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ABSTRACT

Large language models (LLMs) have demonstrated impressive performance
across various language tasks. However, existing LLM reasoning strategies
mainly rely on the LLM itself with fast or slow mode (like o1 thinking) and
thus struggle to balance reasoning efficiency and accuracy across queries of vary-
ing difficulties. In this paper, we propose Cognitive-Inspired Elastic Reasoning
(CogER), a framework inspired by human hierarchical reasoning that dynami-
cally selects the most suitable reasoning strategy for each query. Specifically,
CogER first assesses the complexity of incoming queries and assigns them to one
of several predefined levels, each corresponding to a tailored processing strategy,
thereby addressing the challenge of unobservable query difficulty. To achieve au-
tomatic strategy selection, we model the process as a Markov Decision Process
and train a CogER-Agent using reinforcement learning. The agent is guided by
a reward function that balances solution quality and computational cost, ensur-
ing resource-efficient reasoning. Moreover, for queries requiring external tools,
we introduce Cognitive Tool-Assisted Reasoning, which enables the LLM to au-
tonomously invoke external tools within its chain-of-thought. Extensive exper-
iments demonstrate that CogER outperforms state-of-the-art Test-Time scaling
methods, achieving at least a 13% relative improvement in average exact match
on In-Domain tasks and an 8% relative gain on Out-of-Domain tasks.

1 INTRODUCTION

Large language models (LLMs), such as ChatGPT (Achiam et al., 2023) and DeepSeek (Guo et al.,
2025), have achieved impressive results on many tasks, including multi-turn dialogue (Stark et al.,
2023) and embodied intelligence (Mu et al., 2023). However, as model size and the number of infer-
ence tokens increase, the computational resources required for inference grow substantially, creating
a major bottleneck for real-world applications. Meanwhile, user queries vary widely in complexity,
from straightforward fact-based questions to multi-hop reasoning tasks, and in some cases, even
require external tool invocation. This diversity makes traditional LLM reasoning approaches, rooted
in the dual-process theory of fast (System 1) and slow (System 2) thinking, face critical limitations
in handling all types of queries efficiently and effectively (Li et al., 2025). Consequently, it is crucial
to dynamically allocate reasoning strategies based on query complexity in practical applications.

Unfortunately, existing LLMs typically apply a uniform reasoning process regardless of query com-
plexity (Aggarwal & Welleck, 2025). This one-size-fits-all reasoning strategy risks either wasting
computation on trivial inputs or inadequately handling more demanding queries. Achieving flexi-
ble and efficient reasoning requires addressing two key challenges: 1) Unforeseen query difficulty:
The true complexity of an incoming query is often not observable in advance, making it difficult to
allocate computational resources dynamically and appropriately. 2) Cost–quality trade-off : Larger
language models generally yield higher accuracy but incur substantially greater compute costs, forc-
ing a careful balance between performance and efficiency along the Pareto frontier.

Recently, several attempts (Jiang et al., 2023; Dong et al., 2024; Du et al., 2023; Ong et al., 2025a;
Yang et al., 2025b) have been proposed to tailor reasoning strategies to downstream task demands,
which can be broadly divided into the following categories: 1) LLM ensemble methods (Jiang et al.,
2023; Dong et al., 2024; Du et al., 2023) often combine outputs from multiple candidate models to
boost accuracy. However, each input must typically be processed by all models in the ensemble,
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leading to substantial computational overhead. 2) Test-time scaling methods (Muennighoff et al.,
2025; Yang et al., 2025b; Snell et al., 2024; Aggarwal & Welleck, 2025)adapt reasoning costs based
on the estimated difficulty of inputs, for instance by adjusting the length of chain-of-thought (CoT)
reasoning or employing early-exit mechanisms. While more efficient, these methods often struggle
to assess difficulty accurately for all queries and lack adaptive mechanisms for invoking external
tools. As a result, they fall short in handling complex tasks requiring access to additional knowledge
sources, limiting their flexibility and extensibility in real-world applications.

To address these limitations, we propose the Cognitive-Inspired Elastic Reasoning (CogER) frame-
work for efficient scaling of language model reasoning. This framework dynamically selects the
most suitable processing mode for each query based on its complexity. Specifically, inspired by
Bloom’s Taxonomy (Bloom et al., 1956), we first categorize incoming queries into four complexity
levels (L1−L4), each associated with a tailored reasoning strategy, thereby mitigating the challenge
of unforeseen query difficulty. Then, we model the strategy selection process as a Markov Decision
Process (MDP), in which a CogER-Agent chooses one of four actions (No Think, Think, Extend,
or Delegate) to process each query, based on the predicted complexity level. To guide the train-
ing of this agent, we design a reward function that explicitly balances computational cost against
output quality, ensuring that each query receives only the computational resources commensurate
with its complexity. Finally, for L4 queries that require external knowledge, we introduce Cognitive
Tool-Assisted Reasoning (CoTool), enabling the LLM to autonomously invoke external tools at ap-
propriate points within its chain-of-thought, enabling flexible and knowledge-augmented reasoning.

Main novelty and contributions. 1) We propose Cognitive-Inspired Elastic Reasoning (CogER),
which dynamically selects the most appropriate processing mode for each query. It classifies incom-
ing queries into four complexity levels, formulates reasoning strategy selection as an MDP, and intro-
duces a novel reward function to train a CogER-Agent that dynamically selects the optimal strategy
under constrained computational budgets. 2) We introduce CoTool, which enables the model to
autonomously decide when and how to invoke external tools during complex reasoning, seamlessly
integrating API calls within its CoT, and we provide the RSTKit toolkit to facilitate this process. 3)
Extensive experiments demonstrate that, compared to SOTA TTS methods, CogER achieves at least
a 13% relative improvement in average EM on ID tasks and an 8% relative gain on OOD tasks.

2 RELATED WORK

Large language models (LLMs) ensemble methods (Chen et al., 2025a) aim to combine multiple
models to leverage their complementary strengths. Existing approaches can be categorized into three
paradigms based on integration timing: ensemble-before-inference, ensemble-during-inference, and
ensemble-after-inference. Ensemble-before-inference methods (Lu et al., 2024a; Ding et al., 2024;
Srivatsa et al., 2024; Lu et al., 2024b) first apply a routing mechanism, either pretrained on custom
data or trained on the fly, to dispatch each query to the most suitable, specialized model, thereby
enabling more cost-efficient inference. Ensemble-during-inference methods (Huang et al., 2024; Xu
et al., 2025b; Park et al., 2025) combine outputs from multiple models at different levels of granular-
ity, including the token level, span level, and reasoning-step level, and then merge the resulting text
segments back into the decoding context to iteratively refine the output. Ensemble-after-inference
methods (Park et al., 2025; Hu et al., 2025; Du et al., 2023) generate complete responses inde-
pendently from each candidate LLM and then consolidate them via ranking, majority voting, or
fitness scoring to select the highest-quality output for final delivery. In contrast, our CogER learns a
lightweight policy network to dispatch each query to a single, optimal inference action, No Think,
Think, Extend, Delegate, within an MDP, thereby enabling fine-grained per-query adaptation.

Test-Time Scaling (TTS) methods optimize computational resource allocation during inference
through adaptive reasoning depth control. Muennighoff et al. (2025) propose budget forcing, a tech-
nique to regulate the computation of test time by prematurely stopping the CoT of the model or
extending it by repeated insertion of the token ‘wait’ when the model attempts to terminate gener-
ation. Aggarwal & Welleck (2025) propose LCPO, a straightforward reinforcement learning (RL)
approach designed to maximize accuracy while respecting user-specified length constraints. Yang
et al. (2025b) propose Thinking-Optimal Scaling, which trains the model on seed examples with
varied response lengths to learn appropriate reasoning efforts and then self-improves by selecting
the shortest correct responses on new tasks. In contrast to TTS methods that only adjust reason-
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(a) Query complexity levels (b) Overview of the Cognitive-Inspired Elastic Reasoning
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Figure 1: (a) Query complexity levels. (b) Overview of the CogER. Given an input query, the
CogER-Agent selects a complexity level (L1 − L4) and routes it to the corresponding reasoning
strategy, including direct answering, light to multi-step reasoning, and Cognitive Tool-Assisted Rea-
soning. The CogER-Agent is trained via GRPO with a composite reward that combines Format
Reward Rformat, Accuracy Reward Raccuracy, and Hierarchical-Aware Reward Rhierarchy.

ing depth based on coarse difficulty estimates, CogER selects among diverse reasoning modes and
seamlessly integrates external tool usage, achieving more versatile resource allocation.

3 PROBLEM STATEMENT AND MOTIVATION

Given a set of user queries X = {x1, . . . , xK}, we seek to process each query xi with a reason-
ing strategy that minimizes computational cost while maximizing solution quality. Specifically, for
each xi, we select reasoning actions ai ∈ A = {No Think,Think,Extend,Delegate}, where
No Think uses a lightweight LLM to produce an immediate answer; Think invokes internal multi-
step reasoning within a moderately sized LLM; Extend performs test-time scaling by engaging a
Large Reasoning Model (LRM) to generate a longer chain of thought; Delegate invokes parame-
terized external tools (e.g., search engines, calculator) to obtain intermediate information, which is
seamlessly incorporated into the model’s reasoning process to produce the final output. Each action
a ∈ A incurs a computational cost C(a) and achieves an expected solution quality α(a). Our ob-
jective is to learn a policy π mapping each query xi to exactly one reasoning action to minimize the
combined cost–accuracy loss:

min
π

K∑
i=1

[
C
(
π(xi)

)
−

(
π(xi)

)]
. (1)

Motivation. In real-world applications, user questions exhibit a wide range of complexity. For
example, some queries can be answered in a single step, whereas others require deep, multi-step
reasoning or integration of external information sources. However, existing LLMs apply the same
reasoning procedure to every query with a high computational cost, which may lead to wasted re-
sources on simple queries and poor performance on complex ones (Sui et al., 2025; Hu et al., 2025).

To address this issue, we provide per-query adaptivity by selecting the most appropriate processing
mode for each question. Simple lookups invoke a lightweight model to generate an immediate an-
swer. Moderately difficult queries trigger internal reasoning within a medium-sized model. Harder
queries use a large reasoning model to produce an extended chain of thought. Finally, queries be-
yond the model’s standalone capabilities call external tools or APIs and incorporate their outputs.
This dynamic selection mechanism reduces overall cost while preserving or improving accuracy,
enabling efficient and scalable reasoning across diverse workloads.

4 COGNITIVE-INSPIRED ELASTIC REASONING FOR LLMS

In this paper, we propose the Cognitive-Inspired Elastic Reasoning (CogER) for efficient scaling
of language model reasoning, which dynamically selects the most appropriate processing mode for
each query. The overall framework is in Figure 1. Given an input query, the CogER-Agent selects
a complexity level (L1 − L4) and routes it to the corresponding reasoning strategy, including direct
answering, light to multi-step reasoning, and Cognitive Tool-Assisted Reasoning (c.f. Sec. 4.4).
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4.1 QUERY COMPLEXITY CLASSIFICATION

To efficiently allocate reasoning strategies based on the diverse computational requirements of dif-
ferent queries, we draw inspiration from Bloom’s Taxonomy (Bloom et al., 1956) to classify queries
by their cognitive demand. Specifically, we define four levels of query complexity, denoted as L1,
L2, L3, and L4, with each level representing an increasing degree of reasoning depth and computa-
tional demand, as illustrated in Figure 1(a). The details of each level are as follows:

• L1: Prompt Answering. Queries with simple, unambiguous structure that require no reasoning
and can be answered directly (e.g., “2 + 2 =?”). [Corresponds to Bloom’s “Remember” level.]

