Under review as a conference paper at ICLR 2026

LLESS 1S NOT WORSE: EFFECTIVE REASONING
WITHOUT COMPLETE REASONING TRACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) often produce lengthy reasoning traces with sub-
stantial token redundancy. While reasoning processes are widely adopted to tune
LLMs as a post-training regime, it has been underexplored whether LLMs truly
learn from the complete trajectory, particularly in supervised fine-tuning (SFT).
We argue that, for mid-size LLMs commonly trained with SFT for reasoning,
using full reasoning trajectories may harm performance because their limited ca-
pacity increases susceptibility to redundant intermediate steps. To investigate, we
first analyze the redundancy in thinking trajectories through attention maps and
controlled token-removal studies, both of which show that intermediate tokens
contribute minimally to reasoning quality. Our analyses suggest that the most re-
dundant segments typically appear in the middle of reasoning traces, whereas the
earlier and later segments are crucial for generating high-quality final outcomes.
We further posit that avoiding redundant intermediate information leads to ex-
ploiting the capability of LLMs to infer concise and coherent intermediate steps
by utilizing the known start and end points. Based on the insights, we propose
MidCut, a method that removes redundant middle steps during both training and
inference. We demonstrate the effectiveness of MidCut in two scenarios for LLM
reasoning: (1) SFT trained on s1K and OpenThoughts datasets for reasoning; and
(2) decoding strategy for a test-time application.

1 INTRODUCTION

Learning to write for human learners may offer a helpful analogy for understanding how large lan-
guage models (LLMs) (Grattafiori et al., 2024; Yang et al., 2024a) acquire reasoning skills. Learn-
ers benefit from carefully curated texts (e.g., mentor texts), which are essential for building writing
fundamentals (Kim et al., 2021; Culham, 2023; Shubitz, 2023). Yet, as learners advance, they in-
creasingly dismiss misleading information as unhelpful, gaining little from it; they rather place more
value on accurate and essential guidance, which drives more effective learning. A follow-up ques-
tion would be: if provided only with essentials to learn yet disconnected parts, would they learn
better (or even faster) and use prior knowledge to predict the missing pieces on their own?

LLMs have recently achieved strong results in reasoning tasks driven by large reasoning models
(LRMs), such as the pioneer GPT-40 (Hurst et al., 2024) and various open-sourced initiatives (Yang
et al., 2025; 2024b; Guo et al., 2025). The tasks span domains such as mathematical problem-
solving and logical reasoning, which demand complex processes that are not known to be achievable
solely through pre-training, mid-training, or alignment. LRMs are often trained through reward-
based learning (Shao et al., 2024), or by leveraging machine-generated reasoning traces in a manner
similar to how human learners are guided, to enhance reasoning capability. The reasoning traces,
which represent the trajectory from a question to its answer, are informative for learning reasoning
traces as supervisory signals; however, they often include redundant or unnecessary steps. Following
the earlier analogy, one may ask whether a model trained only on essential sub-parts would fill the
missing pieces in a trajectory with more plausible ones. However, even these are underexplored:
identifying which parts of the reasoning trajectory are redundant and formulating a principle to
exploit only the essential ones.

Existing studies examining the thinking (reasoning) trajectory of LRMs intentionally separated from
their final answers to make the reasoning process explicit. Muennighoff et al. (2024) first introduced

Under review as a conference paper at ICLR 2026

Thinking trajectory tokens Thinking part Answer part
(2]
oaeaan -
]
k5
e oo - 00/
GEJ generate Similarity
0]
[
< Original ste Removed ste
: 0 oonai s ;
@ Answer tokens attend less to @ Similar final answer is generated
the middle steps of thinking trajectories when middle thinking steps are removed

Figure 1: Redundancy may emerge in thinking trajectories. Our insight is that a thinking trajec-
tory often includes less informative traces, which we term redundancy. We preview our analyses for
demonstration in §3: (left) low attention weights across thinking trajectories on an intermediate set
of tokens; (right) removing them yields similar outputs.

the idea of using entire reasoning traces as guidance for supervised fine-tuning (SFT), and subse-
quent datasets such as (Guha et al., 2025) have further contributed reasoning traces for learning.
Subsequently, however, several studies have noted that the thinking trajectories produced by LRMs
are typically lengthy, less informative, and sometimes misleading (Ma et al., 2025b; Cuesta-Ramirez
et al., 2025; Wu et al., 2025). Prior work further suggests that LLMs often already know the answer
before generating a fully explicit reasoning trace (Lindsey et al., 2025). Literature (Ma et al., 2025b;
Wang et al., 2025) demonstrates that problems can sometimes be efficiently solved without any ex-
plicit reasoning process, albeit with lower performance sometimes. These observations suggest that
reasoning trajectories are important for solving complex problems, yet the fully explicit trajectory
may not always be necessary. This raises a fundamental question: do LLMs require the complete
reasoning trajectory, and if not, which parts are non-essential ?

This paper focuses on SFT for mid-size LLMs using machine-generated reasoning traces (Muen-
nighoff et al., 2024; Team, 2025; Labs, 2025; Guha et al., 2025). Our key insight is that such traces
often contain substantial redundancy, particularly in intermediate steps; removing these redundan-
cies enables more effective learning and yields significant performance gains due to the often-limited
model capacity. To further investigate our insights, we first propose two systematic analyses: atten-
tion weight patterns and knockouts motivated by prior works (Ameisen et al., 2025; Clark et al.,
2019; Madaan et al., 2023; Geva et al., 2023). We find that answer tokens place little attention on
middle steps, and that removing these steps preserves answer quality, in contrast to removing the
beginning or end, as shown in Figure 1. These findings indicate that LLMs do not fully rely on
the complete reasoning trajectory; intermediate steps are largely redundant and non-essential.
Motivated by these findings, we propose MidCut, a simple approach that trims intermediate steps
of reasoning trajectories. MidCut-SFT leverages trimmed trajectories for more efficient supervised
fine-tuning (SFT), while MidCut-Decoding skips redundant steps at inference to accelerate reason-
ing generation. Experiments demonstrate that both strategies improve efficiency while consistently
maintaining strong performance across diverse reasoning tasks.

2 RELATED WORK

Test-time scaling and consideration of overthinking. Muennighoff et al. (2024) introduced a
small curated dataset that is dubbed s1K having 1,000 reasoning trace examples satisfying diffi-
culty, diversity, and quality, and budget forcing mechanism to control reasoning length at inference
(e.g., forcing early stop or appending “Wait” to prolong reasoning). Their model (e.g., s1-32B) ex-
hibits strong improvements in competition math questions (e.g., AIME24) and shows a clear positive
scaling-trend with test-time compute. After it, some recent works have challenged the assumption
that longer reasoning chains always improve performance. Ghosal et al. (2025) analyzed test-time
scaling and shows that beyond a certain point, longer chains can actually hurt accuracy due to
“overthinking” rather than enhancing reasoning. Similarly, Hassid et al. (2025) demonstrated that,
when multiple chains are sampled for the same question, the shortest chain is often more reliable
than the longest, motivating inference-time strategies such as short-m@k and fine-tuning on shorter
demonstrations. However, these approaches treat length itself as the key factor, without considering
whether different segments of a chain (beginning, intermediate, and end) contribute unequally.

