
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOLUTIONARY CACHING TO ACCELERATE YOUR
OFF-THE-SHELF DIFFUSION MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based image generation models excel at producing high-quality synthetic
content, but suffer from slow and computationally expensive inference. Prior work
has attempted to mitigate this by caching and reusing features within diffusion
transformers across inference steps. These methods, however, often rely on rigid
heuristics that result in limited acceleration or poor generalization across architec-
tures. We propose Evolutionary Caching to Accelerate Diffusion models (ECAD),
a genetic algorithm that learns efficient, per-model, caching schedules forming
a Pareto frontier, using only a small set of calibration prompts. ECAD requires
no modifications to network parameters or reference images. It offers significant
inference speedups, enables fine-grained control over the quality-latency trade-off,
and adapts seamlessly to different diffusion models. Notably, ECAD’s learned
schedules can generalize effectively to resolutions and model variants not seen
during calibration. We evaluate ECAD on PixArt-α, PixArt-Σ, and FLUX-1.dev
using multiple metrics (FID, CLIP, Image Reward) across diverse benchmarks
(COCO, MJHQ-30k, PartiPrompts), demonstrating consistent improvements over
previous approaches. On PixArt-α, ECAD identifies a schedule that outperforms
the previous state-of-the-art method by 4.47 COCO FID while increasing infer-
ence speedup from 2.35x to 2.58x. Our results establish ECAD as a scalable and
generalizable approach for accelerating diffusion inference.

1 INTRODUCTION

Diffusion has emerged as the backbone for state-of-the-art image and video synthesis tech-
niques (Dhariwal & Nichol, 2021; Ho et al., 2020; 2022; Liu et al., 2024c). Unlike prior methods
involving deep learning, which would train a neural network to generate images in a single forward
inference step, diffusion instead involves iterating over a prediction for many (20 to 50) steps (Lu
et al., 2023). This process is quite expensive, and many researchers and practitioners try to reduce
the latency while preserving, or even improving, the quality (Ma et al., 2023; Wimbauer et al., 2024;
Selvaraju et al., 2024; Meng et al., 2023; Sauer et al., 2023). Some of these strategies involve training
some model that can perform the inference in 1 to 4 steps, particularly with model distillation (Hinton
et al., 2015; Meng et al., 2023). Other strategies do not train or tune any neural network weights,
principally caching, where the diffusion model’s internal features are re-used across steps, allowing
that computation to be skipped (Ma et al., 2023; Wimbauer et al., 2024; Li et al., 2023a).

We introduce a new conceptual and algorithmic framework for diffusion caching by reframing the
problem and replacing existing heuristic-based approaches with a principled, optimization-driven
methodology that is generalizable across model architectures. Existing caching methods typically
offer a few discrete schedules, each with fixed trade-offs–for example, a 2x speedup with moderate
quality loss, and a 3x speedup with greater degradationwithout support for intermediate or more
aggressive configurations. However, real-world deployments often operate under variable latency or
quality constraints, necessitating further flexibility. We instead formulate caching as a multi-objective
optimization problem, aiming to discover a smooth Pareto frontier that reveals a wide spectrum of
speed-quality trade-offs. We show our frontiers for FLUX.1-dev (Labs, 2024) in Figure 1.

Such frontiers are very challenging to produce given how caching schedules are currently derived.
State-of-the-art approaches are motivated by heuristics, and key hyperparameters must be carefully
hand-tuned by human practitioners based on performance on some set of key metrics (Selvaraju et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: We conceptualize diffusion caching as a Pareto optimization problem over image quality
and inference time and propose ECAD to discover such Pareto frontiers using a genetic algorithm.
Left: performance progression over generations for FLUX-1.dev. Right: example 1024×1024 results
with corresponding speedups.

2024; Zou et al., 2025; Liu et al., 2024b; Zou et al., 2024; Liu et al., 2025a). We propose a different
paradigm that does not rely on human-defined heuristics or hyperparameters, instead discovering
effective caching schedules via genetic algorithm.

Our Evolutionary Caching to Accelerate Diffusion models (ECAD) requires two components: (i)
some small set of text-only “calibration” prompts and (ii) some metric which computes image quality
given a prompt and generated image–we use Image Reward (Xu et al., 2023a). We formulate caching
schedules such that the genetic algorithm can automatically discover which features to cache (in
terms of blocks and layer types) and when (which timestep). ECAD can be initialized with either
random schedules or some set of promising schedules based on prior works such as Selvaraju et al.
(2024); Liu et al. (2024b). Thus, while ECAD presents a different paradigm compared to prior works,
it can also build on their valuable findings. ECAD takes these initial schedules and gradually evolves
them according to the mating rules of a genetic algorithm, optimizing their “fitness” according to
quality and computational complexity (measured in Multiply-Accumulate Operations, aka MACs).

This strategy is extremely flexible. While other methods are entirely designed around whether they
cache entire block outputs, intermediate layer outputs (such as the output of an attention layer, or a
feedforward layer), or even specific tokens, ours is orthogonal to all of these. We offer a framework
which can be used to optimize caching schedules according to any well-defined criteria. We instantiate
it with our criteria and schedule definitions in Section 3, but the general principles can be applied to
arbitrary criteria and schedules to find Pareto-optimal caching frontiers. For example, we could use
other criteria to define fitness, such as human ratings of generated samples. We could also change the
caching schedule definitions to be more granular or more coarse, to focus on certain types of layers, or
incorporate heuristics from other methods. Although our experiments target text-to-image synthesis,
the framework is agnostic to modality and naturally extends to class-conditioned or text-to-video
tasks. Furthermore, while ECAD involves some optimization, since we do not compute any gradients
or update any weights, no memory overhead is introduced. Additionally, there are no restrictions on
batch size (allowing for use of single, small GPUs that would not be feasible for distillation), and the
entire process can happen completely asynchronously. Beyond this, schedules could be optimized for
aggressively quantized diffusion models to further improve their acceleration and quality.

Figure 1 showcases our method’s strong performance and highlights flexibility across resolutions.
Although optimized for FLUX-1.dev at 256×256, the same schedule applied to 1024×1024 still
outperforms SOTA methods in both speed and quality. At 256×256, ECAD matches or surpasses un-
accelerated PixArt-α and FLUX-1.dev baselines with 1.97x and 2.58x latency reductions, respectively.
At more aggressive 2.58x and 3.37x settings, quality slightly drops but remains competitive.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Steps
1 3

B
lo

ck
s 1

2

Recompute Self
Attention (SA)

Recompute Feed
Forward (FF)

Use Cached Self
Attention (SA)

Use Cached Feed
Forward (FF)

B
lo

ck
s 1

2

B
lo

ck
s 1

2

SA SA SAFF FF FF
Generation 1

Steps
1 2 3

SA SA SAFF FF FF
Generation 2

Cross

Mutate

Cross

x

x

x

+

+

Cached FF

Cached SA

if using cache

if using cache

if not using
cache

if not using
cache

Self Attention

Feed Forward

DiT Block with Caching Evolutionary Step

2

Figure 2: In the context of a transformer-based diffusion model, we describe how the transformer
architecture allows for caching of attention and feedforward results separately (left). We then give
a toy illustration of how our method might transition from one generation to the next, prioritizing
mating for schedules with the best quality-speed trade-offs (right).

2 RELATED WORK

2.1 DIFFUSION FOR IMAGE AND VIDEO SYNTHESIS

Diffusion models predict noise, given noised image inputs, to generate high-quality images (Ho et al.,
2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) and videos (Ho et al., 2022; Blattmann
et al., 2023; Liu et al., 2024c). To save time and reduce feature sizes, these computations are typically
performed in the latent space (Rombach et al., 2022) of a pre-trained variational autoencoder (Kingma
& Welling, 2014). Although earlier works use U-Net backbones (Ronneberger et al., 2015), more
recent methods rely mainly on transformer-based models (Vaswani et al., 2017; Dosovitskiy et al.,
2020; Peebles & Xie, 2023; Bao et al., 2023), especially Diffusion Transformers (DiTs) (Peebles &
Xie, 2023), which dominate the current landscape due to their powerful scaling properties (Chen
et al., 2023; Esser et al., 2024; Liu et al., 2024c; Labs, 2024). Text-conditioning with multimodal
models like CLIP (Radford et al., 2021), or extremely powerful text models like T5 (Raffel et al.,
2023), allows for more granular control over image content (Saharia et al., 2022a; Ramesh et al.,
2022; Nichol et al., 2022; Ruiz et al., 2023; Podell et al., 2023), not only in generative pipelines but
also for editing (Kawar et al., 2023; Brooks et al., 2023; Sun et al., 2024; Ceylan et al., 2023; Chai
et al., 2023).