• L2: CoT Reasoning. Queries that demand basic comprehension and simple reasoning (e.g.,
“How many minutes are in 3.5 hours?”). [Corresponds to Bloom’s “Understand/Apply” levels.]

• L3: Deep Reasoning. Queries requiring multi-hop reasoning, analysis, or evidence weighing
(e.g., “Analyze the trends in data table”). [Corresponds to Bloom’s “Analyze/Evaluate” levels.]

• L4: Tool-Enhanced Deep Reasoning. Queries that require creative synthesis of information to
generate novel solutions (e.g., “Formulate a proof strategy for the Collatz conjecture.”). [Corre-
sponds to Bloom’s “Create” level.]

This classification facilitates a principled allocation of computational resources: lower-complexity
queries (e.g., L1 and L2) can be handled by lightweight reasoning modules, while higher-complexity
queries (e.g., L3 and L4) may demand more sophisticated reasoning techniques or assistance from
external tools. By tailoring the reasoning strategy to the cognitive complexity of each query, the
system can achieve more efficient use of computational resources and improved overall performance.

4.2 COGNITIVE-INSPIRED ELASTIC REASONING AS MARKOV DECISION PROCESS

We seek to design a CogER-Agent that dynamically selects reasoning strategies based on the com-
plexity of each query, optimizing the balance between computational cost and solution quality. Dy-
namic reasoning over diverse queries naturally constitutes a sequential decision-making problem
under uncertainty: the agent must choose among multiple reasoning operations step by step to bal-
ance resource expenditure with answer accuracy. Such a process aligns perfectly with the Markov
Decision Process (MDP) (Van Otterlo & Wiering, 2012), which seeks a policy that maximizes ex-
pected cumulative utility. Therefore, we model it as a MDP: < S,A,T ,R, π >. The state space of
the environment is S and the action space of the agent is A. At time step t, the agent takes the state
st ∈ S as input and performs an action at ∈ A through the policy network π : S ×A → [0, 1]. The
environment changes to the next state st+1 = T (st, at) according to the transition function T and
a reward rt = R(st, at) is received with reward function R. The MDP is as follows:

States S is a set of states which describe the environment. At time step t, the state can be represented
as st = [x, y1:t−1, Li], where x denotes the input query, y1:t−1 represents the natural language
output at time steps 1 through t − 1, and Li ∈ L = {L1, L2, L3, L4} denotes the inferred task
complexity level corresponding to the query. Note that the complexity level Li may not be presented
at every time step t, as the model may infer this level based on the context or internal reasoning.

Actions A is a set of actions that the agent can take to process the query. Each action cor-
responds to a different reasoning strategy based on the complexity of the query. The action
space includes both the vocabulary space, from which the model generates tokens, and prede-
fined reasoning strategies for different complexity levels. Specifically, the action space consists
of: A = {No Think,Think,Extend,Delegate,V}, where V represents the vocabulary of possible
words or tokens the model can generate as part of its reasoning, and the other actions are strategies
the agent can apply based on the query’s complexity.

Rewards R(S,A) is the reward function. In this setting, the reward can be considered as a com-
posite signal that rewards correctly formatted strategy outputs and incentivizes high accuracy with
minimal resource consumption. The details of the reward function are given in the Sec. 4.3.

Policy πθ(a|s) : A × S → [0, 1] describes the behaviors of the agent. The agent takes the current
state st as input and outputs a probability distribution for each possible action at ∈ A:

π (at = i|st; θ) =
exp (fθ (st)i)∑N

j=1 exp
(
fθ (st)j

) , (2)
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where fθ (st) is the output vector of the policy with input st, and i denotes the index of the action.

CogER Rollout. To enable the agent to generate reasoning trajectories and select appropriate rea-
soning strategies autonomously, we adopt a dedicated system prompt (c.f. App. B.1) to guide the
thinking of the model during rollout. This prompt instructs the model to wrap each incoming query
with special tokens, such as <question level> and </question level> to explicitly mark
its complexity. In implementation, this leads to a two-stage decision process: the CogER-Agent
first selects one of the four high-level reasoning modes L1–L4 by emitting a task-level tag (e.g.,
<question level> L2 </question level>), and then, conditioned on this choice, the
underlying LLM generates the full response autoregressively over the vocabulary V within the se-
lected mode. Once the level is identified, the agent proceeds as follows:

• L1-level: No Think. Return the answer immediately with no reasoning.
• L2-level: Think. Apply a chain-of-thought strategy (Wei et al., 2022b) using a moderately sized

LLM to produce a concise reasoning trail.
• L3-level: Extend. Produce an extended chain-of-thought with a large reasoning model.
• L4-level: Delegate. Invoke external tools via our CoTool (c.f. Sec. 4.4) to support reasoning.

By dynamically adjusting its strategy according to the query complexity, the CogER-Agent can
achieve a better trade-off between computation overhead and reasoning performance.

4.3 REWARD FUNCTION DESIGN

In our MDP, we define the reward as a composite of three components: Format Reward, Accu-
racy Reward, and Hierarchical-Aware Reward. These components encourage the agent to generate
formatted level tags correctly, achieve high answer accuracy, and avoid unnecessary use of overly
complex strategies. Formally, the reward R(S,A) is defined as follows:

R(S,A) = Rformat(S,A) +Raccuracy(S,A) +Rhierarchy(S,A), (3)

where Rformat(·) is Format Reward, Raccuracy(·) is Accuracy Reward, and Rhierarchy(·) is
Hierarchical-Aware Reward. In practice, if the output does not satisfy the required format and
we cannot reliably extract a valid task-level tag, the trajectory is treated as invalid for level-specific
evaluation, and both Raccuracy(·) and Rhierarchy(·) are set to 0.

Format Reward Rformat. The Format Reward encourages the agent to generate outputs with
the correct structural format, specifically ensuring the inclusion of a properly placed task-level tag
(i.e., <question level>Li</question level>) that corresponds to the query’s complexity
level, which can be formulated as follows:

Rformat(S,A) =

{
+1, if all required fields appear and are in the correct order
0, otherwise

. (4)

Accuracy Reward Raccuracy. The Accuracy Reward encourages the agent to produce correct an-
swers by assigning a positive reward only when the predicted result matches the expected outcome:

Raccuracy(S,A) =

{
+1, if the final answer is correct
0, otherwise

. (5)

Hierarchical-Aware Reward Rhierarchy. The Hierarchical-Aware Reward encourages the agent
to solve queries with the simplest sufficient strategy, thereby avoiding unnecessary computational
overhead. Specifically, the reward assigns a base credit for using each reasoning level and penalizes
the use of unnecessarily complex strategies when a simpler level suffices. The reward is defined as:

Rhierarchy(S,A) = b(Lmin(S))− δ(Lmin(S), L(S)), (6)

where L(S) denotes the selected reasoning level, and Lmin(S) is the minimal level required to solve
the given query. The base credit b(L(S) increases linearly with the reasoning level:

b(Lmin(S)) = 0.5 · (Lmin(S)− 1), Lmin(S) ∈ {1, 2, 3, 4}. (7)

The penalty term is defined as:

δ(Lmin(S), L(S)) = 0.2 · (L(S)− L(S)min)+, (8)

5
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Algorithm 1 The pipeline of Cognitive Tool-Assisted Reasoning
Input: Reasoning ModelM, Questions Q, Task instruction I , Reason-in-tool instruction Itool.
1: Initialize set of unfinished sequences S ← {I ⊕ q | q ∈ Q}, set of finished sequences F ← {}
2: while S ̸= ∅ do
3: Generate all sequences in S until EOS or <|end tool query|>: T ←M(S)
4: Initialize empty set Sr ← {}
5: for each sequence Seq ∈ T do
6: if Seq ends with <|end tool query|> then
7: Extract tool query: qtool ← Extract(Seq,<|begin tool query|>,<|end tool query|>)
8: Retrieve tool execution results: Tresults ← SearchAndExecuteTools(qtool)
9: Construct input for Reason-in-tools: IT ← Itool ⊕ qtool ⊕ Seq⊕ Tresults

10: Append the tuple (IT , Seq) to Sr
11: else if Seq ends with EOS then
12: Remove Seq from S, add Seq to F
13: if Sr ̸= ∅ then
14: Prepare batch inputs: Ir ← {IT | (IT , Seq) ∈ Sr}
15: Reason-in-Tool: Tr ←M(Ir)
16: for i← {1, . . . , |Tr|} do
17: Let r ← Tr[i], Seq← Sr[i].Seq
18: Let rfinal ← <|begin tool result|>⊕ r ⊕ <|end tool result|>
19: Update sequence Seq in S: Seq← Seq⊕ rfinal

Output: Finished Sequences F

where (·)+ = max(·, 0) ensures that penalties are only applied when the selected level exceeds the
minimal sufficient one. This design encourages correct answers with minimal reasoning cost while
discouraging the overuse of higher-level strategies. As an example, consider a query that can be
solved at all levels {L1, L2, L3, L4}. The resulting rewards Rformat(S,A) are {L1 = 0, L2 =
−0.2, L3 = −0.4, L4 − 0.6}. This shows that the reward favors the minimal sufficient level while
penalizing unnecessary complexity.

4.4 COGNITIVE TOOL-ASSISTED REASONING

To address complex problems that require up-to-date knowledge, precise computation, or domain-
specific expertise beyond the built-in capabilities of LLMs, we propose Cognitive Tool-Assisted
Reasoning (CoTool). CoTool empowers the LLM with the autonomy to decide whether to continue
internal inference or invoke an external tool at each reasoning step. The pipeline is illustrated in
Algorithm 1, and detailed instructions are provided in App. B.2. Specifically, during the generation
of the reasoning chain R, the LLM autonomously decides at each step whether to proceed with
internal reasoning or invoke an external tool. At the i-th tool-assisted step, i.e., the i-th step at which
tool usage is deemed necessary, the LLM generates a tool query q

(i)
tool, enclosed between special

tokens <|begin tool query|> and <|end tool query|>. Each tool query is generated
based on the current state of the reasoning process and the previously collected information:

P (q
(i)
tool|I, q, R

(i−1)) =

T (i)
q∏

t=1

P
(
q
(i)
tool,t|q

(i)
tool,<t, I, q, R

(i−1), Tresults

)
, (9)

where I is the task instruction, T (i)
q is the length of the i-th tool query, q(i)tool,t is the token gener-

ated at step t of the i-th tool query, R(i−1) is all prior reasoning steps before the i-th tool invo-
cation, and Tresults is the result of tool query. Once the LLMs emit a tool query (i.e., the special
token pair <|begin tool query|> and <|end tool query|> is detected), the generation
process is paused. The extracted query q

(i)
tool is then executed by an external tool to obtain the

Tresults. The LLM then processes all the useful information to generate its subsequent reasoning
and injects it back into the reasoning chain R(i−1), enclosed by <|begin tool result|> and
<|end tool result|>. By interleaving tool usage in this manner, the model is able to resume
reasoning with an enriched context that incorporates necessary information. This mechanism allows
the agent to dynamically and efficiently integrate tool-assisted information into its CoT, enhancing
its capability to solve complex tasks. More details in App. D.1, and the external tools it utilizes are
curated from our RSTKit toolkit (see App. D.2).
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Table 1: Accuracy (%) of baselines and the CogER on ID and OOD tasks. The ‘DS-R1-DQ’ is
DeepSeek-R1-Distilled-Qwen2.5, and Math-72B is Qwen2.5-Math-72B-Instruct.

