(s,a))∈U(s,a)

{
q(s, a)− Tπ

(P0,r0)
q(s, a)− r(s, a)− γ⟨P (·|s, a) · π, q⟩

}
.

Removing the constant terms from the maximization and using the indicator function yields:
Fπ(s, a) = q(s, a)− Tπ

(P0,r0)
q(s, a) + max

(P (·|s,a),r(s,a))∈U(s,a)
{−r(s, a)− γ⟨P (·|s, a) · π, q⟩}

= q(s, a)− Tπ
(P0,r0)

q(s, a)− min
(P (·|s,a),r(s,a))∈U(s,a)

{r(s, a) + γ⟨P (·|s, a) · π, q⟩}

= q(s, a)− Tπ
(P0,r0)

q(s, a)− min
r(s,a)∈R(s,a)

r(s, a)− min
P (·|s,a)∈P(s,a)

γ⟨P (·|s, a) · π, q⟩

= q(s, a)− Tπ
(P0,r0)

q(s, a)− min
r(s,a)∈R

{r(s, a) + δR(s,a)(r(s, a))}

− min
P (·|s,a)∈RS

{γ⟨P (·|s, a) · π, q⟩+ δP(s,a)(P (·|s, a))}.

Applying Fenchel-Rockafellar duality to both minimization problems yields the desired result.
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Corollary 2. If, additionally, Psa is a ball of radius αP
sa w.r.t. some norm ∥·∥ andRsa an interval of

radius αr
sa, then the robust action-value function is an optimal solution of:

max
q∈RX

⟨q, µ0 · π⟩ s.t. q(s, a) ≤ Tπ
(P0,r0)

q(s, a)− αr
sa − γαP

sa∥q · π∥∗ for all (s, a) ∈ X . (12)

The upper-bound in the optimization problem enables to define the R2 Bellman operator on q-
functions as:

[Tπ,R2
q](s, a) := Tπ

(P0,r0)
q(s, a)− αr

sa − γαP
sa∥q · π∥∗

D.2 Distinguishing between R2 and robust q-functions

We aim to show that although we can interchangeably optimize an R2 q-function or a robust q-value
under (s, a)-rectangularity, the R2 q-function obtained from the R2 value v is not the same as the
q-function obtained from the original robust optimization problem. This nuance is reminiscent of the
regularized MDP setting, where defining the regularized q-function w.r.t. the regularized value v is
not equivalent to taking v as the expected q-function over a policy.

Let thus assume that the uncertainty set is (s, a)-rectangular. Then, by Sec. C.3, the R2 value function
vπ,R

2
is the unique fixed point of the R2 Bellman operator as below:

[Tπ,R2
v](s) := Tπ

(P0,r0)
v(s)−

∑
a∈A

πs(a)(α
r
s,a + γαP

s,a∥v∥), ∀s ∈ S .

This rewrites as:

vπ,R
2
(s) =

∑
a∈A

πs(a)
(
r0(s, a) + γ⟨P0(·|s, a), vπ,R

2
⟩ − αr

s,a − γαP
s,a∥vπ,R

2
∥
)

=
∑
a∈A

πs(a)
(
qπ,R

2
(s, a)− αr

s,a − γαP
s,a∥vπ,R

2
∥
)
,

where the last equality holds by definition of the q-function associated with vπ,R
2

(Def. 2). As a
result,

qπ,R
2
· π(s) = vπ,R

2
(s) + [αr + γαP ∥vπ,R

2
∥] · π(s)

Alternatively, by optimizing w.r.t. q ∈ RX instead of v ∈ RS and applying Cor. 2, the robust
action-value function qπ,U satisfies:

qπ,U (s, a) = Tπ
(P0,r0)

qπ,U (s, a)− αr
sa − γαP

sa∥qπ,U · π∥∗ for all (s, a) ∈ X .

