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Abstract

World models provide a powerful framework for simulating
environment dynamics conditioned on actions or instruc-
tions, enabling downstream tasks such as action planning
or policy learning. Recent approaches leverage world mod-
els as learned simulators, but its application to decision-
time planning remains computationally prohibitive for real-
time control. A key bottleneck lies in latent representations:
conventional tokenizers encode each observation into hun-
dreds of tokens, making planning both slow and resource-
intensive. To address this, we propose CompACT, a dis-
crete tokenizer that compresses each observation into just
16 tokens, drastically reducing computational cost while
preserving essential information for planning. An action-
conditioned world model that occupies CompACT tokenizer
achieves competitive planning performance with orders-of-
magnitude faster planning, offering a practical step toward
real-world deployment of world models.

1. Introduction
Humans navigate the world not through pixel-perfect re-
call of their surroundings, but rather through compact men-
tal representations that capture only the information neces-
sary for decision-making [19, 23]. This internal model—an
imprecise but efficient abstraction of reality—reduces the
complexity of sensory input into a representation optimized
for action and planning. In the context of artificial intelli-
gence and reinforcement learning, this concept manifests as
the world model [23], a neural network that captures envi-
ronment dynamics to enable planning [3, 27, 44, 69] and
policy learning [1, 24–26, 62].

World models have emerged as a promising solution
to the sample inefficiency of reinforcement learning (RL).
Traditional model-free RL methods require millions of in-
teractions with the environment to learn effective poli-
cies, making them impractical for real-world applications
where data collection is expensive or risky. By learn-
ing to predict future states, world models enable agents
to simulate experiences internally, reducing the need for

real environment interactions. Furthermore, these mod-
els themselves can be used for planning without additional
learning of policy [3, 69] through model-predictive control
(MPC) [12, 61].

Recent advances in world modeling have been driven by
the rapid progress in generative models, particularly in im-
age and video generation [7, 16, 50]. These models can
generate photorealistic images or video conditioned on lan-
guage instructions [15, 62] or actions [1, 3, 62, 69, 70],
suggesting implicit understanding of world’s underlying dy-
namics.

However, there exists a critical discrepancy between gen-
erative approaches and the requirements for effective plan-
ning: high-fidelity generation does not translate to bet-
ter decision-making [57]. To achieve photorealistic qual-
ity, these models must capture extensive perceptual de-
tail—textures, lighting, shadows—that is largely irrelevant
for action selection. This necessitates encoding single im-
ages into hundreds of latent tokens, which sharply increases
computational cost. Since most world models in the liter-
ature adopt attention-based architectures [49], this burden
grows quadratically, making planning especially expensive.
As a result, current world models remain impractical for
real-world control: for example, state-of-the-art navigation
world models [3] require up to 2 minutes of computation
per episode for planning, making them unsuitable for appli-
cations demanding real-time responsiveness.

We propose CompACT, a compact tokenizer that en-
codes each image into just 16 tokens—approximately 200
bits per image. This represents an extreme compression ra-
tio compared to existing approaches. For instance, the SD-
VAE tokenizer [50] used in NWM [3] requires 196 tokens
to represent the same image. Beyond the reduction in token
count, our tokenizer further distinguishes itself by employ-
ing a discrete latent space, enabling much faster future-state
prediction: each token is unmasked only once [7], rather
than being processed through hundreds of iterative denois-
ing steps typically required in diffusion models utilizing
continuous latent space [30].

While such extreme compression inevitably sacrifices
fine-grained visual details, our tokenizer preserves low-



frequency features—high-level semantics and spatial re-
lationships—that are crucial for planning and decision-
making. The key technical contribution enabling this ex-
treme compression is our generative decoding approach:
rather than attempting direct pixel reconstruction from 16
tokens, our decoder learns to unmask the latent represen-
tation of a pretrained tokenizer, using the compact tokens
as conditioning. This formulation transforms an intractable
decompression problem into a tractable conditional genera-
tion task. By training world models in this compact latent
space, we achieve order-of-magnitude reductions in rollout
latency.

To validate the effectiveness of the proposed approach,
we train NWM [3], an action-conditioned world model for
navigation, on the latent space of CompACT. Such action-
conditioned world models have a unique strength in that
they can serve as general-purpose planners via MPC, but the
prohibitive computational burden required for rollouts has
remained as a bottleneck. On navigation planning in RE-
CON [51], the NWM trained with our CompACT achieves
comparable accuracy to the one using 196 continuous to-
kens while delivering approximately 20× speedup in plan-
ning latency. Furthermore, our 16-token model outperforms
the FlexTok [2] with 64 tokens, validating that carefully de-
signed extreme compression can yield both computational
efficiency and superior planning performance.