Baseline In-Domain Out-of-Domain
GSM8K MATH Com-QA MedQA AVG MAWPS College AVG

Math-72B 95.77±0.06 86.08±1.33 76.47±1.23 52.40±0.92 77.68±1.02 96.10±0.85 74.43±0.92 85.27±0.89

DS-R1-DQ-7B 88.12±1.22 89.61±0.46 56.07±1.81 26.79±2.44 65.15±1.65 91.57±0.41 71.96±0.49 81.77±0.45

DS-R1-DQ-14B 94.35±0.40 90.93±0.31 66.39±1.67 42.91±1.73 73.65±1.23 90.92±0.52 71.73±0.81 81.33±0.68

DS-R1-DQ-32B 95.21±0.35 90.73±0.95 59.19±1.90 43.29±1.71 72.11±1.75 92.37±0.40 72.93±0.51 82.65±0.46

DeepSeek-R1 97.04±0.16 96.79±0.30 78.00±0.58 54.38±2.12 81.55±1.11 93.29±0.80 72.70±1.39 83.00±1.13

L1-MAX 92.45±4.53 86.33±1.53 48.05±0.09 21.97±0.05 62.20±2.39 89.90±3.29 63.36±2.29 76.63±2.83

S1-32B 94.84±0.40 81.07±14.96 75.16±12.11 64.14±1.01 78.80±9.64 96.78±0.24 73.24±7.21 81.32±5.10

ReasonFlux-32B 93.65±0.33 77.32±14.70 53.18±1.44 49.88±0.64 68.51±7.39 93.67±1.08 78.83±6.13 86.25±4.40

RouteLLM 95.80±0.05 87.29±0.12 83.99±0.19 79.22±0.32 86.58±0.20 97.90±0.00 87.29±0.08 92.60±0.06

CogER (Ours) 96.18±0.05 95.20±0.20 84.52±0.30 81.23±0.00 89.28±0.18 97.87±0.01 89.24±0.14 93.56±0.10

4.5 TRAINING WITH GROUP RELATIVE POLICY OPTIMIZATION

We adopt the Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) to
optimize the parameters θ of the CogER-Agent due to its superior stability and sample-efficiency.

Group Relative Advantage Estimation. For each query x, a group of G candidate outputs
{o1, o2, . . . , oG} is sampled from the old policy model πθold . Each output is then scored according
to the reward function defined in Eqn. (3), yielding a set of rewards r = {r1, r2, . . . , rG}. Sub-
sequently, these rewards are normalized by subtracting the group mean and dividing by the group
standard deviation. The normalized reward r̃i =

ri−mean(r)
std(r) is then used as outcome supervision.

Specifically, the normalized reward r̃i is assigned as the advantage Âi to all tokens within the corre-
sponding output oi, i.e., Âi = r̃i. The policy is then updated by maximizing the objective.

Learning Objectives. The goal of the learning is to maximize the expected long-term return J (θ):

JGRPO(θ) = E[x ∼ P (Q), {oi}Gi=1 ∼ πθold(O|x)]

1

G

G∑
i=1

{
min

[
πθ(oi|x)
πθold(oi|x)

Âi, clip

(
πθ(oi|x)
πθold(oi|x)

, 1− ε, 1 + ε

)
Âi

]
− βDKL [πθ||πref ]

}
,

(10)
where ε and β are hyper-parameters, πθ and πθold are the current and old policy models.

5 EXPERIMENTS

Datasets and Metrics. To train the CogER-Agent, we construct the Reasoning-Training dataset by
randomly sampling 2,000 examples from each of four heterogeneous benchmarks: GSM8K (Cobbe
et al., 2021), MATH (Hendrycks et al., 2021), CommonsenseQA (Talmor et al., 2019), and MedQA
(Jin et al., 2021). This unified training set exposes the agent to a wide spectrum of reasoning chal-
lenges, from arithmetic word problems to domain-specific medical questions. For evaluation, we
consider both In-Domain (ID) and Out-of-Domain (OOD) settings. ID performance is evaluated on
the official test splits of GSM8K, MATH-500, CommonsenseQA, and MedQA, whereas OOD gen-
eralization is measured on MAWPS (Koncel-Kedziorski et al., 2016) and CollegeMath (Tang et al.,
2024), which are not included in the mixed training set used to fine-tune our CogER-Agent. More
details in App. C. We report Exact Match (EM ) as the metric across all datasets, and record the
average parameters (Param.) and Latency used during testing to reflect computational cost.

Baselines. We employ LLMs with varying sizes and architectures, including Qwen2.5-Math-72B-
Instruct (Yang et al., 2024b), DeepSeek-R1 (Guo et al., 2025), DeepSeek-R1-Distill-Qwen-7B,
DeepSeek-R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-Qwen-32B. We compare against Test-
Time Scaling (TTS) methods, including S1 (Muennighoff et al., 2025), L1 (Aggarwal & Welleck,
2025), and ReasonFlux (Yang et al., 2025a). In addition, we include the LLM routing method
RouteLLM (Ong et al., 2025b) as a representative routing-based baseline.

Implementation Details. In our CogER framework, Qwen2.5-7B-Instruct (Yang et al., 2024a)
serves as the CogER-Agent, which assigns queries to appropriate reasoning modules based on their
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Table 2: Accuracy (%) of each reasoning mode
and the proposed CogER on ID and OOD tasks.

Version ID OOD

Oracle 94.85 96.61
L1 (Qwen2.5-7B-Instruct) 76.28 86.23
L2 (Qwen2.5-32B-Instruct) 83.62 89.49
L3 (QWQ-32B) 86.75 93.13
L4 (Our CoTool) 88.42 92.89
CogER (Ours) 89.28 93.56

Table 3: Results for the component of the re-
ward function.“w/o” denotes the removal of
the specified reward term.

Version ID OOD

Training-free 86.35 92.78
w/o Rformat 87.37 93.42
w/o Rhierarchy 87.89 92.21
CogER (Ours) 89.28 93.56

Table 4: Proportion of queries routed to each com-
plexity level by the CogER-Agent, with and with-
out the fallback-reward component Rhierarchy.
Level L1 L2 L3 L4

w/o Rhierarchy 2.32% 8.30% 0.92% 88.46%
CogER (Ours) 2.00% 28.17% 21.90% 47.93%

Table 5: Impact of CoTool on EM and Tool
Invocation Rate (TIR%).

Version MATH-500 CollegeMath
EM TIR EM TIR

w/o CoTool 87.20 - 87.93 -
CoTool 97.00 3.03 89.04 5.17

estimated complexity, and also handles all L1-level queries directly. Queries classified as L2-level
are escalated to Qwen2.5-32B-Instruct for moderate multi-step reasoning, while L3-level queries are
processed by QwQ-32B (Team, 2025) to support deeper CoT generation. For the most demanding
L4-level queries, we invoke our CoTool, whereby QwQ-32B (Team, 2025) autonomously issues
external API calls to enrich its reasoning process. We uniformly capped the generation length at
max token = 8192 for all LLMs. Furthermore, all components are optimized using the AdamW
optimizer with a batch size of 24 × 3 and a learning rate of 5 × 10−5. The group size G in Eqn.
(10) is set to 12. The CogER-Agent is fine-tuned via LoRA with a rank of r = 16, while all other
hyperparameters follow the default settings from the Open-R1 configuration (Face, 2025). More
details can be found in App. D.3.

5.1 COMPARISON EXPERIMENTS

To evaluate the effectiveness of our CogER, we compare it against several baselines, including the
original LLM, L1-MAX, S1-32B, ReasonFlux-32B, and RouteLLM. Results are in Table 1.

Superior performance on ID tasks. From Table 1, our CogER achieves the best performance
on ID tasks. Specifically, compared to DeepSeek-R1, CogER achieves a relative performance im-
provement of 9.48% (81.55 → 89.28) in terms of average EM metric. Notably, CogER outper-
forms generic LLMs on knowledge-intensive benchmarks. Our CogER consistently outperforms the
SOTA TTS methods. For example, compared with S1-32B, our CogER has a relative improvement
of 13.30% in terms of average EM metric. Moreover, compared with RouteLLM, CogER further
improves the average EM from 86.58 to 89.28. This is primarily attributed to its ability to route each
query to the most suitable reasoning strategy, thereby leveraging the strengths of different models.

Superior performance on OOD tasks. To assess the generalization ability of our CogER beyond
the training distribution, we conduct experiments on MAWPS and CollegeMath. From Table 1,
CogER achieves an average EM accuracy of 93.56%, consistently outperforming both the origi-
nal LLMs and SOTA TTS methods. Specifically, on the MAWPS dataset, our method achieved a
relative improvement of 1.84% and 1.13% over Qwen2.5-Math-72B-Instruct and S1-32B, respec-
tively. On the more challenging CollegeMath dataset, CogER achieves 89.24%, with substantial rel-
ative improvements of 13.21% over ReasonFlux-32B. Moreover, compared with the routing baseline
RouteLLM, CogER achieves a higher average EM on OOD tasks (93.56 vs. 92.60). These results
demonstrate that CogER effectively adapts its reasoning strategies to unseen data by leveraging its
complexity-aware routing mechanism.

5.2 ABLATION STUDIES

Effectiveness of CogER. We compare CogER against each standalone reasoning strategy. From
Table 2, CogER outperforms all single-strategy baselines, achieving 89.28% EM on ID tasks and
93.56% EM on OOD tasks. Moreover, Table 4 presents the distribution of reasoning actions se-
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lected by our CogER-Agent. Note that as CogER-Agent acts as both router and L1 solver, its
problem-solving ability slightly degrades after training, leading to a lower L1 share that is expected
and by design. The relatively balanced selection across strategies indicates that the agent learns to
exploit the complementary strengths of different reasoning modes, rather than relying heavily on
any single one. These findings highlight that dynamically routing queries based on task complexity
leads to more robust and accurate reasoning than any fixed, one-size-fits-all approach.

Effectiveness of RL Training. To evaluate the RL training strategy, we compare CogER with
a training-free prompt engineering baseline. From Table 3, CogER outperforms the training-free
baseline, yielding a relative improvement of 3.39% on ID tasks and 0.84% on OOD tasks. These
results demonstrate that learning to adaptively select strategies via reinforcement learning is not only
more effective, but also more robust and generalizable than static, training-free alternatives.