Under review as a conference paper at ICLR 2026

Suppressing or replacing reasoning tokens for efficiency. Another line of work explores omitting
or substituting explicit ‘thinking’ tokens fo achieve efficient reasoning. Ma et al. (2025a) found that
reasoning models can remain competitive even when the entire explicit reasoning block is skipped
(NoThinking). Wang et al. (2025) showed that suppressing reflection-like markers such as “Wait”
or “Alternatively” significantly shortens chains while maintaining performance. This demonstrates
that not all generated tokens are necessary. Still, this strategy mainly targets special filler tokens
rather than the broader redundancy of standard reasoning steps within the middle of a chain. Ringel
et al. (2025) proposed a learned continue-thinking token that dynamically extends reasoning when
needed. Both focus on whether to engage in any reasoning at all or on how to prolong it, but do not
ask whether some parts of the reasoning trajectory are inherently more redundant than others.

Reasoning compression and adaptive selectivity. A similar line of work seeks to compress reason-
ing traces or adaptively decide how much to reason also for efficiency. At the trajectory level, Hou
et al. (2025) pruned tokens primarily considering sequence length via reinforcement learning with
an explicit token length limit, iteratively tightening the limit to shorten thoughts with minimal ac-
curacy loss. Fan et al. (2025) proposed thata light instruction model drafts a high-level outline, and
a reasoning model fills in details, which reduces generated tokens while maintaining accuracy, thus
enabling difficulty-aware depth adjustment. Yuan et al. (2025) introduces a token-level compression
framework that scores reasoning tokens and trains on compacted CoT while preserving accuracy.
Lin et al. (2024) demonstrated at pretraining time that not all tokens are equally useful: they focus
loss selectively on high-utility tokens (i.e., useful and clean tokens in their terms), improving data
efficiency — conceptually aligned with compression leading to faster training. These approaches
either rely on token-importance scoring, budgeted RL, or guidance policies. By contrast, our ap-
proach offers a simple region-level recipe at training time: systematically remove the middle span of
machine-generated chains during SFT, keeping the earlier and later spans of traces while discarding
the redundant middle, without the need for auxiliary scorers or controllers.

Our focus: to identify redundancy and to propose a simple solution to address it. Our work
is distinguished in three ways: (1) region-level perspective: we identify and omit a specific region
rather than entire chains or individual tokens; (2) training-time method: unlike test-time heuristics,
our method reshapes the training data itself; (3) simple, low cost and reproducible: our approach
requires no auxiliary scoring modules and scales easily across large datasets. Finally, when recast
as a question, while existing research asks “How long should a trajectory be?” or “Which tokens
should we selectively suppress?”, this work asks “Which parts of the trajectory are essential?”

3 ANALYZING THINKING TRAJECTORIES

This section begins by presenting some preliminaries. We then investigate whether certain to-
kens within reasoning trajectories are redundant. We employ two complementary approaches: an
attention-based analysis of how models process reasoning traces and a knockout-based analysis of
how traces affect the quality of answer generation. Analysis overview is illustrated in Figure 1.

3.1 BACKGROUND

Supervised fine-tuning (SFT)-based reasoning training. Recent methods with carefully cu-
rated data: Sky-T1 (Team, 2025), s1K (Muennighoff et al., 2024), Bespoke-Stratos (Labs, 2025),
OpenThoughts (Guha et al., 2025) suggest a promising paradigm, beyond RL-based reasoning train-
ing (Shao et al., 2024): reasoning models can be effectively trained with curated, machine-generated
traces produced by an LRM, for example.

Formally, let D = {(x;,y;,7;)}}*, denote a altogether data of input query and answer pairs (;, ;)
augmented with a reasoning trace r; generated by a LRM T’ (e.g., DeepSeek-R1 671B (Guo et al.,
2025)). SFT then optimizes the parameters 6 of a language model My (usually smaller than 7" e.g.,
3B-, 7B-, or 32B- scale) by minimizing the negative log-likelihood:

N
Lsrr(0) = = logpo(yi,ri | @), e

i=1

where r; can be partially or fully included depending on the training recipe.

Under review as a conference paper at ICLR 2026

In this setting, high-quality reasoning traces provided by T act as rich supervision signals, enabling
smaller models My to acquire strong reasoning ability without resorting to RL-based objectives
(e.g., GRPO (Shao et al., 2024)). This setup is particularly practical: large-scale traces are already
well-formed by powerful teacher models, and SFT alone has been shown to yield competitive per-
formance in smaller models.

Problem setting. We focus on SFT training with machine-generated reasoning traces (Muennighoff
et al., 2024; Guha et al., 2025), applied to mid-scale models (e.g., ~32B parameters). While RL
often surpasses SFT (Chu et al., 2025), we presume that applying SFT is reasonable in this setting,
both in terms of simplicity and expected performance. Muennighoff et al. (2024)’s findings implic-
itly supported the assumption: when large teacher models (e.g., DeepSeek-R1 671B (Guo et al.,
2025)) already produce high-quality reasoning traces, it is both realistic and effective to distill these
traces into smaller models through SFT. Furthermore, since SFT typically precedes RL methods in
RLHF procedures (Ouyang et al., 2022; Liu et al., 2024; Achiam et al., 2023; Groeneveld et al.,
2024) or is employed successively (OLMo et al., 2024; Yang et al., 2025), understanding the me-
chanics of SFT in relation to reasoning can give valuable insights. Therefore, we believe it would
be valuable to study how reasoning traces can be more effectively exploited for SFT training.

Our insight is threefold: (1) redundancy (within reasoning chains of thinking trajectories) makes
full traces difficult to learn with FT, particularly for models with limited capacity; (2) intermediate
steps in reasoning traces are often redundant; and (3) removing them allows the model to focus
on filling them with more relevant content to reach the final answer. Grounded in our insights, we
conjecture that eq. (1) would become increased when some parts of reasoning trajectories are less
informative or redundant. Before studying how redundancy affects the empirical behavior of LLMs,
we first analyze redundancy in thinking trajectories.

3.2 ANALYSES

Figure 2 illustrates both example instances and the overall structure of reasoning trajectories. Such
trajectories typically proceed from problem definition, through exploratory reasoning, to final an-
swer consolidation. To investigate the functional roles of different parts in reasoning trajectories,
we examine representative examples across reasoning tasks. Intriguingly, as similarly noted in prior
work (Guo et al., 2025; Ma et al., 2025b; Cuesta-Ramirez et al., 2025; Wu et al., 2025), we often
observe redundant traces (e.g., repeated checks, backtracking, or unnecessary elaborations) in the
middle of a trajectory. We now systematically investigate whether such human-perceived redun-
dancy indeed matters for LLM.

Attention weights analysis. Following prior works (Ameisen et al., 2025; Clark et al., 2019;
Madaan et al., 2023; Geva et al., 2023) that interpreted models using attention-based metrics, we
analyze attention weights to investigate how different parts of thinking trajectories contribute to an-
swer generation. We expect these patterns to reveal how models prioritize tokens during generation,
offering insights into information flow within transformer architectures.