2. Method
2.1. Latent generative model as world model
In this section, we first describe how a world model can
be formulated as latent generative models. We consider
the standard world model setting where the objective is
to predict future observations given current state and ac-
tion. Formally, we denote observations (e.g., video frames)
as O = [o0,o1, . . . ,oT ] ∈ RT×H×W×3 and actions as
A = [a0,a1, . . . ,aT ] ∈ RT×31. The world model fθ can
be formulated as:

fθ : RH×W×3 × R3 → P(RH×W×3),

fθ(ot,at) 7→ pθ(ot+1|ot,at).
(1)

Because real-world dynamics are inherently uncertain and
only partially observable, a world model should produce a
stochastic distribution over future states rather than a single
deterministic predictions.

Such stochastic formulation of the world model can be
naturally implemented using generative modeling, where
the generator is conditioned on past observation ot and ac-
tion at. Direct generative modeling in pixel space is com-
putationally prohibitive due to the high dimensionality of

1In navigation settings, actions are 3-dimensional, representing
changes in x-axis, y-axis, and yaw. The formulation generalizes to dif-
ferent action dimensions.

visual observations. Instead, the world model fθ can be for-
mulated to operate on low-dimensional latent tokens z ∈
RN×D [3]. These latent tokens are obtained via an image
tokenizer comprising an encoder E : RH×W×3 → RN×D

and decoder D : RN×D → RH×W×3, trained with a recon-
struction objective: Lrecon = ||o − D(E(o))||22 (Fig. 1(a)).
Extending Eq. 1, latent world model fϕ can be described as

fϕ : RN×D × R3 → P(RN×D),

fϕ(zt,at) 7→ pϕ(zt+1|zt,at),
(2)

where zt = E(ot) . Here, the token count N directly de-
termines computational complexity: for attention-based ar-
chitectures [49] commonly used in generative models, cost
scales quadratically with N . By keeping N small, the la-
tent world model formulation alleviates this quadratic bot-
tleneck and enables efficient decision-time planning.

Once the latent world model fθ is trained, we can use
it to find a sequence of actions {at} that drives the tran-
sition from the initial observation o0 to the goal obser-
vation ogoal, as illustrated in Fig. 1(c). We first compute
z0 = E(o0), and initialize a candidate action sequence
a = [a0,a1, . . . ,aH−1]. Then, we obtain a sequence of
latent tokens {zt} by rolling out the trained world model to
predict future states over the planning horizon H:

zt+1 ∼ fϕ(zt,at), t ∈ {0, · · · , H − 1}. (3)

After the rollout reaches the planning horizon (i.e., zH
is sampled), the candidate action sequence a is evaluated
using a cost function that measures the distance between
the final predicted observation and the goal: C(a) =
d(ôH ,ogoal), where ôH = D(zH), ôgoal = D(zgoal), and
d(·, ·) is a distance measure (e.g. LPIPS [32]). The opti-
mal action sequence is then obtained via solving: a∗ =
argmina C(a), where the optimization can be performed
using sampling-based methods [11, 12, 61] or gradient de-
scent.

2.2. CompACT tokenizer
The computation bottleneck in world model planning stems
from the latent token count N : conventional tokenizers typ-
ically encode images with hundreds of tokens, which slows
down their sampling during autoregressive rollout. We in-
troduce CompACT, a compact tokenizer Dcompact ◦ Ecompact
that encodes each image into just 16 discrete tokens and
avoids iterative denoising by using a discrete latent space
(Fig. 2). Despite this extreme compression, CompACT still
preserves the sufficient information for effective planning
(Sec. 3).
Compact discrete encoding Our tokenizer encoder
Ecompact : RH×W×3 → {1, . . . ,K}16 maps an input im-
age o into a sequence of 16 discrete tokens z, each selected
from a vocabulary of size K. The encoder architecture con-
sists of a vision transformer [14] followed by a quantization
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Figure 1. Overview of the proposed latent world model formulation (Sec. 2.1). (a) An image tokenizer is first trained with a reconstruction
objective to map an input image into compact latent tokens z. (Fig. 2 and Sec. 2.2). (b) Using the learned tokenizer, latent world model
fϕ(zt,at) is trained to model the conditional distribution of the future state pϕ(zt+1|zt,at), where we adopt masked generative modeling
(Sec. 2.3). (c) At test time, the learned latent world model is used for decision-time planning: An optimization procedure (e.g., MPC with
CEM) searches over actions a0:H−1 to minimize the distance between the predicted final state and a goal image.