2.2 ACCELERATING DIFFUSION INFERENCE

Training. Many works accelerate diffusion by training or fine-tuning models. Knowledge distilla-
tion (Hinton et al., 2015) trains a smaller or faster model to mimic the teacher, reducing steps but
at high training cost and some quality loss (Salimans & Ho, 2022; Meng et al., 2023; Luo et al.,
2023; Lee et al., 2024; Sauer et al., 2023; Kohler et al., 2024; Yin et al., 2023; Xu et al., 2023b).
Other approaches train auxiliary modules to predict skip connections (Jiang et al., 2023), internal
features (Gwilliam et al., 2025), caching configurations (Ma et al., 2024), or adaptive step sched-
ules (Zhang et al., 2023). Network compression via pruning (Zhu et al., 2024; Fang et al., 2023) or
quantization similarly requires retraining to recover accuracy, while post-training quantization offers
limited gains in speed (Li et al., 2023b; Shang et al., 2023).

Training-free. An alternative direction accelerates inference without modifying model parameters
by caching and reusing intermediate features. Early strategies designed for U-Nets (Li et al., 2023a;
Ma et al., 2023; Wimbauer et al., 2024) do not transfer well to DiTs (Ma et al., 2024), which lack
encoder–decoder hierarchy and rely only on within-block skip connections. Pioneering DiT caching
works show promise, but some only cache entire blocks at fixed timestep intervals (Selvaraju et al.,
2024), which sacrifices image quality, while others cache only attention layers (Liu et al., 2024b),
which limits potential speed-ups. Recent works pursue finer-grained caching but depend heavily on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Evolutionary Caching to Accelerate Diffusion models (ECAD)
Require: Diffusion model M , calibration prompts P , population size n, generations G, crossover

probability pc, mutation probability pm
1: P0 ← InitializePopulation(n) . Random and heuristic-based schedules
2: for g = 1 to G do
3: for each schedule S ∈ Pg−1 do
4: I ←MS(P) . Generate images I using schedule S on prompts P
5: Compute quality metric Q(P, I) . Image Reward score
6: Compute computational cost C(S) . MACs
7: end for
8: Pg ← Selection(Pg−1) . NSGA-II with Tournament Selection
9: Pg ← Crossover(Pg, pc) . Recombine schedules with 4-Point Crossover

10: Pg ← Mutation(Pg, pm) . Bit-flip mutation
11: end for
12: F ← ComputeParetoFrontier(P1,P2, ...,PG) . Pareto frontier across all generations
13: return F

heuristics and extensive hyperparameter tuning to balance efficiency and quality (Chen et al., 2024;
Zou et al., 2025; Yuan et al., 2024; Liu et al., 2024a; 2025d; Qiu et al., 2025; Sun et al., 2025; Zou
et al., 2024; Liu et al., 2025b;a; Bu et al., 2025). We build on these caching methods by replacing
manual heuristic design and human-in-the-loop hyperparameter tuning with a genetic algorithm,
leading to superior image quality.

3 METHODS

We begin by outlining key preliminaries for caching with DiTs (see Appendix A.1 for a general
diffusion background). We then detail our method for modeling caching as a Pareto optimization
problem over speed and quality, and the genetic algorithm used to optimize these frontiers.

3.1 PRELIMINARY: CACHING DIFFUSION TRANSFORMERS

DiTs utilize a modified transformer architecture optimized for the diffusion denoising process. A
typical DiT block takes three inputs: a sequence of tokens z′ representing the noisy image, a
conditioning vector c (e.g., text embeddings), and a timestep embedding t. Caching in DiTs exploits
temporal coherence between consecutive denoising steps. As the diffusion process proceeds from z′t
to z′t−1, the inputs to each block change gradually, creating an opportunity to reuse computed features
from previous timesteps (Ma et al., 2023; Selvaraju et al., 2024). Rather than caching entire blocks,
we employ component-level caching. For each transformer block, we selectively cache the outputs of
specific functional components: self-attention (fSA), cross-attention (fCA), and feedforward networks
(fFFN). Formally, for a component fcomp in block b at timestep t, we can decide whether to compute
it directly or reuse its cached value:

f b
comp(z

′
t, t, c) =

{
compute(z′t, c, t) if recompute
cache[f b

comp, t+ 1] if cached

When recomputing, the new value is stored in the cache for potential reuse in subsequent steps.
Figure 2 demonstrates this for a DiT block with two components: self-attention and feedforward.
The DiT’s per-component residual connections allow features from the current inference step to be
combined with cached features from previous steps smoothly.

This selective computation strategy can be represented as a binary tensor S ∈ {0, 1}N×B×C , where
N is the number of diffusion steps, B is the number of transformer blocks, and C is the number of
cacheable components per block. A value of 0 at position (n, b, c) in S, which we show with shades
of red in Figure 2, indicates that we reuse the cached value of component c in block b at diffusion
step n rather than recomputing it. A caching schedule directly impacts both computational efficiency
and generation quality; aggressive caching (more 0’s in S) reduces computation but may degrade
output quality. Our method finds caching schedules with optimal trade-offs between computation and
quality by identifying which components can be safely cached, in which blocks and timesteps.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Main results, 256×256, 20-step text-to-image generation. We select schedules from our
evolutionary Pareto Frontier and compare them to prior works across various datasets and models on
Image Reward, CLIP Score, and FID. Despite being optimized only on Image Reward, only on the 100
calibration prompts, our method achieves superior results across other metrics and for unseen prompts.

Settings Latency Calibration PartiPrompts MS-COCO2017-30K MJHQ-30K

ms / img↓ Image Image
Model Caching Setting TMACs↓ (speedup↑) Reward↑ Reward↑ CLIP↑ FID↓ CLIP↑ FID↓ CLIP↑

None 5.71 165.74 (1.00x) 0.90 0.97 32.01 24.84 31.29 9.75 32.77
TGATE m = 15, k = 1 4.86 144.77 (1.14x) 0.78 0.87 31.70 23.90 31.12 10.38 32.33
TGATE m = 10, k = 5 3.47 108.52 (1.53x) -0.051 -0.27 28.90 29.78 28.29 17.52 29.38
FORA N = 2 2.87 100.57 (1.65x) 0.83 0.91 32.03 24.80 31.37 10.33 32.74
FORA N = 3 2.02 82.55 (2.01x) 0.60 0.83 31.94 24.50 31.35 11.11 32.63
ToCa N = 3,R = 60% 3.17∗ 90.71 (1.83x)∗ 0.71 0.76 31.46 22.05 30.99 12.01 32.37
ToCa N = 3,R = 90% 2.13∗ 70.58 (2.35x)∗ 0.60 0.68 31.35 24.01 30.92 11.80 32.35
DuCa N = 3,R = 60% 3.20 72.53 (2.29x)∗ 0.76 0.79 31.53 23.13 31.03 11.69 32.48
DuCa N = 3,R = 90% 2.30 64.08 (2.59x)∗ 0.76 0.74 31.42 24.69 30.96 12.53 32.39
Ours fast 2.13 84.09 (1.97x) 0.96 0.99 31.94 20.58 31.40 8.02 32.78
Ours faster 1.46 69.17 (2.40x) 0.90 0.88 31.44 21.93 31.10 9.92 32.34