Figure 3 provides two complementary insights. First, the overall (i.e., averaged across layers) trend
in Figure 3(a) highlights strong attention peaks at the beginning and ending of trajectories,
whereas intermediate steps are weakly attended. This suggests that intermediate steps generally
contribute less to answer generation, indicating that these tokens could be redundant within the
overall reasoning trajectory. Second, the layer-specific patterns in Figure 3(b—e) reveal a progression
across the model depth: very early layers (pattern 1) attend broadly without clear localization, early
layers (pattern 2) shift focus toward candidate answer tokens, intermediate layers (pattern 3) balance
attention between early problem-definition and later reasoning steps, and final layers (pattern 4)

Okay, so | need to find the radius of the ... The answer needs to Alright, let's tackle this organic chemistry ... The question is .

X) .) 5 - Define Problem
be in the form of ... First, a rectangular box with surface area ... about the Pinacol-Pinacol Rearrangement ... The goal is ...
Therefore, perhaps we can write: f(P) ... We need to maximize ... The reaction starts with protonation of one of the hydroxyl ... Development
Wait, but maybe | made an error when computing f'(P). ... Wait, maybe not. Let's try to draw it out. ... Wait, but how? Redundant R .
Maybe this path is not possible. ... But perhaps not. Wait, let’s ... Alternatively, maybe during the ... but wait, no. Let me clarify. ... ecundant Reasoning
Therefore, equation becomes: b + 23/b + 23/b ... Multiply by b: ... Given these, the answer that includes these ... After much ... Development
Therefore, all boxes must have their such that ... In all cases, the Based on the analysis: For A, ... Given the confusion, but trusting -
maximum diagonal occurs at the ... Final Answer** \\boxed{721} the most ... options, the correct answer is **Option B**. Finalize Answer

Figure 2: Examples of reasoning trajectories illustrating the overall reasoning process.

Under review as a conference paper at ICLR 2026

0.00045] g “
o™ s T
[T oo
"G 0.00040 6 oo § oo
S < S
) 00 02 08 To 00 04 06 1o
c 0.00030 Relative position Relative position
Y] .
£ 00002 (b) Earliest layer w1 (c) Early layer @.2-6)
©
C 0.00020 oo
(]
g 0.00015

00 0z 04 06 08 10 00 02 04 06 08 L0

Relative position Relative position

(d) Middle layer @w25-35) (e) Late layer weo-64)

0.0 0.2 0.4 0.6 0.8 1.0
Relative position

(a) Overall attention weights pattern

Figure 3: Averaged 1D attention weights across reasoning trajectories during answer generation.
(a) The overall average highlights strong attention peaks at the beginning and end of trajectories.
(b—e) Layer-specific patterns reveal a progression: very early layers attend broadly, early layers shift
their focus toward candidate answers, intermediate layers jointly reference problem-definition and
reasoning steps, and final layers concentrate on the beginning to format and consolidate the answer.

concentrate strongly on the beginning to format and consolidate the final answer. Taken together,
these findings suggest how information flow evolves through the network and provide evidence that
intermediate reasoning steps are deemphasized as generation progresses toward the later layer.

Attention knockout analysis. We further apply the attention knockout technique (Geva et al., 2023)
for our analysis, which masks attention links to probe the importance of specific trajectory segments.
Specifically, we truncate the beginning (e.g., the first 0-10% of tokens), the intermediate (e.g., a
centered span such as 45-55%), or the ending (e.g., the last 90-100%) and compare the resulting
answers against those from the full trajectories. This allows us to retest which part of reasoning
trajectories are causally important for answer generation. Additional details on the experimental
setup and evaluation metric are provided in Appendix A.1.

0.65 -

Based upon the observational insights from attention g e |
analysis, Figure 4 shows the average results over samples S 0.60 w
across different knockout ratios. In the results, remov- - .

ing the intermediates consistently yields the highest © \/\/\,\a
similarity to answers generated with the full trajectory. §0-50 \/\/_\
In contrast, removing the beginning and ending parts re- 0.45

sults in lower similarity, suggesting that these segments 00 01 02 03 04 05
contain critical information for formulating correct an- Knockout ratio

swers. This provides quantitative evidence for our hy- Figure 4: ROUGE-L under attention
pothesis that intermediate steps are often redundant and Kknockouts for each segment of reason-
do not substantially contribute to final answer quality. ing traces. See more in Figure A.1.

Takeaway from §3. Wl Beginning and ending segments matter most, intermediate less: Both
attention and knockout analyses show that LLMs assign less importance to intermediate parts.
B Answer-first, then question-refinement: attention patterns reveal an information flow in which
models first lean on the final answer and then revisit the question for refinement.

(Inference-time) - Original step

Removed step
e

80
80 MidCut
an (6] 7]

Figure 5: Overview of MidCut-SFT and MidCut-Decoding methodology. MidCut-SFT pro-
cesses training data by removing middle parts from thinking trajectories, while MidCut-Decoding
applies the same principle during inference to reduce computational overhead.

MidCut-SFT (Training-time)
Original SFT data:

!
|
!
EREEEE |
|
aoooooa ? !
|
|
!
|
|

Processed training data:

Under review as a conference paper at ICLR 2026

4 TRIMMING REASONING TRACES TO ENHANCE TRAINING AND DECODING

Based on the knowledge in §3, which reveals redundancy in the middle parts of thinking trajecto-
ries, we introduce MidCut, a method for removing intermediate steps from reasoning trajectories.
As illustrated in Figure 5, we present two applications of our MidCut methodology: MidCut-
SFT is a preprocessing method applied to LRM-generated reasoning trajectories in SFT datasets.
This approach removes intermediate parts of the trajectory while preserving the beginning and end-
ing segments, which are believed to contain the essential setup of the problem and the conclusion.
MidCut-Decoding applies the same principle during inference, truncating intermediate reasoning
steps after the thinking phase to reduce computational overhead and generation latency without com-
promising the quality of final answers. In both applications, our method targets the redundant middle
parts identified in our analysis while preserving critical components at the trajectory boundaries.

4.1 MipCuT-SFT: MipCuUT FOR SUPERVISED FINE-TUNING

The proposed method. MidCut-SFT follows a simple yet effective approach: given reasoning tra-
jectories for training, we remove the intermediate traces. Specifically, we preserve the early and late
segments of the reasoning trajectories based on predefined thresholds, either by step count or token
count. Steps are defined by splitting trajectories at double newline characters (\n\n), represented by
natural reasoning breakpoints.

We explore several variants of this filtering approach: (1) Step-level filtering: Remove intermediate
steps while preserving the first and last n steps of the trajectory. (2) Token-level filtering: Remove
intermediate tokens while preserving the first and last k£ tokens, regardless of step boundaries. (3)
Length-proportional filtering: We remove a percentage of steps proportional to the original trajectory
length, specifically removing m% of the total steps from the middle part. This approach scales the
removal amount based on trajectory complexity. (4) Similarity-based filtering: We compute Jaccard
similarity between each step and the preceding 5 steps of the trajectory. Steps exceeding a predefined
similarity threshold are filtered out to reduce redundancy, targeting repetitive reasoning patterns.
Further details on the truncation segments and parameter settings are provided in Appendix B.3.

Comparison methods. To evaluate the effectiveness of our approach, we compare it against several
alternative trajectory reduction strategies: (1) LLM-based Compression: we use external LLMs —

Question [Compute $\sum_{k=1}*{1007]\left(\cos \left(\frac{\pi k} {1007} ...] [Let SS be a set of size 3. How many collections STS of subsets ...]