Impact of the reward function R. We investigate the effects of Format Reward Rformat and
Hierarchical-Aware Reward Rhierarchy on the performance of CogER. From Table 3, removing the
Format Reward Rformat results in a noticeable performance drop on both ID (89.28 → 87.37) and
OOD (93.56 → 93.42) tasks, indicating that this reward is essential for guiding the CogER-Agent
to select appropriate reasoning strategies reliably. Removing the Hierarchical-Aware Reward not
only leads to overall performance degradation, but also causes the agent to excessively favor the L4

(Delegate) strategy (88.46%), as reported in Table 4, resulting in unnecessary computational cost.

Effectiveness of CoTool. We compare model performance with and without CoTool on both ID and
OOD tasks. From Table 5, integrating CoTool leads to a relative improvement of 11.24% in EM on
ID tasks (87.20 →97.00) with only 3.03% tool invocation, and EM on OOD is improved by 1.26%
(87.93 → 89.04) with a tool invocation rate of 5.17%. These results suggest that CoTool effectively
enhances the model’s ability to handle complex queries by selectively leveraging external tools.

5.3 MORE DISCUSSIONS

Table 6: Performance of CogER and baselines on
additional benchmarks, including code generation
(MBPP, Pass@3), long-context multiple-choice QA
(QuALITY, accuracy), and retrieval-augmented fac-
tual QA (Natural Questions, F1-score).
Baseline MBPP QuALITY Natural Questions

Math-72B 75.16 55.77 45.52
DS-R1-DQ-7B 77.30 35.21 15.41
DS-R1-DQ-14B 79.88 73.33 61.14
DS-R1-DQ-32B 91.22 81.22 64.45
L1-MAX 38.30 25.45 2.96
S1-32B 86.00 81.41 66.99
ReasonFlux-32B 91.70 81.88 63.37
RouteLLM 90.68 82.97 67.06
CogER(Ours) 91.76 82.97 67.25

Cross-task generalization. To examine
whether CogER overfits specific math and
commonsense benchmarks, we further evalu-
ate it on three unseen tasks with very different
formats: MBPP (Austin et al., 2021) for code
generation, QuALITY (Pang et al., 2022) for
long-context multiple-choice QA, and Natu-
ral Questions (Kwiatkowski et al., 2019) for
retrieval-augmented factual QA. As shown in
Table 6, CogER achieves the best or tied-best
performance on all three benchmarks, attain-
ing 91.76 Pass@3 on MBPP, matching the
top QuALITY accuracy of 82.97, and obtain-
ing the highest F1-score of 67.25 on Natural
Questions, while using comparable or lower
computational cost than strong baselines such
as DS-R1-DQ-32B and RouteLLM. These results indicate that the proposed cognitive hierarchy and
elastic level selection transfer beyond the GSM8K/MATH/Com-QA training domains and remain
effective on diverse, out-of-distribution reasoning tasks.

Compute efficiency. We analyze the computational cost of CogER, TTS methods, and the best-
performing LLM, DeepSeek-R1, to substantiate the computational efficiency of the proposed
method. From Table 7, CogER achieves the lowest end-to-end latency (118.53s) and the fewest
generated words (489.71) with an effective participating scale of 29.6B parameters. Specifically,
CogER achieves SOTA accuracy while reducing latency by 76.58% (over 4 times faster) compared
to the top-performing baseline (DeepSeek-R1). These results support our claim that a complexity-
aware CogER-Agent yields computational savings while preserving the accuracy gains.

Impact of different routing strategies. We study the impact of different query selection strategies
on overall performance. From Table 8, a four-class classifier underperforms the CogER, indicating
that purely supervised routing is insufficient to capture the uncertainty of query difficulty. Modeling
routing as an MDP and training with RL enables exploration and credit assignment over sequences,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 7: Computational cost averaged over all
datasets. Parameters (Param.), latency (s), and gen-
erated words per query are reported. ∗ is the latency
of the CogER-Agent for generating the level tag.
Baseline Param. ↓ Latency ↓ Words ↓
QWQ-32B 32B 147.21 1160.67
DeepSeek-R1 671B 506.19 654.63
L1-MAX 1.5B 190.14 1149.68
S1-32B 32B 273.47 946.70
ReasonFlux-32B 32B 286.97 1050.63
CogER (Ours) 29.6B 118.53 (0.01∗) 489.71

Table 8: Comparison of different query se-
lection strategies on ID and OOD tasks.
Random denotes uniform sampling over
reasoning strategies, and Classifier corre-
sponds to a flat four-class classifier (router)
trained to predict query levels.

Version ID OOD

Random 84.21 90.28
Classifier 84.09 90.32
CogER (Ours) 89.28 93.56

allowing the agent to discover non-myopic policies that allocate computation adaptively. Conse-
quently, CogER attains higher EM on both ID and OOD settings than Random and Classifier.

6 CONCLUSION

In this paper, we have proposed Cognitive-Inspired Elastic Reasoning (CogER), a dynamic rea-
soning framework designed to address the challenge of handling queries with varying complexity
in a cost-effective and accurate manner. Inspired by Bloom’s Taxonomy, CogER first assesses the
complexity of each input query and assigns it to one of four cognitive levels, each corresponding
to a distinct reasoning strategy. To dynamically select the most appropriate strategy, we formulate
the selection process as an MDP and train a CogER-Agent via RL. The agent is guided by a reward
function that balances solution quality with computational efficiency, ensuring that complex queries
receive sufficient reasoning depth while simpler ones are handled with minimal overhead. More-
over, for L4 queries requiring external knowledge or specialized capabilities, we introduce a Cog-
nitive Tool-Assisted Reasoning that enables the agent to autonomously invoke external tools within
its CoT when necessary, enhancing its ability to address not only knowledge-intensive queries, but
also those involving structured data retrieval, numerical reasoning, or factual verification. Extensive
experiments demonstrate that CogER significantly outperforms SOTA TTS methods, achieving a
13% relative improvement in average exact match on ID tasks and an 8% gain on OOD tasks.
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A MORE RELATED WORK

A.1 LARGE LANGUAGE MODELS

Recent advancements in Natural Language Processing (NLP) have culminated in the development
of highly capable Large language models (LLMs). These models are predominantly characterized
by their utilization of the Transformer architecture (Vaswani et al., 2017) and are pre-trained on
vast quantities of textual data. Progressive scaling of model parameters and training datasets has
allowed these LLMs to exhibit emergent capabilities (Wei et al., 2022a), demonstrating remarkable
proficiency in the handling of a variety of complex tasks. Such tasks include, but are not limited
to, high-fidelity question answering (Shao et al., 2023), code generation (Chen et al., 2021), and
intermediate-step reasoning (Wei et al., 2022b). Consequently, LLMs have exerted a profound influ-
ence on the Artificial Intelligence (AI) community, catalyzing a reevaluation of the prospects for Ar-
tificial General Intelligence (AGI) (Zhao et al., 2023). Predicated on their foundational Transformer
architecture, extant Large language models can be broadly classified into three primary categories:

Encoder-only models. Encoder-only models, alternatively designated as auto-encoding architec-
tures, are exclusively constructed from encoder modules originating from the Transformer architec-
ture. In such configurations, input data is processed sequentially across multiple layers, facilitating
the progressive extraction and encoding of information. A paradigmatic example of this category is
BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018), developed
by Google. BERT functions as a language representation model employing bidirectional Trans-
former encoders. It was pre-trained on a corpus consisting of the BooksCorpus (Zhu et al., 2015)
(comprising approximately 800 million words) and English Wikipedia (approximately 2.5 billion
words). This pre-training enabled BERT to attain a score of 80.5% on the General Language Un-
derstanding Evaluation (GLUE) benchmark and an accuracy of 86.7% on the Multi-Genre Natural
Language Inference (MultiNLI) task. Many subsequent encoder-only models are predominantly
variants of BERT, including RoBERTa by Meta (Liu et al., 2019) and DeBERTa by Microsoft (He
et al., 2020).

Decoder-only models. This category of models is exclusively constructed using decoder modules
from the Transformer architecture. Decoder-only models typically implement an auto-regressive
mechanism, whereby output sequences are generated on a token-by-token basis. The generation of
each token by the decoder is contingent upon the tokens previously generated. Seminal examples
in this category include the Generative Pre-trained Transformer (GPT) series (Achiam et al., 2023),
developed by OpenAI. Illustratively, GPT-3 comprises numerous Transformer decoder layers, fea-
turing up to 175 billion parameters, which established it as one of the most substantial language
models at its introduction. This model was pre-trained on a corpus of approximately 300 billion to-
kens derived from sources such as Common Crawl (Raffel et al., 2020), WebText2, Books1, Books2,
and Wikipedia. GPT-3 has demonstrated potent zero-shot and few-shot learning capabilities across
a diverse array of language tasks. Beyond the GPT series, a multitude of other decoder-only models
have emerged, including OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023a), and Llama 2
(Touvron et al., 2023b) from Meta; PaLM (Chowdhery et al., 2023) and PaLM 2 (Anil et al., 2023)
from Google; and BLOOM (Workshop et al., 2022) from the BigScience initiative. Furthermore,
models such as Qwen 2.5 by Alibaba (Yang et al., 2024a), alongside DeepSeek LLM (Bi et al., 2024)
and DeepSeek Coder (Guo et al., 2024) by DeepSeek AI, continue to advance the state-of-the-art in
language comprehension, multilingual processing, and domain-specific generation.

Encoder-decoder models. This architectural class integrates both encoder and decoder modules
from the Transformer framework. Such models aim to amalgamate the respective strengths of the
aforementioned architectures, thereby effectively addressing tasks that necessitate comprehensive
input understanding coupled with the generation of extended output sequences. Prominent extant
encoder-decoder models encompass GLM from Tsinghua University (Du et al., 2022); T5 (Raffel
et al., 2020), FLAN-T5 (Chung et al., 2024), and UL2 (Tay et al., 2022) from Google; and BART
(Lewis et al., 2019) from Meta. For instance, the GLM model employs an autoregressive blank infill-
ing objective. This methodology is designed to tackle three fundamental challenges in NLP: natural
language understanding (NLU), unconditional text generation, and conditional text generation. With
a reported maximum of 130 billion parameters, GLM was pre-trained on a corpus including Book-
Corpus (Tay et al., 2022) and Wikipedia. GLM has demonstrated superior performance over BERT
on the SuperGLUE benchmark, exhibiting an improvement of 4.6%–5.0%. Moreover, it signifi-
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cantly surpasses FLAN-T5 in both NLU and generation tasks, even when utilizing fewer parameters
and less training data.

A.2 LARGE REASONING MODELS

Large language models (LLMs) have demonstrated remarkable capabilities in natural language un-
derstanding and complex reasoning (Grattafiori et al., 2024), becoming a pivotal advancement in AI.
To further enhance performance in ”System 2” reasoning domains (Li et al., 2025) such as math-
ematics (Cobbe et al., 2021; Hendrycks et al., 2021) and programming (Chen et al., 2021), which
require deep thought, researchers have developed specialized Large Reasoning Models (LRMs) (Xu
et al., 2025a).