Taking the expectation over policy π yields:

qπ,U · π = rπ0 + Pπ
0 (q

π,U · π)−
∑
a∈A

πs(a)(α
r
sa − γαP

sa∥qπ,U · π∥∗) for all (s, a) ∈ X ,

so that qπ,U · π is a fixed point of the R2 Bellman operator. By unicity of its fixed point, we obtain
that qπ,U · π = vπ,R

2
. As a result:

qπ,U · π = vπ,R
2

= (qπ,R
2
− αr − γ∥vπ,R

2
∥αP ) · π

= qπ,R
2
· π − [αr + γαP ∥vπ,R

2
∥] · π

Taking deterministic policies on each possible action, we end up with an element-wise identity:

qπ,U (s, a) = qπ,R
2
(s, a)− αr

s,a − γ∥vπ,R
2
∥αP

s,a
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D.3 Convergence of R2 q-learning

Theorem 5 (Convergence of R2 q-learning). For any (s, a) ∈ X , let a sequence of step-sizes
(βt(s, a))t∈N satisfying 0 ≤ βt(s, a) ≤ 1,

∑
t∈N βt(s, a) =∞ and

∑
t∈N β2

t (s, a) <∞. Then, the
R2 q-learning algorithm as given in Alg. 2 converges almost surely to the optimal R2 q-function.

Proof. We will use the convergence result from [25]. The update rule is given by:

qt+1(st, at) = qt(st, at)

+ βt(st, at)

(
rt+1 + γmax

b∈A
qt(st+1, b)− αr

stat
− γαP

stat
∥max
b∈A

qt(·, b)∥∗ − qt(st, at)

)
which we rewrite as:

qt+1(st, at) = (1− βt(st, at))qt(st, at)

+ βt(st, at)

(
rt+1 + γmax

b∈A
qt(st+1, b)− αr

stat
− γαP

stat
∥max
b∈A

qt(·, b)∥∗
)
.

(13)

Further let ∆t(s, a) := qt(s, a)− q∗,R
2
(s, a),∀(s, a) ∈ X . Then Eq. (13) rewrites as:

∆t+1(s, a) = (1− βt(st, at))∆t(st, at)

+ βt(st, at)

(
rt+1 + γmax

b∈A
qt(st+1, b)− αr

stat
− γαP

stat
∥max
b∈A

qt(·, b)∥∗ − q∗,R
2
(st, at)

)
.

We introduce the following random variable:

Gt(s, a) := r(s, a) + γmax
b∈A

qt(X(s, a), b)− αr
sa − γαP

sa∥max
b∈A

qt(·, b)∥∗ − q∗,R
2
(s, a),

so that

E [Gt(s, a)|Ft] = E
[
r(s, a) + γmax

b∈A
qt(X(s, a), b)− αr

sa − γαP
sa∥max

b∈A
qt(·, b)∥∗ − q∗,R

2
(s, a)|Ft

]
= r(s, a) + γ

∑
s′∈S

max
b∈A

P (s′|s, a)qt(s′, b)− αr
sa − γαP

sa∥max
b∈A

qt(·, b)∥∗ − q∗,R
2
(s, a)

= [T ∗,R2
qt](s, a)− q∗,R

2
(s, a)

= [T ∗,R2
qt](s, a)− [T ∗,R2

q∗,R
2
](s, a).

By contraction property of the R2 Bellman operator, we thus obtain:

∥E [Gt(s, a)|Ft]∥∞ =
∥∥∥[T ∗,R2

qt](s, a)− [T ∗,R2
q∗,R

2
](s, a)

∥∥∥
∞

≤ (1− ϵ∗)
∥∥∥qt(s, a)− q∗,R

2
(s, a)

∥∥∥
∞

= (1− ϵ∗)∥∆t(s, a)∥∞

E Planning on a Maze

Number of seeds per experiment 5
Discount factor γ 0.9

Convergence Threshold θ 1e-3
Reward Radius αr 1e-3

Transition Radius αP 1e-5

Table 4: Hyperparameter set to obtain the results from Table 1

25



In the following experiment, we play with the radius of the uncertainty set and analyze the distance
of the robust/R2 value function to the vanilla one obtained after convergence of MPI. Except for the
radius parameters of Table 4, all other parameters remain unchanged. In both figures 3 and 4, we see
that the distance norm converges to 0 as the size of the uncertainty set gets closer to 0: this sanity
check ensures an increasing relationship between the level of robustness and the radius value. As
shown in Fig. 3, the plots for robust MPI and R2 MPI coincide in the reward-robust case, but they
diverge from each other as the transition model gets more uncertain. This does not contradict our
theoretical findings from Thms. 1-2. In fact, each iteration of robust MPI involves an optimization
problem which is solved using a black-box solver and yields an approximate solution. As such, errors
propagate across iterations and according to Fig. 4, they are more sensitive to transition than reward
uncertainty. This is easy to understand: as opposed to the reward function, the transition kernel
interacts with the value function at each Bellman update, so errors on the value function also affect
those on the optimum and vice versa. Moreover, the gap grows with the radius level because of the
simplex constraint we ignored when computing the support function of the transition uncertainty set.
The work [29] accounts for this additional constraint to derive a regularization function that recovers
the robust value under transition uncertainty.