Thinking | Okay, so I have this problem here: Compute the sum fromk=1... Alright, let's tackle this problem. So, the question is: Given a set ...
So the sum is 2_{k=1}*{1007} ... Alright. My goal is to evaluate ... First, let me make sure | understand the question correctly. We ...
First off, exponents with cosine can sometimes be dealt with ...

trajectory
So, my first thought is to recall what kind of collections are ...

ut per original formula, so prefer factored version as initially. ... Given the set S=3, how many T S P(S) satisfy closure under ...
Yes, going with \boxed{\dfrac{1007 \left(2 + \dbinom{2014} ... As such, the answer is the number of such sublattices. ...
Final Answer\n\boxed{\dfrac{1007 \left(2 + \dbinom ... Thus, after referencing the literature, the answer is \boxed{74}}. ...
Answer | To compute the sum \(\sum_{k=1}*{1007}\left(\cos\left(\frac ... Given a set \(S'\) of size 3, we need to determine the number ...
part [1. **Using Euler's Formula and Binomial Expansion**: ... 1. **Sublattices Definition**: A collection \(T \) must be closed ...
... Thus, the final answer is: \[\boxed{\dfrac{1007 \left(2 + Thus, the final answer is: \[\boxed{74} \].

Question [In Pascal’s Triangle, the sum of the interior numbers in the sixth ...] [... We want a program for function that given a power, seperates ...]

Thinking | Okay, so I have this problem about Pascal’s Triangle. It says that ... Okay, I need to solve this programming challenge. Let me read ...
trajectory They want to know the sum of the interior numbers in the ... The task is to write a program or function that, given cand x ...
First, | need to recall how Pascal’s Triangle is structured. Each ... Looking at the examples given might help me understand what’s

he final code is 135 character: ...

arget is tenth row, which would be row9 (0-based): ...

Given that the discrepancy with the eighth row’s given sum ... c,x=map(int, input().split());a=c-1;print(f"{a}*{x}+{next(b for b ...
Final Answer \boxed {510} So this is a candidate for code golf.
Answer | To solve the problem of finding the sum of the interior numbers ... ““python ¢, x=map(int,input().split()) ...
part| 1. **Understanding the Structure**: ... **Approach**\n The approach involves setting ‘a’ to ‘c-1’ since ...
... Thus, the final answer is: \[\n\boxed{510\n\] ... This method efficiently narrows down the correct values with ...

Figure 6: Examples of MidCut-SFT applied to (top) s1K-1.1 and (bottom) OpenThoughts3datasets.

Under review as a conference paper at ICLR 2026

Table 1: Main comparison results of MidCut-SFT on AIME24, GPQA-D, and MATH across
different models and datasets. Positive relative changes are shown in blue, negative in red, and the
best results for each task are highlighted in bold.

Method AIME24 GPQA-D MATH Average
Value A Value A Value A Value A
Qwen2.5-32B-Instruct & s1K-1.1
Base 0.6444 - 0.6195 - 0.9413 - 0.7351

LLM-based | 0.3333 -48.28% 0.5791 -6.52% 0.8900 -5.45% | 0.6008 -18.25%
Random 0.5667 -12.07% 0.6162 -0.54% 0.9447 +0.35% | 0.7092 -3.53%

Ours 0.6889 +6.90% 0.6229 +0.54% 09440 +0.28% | 0.7519 +2.29%
Qwen3-8B-Base & s1K-1.1
Base 0.4222 0.5741 - 0.9210 0.6391 -

LLM-based | 0.1556 -75.85% 0.4747 -2337% 0.8233 -12.52% | 0.4845 -34.10%
Random 0.2833 -32.89% 0.5741 +0.00% 0.8885 -3.53% | 0.5820 -8.94%

Ours 04444 +526% 0.5741 +0.00% 09160 -0.54% | 0.6448 +0.90%
Qwen3-8B-Base & OpenThoughts3-100K

Base 0.5000 - 0.5387 - 0.9347 - 0.6578 -

Random 04667 -6.67% 0.5312 -1.40% 0.9254 -1.00% | 0.6411 -2.54%

Ours 0.5222 +4.44% 0.5640 +4.70% 0.9387 +0.43% | 0.6750 +2.61%
Qwen3-4B-Base & OpenThoughts3-100K

Base 0.3667 - 0.4865 - 0.9160 - 0.5897 -

Random 0.3444 -6.08% 04680 -3.80% 09127 -0.36% | 0.5750 -2.49%

Ours 0.4000 +9.08% 0.4899 +0.70% 09113 -051% | 0.6004 +1.81%

Claude Sonnet' (Anthropic, 2025) and Gemini (gemini-2.5-flash) (Comanici et al., 2025)
— to compress thinking trajectories while preserving essential reasoning content. In the main text
we report results with Claude, while detailed results with both Claude and Gemini are provided
in Appendix B.4. (2) Random Step Selection: we randomly sample 2n steps from the original
trajectory, preserving the same amount of content but without structural consideration. (3) Single-
end Preservation: instead of preserving both beginning and end parts, we retain either the first 2n
steps or the last 2n steps, maintaining the same total preserved length as MidCut-SFT.

Experimental settings. We conduct experiments on two reasoning SFT datasets: s1K-1.1 (Muen-
nighoff et al., 2024) and OpenThoughts3-1.2M (Guha et al., 2025). For OpenThoughts3, we sub-
sample 100K examples from the full 1.2M corpus, and further restrict to instances where both the
begin-of-think (<t hink>) and end-of-think (</think>) tokens are present. On s1K-1.1, we fine-
tune Qwen?2 .5-32B-Instruct and Qwen3-8B-Base for 5 epochs, while on OpenThoughts3
we fine-tune Qwen3-8B-Base and Qwen3-4B-Base for 1 epoch. More detailed settings are de-
scribed in Appendix B.3. For evaluation, we use the AIME24, GPQA-D, and MATH benchmarks.

Experimental results. Table 1 shows the overall results that MidCut-SFT improves accuracy
while using substantially fewer training tokens, with trimming the middle of thinking trajectories
even outperforming training on full trajectories. Specifically, training on s1K-1.1 uses 21.9% fewer
tokens and training on OpenThoughts3 uses 18.1% fewer tokens compared to full-trajectory SFT.

Table 2 shows the extended comparison results on s1K-1.1 against alternative reductions, and further
detailed results are provided in Appendix B.4. LLM-based compression performs noticeably worse
because it disrupts patterns of word usage and reasoning structure. Furthermore, it introduces non-
negligible computational costs and lacks precise control over the compression ratio. In contrast,
approaches that preserve the original text but selectively trim segments generally achieve better
performance than LL.M-based compression. Among them, keeping both the beginning and ending
while removing the middle consistently outperforms single-end truncation or random selection. This
confirms that the location of truncation matters. Overall, these results support our hypothesis that
intermediate steps are largely redundant and can even hinder effective learning if retained.

Table 3 reports ablations of MidCut-SFT. Step-level trimming, which preserves the beginning and
ending segments at the semantic level, consistently outperforms token-level trimming. Length-

"We utilize the claude-sonnet-4-20250514 version of Claude Sonnet 4.