Fundamentals of Large Reasoning Models. The core of LRMs lies in internalizing and enhanc-
ing Chain-of-Thought (CoT) (Wei et al., 2022b) reasoning through strategies like Supervised Fine-
Tuning (SFT) and Reinforcement Learning (RL). CoT significantly improves LLM performance on
complex tasks by prompting the model to generate a series of intermediate reasoning steps, with
variants like Self-Consistency CoT (Wang et al., 2023), Tree-of-Thoughts (Yao et al., 2023), and
Graph-of-Thoughts (Besta et al., 2024) emerging. LRMs aim to integrate this step-by-step reason-
ing capability more deeply within the model, rather than relying solely on explicit test-time prompts
or external augmentations, by generating detailed, structured reasoning sequences to achieve higher
accuracy. Prominent examples of LRMs include OpenAI’s o1 model and DeepSeekAI’s DeepSeek-
R1 model.

Training Mechanisms of LRMs. The training mechanisms for LRMs typically combine SFT to
learn from high-quality reasoning paths and RL to further optimize reasoning strategies, enabling
exploration of better problem-solving steps (Luo et al., 2025; Aggarwal & Welleck, 2025). For in-
stance, DeepSeek-R1 enhanced its general reasoning capabilities through multiple rounds of SFT
and RL, emphasizing structured thinking templates and rule-based reward mechanisms. OpenAI’s
o1 is speculated by the community to employ tree-search methods like Monte Carlo Tree Search
(MCTS) (Coulom, 2006) combined with a Process Reward Model (PRM) (Uesato et al., 2022) to
explore and evaluate different reasoning paths. These advanced training methods enable LRMs to
generate complex thought processes internally, progressively deriving final answers, demonstrat-
ing significant potential in solving challenging mathematical problems and programming tasks, as
assessed by benchmarks like Sys2Bench (Parashar et al., 2025).

A.3 REINFORCEMENT LEARNING

Reinforcement Learning (RL) (Kaelbling et al., 1996) constitutes a paradigm within machine learn-
ing wherein an agent learns to optimize its decision-making process through interaction with an
environment. This interaction involves performing actions and receiving consequent feedback, typi-
cally in the form of rewards or penalties. The principal learning objective in RL is the maximization
of a cumulative reward signal. In contrast to supervised learning, which relies on datasets com-
prising pre-defined input-output pairs for model training, RL entails an agent acquiring knowledge
from the repercussions of its actions, mediated by this reward-penalty mechanism. This iterative,
trial-and-error learning process, coupled with its emphasis on sequential decision-making under un-
certainty, distinguishes RL from supervised learning methodologies that depend on labeled datasets.
Existing reinforcement learning algorithms can be broadly categorized based on whether an explicit
model of the environment is learned or utilized, leading to two principal classes: Model-free RL and
Model-based RL.

Model-free RL. Model-free RL algorithms enable the agent to learn optimal policies directly from
trajectory samples accrued through interaction with the environment, without explicitly constructing
an environmental model. Within model-free RL, algorithms are further distinguished by the com-
ponents they learn, leading to three primary sub-categories: actor-only, critic-only, and actor-critic
algorithms. Actor-only algorithms directly learn a policy network, denoted as πθ(a|s), which maps
states to actions. This network takes the current state st as input and outputs the action at. Promi-
nent examples of such algorithms include Reinforce (Williams, 1992) and various policy gradient
methods (Sutton et al., 1999). Critic-only algorithms, in contrast, focus solely on learning a value
function (e.g., state-value or action-value function). Given a state st, the learned value model is
used to evaluate all possible actions a′ ∈ A, and the action at yielding the maximum estimated
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value is selected. This category encompasses methods such as Q-learning (Watkins, 1989). Actor-
critic algorithms combine these two approaches by concurrently maintaining and learning both a
policy network (the actor) for action selection and a value function model (the critic) for evaluat-
ing actions or states. This category includes algorithms such as Deep Deterministic Policy Gradi-
ent (DDPG) (Lillicrap et al., 2015), Trust Region Policy Optimization (TRPO) (Schulman et al.,
2015), Proximal Policy Optimization (PPO) (Schulman et al., 2017), and Asynchronous Advantage
Actor-Critic (A3C) (Mnih et al., 2016). Notably, PPO has gained considerable traction for training
large language models. Recent advancements in this area include GRPO (Zhang et al., 2024), which
employs group-based advantage estimates within a KL-regularized loss function to reduce computa-
tional overhead and enhance update stability, and DAPO (Chen et al., 2024a), which utilizes distinct
clipping mechanisms and adaptive sampling techniques to improve efficiency and reproducibility
during the fine-tuning of large-scale models.

Model-based RL. Model-based RL algorithms endeavor to learn an explicit model of the environ-
ment, thereby addressing challenges related to sample efficiency. This is because the agent can
leverage the learned model for planning and decision-making, reducing the necessity for extensive
direct environmental interaction. The learned representation of the environment is commonly termed
a ’world model’. This world model typically predicts the subsequent state st+1 and the immediate
reward rt based on the current state st and the action at taken. Exemplary model-based RL al-
gorithms include Dyna-Q (Peng et al., 2018), Model-Based Policy Optimization (MBPO) (Janner
et al., 2019), and Adaptation Augmented Model-based Policy Optimization (AMPO) (Shen et al.,
2023).

A.4 TOOL INTEGRATED REASONING

Research in Tool-Integrated Reasoning (TIR) aims to enhance the capabilities of large language
models (LLMs) by enabling them to effectively utilize external tools for complex problem-solving.
The related literature can be broadly categorized as follows:

Foundations and Evaluation of Tool-Integrated Reasoning. Early research predominantly fo-
cused on equipping LLMs with external tools to overcome their inherent limitations. This involved
introducing concepts such as program executors (Chen et al., 2023) and search engines (Vu et al.,
2024) to enhance their problem-solving capabilities (Qin et al., 2024a). The core tenet of TIR
is to enable LLMs to interact with these external tools, thereby addressing issues such as outdated
knowledge, computational inaccuracies, and shallow reasoning (Qian et al., 2025a). As research pro-
gressed, a series of specialized benchmarks were proposed to systematically evaluate model perfor-
mance in tool selection, argument generation, and generalization (Qin et al., 2024b). Concurrently,
the construction of high-quality tool-use datasets became a significant driver for advancements in
the field (Liu et al., 2024; Qian et al., 2025b), and these datasets and benchmarks have further fa-
cilitated the exploration of TIR techniques across diverse modalities and specialized domains (Shen
et al., 2025).

Supervised Fine-Tuning for Tool-Integrated Reasoning. In the initial stages of training LLMs for
TIR tasks, Supervised Fine-Tuning (SFT) was the predominant approach. These methods typically
relied on offline-generated tool-use trajectories, upon which models were subsequently fine-tuned
(Chen et al., 2024c; Acikgoz et al., 2025). For instance, in code-integrated reasoning scenarios,
researchers endowed models with initial capabilities for code invocation and result interpretation by
performing SFT on self-curated Chain-of-Thought (CoT) data that included code execution steps
(Chen et al., 2025b). However, SFT methods exhibit notable deficiencies in terms of generalization,
exploration, and adaptability (Chu et al., 2025; Guo et al., 2025). Models often merely imitate
specific patterns within the training data, struggling to adapt to unseen or more complex tool-use
scenarios and failing to autonomously learn when and how to invoke external tools most effectively
(Feng et al., 2025).

Reinforcement Learning for Tool-Integrated Reasoning. To overcome the limitations inherent in
SFT, Reinforcement Learning (RL) has emerged as a promising paradigm for training more adaptive
and generalizable tool-using LLMs. RL frameworks enable models to learn optimal tool invocation
strategies through direct interaction with environments and feedback signals, moving beyond the
mere imitation of static trajectories. Various RL algorithms, including Proximal Policy Optimiza-
tion (PPO) and Direct Preference Optimization (DPO) , are being adapted to the specific challenges
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of TIR. Central to applying RL in TIR is the development of effective feedback mechanisms. One
stream of research focuses on meticulous reward engineering, designing rewards that offer step-
grained guidance on tool invocation correctness and contribution (Yu et al., 2024), or penalize spe-
cific error types (Ye et al., 2024). Another prominent trend involves learning from preferences or
comparative feedback, often leveraging techniques like Direct Preference Optimization (DPO) or
ranking losses. This allows models to learn from a broader spectrum of execution traces, including
imperfect or erroneous paths, by comparing preferred outcomes against less desirable ones (Chen
et al., 2024b; Zeng et al., 2025; Jung et al., 2025). Such approaches also extend to optimizing
multi-turn dialogue control and learning from varied forms of execution feedback (Wu et al., 2024).
Collectively, these RL strategies aim to enhance not only the precision of tool selection and usage
but also the model’s nuanced decision-making in complex, interactive scenarios.
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B INSTRUCTION TEMPLATES

B.1 SYSTEM PROMPT FOR COGER

This system prompt is designed to guide the 7B model (i.e., the CogER-Agent), fine-tuned using
GRPO LoRA. Its primary function is to analyze user queries and accurately classify them into one
of four predefined complexity levels (L1 to L4), laying the groundwork for the subsequent differen-
tiated processing pipeline.

System Prompt for CogER:

You are a helpful AI Assistant that classifies and solves user queries based on their complex-
ity level. Your task is to analyze a given question, classify it into one of the following levels
(L1-L4). For questions at level L1, you also need to directly provide the answer.
Classify the input question into L1-L4 based on the criteria.
L1 level: These are straightforward questions that require no external tools or deep reason-
ing. You can answer these questions directly.
L2 level: These questions require logical reasoning and the ability to make inferences but
do not need external tools. Your answer will involve some reasoning steps before arriving at
the conclusion.
L3 level: These questions involve a more extended chain of thought or multiple sub-steps to
reach an answer. Your reasoning process will be more involved but still remains independent
of external tools.
L4 level: These questions need external resources or tools to complete. You will need to
incorporate tool calls to provide a comprehensive response.
Instructions: 1) For L1 questions: Directly output the answer followed by the level, in the
format <question level>L1</question level>.
2) For L2-L4 questions: Output the corresponding level only, enclosed within
<question level> tags, with LEVEL replaced by L2/L3/L4.
3) Never explain your classification logic. If uncertain, choose the higher level (e.g., border-
line L1/L2 to L2).

B.2 INSTRUCTION FOR COTOOL

Main Instruction for CoTool. This instruction empowers the LLM when processing L4-level com-
plex queries, guiding it to autonomously identify needs, formulate tool queries, and interact with
external tools when external knowledge or computational capabilities are required, while managing
the entire reasoning process until a final answer is generated.
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Instruction for CoTool:

You are a professional reasoning expert tasked with accurately answering the user’s
question. Your reasoning process should be step-by-step and transparent.
When your internal knowledge is insufficient, or when you require specific, up-to-date
information (like real-time data or complex calculations) to proceed accurately, you must
identify the precise information needed and invoke an external tool to retrieve or compute it.
Available Tool Categories:
To assist you, a suite of tools is available. While the system will automatically select the
most appropriate specific tool (e.g., Weather API, Search Engine, Calculator) based on your
query, you should understand the task categories these tools can handle:
- Information Retrieval:
- Fetching real-time data (e.g., current weather, stock prices).
- Searching the web for specific facts or general knowledge.
- Extracting information from documents (e.g., PDFs).