Figure 3: Distance norm between the optimal
robust/R2 value and the vanilla one as
a function of αr (αP = 0) after 5 runs
of robust/R2 MPI

Figure 4: Distance norm between the optimal
robust/R2 value and the vanilla one as a
function of αP (αr = 0) after 5 runs of
robust/R2 MPI

F R2 Learning Experiments

In this section, we provide additional details and experiments regarding our R2 q-learning algorithm.

F.1 Tabular case

As proof of concept, we perform experiments in a tabular environment. Here, our goals are the
following: (i) numerically illustrate the convergence of R2 q-learning; (ii) highlight its computational
advantage over robust q-learning concurrently with its robustness properties.

We consider a Mars Rover domain as in [43]. The objective is to find the shortest path to a goal state
in a 10× 10 grid. However, taking a shorter path implies higher risk: the rover has a greater chance
to hit a rocket and get a negative reward. The transition function is stochastic: the agent moves to the
chosen direction with probability 1− ϵ, and randomly otherwise. At each step, it receives a small
penalty rstep. An episode terminates whenever the rover reaches the goal state or hits a rock. The two
scenarios yield a reward of rsuccess and rfail respectively. We thus have rsuccess > 0 > rstep > rfail. We
compare our R2 q-learning algorithm with two baselines: vanilla and robust q-learning. Vanilla is
the standard method that ignores model uncertainty and assumes the reward and dynamics are fixed.
Robust q-learning trains a robust optimal policy using robust Bellman updates, thus requiring solving
an optimization problem at each iteration [37].
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(a) (b)

Figure 5: Convergence plots for Mars Rover. (a) Cumulative reward w.r.t. the number of iteration
steps, averaged over 10 seeds. For R2 and robust q-learning, αp = αr = 0.01. (b)
Cumulative reward w.r.t. time process in seconds. Performance peaks appear because data
are sometimes logged in the middle of an episode, so the agent has accumulated negative
rewards.

(a) (b)

Figure 6: Mars Rover: (a) Evaluation of q-learning over new transition models. Each algorithm
was trained over 10 seeds on nominal ϵ = 0. (b) Comparison of different β-values for
moving average. Each β-value is run over 5 seeds (these are the same for the exact and the
estimated case).

Fig. 5a shows the convergence plot across iteration steps for the three agents: vanilla, robust and
R2. All of them have similar sample complexity and fulfill the task within 100 iteration steps. The
difference between them arises when we look at the time complexity of each algorithm. As we
can see in Fig. 5b, robust q-learning takes more than 2 minutes to converge, whereas vanilla and
R2 q-learning achieve the highest reward within 4 seconds (see also Fig. 7). Similarly, we calculated
the average time necessary to perform one learning step in each algorithm: one R2 update takes
7.7 ± 5.9 × 10−6 seconds to run, which is slightly slower than vanilla with 1.24 ± 0.89 × 10−6

seconds. On the other hand, a robust q-update takes 3± 0.9× 10−2 seconds, thus representing 104

higher cost than the other two approaches. This highlights the clear advantage of R2 over robust
q-learning in terms of computational cost. To check robustness, after training, we evaluate each
policy under varying dynamics. In particular, we increase the value of ϵ to make the environment
more adversarial. Fig. 6a shows that the R2 policy performs similarly to the robust one under more
adversarial transitions i.e., when ϵ tends to 1, both being less sensitive than vanilla.
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Figure 7: Mars Rover: Cumulative reward w.r.t. time process in seconds (zoom in)

Parameter Value
random rate ϵ 0

(a) Mars Rover parameters

Parameter Value
gravity 9.8

masscart 1.0
masspole 0.1

length 0.5
force_mag 10.0

(b) Cartpole

Parameter Value
link_length_2 1.0
link_mass_1 1.0
link_mass_2 1.0

link_com_pos_1 1.0
link_com_pos_2 1.0

link_moi 1.0
link_length_1 1.0

(c) Acrobot

Parameter Value
force 0.001

gravity 0.0025
(d) Mountaincar

Table 5: Nominal environment parameters on which all algorithms have been trained
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