Under review as a conference paper at ICLR 2026

Table 2: Single-end preservation vs. MidCut-SFT (Step-level) and other strategies in Table 1 on
s1K-1.1. Each value represents the average performance on AIME24, GPQA-Diamond, and MATH.
Relative changes from the base are shown in parentheses below each value.

Model | Base | LLM-based Random Ours | Single (first) ~ Single (last)
Qwen2.5-32B 0.7351 0.6008 0.7092 0.7519 0.7367 0.7183
' (-18.25%) (-3.53%) (+2.29%) (+0.22%) (-2.30%)
Qwen3-8B 0.6391 0.4845 0.5820 0.6448 0.6099 0.5698
(-34.10%) (-8.94%) (+0.90%) (-4.56%) (-10.82%)

Table 3: Comparison among trimming variants of MidCut-SFT on s1K-1.1. Each value represents
the average performance on AIME24, GPQA-Diamond, and MATH. Relative changes from the base
are shown in parentheses below each value. “Len-prop.” denotes length-proportional filtering.

Model ‘ Base ‘ Step-level ~Token-level Len-prop. Similarity

0.7351 0.7519 0.7264 0.7470 0.7392
Qwen2.5-32B ‘ (+2.29%) (-1.19%) (+1.62%) (+0.56%)
Qwen3-SB ‘ 0.6391 0.6448 0.6162 0.6040 0.5994

- (+0.90%) (-3.59%) (-5.49%) (-6.21%)

proportional or similarity-based variants require additional complexity, but they do not surpass the
simpler step-level MidCut. These results indicate that step-level MidCut-SFT is both simple and
effective, making it preferable to more complex alternatives.

4.2 MipCuT-DECODING: MibCuUT FOR EFFECTIVE DECODING

Method. MidCut-Decoding applies the middle-cutting principle during inference to reduce com-
putational overhead. After the model completes its thinking trajectory, we cut the middle part of the
trajectory before producing the final answer. We implement four ra-
tios with {25, 33, 50, 75}% of the middle part while preserving begin-
ning and ending segments. More details are reported in Appendix C.

Table 4: Performance of
MidCut-Decoding.
Method | Accuracy
Experimental results. Table 4 reports MidCut-Decoding results on :
the SFT-trained model with OpenThought3. Compared to using the ;‘iﬂg@:gg% 822;2
full reasoning trajectory, trimming 25-75% of the intermediate steps 2 3o+ 330, 0.6579
yields almost identical average performance. These findings indicate i qcut 50% 0.6581
that MidCut-Decoding can substantially reduce inference costs for midcut 75% 0.6576
long reasoning traces while maintaining comparable task accuracy.

Takeaway from §4. Less is not worse, sometimes even better.

Removing redundant intermediate steps with MidCut-SFT improves reasoning performance,
while inherently reducing training cost. Likewise, MidCut-Decoding sustains reasoning qual-
ity while improving efficiency in answer generation by removing redundant middle parts.

5 DISCUSSION

This section initiates discussions by posing crucial questions that help us gain a deeper understand-
ing of our work. We first validate our claim that training loss is indeed reduced, and subsequently
discuss what our method achieves indeed and under which conditions it is effective.

Does MidCut-SFT lead to a better convergence point? 3.4 — Base
Here, we evaluate whether our conjecture holds by examining 3. — HiidCut
the loss curves during training on OpenThoughts3, with and 33,

without MidCut-SFT. As shown in Figure 7, our method con- g%u

sistently achieves lower perplexity across training while using
fewer tokens. This finding supports our claim in §3 that redun-

dant intermediate steps not only prolong trajectories but also 0002 O'épocﬁﬁ 08 10
inflate the training loss, which presumably makes optimization Figure 7: Perplexity changes
harder for LLMs; thus, LLMs would converge to a suboptimal when applying MidCut-SFT.

N
o

Under review as a conference paper at ICLR 2026

-—- Base (auestion] (Base) (midcut-s¥T)
g 6k . Let S be the [#164] Wait, the perimeter of a disk is 2rr. But ... = [#105] Therefore, that seems consistent. Therefore...
5 —e— MidCut union of ... What, [#168] Wait, in the square case, that gives 4s .. —> [#109] Therefore, the answer should be 36 + ..
g 4k in units, is the [#172] Hmm, so which is correct? —> [#113] Alternatively, think of the perimeter of S ...
@ perimeter of S? [#180] Wait, if each corner is ... 3 Wrong —> [#121] ... | need to clarify ... & EEED
xt S T
c
Base MidCut-SFT
g
e o If[f(n+1)=(-1)" [#222] C=(-1989)/(-2 - 2°{1986}) = 1989 / ... [#283] C=-1989 / [-2-27{1986}] = 1989 / ...
-.. compute [f(1) [#223] Hmm, that seems very complicated. Maybe .. [#284] Hmm, that's a very small coefficient, but okay.
+f(2) +(3) + .. [#227] But doing that manually is impossible. May...— [#286] Alternatively, maybe | can compute the ...
8k 12k 16k 20k 24k 28k 32k +f(1985). [#233] But how? 3 Wrong — [#290] First, the geometric ...
. g d = Correct
Baseline length orred
Figure 8: Token length changes. Figure 9: Impact of MidCut-SFT on intermediate traces.

point. By trimming such redundancy, the model can allocate its capacity to more informative rea-
soning signals, which in turn facilitates more efficient and stable learning dynamics.

What does MidCut-SFT do? Building on the loss analysis, we next examine how MidCut-SFT
alters the actual reasoning behavior of models. As shown in Figure 8, we observe a consistent
pattern: the number of reasoning tokens with MidCut-SFT adjusts depending on the baseline tra-
jectories without MidCut-SFT. When original trajectories are excessively long (>15k tokens), the
output length decreases; for relatively shorter ones, token usage increases. This adaptive adjustment
is further illustrated with the examples in Figure 9. In the upper row, where the baseline model pro-
duces unnecessarily lengthy and redundant output, MidCut-SFT suppresses such detours, enabling
the model to reach a more accurate solution with fewer tokens. In the lower row, although both
models arrive at the same intermediate equations, the baseline fails to solve the problem, whereas
MidCut-SFT succeeds by more effectively completing the missing steps in the reasoning process.
These observations suggest MidCut-SFT enhances performance by (1) reducing redundant reason-
ing patterns and (2) improving the model’s ability to carry out intermediate reasoning when needed.

When does MidCut-SFT work? Figure 10 plots the relation- ~ _ 2 _.a e
ship between general performance (MMLU-Pro and MMLU- g ,| -~ = __--7"
redux) without any additional training and performance gain & »~

from applying MidCut-SFT. Each point corresponds to a dif- & ° /,”

ferent base model, with results shown for both s1K-1.1 and E_l s —e- slk1.1
OpenThoughts3. The detailed experimental settings are pro- & , ¢ ~®- OpenThoughts3

vided in Appendix B.5. We find that the effectiveness of 60 o perfozr% e
MidCut-SFT depends strongly on the original capability of the . .
base model. For s1K-1.1, improvements appear only when the Fl.gure 10: Performance gain by
base performance exceeds roughly 60-65, whereas the larger MidCut-SFT.

and more diverse OpenThoughts3 dataset shifts this threshold lower, allowing benefits to emerge
even for weaker base models. This trend aligns with our earlier discussion: MidCut-SFT enhances
the model’s ability to complete intermediate reasoning steps, but this requires a sufficient baseline
capacity. When models are too weak, they lack the ability to reliably infer the trimmed parts, and
the method brings little to no benefit. By contrast, once a model has reached a moderate competence
level, trimming redundant reasoning forces it to allocate capacity toward informative steps, thereby
yielding measurable gains. This pattern closely parallels our analogy to human learners: while
novices depend on full guidance, more advanced learners can benefit from streamlined instruction
and effectively interpolate the missing reasoning by leveraging prior knowledge.