PixArt-α

Ours fastest 1.18 64.24 (2.58x) 0.81 0.77 31.53 19.54 31.28 8.67 32.24

None 5.71 167.62 (1.00x) 0.85 1.08 31.90 24.63 31.11 10.53 32.65
FORA N = 3 2.02 82.12 (2.04x) 0.65 0.81 31.91 27.69 31.16 12.70 32.28
ToCa† N = 3,R = 60% 3.17∗ 94.28 (1.78x)∗ 0.11 0.19 31.03 54.80 30.34 35.42 30.64
ToCa† N = 3,R = 90% 2.13∗ 73.03 (2.30x)∗ 0.07 0.14 30.89 56.48 30.25 36.53 30.55

PixArt-Σ

Ours fast 1.91 84.84 (1.98x) 0.85 1.02 31.86 22.17 31.25 8.91 32.52

None 198.69 2620.09 (1.00x) 0.69 1.04 31.88 25.76 30.95 17.77 31.06
FORA N = 3 69.80 1073.70 (2.44x) 0.67 0.93 31.88 23.51 31.30 19.38 31.10
ToCa N = 4,R = 90% 42.96∗ 1576.97 (1.66x)∗ 0.63 0.93 31.81 23.78 31.26 21.59 30.88
DiCache 62.23 1161.86 (2.26x) 0.61 0.97 31.97 26.18 31.12 20.70 31.18
TaylorSeer N = 5,O = 2 59.88∗ 1028.66 (2.55x)∗ 0.29 0.54 31.16 29.66 30.19 24.36 30.64
TaylorSeer N = 6,O = 1 49.97∗ 865.97 (3.03x)∗ -0.07 0.02 29.88 49.02 29.02 37.98 29.38
Ours fast 63.02 1016.59 (2.58x) 0.83 1.04 32.24 21.61 31.58 16.14 31.69

FLUX.1-dev

Ours fastest 43.60 778.17 (3.37x) 0.69 0.89 32.27 26.66 31.63 21.43 31.67

†ToCa is not optimized for PixArt-Σ, so we re-use the hyperparameters from PixArt-α. Suboptimal results do
not indicate that ToCa is not suitable for PixArt-Σ; instead, ToCa should be hand-optimized per-model.

∗Refer to Appendix A.11 for a detailed explanation of MAC and latency calculations.

3.2 GENETIC ALGORITHM AS A PARADIGM FOR CACHING

Caching, as Pareto Frontiers. The caching optimization problem inherently exhibits a trade-off
between computational efficiency and generation quality. This can be formalized as a multi-objective
optimization problem:

min
S

(C(S), Q(S))

where C(S) denotes the computational cost function (lower is better) and Q(S) represents the
generation quality metric (lower is better, e.g., FID) for a caching schedule S. This optimization
operates directly on the binary caching tensor S ∈ {0, 1}N×B×C introduced previously. Possible
configurations for S naturally induce sets of solutions that form Pareto frontiers – improving one
objective necessarily degrades the other. However, this search space is intractable to exhaustively
explore, even for small DiTs, given current compute. Prior acceleration methods have predominantly
relied on fixed heuristics that typically provide only isolated operating points. By contrast, our
proposed approach explores a greater search space and discovers Pareto-optimal configurations,
enabling practitioners to select schedules based on application-specific constraints.

Evolutionary Caching to Accelerate Diffusion models (ECAD). We introduce ECAD, an evolution-
ary algorithm-based framework for discovering efficient caching schedules for diffusion models, in
Algorithm 1. Our approach’s key insight is that the optimal caching configuration can be discovered
through a population-based search over the space of possible caching schedules, using a small set of
calibration prompts to evaluate candidate solutions. ECAD is a framework with 4 simple customizable
components.

The practitioner may adjust granularity with the (1) binary caching tensor shape by adjusting N , B,
and C (the defaults we define for S allow any component with a skip connection to be cached, on
any block, for any timestep). While it does not require any image data, ECAD needs (2) calibration
prompts, which we instantiate with the 100 prompts from the Image Reward Benchmark (Xu et al.,
2023a). The practitioner can also select their preferred (3) metrics, where ideally both can be
computed quickly online. We use Image Reward for quality, and MACs for speed (to avoid hardware

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

60 80 100 120 140 160
Latency (ms)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Ours
ToCa
DuCa
FORA
TGATE

Unaccelerated
Ours - Fast
Ours - Faster
Ours - Fastest

500 1000 1500 2000 2500
Latency (ms)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Schedule Type
Ours
ToCa
TaylorSeer
FORA
Unaccelerated
Ours - Fast
Ours - Fastest

Figure 3: PartiPrompt Pareto frontiers at 256× 256 for PixArt-α (left) and FLUX.1-dev (right).

dependencies). Then, we choose an (4) initial population of caching schedules, which should be
diverse, and can be seeded based on prior knowledge (such as using FORA schedules) or initialized
randomly. We utilize NSGA-II (Deb & Jain, 2013) for our genetic algorithm due to its efficient
non-dominated sorting approach and proven effectiveness in multi-criteria optimization problems.

With all components defined, ECAD runs for the desired number of generations. In each generation,
images are generated per caching tensor, and top-performing tensors (in quality and speed) evolve
to form the next generation. This process incrementally improves Pareto frontiers for the selected
model, scheduler, and timestep combination.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Model Architectures We provide experiments on three popular text-to-image DiT models:
PixArt-α, PixArt-Σ, FLUX-1.dev. Each model uses its default sampling method at 20 steps: DPM-
Solver++ (Lu et al., 2023) for both PixArt models and FlowMatchEulerDiscreteScheduler (Esser
et al., 2024) for FLUX-1.dev. Guidance scales are 4.5 for PixArt models and 5 for FLUX-1.dev.
Both PixArt models employ 28 identical transformer blocks containing three components we enable
caching for: self-attention, cross-attention, and feedforward. In contrast, FLUX-1.dev implements
an MMDiT-based architecture (Esser et al., 2024) with 19 “full” and 38 “single” blocks. We enable
caching for attention, feedforward, and feedforward context components in full blocks, and attention,
MLP projection, and MLP output for single blocks. Cacheable component selection is discussed in
Appendix A.2. We calibrate all models at 256×256 but evaluate at both 256×256 and 1024×1024.

Evaluation Metrics We evaluate performance using Image Reward (Xu et al., 2023a), FID (Seitzer,
2020), and CLIP score (Zhengwentai, 2023) with ViT-B/32 (Dosovitskiy et al., 2020) on the Image
Reward Benchmark prompts set (Xu et al., 2023a), the PartiPrompts set (Yu et al., 2022), MS-
COCO2017-30K (Lin et al., 2015) (we use the same prompts and images as ToCa (Zou et al., 2025))
and MJHQ-30K (Li et al., 2024). On the Image Reward Benchmark prompts set, we generate each
of 100 prompts at 10 different, fixed seeds for 1,000 total images. For PartiPrompts we generate a
single image for each of the 1,632 prompts. To measure the speed of a particular caching schedule,
we use two metrics: multiply-accumulate operations (MACs) and direct image generation latency.
Except where otherwise stated, we utilize calflops (Ye, 2023) to measure MACs. We average
end-to-end image generation latency using precomputed text embeddings on 1 NVIDIA A6000 GPU
after discarding warmup runs; full details in Appendix A.11.

4.2 MAIN RESULTS

We optimize ECAD on three diffusion models: PixArt-α, PixArt-Σ, and FLUX-1.dev and present
results for select schedules in Table 1. For PixArt-α at 256×256 resolution with 20 inference steps,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

A section of the Great
Wall in the

mountains. detailed
charcoal sketch.

a still life
painting of a pair

of shoes

a blue cow ... tree with
red leaves and yellow

fruit ... in a field ...
impressionistic painting

the
Parthenon

a portrait of
an old man

three-quarters front
view ... blue 1977

Porsche 911 ...
mountain road ...

U
na

cc
el

er
at

ed
To

C
a

(1
.8

3x
)

O
ur

s (
1.