- Calculation & Symbolic Math:
- Performing arithmetic operations, etc.
- Solving algebraic equations, etc.
- Calculating derivatives, integrals, limits, etc.
- Performing statistical calculations.
How to Use Tools:
1. Identify Need: In your reasoning steps, clearly state what specific information is missing
or what needs verification/calculation.
2. Formulate Query: Based on the identified need, formulate a concise query for the infor-
mation retrieval or calculation tool.
3. Invoke Tool: Use the special marker <|begin tool query|>followed by your query,
and end with <|end tool query|>.
- Format: <|begin tool query|> your concise query <|end tool query|>.
4. Receive Information/Result: The system will execute your request using the most ap-
propriate available tool and provide the result within the <|begin tool result|> and
<|end tool result|> markers.
- Format: <|begin tool result|> relevant information or result from the tool
<|end tool result|>
- Note: The content inside these markers is the direct output from the tool (e.g., answer,
data).
Tool Usage Limit:
You can invoke tools multiple times if necessary. However, the maximum number of tool
calls allowed is {MAX TOOL CALLS}.
Continue Reasoning:
After receiving the tool result, integrate it into your reasoning chain and proceed towards the
final answer.
Remember:
- Clearly state the reason for needing the tool before invoking it.
- Use the exact <|begin tool query|>...<|end tool query|> format.
- Integrate the tool’s result (<|begin tool result|>...<|end tool result|>)
into your ongoing reasoning.
- Focus on providing a final, accurate answer based on the complete reasoning chain.
Please answer the following question. You should provide your detailed final answer in the
format
boxed{YOUR DETAIL ANSWER}.
Question:
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Task Instruction. This instruction is utilized after an external tool has executed and returned its re-
sult. It guides the LLM in analyzing the validity of the tool’s output, integrating key information into
the current reasoning chain, and planning the next course of action based on this new information.

Task Instruction:

You previously decided to use a tool to answer the sub-query or perform the task:
”{tool query}”.
The system executed this using the most appropriate tool and returned the following output.
Your task is to analyze this output and determine the next step in your reasoning process to
answer the original question.
Guidelines:
1. Analyze the Tool Output:
- Carefully review the output provided by the tool.
- Evaluate its relevance and usefulness specifically in relation to the task ”{tool query}”.
- Note whether the tool execution was successful (status: success) or resulted in an error
(status: error).
2. Determine Next Step:
- If the output is helpful and the tool succeeded: Integrate the key information into your
reasoning. State the next logical step based on this new information.
- If the tool reported an error (status: error):Acknowledge the error in your reasoning.
Decide if you need to re-phrase the tool query, try a different tool, or proceed without the
tool’s result.
- If the output is unhelpful or irrelevant (even if status is success): Acknowledge this.
Decide whether to try a different tool query or proceed without this information.
3. Output Format:
- State your analysis of the tool output and clearly define the next step in your reasoning
process.
- Do not simply repeat the tool output; explain how it affects your plan.
- Continue your step-by-step reasoning.

Inputs:
- Previous Reasoning Steps:
{prev reasoning}
- Current Tool Query/Task Executed:
{tool query}
- Formatted Tool Output:
{tool output}
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Tool Selection Instruction. This instruction specifically directs the model (or a dedicated tool
selection module) to choose the most suitable tool from the RSTKit’s repertoire based on the LLM-
generated tool query, and to generate the necessary parameters for invoking that tool in a strict JSON
format.

Tool Selection Instruction:

You are an expert tool selection assistant. Based on the user query and the available tools
listed below, choose the single best tool to fulfill the request.

Available Tools:
{TOOL LIST}
User Query: {TOOL QUERY}

Instructions:
1. Analyze the user query carefully.
2. Evaluate each tool’s description to see if it matches the query’s intent.
3. Prioritize using specific tools (like calculators, weather tools, search engines, etc.) if they
directly address the query.
4. IMPORTANT: Only choose the ’execute generated code’ tool if none of the other
available tools can not address the user’s query. This tool is for complex calculations,
custom logic, or tasks not covered by standard tools.
5. Provide your answer ONLY in JSON format with the fields ’tool name’ and ’parameters’.
6. Ensure the ’parameters’ field contains all required parameters for the chosen tool, based
on the user query.
7. Do not include any extra text, explanations, or markdown formatting. Your entire
response must be a single, valid JSON object.

Response JSON format:
{{
”tool name”: ”<name of selected tool>”,
”parameters”: <parameters object>
}}
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C BENCHMARKS

To comprehensively evaluate the performance of our proposed method across diverse reasoning
tasks, we employed several academically recognized benchmarks, as detailed in Section 5. These
benchmarks span a spectrum from fundamental arithmetic and university-level mathematics to com-
monsense reasoning and specialized domain knowledge. A detailed description of each benchmark,
including its primary sources and licensing information, is provided below:

• GSM8K (Cobbe et al., 2021) is a widely adopted benchmark for evaluating the arithmetic rea-
soning capabilities of language models on grade-school math word problems. The dataset com-
prises 7,473 training examples and 1,319 test examples. Problems are designed to necessitate 2
to 8 steps of chain-of-thought reasoning for their solution. These problems are human-curated
to ensure linguistic diversity and assess the model’s understanding of fundamental mathemati-
cal concepts and its ability to perform multi-step arithmetic operations. The dataset is available
at this link and under the MIT License.

• MATH (Hendrycks et al., 2021), is a challenging competition-level mathematics dataset de-
signed to measure reasoning capabilities in advanced mathematics. It encompasses problems
from pre-algebra, algebra, geometry, number theory, and calculus, among others, totaling 7,500
training examples and 5,000 test examples. These problems typically require complex symbolic
manipulation, abstract thinking, and multi-step deductive reasoning. The dataset is available at
this link and under the MIT License.
For our experiments, we utilize MATH-500, an evaluation subset consisting of 500 problems
sampled from the original MATH test set. The sampling ensures that the evaluation data main-
tains a distribution similar to the MATH training data, adheres to an independent and identi-
cally distributed (I.I.D.) characteristic among test samples, and has no overlap with the training
set. The selection of MATH-500 balances problem difficulty and diversity with manageable
computational resources and evaluation time, while still posing a rigorous test of mathemati-
cal reasoning. Information regarding this subset can be found on the Hugging Face Datasets
platform (https://huggingface.co/datasets/HuggingFaceH4/MATH-500).

• MAWPS (Koncel-Kedziorski et al., 2016) is a benchmark focusing on fundamental math word
problems (MWPs). It aggregates problems from various sources, primarily involving one or a
few arithmetic steps, with a difficulty level roughly corresponding to elementary school math-
ematics. MAWPS contains 238 test instances and is designed to evaluate model robustness to
variations in problem phrasing and numerical values. This dataset is under the MIT License
and can be found within the MWPToolkit project at this link.

• CollegeMath (Tang et al., 2024) is an emerging dataset designed to assess reasoning abilities
on university-level mathematics problems. It comprises 2,818 problems meticulously curated
from 9 different university mathematics textbooks, spanning seven core areas such as linear
algebra, calculus, probability theory, and differential equations. CollegeMath problems test
not only computational skills but also the understanding of advanced mathematical concepts,
abstract reasoning, and the application of theorems and methods in complex scenarios, thereby
posing a significant challenge to models’ generalization and deep reasoning capabilities. This
publicly available dataset serves as a valuable resource for evaluating LLMs in the domain
of higher education mathematics and is available at this link. For our evaluation, we used a
randomly sampled subset of 1,200 items from this dataset.

• CommonsenseQA (Talmor et al., 2019) is a multiple-choice question-answering dataset de-
signed to evaluate commonsense reasoning. It contains 12,247 questions, each with 5 options.
The model is required to select the most plausible answer, a task that typically cannot be re-
solved by simple keyword matching but necessitates an understanding of world knowledge,
conceptual relationships, and implicit information. CommonsenseQA challenges models’ rea-
soning abilities in non-formal and everyday contexts. The dataset is available at this link and
under the CC-BY-4.0 License.

• MedQA (Jin et al., 2021) is a professional medical question-answering dataset, with content
derived from licensing examinations in the United States (USMLE), mainland China (NM-
LEC), and Taiwan (TMQE). Presented primarily as multiple-choice questions, it covers a broad
spectrum of medical subfields, including clinical medicine, basic sciences, pharmacology, and
diagnostics. MedQA aims to assess models’ knowledge mastery, information retrieval capabil-
ities, and, to some extent, clinical reasoning within a highly specialized domain. This dataset is
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crucial for advancing research into LLM applications in critical sectors like healthcare. For our
experiments, we specifically utilized the official ”US” test split from the MedQA dataset. This
portion consists of multiple-choice questions designed to evaluate the final test performance
on US medical examination questions. The dataset is available at this link and under the MIT
License.

D MORE DETAILS FOR EXPERIMENT SETTINGS

D.1 MORE IMPLEMENTATION DETAILS OF COTOOL

The Cognitive Tool-Assisted Reasoning (CoTool) mechanism is integral to processing L4-level com-
plex queries, designed to empower the Large Language Model (LLM) with autonomous external
tool invocation capabilities while ensuring operational stability and reliability through robust con-
trol measures. Its detailed implementation is as follows:

At each reasoning step within CoTool, the LLM, guided by the detailed Instruction for CoTool
(as described in App. B.2), first self-assesses whether external tool assistance is required to acquire
missing information or perform complex computations. If a tool call is deemed necessary, the LLM
generates a specific tool query explicitly stating its needs, which is then encapsulated by special
tokens: <|begin tool query|> and <|end tool query|>.

Subsequently, after the corresponding tool query is extracted, it is processed by the system. Guided
by the Tool Selection Instruction (App. B.2), the system accurately selects the most appropriate
tool from the RSTKit’s (see App. D.2 for details) available suite and constructs the required param-
eters in JSON format for invoking the chosen tool. These parameters, along with the selected tool
information, are then passed to RSTKit for execution.

Once the external tool completes its execution, its raw output is returned. The LLM then inte-
grates this information, leveraging the Task Instruction (App. B.2). This instruction guides the
LLM to synthesize the tool’s output with the original user question, the previously generated tool
query content, the complete reasoning history up to that point, and the newly acquired tool exe-
cution result. The LLM formulates a response that includes an interpretation of the tool’s result,
how it will be incorporated into the current line of thought, and a concrete plan for the next rea-
soning step. This synthesized segment is also wrapped with <|begin tool result|> and
<|end tool result|> tokens and seamlessly injected back into the main reasoning chain for
subsequent use.

To ensure reliable operation and prevent potential issues such as infinite loops or excessive resource
consumption, CoTool incorporates a dual-limiting mechanism:

• Maximum Tool Calls (MAX TOOL CALLS): The system tracks the cumulative num-
ber of tool invocations initiated by the LLM during the processing of a single query. If this count
reaches the predefined MAX TOOL CALLS threshold, any subsequent tool call requests
are not actually executed. Instead, the LLM receives a specific tool result explicitly indicating
that the call limit has been reached (e.g., reaching max tool call limitations,
you cannot use tools anymore). At this point, the LLM is guided to continue rea-
soning without relying on external tools or to attempt to summarize the current findings.