6 CONCLUSION

We have studied the necessity of complete reasoning trajectories and proposed MidCut for tra-
jectory reduction. Through our analyses, we have shown that intermediate reasoning traces are
often redundant. MidCut-SFT achieved the improved reasoning results further with efficiency, and
MidcCut-Decoding reduced inference costs without compromising quality. Beyond SFT and decod-
ing, our method may also be integrated into reinforcement learning (RL) approaches such as GRPO,
where reducing redundant reasoning trajectories could further enhance reasoning performance. We
believe that MidCut could serve as an effective initialization for RL-based methods, and that the
insights from our study may provide complementary guidance for their development. Overall, our
simple yet effective method, which showcases how to handle lengthy reasoning trajectories without
relying on any challenging restrictions, provides a promising research direction and paves the way
for developing more efficient reasoning models in the near future.

Under review as a conference paper at ICLR 2026

Reproducibility statement. We performed all experiments using the s1K-1.1 and OpenThoughts3
datasets and publicly available LLMs from the Qwen series. Detailed hyperparameters and training
schedules are included in the Appendix, and all evaluations were repeated across multiple random
seeds, with averaged results reported. These efforts ensure that our results can be readily reproduced.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774,2023. 4

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing com-
putational graphs in language models. Transformer Circuits Thread, 2025. URL https://
transformer-circuits.pub/2025/attribution-graphs/methods.html. 2,4

Anthropic. Claude 4. https://www.anthropic.com/claude/sonnet, 2025. 7, 14

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025. 4

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look
at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341,2019. 2, 4

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025. 7, 14

Jhouben Cuesta-Ramirez, Samuel Beaussant, and Mehdi Mounsif. Large reasoning models are not
thinking straight: on the unreliability of thinking trajectories. arXiv preprint arXiv:2507.00711,
2025. 2,4

Ruth Culham. Writing thief: Using mentor texts to teach the craft of writing. Routledge, 2023. 1

Siqi Fan, Peng Han, Shuo Shang, Yequan Wang, and Aixin Sun. Cothink: Token-efficient reasoning
via instruct models guiding reasoning models. arXiv preprint arXiv:2505.22017, 2025. 3

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual asso-
ciations in auto-regressive language models. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, 2023. 2,4, 5

Soumya Suvra Ghosal, Souradip Chakraborty, Avinash Reddy, Yifu Lu, Mengdi Wang, Dinesh
Manocha, Furong Huang, Mohammad Ghavamzadeh, and Amrit Singh Bedi. Does think-
ing more always help? understanding test-time scaling in reasoning models. arXiv preprint
arXiv:2506.04210, 2025. 2

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024. 1

Dirk Groeneveld, 1z Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, lan Magnusson, Yizhong Wang, et al. Olmo: Accelerating the
science of language models. arXiv preprint arXiv:2402.00838, 2024. 4

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025. 2,3,4,7

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://www.anthropic.com/claude/sonnet

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. 1, 3, 4

Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don’t overthink it. preferring
shorter thinking chains for improved llm reasoning. arXiv preprint arXiv:2505.17813, 2025. 2

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of 1lms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025. 3

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024. 1

Young-Suk Grace Kim, Dandan Yang, Marcela Reyes, and Carol Connor. Writing instruction im-
proves students’ writing skills differentially depending on focal instruction and children: A meta-
analysis for primary grade students. Educational Research Review, 34:100408, 2021. 1

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning distilla-
tion. www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-reasoning-
distillation, 2025. Accessed: 2025-01-22. 2, 3

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, 2004. 13

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao,
Nan Duan, and Weizhu Chen. Not all tokens are what you need for pretraining. In NeurIPS, 2024.
3

Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the biology of a large language
model. Transformer Circuits Thread, 2025. URL https://transformer-circuits.
pub/2025/attribution—-graphs/biology.html. 2

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437,2024. 4

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a. 3

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025b. 2, 4

Aman Madaan, Katherine Hermann, and Amir Yazdanbakhsh. What makes chain-of-thought
prompting effective? a counterfactual study. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 1448-1535, 2023. 2,4

Christopher D Manning. Introduction to information retrieval. Syngress Publishing,, 2008. 13

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. In Workshop on Reasoning and Planning for Large Language Models, 2024. 1,2, 3, 4,
7,13

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita

Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024. 4

11

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html

Under review as a conference paper at ICLR 2026

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:

27730-27744, 2022. 4

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311-318, 2002. 13

Liran Ringel, Elad Tolochinsky, and Yaniv Romano. Learning a continue-thinking token for en-
hanced test-time scaling. arXiv preprint arXiv:2506.11274, 2025. 3

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024. 1, 3, 4

Stacey Shubitz. Craft moves: Lesson sets for teaching writing with mentor texts. Routledge, 2023.
1

NovaSky Team. Sky-tl: Train your own ol preview model within $450. https://novasky-
ai.github.io/posts/sky-t1, 2025. Accessed: 2025-01-09. 2, 3

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi
Zhou. Wait, we don’t need to” wait”! removing thinking tokens improves reasoning efficiency.
arXiv preprint arXiv:2506.08343, 2025. 2, 3

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
less: Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025. 2,
4

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a. 1

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024b. 1

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025. 1, 4

Hang Yuan, Bin Yu, Haotian Li, Shijun Yang, Christina Dan Wang, Zhou Yu, Xueyin Xu, Weizhen
Qi, and Kai Chen. Not all tokens are what you need in thinking. arXiv preprint arXiv:2505.17827,
2025. 3

12

Under review as a conference paper at ICLR 2026

Appendix

This appendix provides additional experimental details and results that complement the main paper.
In Appendix A, we elaborate on the experimental settings and extended experimental results of our
attention knockout analyses. Appendix B presents further implementation details and additional
results of MidCut-SFT, including comparisons on the OpenThoughts3-100K dataset and results
with alternative LLM-based compression methods. We also report extended results of Table 1 that
complement the tables in the main text. Appendix C provides implementation details of MidCut-
Decoding, specifying how the middle segments are truncated during inference. Finally, Appendix D
clarifies the limited role of external LLMs in this work, restricted solely to writing polish and coding
assistance, with no involvement in research ideation, implementation, or analysis.

A DETAILS OF ATTENTION KNOCKOUT ANALYSIS

A.1 EXPERIMENTAL SETTINGS

We delete specific trajectory segments and generate answers under these conditions to verify again
whether thinking trajectories contain redundancy with respect to answer generation. By observing
how answer quality changes under such interventions, we can assess whether particular segments
play a causal role in generating answers. Our analysis is conducted on 100 problems from the
GPQA-D dataset using the S1.1-32B (Muennighoff et al., 2024) model®. For each problem, a
full thinking trajectory is first generated. Then, we remove three different segments: the beginning
segment, an intermediate segment centered in the middle, and the ending segment. To systematically
examine the effect of segment length, we vary the truncated ratio (e.g., 10%, 20%). For instance,
with a 10% ratio the beginning corresponds to tokens 0—-10%, the intermediate to 45-55%, and the
ending to 90-100% of the trajectory. With a 20% ratio, the corresponding spans become 0-20%,
40-60%, and 80—100%, respectively. The model is subsequently prompted to generate answers from
these truncated trajectories as well as from the full trajectory. Finally, textual similarity between
answers from truncated and full trajectories is measured using Jaccard similarity (Manning, 2008)
and ROUGE-L (Lin, 2004).