97
x)

Figure 4: Qualitative results comparing our “fast” schedule for PixArt-α 256×256 with ToCa; see
Figure 26 for FLUX-1.dev. “...” represent omitted text, see Appendix A.15 for full prompts.

Block Number

In
fe

re
nc

e
St

ep

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0
2
4
6
8

10
12
14
16
18

Block Number
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

0
2
4
6
8

10
12
14
16
18

Figure 5: Figure that shows our “fast” schedule for PixArt-α (left) and FLUX-1.dev (right). Reds
are cached components and grays are recomputed (for PixArt-α, from left to right: self-attention,
cross-attention, and feedforward). See Appendix A.14 for more details.

we run 550 generations with 72 candidate schedules per generation, where each candidate generates
1,000 images (10 per each of 100 Image Reward Benchmark prompts). For FLUX-1.dev, we reduce
the population to 24 schedules and train for 250 generations under otherwise identical settings. We
initialize both using variants inspired by FORA and TGATE, detailed in Appendix A.8. For PixArt-Σ,
we transfer 72 schedules from PixArt-α’s 200th-generation Pareto frontier and run 50 additional
generations, leveraging the models shared DiT architecture.

Across all models, ECAD achieves strong performance on Image Reward (which correlates strongly
with human preference (Xu et al., 2023a)) and FID. On PixArt-α, our ‘fastest’ schedule reduces FID
by 9.3 over baseline and by 2.51 over ToCas best setting. On PixArt-Σ and FLUX-1.dev, ECAD
schedules outperform prior work and baseline by a significant margin. On FLUX-1.dev, our ‘fast’
schedule at 2.58x matches baseline Image Reward and the ‘fastest’ schedule at 3.37x maintains
competitive quality. For prompt-image alignment, measured via CLIP score, ECAD roughly matches
prior works, which is expected as caching should not affect prompt-image alignment.

We show full Pareto frontiers in Figure 3 on unseen prompts. ECAD discovers schedules that
consistently outperform prior works across evaluation metrics while providing fine-grained control
over the quality-latency tradeoff. We provide some qualitative results which highlight ECAD’s good
quality despite impressive speedups in Figure 4. We show the composition of the “fast” ECAD
schedules for PixArt-α and FLUX.1-dev in Figure 5, with more schedules in Appendix A.14.

Scaling Properties. Unlike existing approaches, practitioners have the flexibility to run ECAD for as
many generations as their time and compute constraints allow. While competitive schedules emerge
within a few iterations, continued optimization yields steady improvements. To illustrate this, we
track the ‘slowest’ schedule throughout the genetic process for PixArt-α and report results in Table 2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Genetic scaling results.
We show performance changes
as more iterations (generations)
of ECAD run in terms of
latency, PartiPrompts Image
Reward, and MJHQ-30K FID.
We select the schedule with
highest TMACs per generation.

Gens ms / img↓ Image FID↓(speedup↑) Reward↑
1 145.09 (1.14x) 1.00 9.40
50 92.76 (1.79x) 0.98 7.97

150 87.11 (1.90x) 1.00 8.11
300 86.62 (1.91x) 0.99 8.04
500 76.52 (2.17x) 0.96 8.49

Table 3: Model transfer results. ECAD is first optimized on
PixArt-α for 200 generations, and the resulting schedules are
used to initialize optimization on PixArt-Σ for an additional 50
generations (shown in the last row). Settings for both schedule
discovery and evaluation are detailed below. We report TMACs,
latency, Image Reward on the calibration and PartiPrompts set, and
FID for MJHQ-30K. Transferring ECAD schedules between these
two models results in only slight penalties to performance.

Genetic Settings Evaluation Settings Latency Metrics

Model Gens Model Res. TMACs↓ s / img↓ (speedup↑) Calibration↑ PartiPrompts↑ FID↓
PixArt-α 200 PixArt-α 256 2.59 94.04 (1.76x) 0.96 1.02 8.00
PixArt-α 200 PixArt-Σ 256 2.59 103.47 (1.62x) 0.84 1.09 9.27

PixArt-α 250 PixArt-α 256 2.22 86.59 (1.91x) 0.96 0.99 8.09
PixArt-α 250 PixArt-Σ 256 2.22 93.68 (1.79x) 0.79 1.06 9.06
PixArt-Σ 50 PixArt-Σ 256 1.91 84.84 (1.98x) 0.85 1.02 8.91

Table 4: FLUX-1.dev detailed transfer results, 1024× 1024 resolution, 20-step text-to-image
generation. We reuse our ‘fast’ schedule trained on FLUX-1.dev at 256x256 resolution, as well as
an older, ‘slow’ schedule. We apply them for 1024× 1024 image generation and compare them to
prior works in terms of Image Reward, CLIP Score, and FID. Our results are competitive with prior
work despite being evaluated at a different resolution than optimization.

Model Settings Latency Calibration PartiPrompts MS-COCO2017-30K MJHQ-30K

Caching Setting TMACs↓ s/img↓ (speedup↑) Image Reward↑ Image Reward↑ CLIP↑ FID↓ CLIP↑ FID↓ CLIP↑
None 1190.25 18.30 (1.00x) 0.68 1.14 31.98 25.45 31.08 14.63 31.99
None 40% steps 476.10 7.61 (2.41x) 0.43 0.83 31.38 25.20 30.73 21.68 30.99
FORA N = 3 416.88 7.62 (2.40x) 0.27 0.69 31.20 29.45 30.52 24.65 30.69
ToCa N = 4,R = 90% 300.41∗ 7.42 (2.47x)∗ 0.66 1.09 32.05 26.88 31.32 15.39 31.93
TaylorSeer N = 5,O = 2 357.39∗ 7.20 (2.54x)∗ 0.50 0.94 32.28 42.81 31.74 29.89 31.92
Ours slow256→1024 644.05 10.59 (1.73x) 0.74 1.05 31.82 22.15 31.00 15.98 31.79
Ours fast256→1024 376.62 6.96 (2.63x) 0.71 1.05 31.88 26.69 30.91 17.76 31.99

After just 50 generations, this schedule outperforms the unaccelerated baseline and all prior methods
on Image Reward for unseen PartiPrompts and MJHQ FID. Further generations reduce latency at
a slight cost in quality. Figure 6 shows the Pareto frontier for each generation on the calibration
prompts; initial generations rapidly improve while later generations show incremental improvements.

4.3 EMERGENT GENERALIZATION CAPABILITIES

Model Transfer Results. To demonstrate ECAD’s advantage over handcrafted heuristics, we transfer
pre-optimized schedules between model variants. In Table 3, we select the “slowest” schedule from
the Pareto-frontier across the first 200 generations of PixArt-α ECAD optimization and evaluate it on
PixArt-Σ as is, to demonstrate direct transfer results. Then, we perform an additional 50 optimization
generations on PixArt-Σ using 72 schedules transferred from the PixArt-α ECAD frontier at 200
generations. Although with direct transfer from PixArt-α, PixArt-Σ has higher latency than PixArt-α
at 200 generations, after only 50 generations of optimization, it surpasses PixArt-α’s speedup while
improving calibration Image Reward and MJHQ FID. By comparison, simply transferring the 250
generation PixArt-α configuration yields only a 1.79x speedup instead of 1.98x, and has worse
calibration Image Reward and MJHQ FID. This is a departure from recent caching innovations; for
example, ToCa’s carefully tuned PixArt-α settings cannot be transferred to PixArt-Σ (see Table 1),
despite the similarities between the two models.

Resolution Transfer Results. We present ECAD’s performance on FLUX-1.dev at 1024×1024
resolution after optimization on 256×256 in Table 4, and highlight its superior performance compared
to FORA and the “None” approaches. We apply schedules as-is, with no further optimization of
schedules at the higher resolution. While it is likely preferable to optimize ECAD at the target
evaluation resolution if sufficient compute is available, we show this is not necessary in practice. In
addition to the same ‘fast’ FLUX-1.dev schedule from Table 1 at 256×256 resolution, we select a
‘slow’ model from just 50 generations of training at 256×256. Despite ToCa being optimized for high

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated

100

200

300

400

500

Generation Num
ber

Figure 6: ECAD evolution. ECAD iteratively
improves quality/time trade-offs as it evolves
across generations as measured by Image Re-
ward (PixArt-α 256×256).