• Maximum Turns (MAX TURN ): To control the overall reasoning duration and com-
putational overhead, the system also imposes a MAX TURN limit on the entire CoTool
reasoning process for a query. A ”turn” can be understood as a complete cycle of ”LLM delib-
eration → (optional) tool invocation → LLM integrates the result and continues deliberation.”
If the number of turns reaches this cap, the reasoning process is forcibly terminated, and the
system returns the currently available reasoning results or a status indicating a timeout.

This comprehensive implementation, which combines LLM autonomy in tool use, fine-grained in-
structional guidance, and strict operational boundaries, enables CoTool to effectively augment the
LLM’s reasoning capabilities in complex scenarios by leveraging external tools, while simultane-
ously guaranteeing controllability, stability, and resource efficiency throughout the process.

CoTool operates in a controlled tool environment. The set of available tools, their natural-language
descriptions, and their argument formats is fixed and treated as part of the environment dynamics. If
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a tool invocation fails (e.g., due to malformed arguments, timeouts, or runtime errors) or returns an
invalid result, the corresponding error message is surfaced to the LLM. Under this setting, prompt-
injection-like content (e.g., adversarial instructions embedded in user queries or tool outputs) cannot
modify the system prompt or the tool definitions, but can only influence intermediate reasoning or
tool responses.

D.2 RSTKIT: REASONING SUPPORT TOOLKIT FOR COTOOL

To effectively handle tool-dependent queries that require external knowledge retrieval or complex
computations (defined in 4.1 as Level-4 queries) in CogER framework, we develop RSTKit (Reason-
ing Support Toolkit). RSTKit implements the Cognitive Tool–Assisted Reasoning (CoTool) mech-
anism, providing a suite of standardized external-tool interfaces and unified management features.
When an LLM, guided by CoTool, judges its internal knowledge insufficient for a subtask and opts
to seek external assistance, it emits a call request to a specific RSTKit tool. An overview of the three
primary tool families provided by RSTKit is summarized in Table 9.

RSTKit is designed to provide precise external knowledge access, reliable computation, and flexi-
ble code generation capabilities through a powerful, extensible tool-invocation system. It supports
various benchmarks, such as GSM8K, MAWPS, CollegeMath, MATH-500, CommonsenseQA, and
MedQA, by allowing the LLM to delegate appropriate subtasks.

Dynamic Tool Registration and Invocation. During system initialization, all available tools and
their metadata (including functionality descriptions, input/output schemas, and sample calls) are
auto-registered in a tool registry. At runtime, when the model generates a tool query q

(i)
tool (cf. Eq. 9),

the system matches q(i)tool against the registry and selects the most suitable tool. The input arguments
are parsed from q

(i)
tool and passed in the tool’s predefined format; after execution, the tool’s output

is formatted and returned to the LLM. This loose coupling preserves the independence of the LLM
from the implementation of specific tools and improves overall flexibility and maintainability.

Tool Categories. RSTKit provides three primary tool families:

• QA Toolkit. Empowers the LLM with dynamic access to large-scale external knowledge bases,
crucial for queries needing up-to-date or domain-specific background (e.g., CommonsenseQA,
MedQA). Core functions include:

– Wiki Search: Given a query string, returns up to a specified number of relevant Wikipedia
article titles and page IDs (default top-5), with selectable language.

– Page Content Retrieval: Retrieves the full text of a Wikipedia page by title or ID, in the
chosen language.

– Page Summary Retrieval: Retrieves the introductory summary (first few sentences) of a
specified Wikipedia article.

• Multi-functional Calculator Toolkit. Addresses diverse math-reasoning needs (GSM8K,
MATH-500, MAWPS) via three computation modules:

– Basic Arithmetic: Fast, accurate evaluation of +, –, *, /, %, and exponentiation.
– Advanced Symbolic Computation: Leverages SymPy for algebraic simplification, factor-

ization, equation solving, calculus (derivatives, integrals, limits), and matrix operations.
– Numerical and Statistical Analysis: Uses NumPy and SciPy for large-scale array opera-

tions, statistical metrics (mean, std, regression), probability distributions, and optimization.
• Code Generation and Execution Toolkit. Handles tasks too complex for predefined tools by

generating and running custom code:
– LLM selects code generation and execution tool when it issues a
<|begin tool query|>. . .<|end tool query|> tool query (e.g., “Simulate
10 000 coin flips in Python”) and determines that other tools cannot solve the problem.

– The trusted model generates Python code based on information such as tool queries, histor-
ical reasoning steps, etc.

– The code runs in a sandbox with restricted libraries and resources.
– Outputs (stdout, stderr, return values) are captured, formatted, and returned to the LLM for

integration into its reasoning chain.
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By integrating these tool families, RSTKit underpins CoTool’s automated API invocation within the
CogERframework, significantly boosting LLM capability on complex, tool-dependent queries.

Table 9: Overview of RSTKit.
Tool Category Sub-category Num Description

QA Toolkit Knowledge
Access 3

Empowers dynamic access to large-scale
external knowledge bases for up-to-date or
domain-specific information.

Calculator
Toolkit

Basic Arithmetic 8
Provides fast and accurate evaluation of
fundamental arithmetic and mathematical
operations.

Symbolic
Computation 13

Leverages symbolic computation for
algebraic manipulation, equation solving,
calculus, and matrix operations.

Numerical and
Statistical
Analysis

5

Utilizes numerical libraries for large-scale
array operations, statistical analysis,
probability calculations, and optimization
tasks.

Code Generation
and Execution
Toolkit

Custom Logic
Execution 1 Handles complex tasks by generating and

executing custom Python code.

D.3 MORE IMPLEMENTATION DETAILS

We conduct both training and inference processes on NVIDIA 8×A800 GPUs, implementing our
proposed CogER through the PyTorch1 framework with version 2.6.0. We train the CogER-Agent
for about 1.0 epochs until convergence. To ensure reproducibility, we fix the random seed to 21,
26, and 42, and take the average and standard deviation of three runs. Additionally, we cap all
model generations at a maximum of 8192 tokens and accumulate gradients over 4 steps before each
optimizer update.

For the hierarchical-aware reward in Eqn. 6, we obtain the minimal sufficient level Lmin(x) for
each training query x as follows. Before training the CogER-Agent, we evaluate a fixed decoding
configuration. For every x in the training set, we run all four predefined reasoning levels L1–L4

using the same prompts and decoding hyperparameters as in our experiments, with deterministic
decoding (temperature set to 0). We then check whether the final answer at each level matches the
ground-truth label and define as Lmin(x) = min {ℓ ∈ {1, 2, 3, 4} | Lℓ answers x correctly}. The
estimated Lmin(x) is used only during reinforcement learning as part of the hierarchical-aware re-
ward to encode the preference for using the lowest level that is typically sufficient. During training,
the CogER-Agent is optimized with GRPO based on the realized accuracy and computational cost
of each rollout, and Lmin(x) acts as a soft regularizer rather than a hard constraint. At inference
time, the agent no longer has access to Lmin(x) and selects reasoning levels purely according to the
learned routing policy.

1https://pytorch.org/
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E CASE STUDY

In this section, we present two case studies illustrating the behavior of our CogER framework when
processing L4 queries that necessitate the use of external tools via the CoTool mechanism. L4
queries, as defined in Section 4.1, require creative synthesis, integration of external knowledge, or
precise computation beyond the model’s internal capabilities. These examples demonstrate how
the CogER-Agent, after classifying a query as L4, delegates the task to CoTool, which then au-
tonomously decides when and how to interact with external resources (managed by RSTKit, detailed
in App. D.2) to arrive at the solution.

Case Study 1: CollegeMath - Numerical Evaluation. This case study originates from the College-
Math dataset and involves the numerical evaluation of a polynomial expression. While theoretically
solvable by the model through step-by-step arithmetic, such tasks, particularly with potential for
computational errors, are appropriately routed as L4 queries to leverage precise external calculation
tools provided by RSTKit’s Calculator Toolkit.

Case Study 1: CollegeMath

Question: Simplify the expression n3 − 9n2 + 23n− 21 when n = 5.

Target Answer: −6

1. To evaluate the expression n3 − 9n2 + 23n − 21 at n = 5, substitute n = 5 into the
expression:

53 − 9(5)2 + 23(5)− 21

2. Calculate each term separately:

• 53 = 125

• 9(5)2 = 9× 25 = 225

• 23× 5 = 115

• The constant term is −21

3. Substitute these values back into the expression:

125− 225 + 115− 21

4. To ensure accuracy, use the calculation tool to compute the entire expression step-by-
step:
<|begin tool query|>

calculate 53 − 9 ∗ (5)2 + 23 ∗ 5− 21
<|end tool query|>

5. <|begin tool result|>

• The tool output successfully calculated the expression 53 − 9(5)2 + 23(5) − 21
and returned the result −6.00000000000000. This matches the manual step-by-step
calculation I performed earlier (125 - 225 + 115 - 21 = -6), confirming the tool’s
result is accurate.

• Next Step: Since the tool’s result is correct and the calculation is complete, the final
answer can be confidently stated as −6.

<|end tool result|>
−6
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Case Study 2: CommonsenseQA - Knowledge Verification. This example from the Common-
senseQA dataset requires accessing and verifying specific knowledge about animal habitats. When
confronted with a question where its internal knowledge might be insufficient or require confirma-
tion, the model, leveraging CoTool, opts to consult an external knowledge source via RSTKit’s QA
Toolkit.

Case Study 2: CommonsenseQA

Question: What green area is a marmot likely to be found in?
Please select the most appropriate answer from the following options:
A) countryside B) great plains C) encyclopedia D) jungle E) north america

Target Answer: A

1. Marmots are large ground squirrels that typically inhabit specific natural environments.
2. To determine the most appropriate habitat from the given options, I need to recall or

verify their typical habitats.
3. The options are: countryside, great plains, encyclopedia, jungle, North America.
4. The encyclopedia (C) is a reference work, not a habitat. Jungle (D) refers to dense forests,

which are not typical marmot habitats. North America (E) is a continent, too broad.
5. Marmots are often found in open areas like meadows, grasslands, or mountainous re-

gions.
6. ”Countryside” (A) can include such environments, while ”great plains” (B) refers to a

specific grassland region in North America.
7. To confirm, I need to check the typical habitats of marmots.

<|begin tool query|>
What are the typical habitats of marmots?

<|end tool query|>
8. <|begin tool result|>

• Analysis of Tool Output: The tool wiki get summary provided a brief sum-
mary of marmots, confirming they are ground squirrels found in Asia, Europe, and
North America. However, the output does not explicitly mention their habitats (e.g.,
mountainous regions, meadows, or grasslands). While the summary notes they hi-
bernate underground, this pertains to behavior rather than habitat type. The infor-
mation is insufficient to confidently answer the question about typical habitats.

• Next Step: Since the initial tool output lacks specific habitat details, I need to
answer the query for more deep reasoning.

<|end tool result|>
9. The typical habitats of marmots include mountainous regions, alpine meadows, and open

grasslands. Among the options provided:

• Countryside (A) can encompass meadows and open areas where marmots are com-
monly found.

• Great Plains (B) refers to a specific grassland region, but marmots are not exclu-
sively tied to this area.

• North America (E) is too broad, as marmots also inhabit parts of Europe and Asia.