A.2 ADDITIONAL RESULTS

Complementing the ROUGE-L (Lin, 2004) results in Figure 4 of the main paper, Figure A.1 reports
Jaccard similarity (Manning, 2008) and BLEU score (Papineni et al., 2002) under the same knock-
out settings. The trends are closely similar to those of the ROUGE-L score. Across all knockout
ratios (0-50%), removing the intermediate segment consistently yields the highest similarity be-
tween answer parts generated from truncated trajectories and their counterparts generated from the
full trajectory. In contrast, removing the ending segment yields the lowest similarity and is even
worse than removing the beginning. This aligns with the information flow revealed by the attention
weight analysis (Figure 3). Models appear to anchor the answer first and then revisit the question
for refinement, so truncating the final consolidation region most harms the generated answer parts.

o
o
o

- Beginning - Beginning
— Intermediate — Intermediate

\/\/\’v\’_\i%

o

(=)}

o

BLEU score
o o o
w w B
o w o

o
%
o

Jaccard similarity
o
w
w
o
N
w

o

IS

a
o
N
o

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Knockout ratio Knockout ratio
(a) Jaccard similarity (b) BLEU score

Figure A.1: (a) Jaccard similarity and (b) BLEU score of generated answer parts after knockouts
of thinking trajectories. They also show similar trends to Figure 4.

https://huggingface.co/simplescaling/sl.1-32B

13

https://huggingface.co/simplescaling/s1.1-32B

Under review as a conference paper at ICLR 2026

B DETAILS OF MipCuT-SFT EXPERIMENTS

B.1 SFT AND EVALUATION FRAMEWORKS

For the s1K-1.1 experiments, we conduct supervised fine-tuning using the s1 GitHub repository>.
Evaluation relies on the built-in implementation of Im-evaluation-harness* within the same reposi-
tory. The dataset is s1K-1.1°.

For the OpenThought3 experiments, we follow the instructions of the OpenThought GitHub
repository® and train models using LLaMA-Factory’. Evaluation is performed with Im-evaluation-
harness?. The dataset is based on OpenThoughts3-1.2M°®, from which we randomly sample 100K
examples containing both <think> and </think> tokens.

B.2 LLM-BASED COMPRESSION METHOD

We also experiment with compressing the s1K-1.1 dataset using two external LLMs: Claude Sonnet
(claude-sonnet-4-20250514 version of Claude Sonnet 4) (Anthropic, 2025) and Gemini
(gemini-2.5-flash) (Comanici et al., 2025).

To ensure that only the middle portion is shortened while respecting its local context, we operate
on the thinking trajectory with a block-wise, context-aware paraphrasing pipeline. Each trajectory
is split into “blocks” by “\n\n”, and we iterate over non-overlapping windows of 10 consecutive
blocks. For every window, we construct a prompt that exposes the three preceding and three follow-
ing blocks as [Context Before] and [Context After], while designating the 10-block
window as [Center Section].The LLM is instructed to compress the [Center Section]
only, preserving the logical structure and final conclusion. We instruct the LLMs with a fixed para-
phrasing prompt, which explicitly conditions on surrounding context while compressing only the
center section. The full prompt is shown in the box below.

Paraphrasing prompt

You will be given a step-by-step reasoning process written by a large language model.

Please paraphrase the center section only, while preserving the logical structure.

Try to reduce its length to approximately half of the original, but make sure to keep all
essential reasoning steps and the final conclusion.

You may refer to the surrounding context for understanding, but do not modify them.

[Context Before]
{before}

[Center Section]
{center}

[Context After]
{after}

Paraphrased (center section only):

*https://github.com/simplescaling/sl
*nttps://github.com/EleutherAI/lm-evaluation-harness
Shttps://huggingface.co/datasets/simplescaling/le—1.l_tokenized
Snttps://github.com/open-thoughts/open-thoughts
"https://github.com/hiyouga/LLaMA-Factory
$https://huggingface.co/datasets/open—-thoughts/OpenThoughts3-1.2M

14

https://github.com/simplescaling/s1
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/datasets/simplescaling/s1K-1.1_tokenized
https://github.com/open-thoughts/open-thoughts
https://github.com/hiyouga/LLaMA-Factory
https://huggingface.co/datasets/open-thoughts/OpenThoughts3-1.2M

Under review as a conference paper at ICLR 2026

B.3 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETTINGS

In all variants of MidCut-SFT, the middle portion of the trajectory is removed after preserving both
the beginning and ending segments. Concretely, for step-level filtering we preserve the first and last
n steps and remove the middle (total steps — 2n) steps; for token-level filtering we preserve the first
and last & tokens and remove the middle (total tokens — 2k) tokens; and for length-proportional
filtering we remove m% of the total steps from the middle part. If the preserved length (2n steps or
2k tokens) exceeds the total trajectory length, no truncation is applied.

For step-level filtering, we set n=100 for s1K-1.1 (average 234 steps) and n=200 for OpenThought3
(average 461 steps), reflecting that the latter trajectories are roughly twice as long. Step-level midcut
is used as the default configuration, while further exploratory ablations (token-level with £ = 8000
and length-proportional with m = 0.15) are carried out on s1K-1.1. For similarity-based MidCut,
we experimented with different filtering criteria (max, min, and average Jaccard similarity against
a threshold) and found that the best performance was obtained with an average threshold of 0.3 for
Qwen3-8B-Base and a minimum threshold of 0.15 for Qwen?2 .5-32B-Instruct, which we
report in the main results. For evaluation, we use AIME24, GPQA-D, and MATH benchmarks,
generating with temperature 0.6. Each instance is evaluated three times, and we report the averaged
results.

B.4 ADDITIONAL RESULTS OF MipCuT-SFT

Table B.1 compares the performance of MidCut-SFT on OpenThoughts3-100K against alternative
reduction strategies. Consistent with the results on s1K-1.1 (Table 2), the step-level MidCut-SFT
achieves the highest performance among all methods, yielding relative improvements of +2.61% on
Qwen3-8B-Base and +1.81% on Qwen3-4B-Base compared to training on full trajectories.

Table B.2 presents detailed results by task, model, and method, complementing Table 1-3 and Ta-
ble B.1. Overall, the results confirm that MidCut-SFT consistently achieves strong performance.

Table B.1: Comparison between MidCut-SFT (Step-level) and alternative truncation strategies
on OpenThoughts3-100K. Each value represents the average performance on AIME24, GPQA-
Diamond, and MATH. Relative changes from the base are shown in parentheses below each value.