0 1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Size 24, 10 Images per Prompt, 100 Prompts
Size 72, 3 Images per Prompt, 100 Prompts
Size 72, 10 Images per Prompt, 33 Prompts
(Full) Size 72, 10 Images per Prompt, 100 Prompts
Unaccelerated

Figure 7: Faster ECAD optimization strate-
gies. We compare “Full” ECAD to smaller pop-
ulation size, fewer images per prompt, and fewer
prompts (PixArt-α 256×256).

resolution and ours for low, our fast setting achieves superior Calibration Image Reward (a proxy for
human preference) and COCO FID, and further surpasses concurrent TaylorSeers on unseen-prompt
Image Reward, while avoiding its prohibitive memory overhead which reduced its batch size by 66%.

4.4 ABLATION ANALYSIS

To better explore the evolutionary algorithm’s behavior, especially with respect to optimization time,
we run three ablations with different hyperparameters on PixArt-α for 100 generations, varying the
population size (from 72 to 24), the number of images generated per prompt (from 10 to 3), and the
number of prompts used (from 100 to 33, selected randomly), each approximately reducing GPU time
by 66%. The shape of the frontier of the reduced population setting in Figure 7 resembles previous
generations of full populations settings, suggesting that reducing the population size is akin to running
the model for less generations. Reducing the number of images per prompt is not notably harmful,
while using a smaller set of only 33 prompts is very detrimental. However, as shown in Appendix A.4,
this effect stems from size rather than diversity: smaller sets degrade quality, but equally sized sets
with less diversity do not. Appendix A.4 further shows a 100-prompt calibration set generated via
ChatGPT performs comparably to the human-curated Image Reward set, demonstrating that large,
diverse prompt collections are straightforward to assemble. In addition, we include ablations on
NSGA-II hyperparameters in Appendix A.5, and display the effectiveness of alternative quality
metrics in Appendix A.3.

5 DISCUSSION

Limitations and Broader Impacts. Optimizing on automatic metrics ties our performance to the
quality of those metrics. We use Image Reward for the sake of cost and time; however, if we replace
it with ranking by human users, for example, results could improve. ECAD does not introduce new
societal risks beyond those inherent to diffusion models. While reduced inference cost may increase
potential for misuse, it also promotes broader image-generation accessibility and mitigates some
environmental impact of image generation.

Conclusion. In this work, we reconceptualize diffusion caching as a Pareto optimization problem
that enables fine-grained trade-offs between speed and quality. We provide a method, ECAD, which
converts this problem into a search over binary masks, and can discover a best-case caching Pareto
frontier. With only 100 text prompts, our method runs asynchronously with much lower memory
requirements than training or fine-tuning a diffusion model. We achieve state-of-the-art results for
training-free acceleration of diffusion models in both speed and quality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words:
A vit backbone for diffusion models, 2023. URL https://arxiv.org/abs/2209.12152.

J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE Access, 8:89497–89509,
2020.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 22563–22575, June 2023.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 18392–18402, June 2023.

Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, and Jiaqi
Wang. Dicache: Let diffusion model determine its own cache. arXiv preprint arXiv:2508.17356,
2025.

Duygu Ceylan, Chun-Hao Paul Huang, and Niloy J Mitra. Pix2video: Video editing using image diffu-
sion. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 23149–23160,
2023. doi: 10.1109/ICCV51070.2023.02121.

Wenhao Chai, Xun Guo, Gaoang Wang, and Yan Lu. Stablevideo: Text-driven consistency-aware
diffusion video editing. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 23040–23050, 2023.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-α: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis, Yiren
Zhao, and Tao Chen. δ-dit: A training-free acceleration method tailored for diffusion transformers,
2024. URL https://arxiv.org/abs/2406.01125.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
formers for high-resolution image synthesis, 2024. URL https://arxiv.org/abs/2403.
03206.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Advances
in Neural Information Processing Systems, 2023.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused
framework for evaluating text-to-image alignment. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 52132–52152. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
a3bf71c7c63f0c3bcb7ff67c67b1e7b1-Paper-Datasets_and_Benchmarks.
pdf.

10

https://arxiv.org/abs/2209.12152
https://arxiv.org/abs/2406.01125
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2403.03206
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3bf71c7c63f0c3bcb7ff67c67b1e7b1-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3bf71c7c63f0c3bcb7ff67c67b1e7b1-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a3bf71c7c63f0c3bcb7ff67c67b1e7b1-Paper-Datasets_and_Benchmarks.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matthew Gwilliam, Han Cai, Di Wu, Abhinav Shrivastava, and Zhiyu Cheng. Accelerate high-quality
diffusion models with inner loop feedback. arXiv preprint arXiv:2501.13107, 2025.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in Neural Information Processing Systems, 35:8633–8646,
2022.

Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
with llm for enhanced semantic alignment, 2024.

Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen Han, and Jingfeng Zhang. Scedit: Efficient and
controllable image diffusion generation via skip connection editing, 2023. URL https://
arxiv.org/abs/2312.11392.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6007–6017, June
2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014. URL https:
//arxiv.org/abs/1312.6114.

Jonas Kohler, Albert Pumarola, Edgar Schönfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda,
and Ali Thabet. Imagine flash: Accelerating emu diffusion models with backward distillation,
2024. URL https://arxiv.org/abs/2405.05224.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju Lee, and Sung Ju Hwang. Koala: Empirical
lessons toward memory-efficient and fast diffusion models for text-to-image synthesis, 2024. URL
https://arxiv.org/abs/2312.04005.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024.

Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models,
2023a. URL https://arxiv.org/abs/2312.09608.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 17535–17545, October 2023b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion model,
2024a. URL https://arxiv.org/abs/2411.19108.

Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Faccio, Mengmeng Xu, Tao Xiang, Mike Zheng
Shou, Juan-Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffusion via temporal attention
decomposition, 2024b. URL https://arxiv.org/abs/2404.02747.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to
forecasting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923,
2025a.

11

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2312.11392
https://arxiv.org/abs/2312.11392
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2405.05224
https://github.com/black-forest-labs/flux
https://arxiv.org/abs/2312.04005
https://arxiv.org/abs/2312.09608
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2411.19108
https://arxiv.org/abs/2404.02747

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to
forecasting: Accelerating diffusion models with taylorseers, 2025b. URL https://arxiv.
org/abs/2503.06923.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, and Linfeng Zhang.
Speca: Accelerating diffusion transformers with speculative feature caching, 2025c. URL https:
//arxiv.org/abs/2509.11628.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on background, technology,
limitations, and opportunities of large vision models, 2024c. URL https://arxiv.org/
abs/2402.17177.

Ziming Liu, Yifan Yang, Chengruidong Zhang, Yiqi Zhang, Lili Qiu, Yang You, and Yuqing Yang.
Region-adaptive sampling for diffusion transformers, 2025d. URL https://arxiv.org/
abs/2502.10389.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models, 2023. URL https://arxiv.
org/abs/2211.01095.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference, 2023. URL https://arxiv.
org/abs/2310.04378.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free,
2023. URL https://arxiv.org/abs/2312.00858.

Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating dif-
fusion transformer via layer caching, 2024. URL https://arxiv.org/abs/2406.01733.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models, 2023. URL https://arxiv.org/
abs/2210.03142.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models, 2022. URL https://arxiv.org/abs/2112.10741.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Junxiang Qiu, Shuo Wang, Jinda Lu, Lin Liu, Houcheng Jiang, Xingyu Zhu, and Yanbin Hao.
Accelerating diffusion transformer via error-optimized cache, 2025. URL https://arxiv.
org/abs/2501.19243.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

12

https://arxiv.org/abs/2503.06923
https://arxiv.org/abs/2503.06923
https://arxiv.org/abs/2509.11628
https://arxiv.org/abs/2509.11628
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2502.10389
https://arxiv.org/abs/2502.10389
https://arxiv.org/abs/2211.01095
https://arxiv.org/abs/2211.01095
https://arxiv.org/abs/2310.04378
https://arxiv.org/abs/2310.04378
https://arxiv.org/abs/2312.00858
https://arxiv.org/abs/2406.01733
https://arxiv.org/abs/2210.03142
https://arxiv.org/abs/2210.03142
https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2501.19243
https://arxiv.org/abs/2501.19243
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1910.10683

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/2204.
06125.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
22500–22510, June 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 36479–36494. Curran Associates,
Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho,
David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
deep language understanding. In Advances in Neural Information Processing Systems, vol-
ume 35, 2022b. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation, 2023. URL https://arxiv.org/abs/2311.17042.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration, 2024. URL https://arxiv.org/abs/2407.
01425.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
diffusion models. In CVPR, 2023.

Wenhao Sun, Rong-Cheng Tu, Jingyi Liao, and Dacheng Tao. Diffusion model-based video editing:
A survey, 2024. URL https://arxiv.org/abs/2407.07111.

Wenzhang Sun, Qirui Hou, Donglin Di, Jiahui Yang, Yongjia Ma, and Jianxun Cui. Unicp: A
unified caching and pruning framework for efficient video generation, 2025. URL https:
//arxiv.org/abs/2502.04393.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
of images. In AAAI, 2023.

Lilian Weng. What are diffusion models? lilianweng.github.io, Jul 2021. URL https://
lilianweng.github.io/posts/2021-07-11-diffusion-models/.

13

https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/1505.04597
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2311.17042
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://arxiv.org/abs/2407.01425
https://arxiv.org/abs/2407.01425
https://arxiv.org/abs/2407.07111
https://arxiv.org/abs/2502.04393
https://arxiv.org/abs/2502.04393
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, and
Jialiang Wang. Cache me if you can: Accelerating diffusion models through block caching, 2024.
URL https://arxiv.org/abs/2312.03209.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023a.
URL https://arxiv.org/abs/2304.05977.

Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan,
Shen Yang, Qunlin Jin, Shurun Li, Jiayan Teng, Zhuoyi Yang, Wendi Zheng, Xiao Liu, Ming
Ding, Xiaohan Zhang, Xiaotao Gu, Shiyu Huang, Minlie Huang, Jie Tang, and Yuxiao Dong.
Visionreward: Fine-grained multi-dimensional human preference learning for image and video
generation, 2024. URL https://arxiv.org/abs/2412.21059.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans, 2023b. URL https://arxiv.org/abs/2311.
09257.

Xiaoju Ye. calflops: a flops and params calculate tool for neural networks in pytorch framework,
2023. URL https://github.com/MrYxJ/calculate-flops.pytorch.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T. Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation, 2023. URL https:
//arxiv.org/abs/2311.18828.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation, 2022. URL https://arxiv.org/abs/2206.10789.

Zhihang Yuan, Hanling Zhang, Pu Lu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models,
2024. URL https://arxiv.org/abs/2406.08552.

Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang Jiang. Adadiff: Adaptive step selection
for fast diffusion, 2023. URL https://arxiv.org/abs/2311.14768.

Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, and Linfeng Zhang. Compute only 16 tokens
in one timestep: Accelerating diffusion transformers with cluster-driven feature caching, 2025.
URL https://arxiv.org/abs/2509.10312.

SUN Zhengwentai. clip-score: CLIP Score for PyTorch. https://github.com/taited/
clip-score, March 2023. Version 0.2.1.

Haowei Zhu, Dehua Tang, Ji Liu, Mingjie Lu, Jintu Zheng, Jinzhang Peng, Dong Li, Yu Wang,
Fan Jiang, Lu Tian, Spandan Tiwari, Ashish Sirasao, Junhai Yong, Bin Wang, and Emad
Barsoum. Dip-go: A diffusion pruner via few-step gradient optimization. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 92581–92604. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/a845fdc3f87751710218718adb634fe7-Paper-Conference.pdf.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng
Zhang. Accelerating diffusion transformers with dual feature caching, 2024. URL https:
//arxiv.org/abs/2412.18911.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching, 2025. URL https://arxiv.org/abs/2410.
05317.

14

https://arxiv.org/abs/2312.03209
https://arxiv.org/abs/2304.05977
https://arxiv.org/abs/2412.21059
https://arxiv.org/abs/2311.09257
https://arxiv.org/abs/2311.09257
https://github.com/MrYxJ/calculate-flops.pytorch
https://arxiv.org/abs/2311.18828
https://arxiv.org/abs/2311.18828
https://arxiv.org/abs/2206.10789
https://arxiv.org/abs/2406.08552
https://arxiv.org/abs/2311.14768
https://arxiv.org/abs/2509.10312
https://github.com/taited/clip-score
https://github.com/taited/clip-score
https://proceedings.neurips.cc/paper_files/paper/2024/file/a845fdc3f87751710218718adb634fe7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a845fdc3f87751710218718adb634fe7-Paper-Conference.pdf
https://arxiv.org/abs/2412.18911
https://arxiv.org/abs/2412.18911
https://arxiv.org/abs/2410.05317
https://arxiv.org/abs/2410.05317

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DIFFUSION PRELIMINARY

Diffusion models have emerged as powerful generative models capable of producing high-quality
images. In this section, we provide a brief overview of the diffusion process, the denoising objective,
and the specific formulation for Diffusion Transformers (DiT).

Basic Diffusion Process: The diffusion process follows a Markov chain that gradually adds
Gaussian noise to data. Given an image x0 sampled from a data distribution q(x0), the forward
diffusion process sequentially transforms the data into a standard Gaussian distribution through
T timesteps by adding noise according to a pre-defined schedule. This forward process can be
formulated as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where {βt ∈ (0, 1)}Tt=1 represents the noise schedule (Weng, 2021). We define αt = 1 − βt and
ᾱt =

∏t
s=1 αs for convenience. A key property arising from this process is that we can sample xt at

any arbitrary timestep t directly from x0 without having to sample the intermediate states as:

xt =
√
ᾱtx0 +

√
1− ᾱtε (2)

where ε ∼ N (0, I). This property is particularly useful during training as it allows for efficient
parallel sampling across different timesteps.

Denoising Objective: The denoising process aims to reverse the forward diffusion by learning to
predict the noise added at each step. This is typically accomplished by training a neural network
εθ(xt, t) to estimate the noise component in xt. Its training objective is formulated as:

L = Et,x0,ε[||ε− εθ(xt, t)||2] (3)

where t is uniformly sampled from {1, 2, ..., T}, x0 from the data distribution, and ε from N (0, I).
During sampling, the noisy image is gradually denoised using various strategies. In the DDPM
algorithm (Ho et al., 2020), the reverse process takes the form:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (4)

where µθ(xt, t) =
1√
αt

(
xt − βt√

1−ᾱt
εθ(xt, t)

)
. While effective, DDPM typically requires hundreds

to thousands of denoising steps. For more efficient sampling, DPM-Solver++ (Lu et al., 2023) (used
in both PixArt-α and PixArt-Σ) reformulates the diffusion process as an ordinary differential equation
of the (simplified) form below:

dx

dt
= −1

2
βt∇x log pt(x) (5)

DPM-Solver++ then applies high-order numerical methods to solve this ODE more efficiently. This
leads to update rules that enable high-quality image generation in as few as 20 steps rather than the
hundreds required by DDPM. However, each step still requires a forward pass through the noise
prediction network, making the sampling process computationally intensive and a primary target for
acceleration.