Figure 2. A figure for tokenizer architecture detail.

layer. Specifically, initial latent tokens z0 ∈ R16×D are
concatenated with the image patch tokens and subsequently
processed through a ViT. From the output of the ViT, only
the tokens corresponding to the initial latent tokens are dis-
cretized using finite scalar quantization [43], yielding dis-
crete latent tokens z ∈ {1, . . . ,K}16. While extreme com-
pression inevitably discards fine-grained visual details, we
hypothesize that these details are largely irrelevant for plan-
ning tasks, where object-level semantics and spatial rela-
tionships dominate decision-making.
Generative decoding Direct pixel reconstruction from 16
tokens is an ill-posed problem—the information bottle-
neck prevents the deterministic recovery of high-frequency
details, since diverse pixel-space manifestations can arise
from identical low-frequency features. To address this,
we propose a generative decoding strategy that sidesteps

direct pixel reconstruction. Our decoder Dcompact :
{1, . . . ,K}16 → {1, . . . ,Kψ}Nψ learns to generate latent
tokens from a pretrained tokenizer Dψ ◦ Eψ [39], using
our compact tokens z as a condition. This transforms the
intractable decompression problem into a conditional gen-
eration task. Specifically, we first convert an image o
into target tokens zψ = Eψ(o) ∈ {1, . . .Kψ}Nψ using
the pretrained tokenizer encoder, where Nψ ≫ 16 (typi-
cally Nψ = 196 for 224 × 224 images). We then em-
ploy masked generative modeling [7, 64] to learn the map-
ping from z to zψ , which offers significantly faster sam-
pling than autoregressive [4, 55] models. During training,
a random subset of the target tokens zψ is masked, and the
decoder learns to recover them using the compact tokens z
and the remaining unmasked tokens. The tokenizer training
objective is defined to minimize the negative log-likelihood
of the masked tokens zψ:

Ltok = −Ep(zψ)
[
log p(zψ|z,M(zψ))

]
, (4)

where M(·) represents the random masking. During infer-
ence, Dcompact begins with a fully masked sequence of a
pretrained latent tokens and iteratively unmasks them fol-
lowing the sampling scheme based on its prediction con-
fidence [7]. The compact tokens z provide high-level se-
mantic guidance throughout this process, while the gen-
erative model synthesizes plausible visual details consis-
tent with these semantics. The final reconstruction is ob-
tained through the pretrained decoder: ô = (Dψ ◦Dcompact ◦
Ecompact)(o).



In a nutshell, our CompACT tokenizer achieves extreme
compression by preserving only high-level semantics in 16
discrete tokens, then using these as conditioning for a gener-
ative decoder that synthesizes plausible high-frequency de-
tails. This design aligns with our core hypothesis that effec-
tive planning requires not photorealistic world models, but
compact representations of decision-critical information.

2.3. Compact latent world model
With our CompACT tokenizer defined, we can now train the
world model formulated in Eq. 2 directly in the 16-token
discrete latent space, as described in Fig. 1(b). Given a
dataset of observation and action sequence, we first encode
all observation into compact latent tokens using CompACT
tokenizer: zt = Ecompact(ot). Similar to generative decod-
ing, we use the masked generative modeling [7] to train the
world model fϕ. The training objective is denoted as:

Lworld = −Ep(zt,at,zt+1)

[
log p(zt+1|zt,at,M(zt+1))

]
.

(5)

The key advantage of this formulation is computational effi-
ciency during planning. During model-predictive control, it
can now perform rollouts using only 16 tokens per timestep,
enabling planning latency that was previously intractable
with hundred-length tokens.

3. Experiment

3.1. Experimental Settings
To validate the effectiveness of CompACT tokenizer, we
train a world model for navigation scenarios following
NWM [3] and evaluate planning performance in model-
predictive control settings. Due to the space constraints, we
explain the details of the model architecture and the evalua-
tion protocol in the supplementary material.
Dataset The CompACT is trained on ImageNet-1K [13],
using the VQGAN from MAGE [39] as the pretrained to-
kenizer. The world model is trained on RECON [51],
SCAND [33], and HuRoN [29], following NWM.
Tokenizer baselines We compare our approach against two
baseline tokenizers: (1) SD-VAE [50]: A continuous la-
tent space tokenizer used in NWM that requires 196 tokens
to encode a 224×224 image. (2) FlexTok [2]: A recently
proposed tokenizer with discrete latent space that enables
dynamic truncation of latent token sequences. Early tokens
encode semantic information and low-frequency features,
while later tokens capture high-frequency visual details. We
used first 16 and 64 tokens for coomparison. For the world
model, we maintain identical architectures (200M parame-
ters) and hyperparameters across all baselines, except that
discrete latent tokens require an additional linear layer to
predict token logits.