Model | Base | Random Ours (Step-level) | Single (first) Single (last)

Qwen3-8B 0.6578 0.6411 0.6750 0.6216 0.5986
(-2.54%) (+2.61%) (-5.50%) (-9.00%)

Qwen3-4B 0.5897 0.5750 0.6004 0.5816 0.5268
(-2.49%) (+1.81%) 138%) (-10.68%)

B.5 EXPERIMENTAL DETAILS OF FIGURE 10

To examine under which conditions MidCut-SFT is most effective, we analyze the correlation
between the general task performance of the pretrained models and the performance gain of
MidCut-SFT over full-trajectory SFT. For this experiment, we train Qwen?2 .5-32B-Instruct,
Qwen?2.5-7B-Instruct, Qwen3-8B-Base, and Qwen3-4B-Base on sl1K-1.1, and
Qwen3-8B-Base and Qwen3-4B-Base on OpenThoughts3-100K. The results are then com-
pared to investigate how model capacity and initialization relate to the observed performance gains.

C IMPLEMENTATION DETAILS OF MIDCUT-DECODING

The model first generates the entire thinking trajectory up to the point where it would normally begin
producing the final answer. Before the answer part is generated, we truncate the central portion of
the thinking trajectory according to a specified cutting ratio. Formally, given a trajectory of length L
tokens, we remove |r- L | tokens centered at position L /2, thereby preserving both the first (1—r)/2
and last (1 — r)/2 fractions of the trajectory. For example, with 7=0.5, the central 50% of tokens
(i.e., from 25% to 75% of the trajectory) is removed. This ensures that the model generates its final

15

Under review as a conference paper at ICLR 2026

Table B.2: Detailed performance of MidCut-SFT on three benchmarks (AIME24, GPQA-D,
MATH). Bold indicates the best performance in each benchmark, and underline indicates perfor-
mance better than baseline. “Len-prop.” denotes length-proportional filtering.

Method AIME24 GPQA-D MATH Average
Value A Value A Value A Value A
Qwen2.5-32B-Instruct & s1K-1.1
Base 0.6444 0.6195 0.9413 0.7351

LLM-based (Claude) | 0.3333 -4827% 0.5791 -6.52% 0.8900 -5.45% | 0.6008 -18.27%
LLM-based (Geminiy | 0.1778 -72.41% 0.4815 -22.27% 0.8273 -12.12% | 0.4955 -32.59%

Single (first) 0.6222 -344% 0.6380 +2.99% 0.9500 +0.92% | 0.7367 +0.22%
Single (last) 0.6000 -6.90% 0.6128 -1.08% 0.9420 +0.07% | 0.7183 -2.29%
Random 0.5667 -12.06% 0.6162 -0.53% 0.9447 +0.36% | 0.7092 -3.52%
Ours
Step-level 0.6889 +6.90% 0.6229 +0.55% 09440 +0.29% | 0.7519 +2.29%
Token-level 0.6111 -5.16% 0.6195 0.00% 0.9487 +0.79% | 0.7264 -1.17%
Len-prop. 0.6556 +1.74% 0.6380 +2.99% 09473 +0.64% | 0.7470 +1.62%
Sim-based 0.6444 0.00% 0.6279 +1.36% 0.9453 +0.42% | 0.7392 +0.56%
Qwen3-8B-Base & s1K-1.1
Base 0.4222 0.5741 0.9210 0.6391

LLM-based (Claude) | 0.1556 -75.85% 0.4747 -2337% 0.8233 -12.52% | 0.4845 -34.10%
LLM-based Gemini) | 0.1111 -73.68% 0.4293 -2522% 0.7813 -15.16% | 0.4406 -31.06%

First 03667 -13.13% 05640 -1.76% 0.8990 -2.39% | 0.6099 -4.55%
Last 0.2778 -3423% 0.5387 -6.17% 0.8930 -3.04% | 0.5698 -10.80%
Random 0.2833 -32.94% 0.5741 +0.00% 0.8885 -3.53% | 0.5820 -8.94%
Ours
Step-level 0.4444 +526% 0.5741 +0.00% 09160 -0.54% | 0.6448 +0.90%
Token-level 03667 -13.13% 0.5690 -0.89% 09130 -0.87% | 0.6162 -3.58%
Len-prop. 03333 -21.00% 0.5606 -2.35% 09180 -0.33% | 0.6040 -5.49%
Sim-based 0.3444 -1842% 0.5539 -3.52% 09000 -2.28% | 0.5994 -6.22%
Qwen3-8B-Base & OpenThought3-100K
Base 0.5000 - 0.5387 - 0.9347 - 0.6578 -
First 0.4000 -20.00% 0.5320 -1.24% 09327 -021% | 0.6216 -5.51%
Last 04111 -17.78% 0.5135 -4.68% 0.8713 -6.79% | 0.5986 -9.00%
Random 0.4667 -6.67% 0.5312 -140% 09254 -1.00% | 0.6411 -2.54%

Ours (Step-level) 0.5222 +4.44% 0.5640 +4.70% 0.9387 +0.43% | 0.6750 +2.61%
Qwen3-4B-Base & OpenThought3-100K

Base 0.3667 - 0.4865 - 0.9160 - 0.5897 -

First 0.3889 +6.05% 0.4646 -450% 0.8913 -2.69% | 0.5816 -1.38%
Last 0.2889 -21.20% 0.4495 -7.60% 0.8420 -8.08% | 0.5268 -10.68%
Random 0.3500 -4.56% 04748 -243% 0.8987 -1.88% | 0.5745 -2.49%

Ours (Step-level) 0.4000 +9.08% 0.4899 +0.70% 09113 -0.51% | 0.6004 +1.81%

answer after observing both the initial problem setup and the concluding consolidation region, while
discarding potentially redundant intermediate reasoning.

The main results in Table 4 are obtained with Qwen3-8B-Base trained on OpenThought3-100K,
while additional results with Qwen2.5-32B-Instruct trained on s1K-1.1 are provided in Ta-
ble C.1. These additional results reinforce the observation from the main text that trimming 25-75%
of intermediate steps yields nearly identical average performance compared to using full trajectories,
indicating that MidCut-Decoding can reduce inference costs without harming task accuracy.

Table C.1: Performance of MidCut-Decoding. “Accuracy” denotes the averaged accuracy across
AIME24, GPQA-D, and MATH.

Model | Full 25% 33% 50% 75%

Qwen3-8B-Base 0.6578 0.6574 0.6579 0.6581 0.6576
Qwen2.5-32B-Instruct | 0.7420 0.7421 0.7420 0.7420 0.7416

16

Under review as a conference paper at ICLR 2026

D THE USE OF LLMS

LLMs were primarily used for minor language editing, including adjustments to word choices and
clarity. They played no role in the research design, analysis, interpretation, or manuscript prepara-
tion, and all scientific contributions are fully our own.

17

	Introduction
	Related work
	Analyzing thinking trajectories
	Background
	Analyses

	Trimming reasoning traces to enhance training and decoding
	MidCut-SFT: MidCut for supervised fine-tuning
	MidCut-Decoding: MidCut for effective decoding

	Discussion
	Conclusion
	Details of attention knockout analysis
	Experimental settings
	Additional results

	Details of MidCut-SFT experiments
	SFT and evaluation frameworks
	LLM-based compression method
	Implementation details and experimental settings
	Additional results of MidCut-SFT
	Experimental details of fig:perfgain

	Implementation details of MidCut-Decoding
	The use of LLMs