The most appropriate general answer is A) countryside, as it aligns with the open and
varied landscapes marmots inhabit.
A
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Case Study 3: CommonsenseQA - Commonsense Reasoning. This case study from the Common-
senseQA dataset highlights an inherent system limitation. The problem lacks a valid classification
path (L1-L4), meaning any routing decision is destined to fail. The model’s assignment to L2 is a
symptom of this, as the error was unavoidable regardless of the chosen route.

Case Study 2: CommonsenseQA

Question: What is main benefit to exercising? Please select the most appropriate answer
from the following options: A) losing weight B) healthy C) get in shape D) weight loss E)
sweat
Target Answer: C

To determine the main benefit of exercising, let’s analyze each option:
A) Losing weight: While weight loss can be a benefit of exercising, it is not the primary or
only benefit. Exercise can help with weight management, but it also has other significant
health benefits.
B) Healthy: This option is quite broad and encompasses a wide range of benefits that exercise
provides, such as improved cardiovascular health, stronger muscles and bones, better mental
health, and more.
C) Get in shape: Getting in shape is a common goal of exercising, but it is more of a general
outcome rather than the main benefit. It can be seen as a result of the health improvements
that exercise brings.
D) Weight loss: Similar to option A, weight loss is a potential benefit of exercise, but it is
not the primary or only benefit.
E) Sweat: Sweating is a physiological response to exercise, but it is not a benefit in itself.
It is a byproduct of the body’s cooling mechanism during physical activity. Given these
considerations, the most comprehensive and accurate answer is:
B

Case Study 4: MAWPS - Routing Error leading to Flawed Reasoning. This case from the
MAWPS dataset shows how a routing error causes a reasoning failure. Instead of classifying this
arithmetic problem with distractor data as L4 (for calculation) or L3 (for reasoning), the model
defaulted to L2. Consequently, its internal reasoning failed to identify and discard the irrelevant
information (“6 were torn”). The incorrect final answer is a direct result of this initial misclassifica-
tion.

Case Study 4: MAWPS

Question: Joan had 695 Pokemon cards , and 6 were torn . Sara bought 133 of Joan ’s
Pokemon cards . How many Pokemon cards does Joan have now ?

Target Answer: 562

To determine how many Pokemon cards Joan has now, we need to follow these steps:
1. Start with the initial number of Pokemon cards Joan had. 2. Subtract the number of torn
cards. 3. Subtract the number of cards Sara bought from Joan.
Step 1: Joan initially had 695 Pokemon cards.
Step 2: Joan had 6 torn cards, so we subtract these from the initial number:

695− 6 = 689

Step 3: Sara bought 133 of Joan’s Pokemon cards, so we subtract these from the remaining
cards:

689− 133 = 556

Thus, the number of Pokemon cards Joan has now is 556 .
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Table 10: Controlled latency analysis of CogER and single-level strategies. “ALL Latency” reports
end-to-end latency (s) averaged over all datasets, and “Agent Latency” reports the additional cost of
the CogER-Agent for generating the level tag.

Version ID OOD Latency Agent Latency

Oracle 94.85 96.61 62.41 -
DeepSeek-R1 81.55 83.00 506.19 -
L1 (Qwen2.5-7B-Instruct) 76.28 86.23 50.42 -
L2 (Qwen2.5-32B-Instruct) 83.62 89.49 68.52 -
L3 (QWQ-32B) 86.75 93.13 147.21 -
L4 (Our CoTool) 88.42 92.89 161.22 -
CogER (Ours) 89.28 93.56 118.53 0.01

Table 11: Error decomposition of CogER
on ID and OOD benchmarks. “Routing Er-
ror” denotes cases where the selected level
is insufficient, and “Execution Error” denotes
cases where the chosen level is sufficient in
principle but the underlying reasoning or tool
execution still fails.
Split Routing Error (%) Execution Error (%)

ID 51.38 48.62
OOD 48.18 51.82

Table 12: Effect of training set size on CogER
performance. The column “Dataset size” denotes
the number of training queries used to learn the
CogER policy, and “ID” / “OOD” report EM (%)
on in-domain and out-of-domain benchmarks, re-
spectively. Bold values indicate the best perfor-
mance in each column.

Dataset size 4K 6K 8k 10k

ID 86.48 86.51 89.28 86.48
OOD 92.73 92.75 93.56 92.69

F MORE EXPERIMENTS

Controlled routing overhead. To make the efficiency trade-off more explicit, we further isolate
the routing cost of the CogER-Agent. As shown in Table 10, the additional latency incurred by the
CogER-Agent for generating the level tag (Agent Latency) is only 0.01 s per query, which is neg-
ligible compared with the end-to-end latency of CogER (118.53 s) and with single-level strategies
such as L1, whose total latency is 50.42 s. This confirms that the overall efficiency gains of CogER
mainly come from avoiding unnecessarily expensive reasoning modes on many queries, while the
router itself contributes only a trivial overhead, even for simple L1 cases.

Quantitative breakdown of failure sources. To better understand the limitations of CogER, we
further decompose its residual errors into decision-related and execution-related failures. As shown
in Table 1 and Table 11, CogER achieves 89.28 EM on ID tasks and 93.56 EM on OOD tasks.
Among the remaining errors, cases where the CogER-Agent selects an insufficient reasoning level
and cases where the downstream reasoning/tool modules fail even at a sufficient level contribute in
comparable proportions on both splits (ID: 51.38% vs. 48.62%; OOD: 48.18% vs. 51.82%). This
indicates that the performance is jointly bounded by the level-selection behavior of CogER-Agent
and the base reasoning/tool modules rather than being dominated by a single bottleneck.

Table 13: Accuracy (%) of queries
routed by the CogER-Agent to each
reasoning level on ID and OOD tasks.
Acc(Li) denotes the EM accuracy
computed over the subset of queries that
are dynamically routed to level Li.

Version ID OOD

Acc(L1) 95.45 100.00
Acc(L2) 92.45 97.20
Acc(L3) 95.82 95.06
Acc(L4) 92.60 90.64

Impact of training set size. We investigate how the
amount of supervision affects CogER by varying the
training set size while keeping the data mixture and all
other settings fixed. From Table 12, CogER already
achieves competitive performance with 4K training sam-
ples, and the results remain relatively stable as the dataset
grows. The 8K configuration yields the best EM on both
ID and OOD tasks, suggesting that CogER is effectively
trained with a moderate number of examples.

Accuracy within routed levels. We examine how well
each reasoning level performs on the subset of queries
it actually handles. As shown in Table 13, the accuracy
within each routed subset remains high on both ID and OOD tasks, with most levels achieving over
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90% EM . This indicates that, conditioned on the level selected by CogER, each reasoning mode is
generally reliable on the queries it receives.

Table 14: Comparison of different
agent sizes on MAWPS.

Agent Size EM

Qwen2.5-3B-Instruct 97.06
Qwen2.5-7B-Instruct 97.87
Qwen2.5-14B-Instruct 98.32

Impact of Agent size. We study how the capacity of the
CogER-Agent affects performance by varying its size while
keeping all expert models and training settings fixed. From Ta-
ble 14, all three variants with 3B, 7B, and 14B agents achieve
strong results on MAWPS (97.06%, 97.87%, and 98.32% EM ,
respectively). Scaling the agent from 3B to 7B brings a small
improvement, and enlarging it further to 14B yields only a
marginal additional gain at the cost of higher computation.
These results indicate that CogER is robust to the choice of agent size and that the routing prob-
lem does not require an excessively large model.

Table 15: Per-level routing precision(%),
recall(%), and F1-score(%) of the CogER-
Agent on all benchmarks.

Version Precision Recall F1-score

L1 97.53 39.27 55.99
L2 96.81 98.68 97.73
L3 20.80 85.09 33.43
L4 36.67 4.59 8.15

Per-level routing behavior. We analyze the rout-
ing decisions by reporting per-level precision, re-
call, and F1-score. From Table 15, we observe that
L1 and L2 achieve very high precision (97.53% and
96.81%), indicating that when CogER predicts a low
reasoning level, this choice is usually appropriate
for the query. Their relatively lower recall shows
that many harder queries are correctly escalated to
higher levels instead of being over-confidently kept
at L1/L2. In contrast, L3 and L4 exhibit much higher recall but lower precision, which is consis-
tent with their role as “catch-all” options for more difficult or ambiguous problems: most truly hard
queries are routed to these levels, while some borderline cases are conservatively upgraded as well.
Together with the overall EM results, this analysis suggests that CogER learns a reasonable and
interpretable routing pattern rather than relying on a single level, and that residual errors are jointly
influenced by both level selection and the underlying reasoning/tool modules.
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G DISCUSSIONS AND FUTURE WORKS

G.1 LIMITATIONS AND FUTURE WORKS

In this paper, we propose Cognition-Elastic Reasoning (CogER), a four-tier cognitive hierarchy
inspired by human layered reasoning mechanisms, which dynamically selects the most appropriate
processing mode for each query. However, we believe that there are potential studies worth exploring
in the future to further capitalize on the advantages of CogER:

• Extension to Interactive and Multi-Modal Settings. CogER has been validated on single-
turn, text-only tasks. Its performance in conversational or multi-modal contexts (e.g., image-
based reasoning) remains untested. In the future, we will extend the framework to maintain
and update per-query context across multiple turns and to incorporate vision and other modal-
ities into complexity estimation and reasoning tiers, thereby enabling truly general adaptive
inference.

• Reward Sparsity and Alignment. The current reward function may be too coarse to capture
the nuanced quality of complex reasoning. In long CoT or creative tasks, these sparse signals
can lead to unstable policy learning or unintended “reward hacking.” In the future, we will
integrate richer supervisory signals such as human preference feedback, apply inverse rein-
forcement learning to infer underlying reward structures, and develop multi-objective reward
optimization with adaptive weight tuning to ensure that reward signals robustly align with real-
world task requirements.

• Agent-Execution Co-design. Our error analysis shows that residual failures are roughly evenly
split between cases where the CogER-Agent selects an insufficient level and cases where the
downstream reasoning/tool modules still fail even at a sufficient level. This suggests that future
work should not only focus on more expressive level-selection policies of the agent, but also
on more robust reasoning and tool modules, as well as joint training schemes that explicitly
coordinate the agent’s decisions with the execution components.

G.2 BROADER IMPACTS

Positive Societal Impacts. By dynamically allocating inference effort per query, our CogER frame-
work substantially reduces average compute, which can translate into lower energy consumption
and carbon emissions for large-scale deployments. Moreover, by enabling on-demand invocation
of specialized external tools, our approach can improve reliability and factual grounding in criti-
cal applications, e.g., medical question answering, scientific data analysis, and legal research, thus
enhancing trust and enabling broader societal benefit from AI.

Negative Societal Impacts. As with any powerful AI technology, there is a risk that our method
could be used for malicious purposes. For example, to generate convincing fake content.

USE OF LARGE LANGUAGE MODELS DISCLOSURE

In accordance with the ICLR 2026 policy on LLM usage, we disclose that our study did not use
any LLM to generate scientific content or perform major experiments. The only use of an LLM
(ChatGPT-5) was to polish the English writing and improve presentation quality; all core methodol-
ogy, experiments, and analyses were authored and verified by the human authors.
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