Tokenizer #tok type rFID↓ APE RPE Latency

SD-VAE [50] 196 cont. 0.98 1.262 0.354 145.0

FlexTok [2] 64 disc. 4.18 1.484 0.400 14.5
16 disc. 4.26 1.625 0.446 13.6

CompACT (Ours) 16 disc. 7.28 1.330 0.390 7.4

Table 1. Planning performance of NWM on RECON bench-
mark with different tokenizers. rFID (reconstruction FID) mea-
sures reconstruction quality on ImageNet [13] validation split. La-
tency (sec) represents single trajectory optimization time using 4
A6000 ADA GPUs.

3.2. Experimental results
Planning performance Table 1 presents planning results
for goal-conditioned visual navigation on the RECON
dataset. Our CompACT achieves a 20× reduction in plan-
ning latency while maintaining comparable planning accu-
racy. Interestingly, the NWM trained with our tokenizer
outperforms the FlexTok-based model at both 16 and 64 to-
ken configurations. We attribute this to FlexTok’s random
token truncation during training, which ablates spatial in-
formation from the earlier tokens such as object layout that
is critical for planning. In contrast, our tokenizer—trained
without truncation—must encode all necessary information
within exactly 16 tokens, ensuring that planning-relevant
features are consistently preserved in this compact repre-
sentation.
Reconstruction performance Table 1 presents the recon-
struction quality of each tokenizer measured by reconstruc-
tion FID (rFID). The results reveal that high reconstruction
fidelity does not translate to better downstream planning
performance. This finding suggests that decision-time plan-
ning can be made significantly more efficient by employ-
ing extreme compression tokenizers like CompACT, which
prioritize planning-relevant features over pixel-level recon-
struction quality.

4. Conclusion and Future Work
In this work, we present CompACT, a compact tokenizer
that achieves extreme compression by representing images
with only 16 discrete tokens. We demonstrate that this ap-
proach enables highly efficient world models, outperform-
ing baselines requiring larger token counts while achieving
a 20× speedup by preserving only planning-critical features.

For future work, we identify two promising directions:
(1) We are developing methods to explicitly enforce the to-
kenizer to discover planning-critical features within obser-
vations, which we believe will further improve downstream
planning performance. (2) We aim to address the lack of
proper metrics for measuring the plannability of learned
representations, as this remains a key bottleneck in evalu-
ating and optimizing a tokenizer for the world model.
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5. Experiment Details
Model architecture For the compact tokenizer, we employ
ViT [14] and DiT [49] as the encoder Ecompact and decoder
Dcompact, respectively. For the world model, we adopt CDiT,
a DiT variant proposed in NWM.
Evaluation. We evaluate planned trajectories using two
metrics: absolute trajectory error (ATE) and relative pose
error (RPE). For planning, we optimize action sequences
using the cross-entropy method [11, 12] with 80 candidate
action sequences. All other hyperparameters for the world
model follow the configuration in NWM.

6. Qualitative results of planning
Fig. 3 presents an example planning result with the pro-
posed CompACT. While the generated simulations lose
fine-grained details such as textures or shadows, they pre-
serve planning-critical features such as the overall scene
layout.

Initial image Goal image

Simulated trajectories

Figure 3. Qualitative results of planning with the proposed Com-
pACT. The final rollout corresponding to the simulated trajectory
with the minimum cost is highlighted in red.

7. Related Work
7.1. Image tokenization
Image tokenization has played a crucial role in visual gen-
eration. Encoding raw image pixels into compressed la-
tent representations alleviates the difficulty of directly mod-
eling distributions in high-dimensional continuous spaces.
By discretizing these latents, the model can efficiently
produce and sample categorical distributions for individ-
ual tokens. Autoencoder-based architectures such as VQ-

VAE [59], VQGAN [16], ViT-VQGAN [50], and Efficient-
VQGAN [6] employ vector quantization to form discrete
latent spaces. Numerous enhancements have been pro-
posed to improve reconstruction quality, including percep-
tual losses [66], adversarial losses [22], transformer-based
designs, residual quantization [36], lookup-free quantiza-
tion [64], and finite scalar quantization (FSQ) [43].