DiT-specific Processing Diffusion Transformers (DiT) adapt the transformer architecture for
diffusion models, offering improved scalability compared to conventional UNet architectures. The
processing pipeline for DiTs follows several key steps: first, the input image x ∈ RH×W×C is
encoded into a lower-dimensional latent representation using a pre-trained variational autoencoder
(VAE): z = E(x) ∈ Rh×w×d, where h, w, and d represent the height, width, and channel dimensions
of the latent space, respectively. The latent representation is then divided into non-overlapping
patches and linearly projected to form a sequence of tokens z′ = Patch(z) ∈ RN×d′

, where N = hw
p2

is the number of patches with patch size p× p, and d′ is the embedding dimension of the transformer.
Additionally, timestep embeddings and class or text condition embeddings are incorporated into the
model to condition the generation process. Finally, the DiT model processes these tokens through
a series of transformer blocks, each typically containing self-attention and cross-attention (or joint
attention as in FLUX.1-dev), and feedforward network components.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Computation breakdown of a single transformer block forward pass for PixArt-α, PixArt-Σ,
and FLUX-1.dev at 256× 256 resolution. We report GMACs and each component’s share of total
block computation. Components marked as cache-enabled are those selected for caching in ECAD,
as they dominate the computational cost. Components not selected are omitted for efficiency, not due
to any fundamental limitation in their cacheability.

Model Component Cache-Enabled GMACs % of Block Total
Feedforward Yes 5.440 53.6 %
Self-Attention Yes 2.720 26.8 %
Cross-Attention Yes 2.000 19.7 %
Ada Layer Norm Single No 0.000 0.0 %

PixArt-α
and

PixArt-Σ
Total: PixArt Transformer Block 10.150 100 %
Feedforward (Context) Yes 77.310 44.39 %
Joint Attention (Mutli-stream) Yes 57.980 33.29 %
Feedforward (Regular) Yes 38.650 22.19 %
Ada Layer Norm Zero No 0.226 0.14 %
Layer Norm No 0.000 0.00 %

Total: Flux Transformer Block, Full 174.170 100 %
Linear (MLP Input Projection) Yes 72.480 41.66 %
Linear (MLP Output Projection) Yes 57.980 33.32 %
Joint Attention (Single-stream) Yes 43.490 24.99 %
Ada Layer Norm Zero Single No 0.057 0.03 %
GELU No 0.000 0.00 %

FLUX-1.dev

Total: Flux Transformer Block, Single 174.000 100 %

A.2 CACHEABLE COMPONENT SELECTION

To enable ECAD on an off-the-shelf model, one must first select which components are cacheable.
Any computation whose output can be stored at one step and reused at another–while introducing
only minimal, acceptable inaccuracy–can be considered for caching. The number of such components
determines the value of C in the binary caching tensor S ∈ {0, 1}N×B×C , introduced in Section 3.
Since the search space grows linearly with C, careful selection is essential to ensure efficient and
effective caching.

Note that the tensor notation is simplified for clarity. In cases where the model uses k different types
of DiT blocks, each with a different number of cacheable components, the caching tensor would
instead take the form S ∈ {0, 1}N×(

∑k
i=1 Bi×Ci).

Table 5 enumerates the computational complexity of each DiT blocks forward pass. We enable
caching for the three most computationally expensive components per block, as they collectively
dominate the total cost. Computations outside the DiT blocks forward pass (e.g., timestep and position
embeddings) are not currently considered as they contribute less than 1% of the total compute.

Table 6: Comparison of ECAD performance when using Image Reward (IR) versus a weighted sum
of CLIP Score and CLIP Image Quality Assessment (IQA) as a quality metric. The first 4 rows are
duplicated from Table 1, while the final row displays results after running ECAD for 150 generations,
where we optimize for TMACs and a weighted combination of CLIP Score (30%) and CLIP IQA. For
CLIP IQA we specifically use Good (30%), Clean (20%), and Sharpness (20%) scores. CLIP Score
encourages prompt-alignment, while CLIP IQA ensures the generated images are of high quality.

Method ms / img↓ (speedup↑) TMACs MJHQ FID↓ COCO FID↓ Calibration IR↑ PartiPrompts IR↑
PixArt-α Baseline 164.74 (1.00x) 5.71 9.75 24.84 0.90 0.97
FORA N = 2 100.57 (1.65x) 2.87 10.33 24.80 0.83 0.91
ToCa R = 60% 90.71 (1.83x) 3.17 12.01 22.05 0.71 0.76
Ours (IR) 84.09 (1.97x) 2.13 8.02 20.58 0.96 0.99
Ours (CLIP) 97.65 (1.68x) 2.60 9.86 23.86 0.80 0.82

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 QUALITY METRIC SELECTION

We select Image Reward as it is a strong indicator of human preference and is fast (Xu et al.,
2023a). However, the ECAD framework supports a Bring-Your-Own-Reward paradigm, since image
evaluation is done offline after each generation with image-prompt pairs. This makes human scoring
easier than other, online-methods.

We include an ablation in Table 6 utilizing a weighted combination of CLIP Score and CLIP Image
Quality Assessment (Wang et al., 2023), aka IQA, score to demonstrate the feasibility of alternative
rewards. Since CLIP Score and CLIP IQA can be computed using the same CLIP image features,
and we can dump the text features for the calibration prompts offline, we still only need to perform a
single ViT-L forward pass on the image to compute the metric. Thus, the cost is essentially the same
Image Reward. However, Image Reward is generally a superior metric to CLIP Score and CLIP IQA
to judge image quality, so it is unsurprising that the results using it outperform CLIP variants.

Still, ECAD’s robustness allows it to achieve good results, even with other metrics, which is a
favorable property for application in more niche uses cases. For example, one could utilize a human
preference for video model, such as VisionReward (Xu et al., 2024), for text-to-video generation.
Note that any number of metrics can be ensembled to dampen noisy reward signals (such as a
combination of Image Reward, CLIP Score, and CLIP IQA).

Generate 100 prompts for benchmarking image generation models (such
as PixArt Alpha, Stable Diffusion, etc.). The prompts should be diverse
and cover a wide range of styles, including photorealism, painting, anime,
pixel art, and more. Each prompt should be crafted to evaluate aspects like
aesthetics, compositional accuracy, text rendering, and subject diversity, in
order to comprehensively test model quality.

Figure 8: ChatGPT prompt used to generate a set of 100 diverse prompts.

“Oil painting of rolling hills at sunrise, vibrant sky, wildflowers in foreground"
“Impressionist painting of a snowy mountain pass at twilight, soft pastels"
“Watercolor painting of a misty forest in autumn, golden leaves, tranquil stream"
“Classical landscape painting of a medieval village by a river, ornate details"
“Surrealist painting of a desert landscape with floating rocks and melting clocks"
“Abstract painting of a coastal landscape, bold shapes, bright primary colors"

Figure 9: Sample of painting-style landscape prompts.

Generate 10 prompts for benchmarking image generation models (such as PixArt
Alpha, Stable Diffusion, etc.). The prompts should be diverse and cover a wide
range of styles, including photorealism, painting, anime, pixel art, and more.
Each prompt should be crafted to evaluate aspects like aesthetics, compositional
accuracy, text rendering, and subject diversity, in order to comprehensively test
model quality.

Figure 10: ChatGPT prompt used to generate the compact set of 10 diverse prompts.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.4 CALIBRATION PROMPT SELECTION

To demonstrate the ease of assembling a calibration prompt set and to isolate the factors that
influence schedule quality, such as prompt source, domain specificity, and granularity, we evaluate
ECAD across five distinct calibration strategies.

Source and Curation: We first compare the baseline Image Reward Benchmark (100 prompts)
against two alternatives: DrawBench200 (Saharia et al., 2022b), a human-curated set of 200 prompts
with frequent repetitions, and a GPT-Generated set of 100 diverse prompts created via ChatGPT
(see Appendix 8). As shown in Table 7, the schedule calibrated on the ChatGPT-generated set
achieves nearly identical performance to the baseline. Interestingly, the Image Reward-calibrated
schedule demonstrates superior generalization to DrawBench200 compared to the reverse scenario,
suggesting that a smaller, more diverse set (Image Reward) provides a more robust foundation than
a larger, repetitive one (DrawBench).