A common limitation of the aforementioned approaches
is their reliance on 2D patch-grid latent representations.
This design fixes the number of tokens according to the
image resolution (H,W ) and prevents its adaptive adjust-
ment based on image complexity. To overcome this, re-
cent works have explored 1D tokenization [2, 34, 46, 65],
which does not explicitly preserve spatial structure. For ex-
ample, TiTok [65] employs learned register tokens to cap-
ture image content in a compact sequence via a ViT en-
coder, enabling efficient representation learning. Although
TiTok [65] achieves highly compact tokenization, it encodes
each image using a fixed set of 32 tokens, regardless of the
image’s complexity. FlexTok [2] addresses these constraints
by allowing flexible token lengths ranging from 1 to 256 to-
kens and employing a coarse-to-fine design in which later
tokens capture progressively finer details.

As such, existing image tokenizers prioritize high-
frequency details, which are often unnecessary for down-
stream planning tasks. For this reason, we believe a
planning-oriented tokenizer would be more effective for ap-
plications like robotic navigation. By using a smaller num-
ber of tokens to represent a scene, our proposed 1D tok-
enizer allows agents to simulate more scenarios and find
optimal plans faster, aggressively compressing token length
while preserving only the essential visual information.

7.2. Masked Autoregressive Image Generation

Masked autoregressive image generation models [7, 8, 18,
20, 39, 40, 60] leverage encoder–decoder architectures with
bidirectional attention mechanisms to reconstruct masked
tokens during generation. Unlike traditional autoregres-
sive (decoder-only) models [9, 56], which predict tokens
sequentially, these architectures [64, 68] perform parallel
decoding. They predict multiple token positions in a single
step, thereby reducing the number of steps needed for full
image generation while improving inference efficiency. No-
tably, MaskGIT [7] and MAR [40] have demonstrated that
such designs enable both rapid and high-quality image syn-
thesis. In parallel, research on advanced sampling strategies
has emerged [37, 38], aiming to further improve generation
quality and convergence speed.



In this work, we focus on the tokenization stage and
adopt the widely used non-autoregressive sampling ap-
proach from MaskGIT [7] for generating token sequences
that are subsequently decoded into 2D discrete latent to-
kens that serve as the input to the VQ-GAN decoder in our
pipeline.

7.3. Goal Conditioned Visual Navigation
Goal-conditioned visual navigation [35, 45, 48, 53, 54] con-
stitutes a key challenge in robotics, as it requires the integra-
tion of both perception and planning capabilities. Given one
or more context images along with a navigation goal image,
such models [53, 54] aim to produce an optimal path to the
goal when the environment is known, or to explore the sur-
roundings otherwise.

Previously, this task has been addressed through policy-
based approaches [10, 28, 41, 52–54], in which agents learn
a direct mapping from observations to actions. Methods
in this category often employ reinforcement learning, be-
havior cloning, or model-free exploration strategies, and are
typically optimized for specific environments or goal con-
ditions.

Recent studies have shifted toward leveraging world
models[23], which aim to capture and distill knowledge of
complex, high-dimensional environments. An agent with a
world model can predict its future by mentally simulating
the outcomes of a sequence of proposed actions. Conse-
quently, it enables the agent to perform look-ahead reason-
ing before acting. Rather than directly outputting actions,
world models simulate the environment by taking the cur-
rent state or observation and the policy’s action as input and
predicting the next latent state along with an associated re-
ward. The Dreamer series[24–26] exemplifies this approach
by modeling environmental dynamics that facilitate long-
horizon planning and control.

Beyond simulated control domains, world models have
been successfully used in robotics [17, 42, 62], games [1,
5, 24, 25, 58], autonomous driving [21, 31, 67] and naviga-
tion [3, 35, 47, 63]. Specifically in visual navigation, Path-
dreamer [35] generates high-resolution RGB, depth, and se-
mantic panoramas of future viewpoints from panoramic in-
door observations. Most recently, NWM[3] introduced a
Conditional Diffusion Transformer to simulate trajectories
for planning, eliminating the need for explicit 3D recon-
structions or geometric priors while maintaining generality
across diverse environments. However, NWM[3] requires
196 tokens by the SD-VAE tokenizer. Differently, we use a
compact image tokenizer that encodes the scene into a much
smaller number of tokens—just 16 tokens—representing an
extreme compression, and leverage a Multimodal Diffusion
Transformer as the generative decoder.
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