Domain Specificity: To test if the calibration domain restricts generalizability, we generate a set
of 100 prompts exclusively describing Painted Landscapes (see Appendix 9). Despite this narrow
semantic focus, the resulting schedule maintains competitive performance on general-purpose
benchmarks (COCO and MJHQ), performing similarly to the baseline. This indicates that ECAD
relies less on semantic content matching and more on the complexity of the generation task itself.

Quantity and Granularity: Finally, we probe the limits of calibration data efficiency. We construct
a 5-Word Prompts set (100 coarse, short prompts) and a minimal 10 Prompts set. Table 8 reveals that
prompt granularity is not a bottleneck; the schedule learned from 5-word prompts outperforms prior
state-of-the-art methods with only a slight reduction in speedup. However, reducing the volume to
just 10 prompts causes noticeable degradation in MJHQ FID (rising to 10.02).

Conclusion: These results suggest that the quantity of prompts is the primary driver of schedule
robustness, whereas the specific source, length, or semantic domain of the prompts is secondary. As
such, gathering a sufficiently large (approx. 100) set of calibration prompts for ECAD is surprisingly
simple and flexible.

Generate 100 prompts for benchmarking image generation models (such as PixArt
Alpha, Stable Diffusion, etc.). The prompts should be brief (e.g. not granular),
with no more than 5 words per prompt.

Figure 11: ChatGPT prompt used to generate the set of 100 short (5-word) prompts.

Table 7: Ablation of calibration prompt set source. Comparison of ECAD performance
when calibrated on human-curated prompt sets Image Reward Benchmark and DrawBench200
versus a ChatGPT-generated set. Metrics include Image Reward (IR) on each prompt set,
MJHQ-30K FID, CLIP score, and latency. Each result reflects the highest-TMACs schedule
from the Pareto frontier after 100 generations. IRB, DB200, GPT-Gen, and PP refer to the Im-
age Reward Benchmark, DrawBench200, GPT Generated, and PartiPrompts prompt sets, respectively.

Calibration Prompt Set # of calib. prompts # imgs per prompt ms / img↓ (speedup↑) IRB IR↑ DB200 IR↑ GPT-Gen IR↑ PP IR↑ FID↓ CLIP↑
Image Reward Benchmark 100 10 100.68 (1.65x) 0.94 0.77 1.21 1.00 8.18 32.88
DrawBench200 200 5 99.53 (1.67x) 0.87 0.79 1.19 1.00 8.90 32.93
GPT Generated 100 10 104.66 (1.58x) 0.93 0.79 1.24 1.00 8.05 32.85

A.5 HYPERPARAMETER ABLATIONS

To better characterize the behavior of ECAD, we conduct two ablations on two different sets of
hyperparameters. The first is over the hyperparameters that are agnostic to the genetic algorithm
used – population size, the number of images generated per prompt, and the number of prompts. The
second is over the NSGA-II hyperparameters, but it should be noted that other genetic algorithms can
be employed.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Ablation of calibration prompt diversity and size. We compare the baseline (Image
Reward Benchmark) against domain-specific (Painted Landscapes), coarse (5-Word), and minimal
(10 Prompts) calibration sets. Metrics include Image Reward (IR), MJHQ, and COCO. Each result
reflects the highest-TMACs schedule from the Pareto frontier after 100 generations, except for “5
Word Prompts (Faster)”, which is selected to provide an additional reference point for high-speed
performance.
Calibration Set ms / img↓ (speedup↑) Calib. Set IR↑ PP IR↑ MJHQ FID↓ MJHQ CLIP↑ COCO FID↓ COCO CLIP↑
ImageReward Benchmark 100.68 (1.65x) 0.94 1.00 8.18 32.88 21.40 31.48
Painted Landscapes 95.41 (1.74x) 1.20 0.97 8.55 32.85 20.82 31.58
10 Prompts 97.87 (1.69x) 1.31 0.94 10.02 32.84 25.27 31.51
5 Word Prompts (Highest TMACs) 109.18 (1.52x) 1.01 0.98 7.42 32.82 20.05 31.46
5 Word Prompts (Faster) 95.27 (1.74x) 1.00 1.00 8.76 32.76 21.68 31.36

The former ablation is shown in Figure 7 and we include plots of the evolution over generations for
each configuration. Figure 16 illustrates the impact of reducing the population size. This setting
results in slightly noisier frontiers and slight performance degradation across all metrics: the MJHQ-
30K FID worsens slightly and latency increases by 22 ms over the baseline–the largest increase among
all ablations. Figure 17 examines the effect of reducing the number of images per prompt from 10 to
3, while keeping 100 prompts and a population of 72. This configuration achieves the fastest latency
at 100.30 ms, the highest calibration Image Reward of 0.96, and the smallest increase in MJHQ-30K
FID. In Figure 18, we reduce the number of prompts from 100 to 33 while maintaining 10 images
per prompt. This setup exhibits the cleanest convergence behavior but significantly underperforms
on calibration Image Reward and its final Pareto frontier is dominated by other settings. However,
its PartiPrompts score remains competitive and it produces the best FID, suggesting the subset of
prompts were challenging enough for some generalization. Detailed results for the highest-TMACs
schedule after 100 generations under each hyperparameter setting are shown in Table 10.

The latter ablation, with results in Table 9, modifies one of each of the following hyperparameters:
the number of crossover points, mutation probability, and if direct copies are allowed. Refer to
Appendix A.7 for the purpose of each of these. The results show disallowing direct copies of
parents improves inference speed but significantly worsens FID (8.60→ 9.64), as strong schedules
are more frequently ‘churned’ with lower quality ones. Reducing the mutation rate to 1% has the
greatest inference speed-up, as it reduces exploration and increases exploitation, but results in poor
quality. Conversely, both reducing crossover to 1 point and increasing mutation rate to 15% both
slow convergence. The high mutation rate promotes exploration and seems to prevent the high-FID
local-minima seen in 1% mutation rate. Metrics across most configurations remain relatively stable,
meaning a set of good-enough standard hyperparameters for your genetic algorithm is sufficient for
ECAD.

Table 9: Ablation comparing the effects of hyperparameters on NSGA-II. Each row modifies
exactly one hyperparameter, examining effects on computational cost (TMACs), latency, image
quality metrics (Calibration Image Reward (IR), PartiPrompts IR), and MJHQ FID. All experiments
use the highest-TMAC schedule after 100 generations, generating 3 images per prompt, with 100
prompts from the Image Reward prompt set, and with a population size of 72. Crossover probability
(P (Cross)) is the probability the parent’s DNA is not directly copied to the offspring. k Point
crossover refers to the number of splices made to connect the parent’s DNA, and the P (Mut) is the
probability that an offspring will be mutated.

Experiment Condition TMACs ms / img↓ (speedup↑) Calibration IR↑ PartiPrompts IR↑ FID↓
Baseline: P (Cross) = 0.9, 4 Point Cross, P (Mut) = 0.05) 2.89 100.30 (1.65x) 0.96 0.99 8.60
No Direct Copies (P (cross = 1.0) 2.46 94.02 (1.76x) 0.97 0.99 9.64
1 Point Crossover 3.51 114.78 (1.44x) 0.96 1.01 8.87
6 Point Crossover 2.38 93.52 (1.77x) 0.98 1.01 8.57
P (Mutation) = 0.01 2.35 90.40 (1.83x) 0.97 0.98 9.11
P (Mutation) = 0.15 3.97 127.83 (1.30x) 0.96 1.00 8.70

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Genetic hyperparameter ablations. Performance of ECAD when varying population
size, number of images per prompt, and number of calibration prompts. We report latency, Image
Reward on calibration and unseen PartiPrompts, and MJHQ-30K FID. Each result corresponds to the
highest-TMACs schedule lying on the Pareto frontier after 100 generations.

Population Size # imgs per prompt # of calibration prompts ms / img↓ (speedup↑) Calibration IR↑ PartiPrompts IR↑ FID↓
72 10 100 100.68 (1.65x) 0.94 1.00 8.18
24 10 100 122.96 (1.35x) 0.93 1.00 8.92
72 3 100 100.30 (1.65x) 0.96 0.99 8.60
72 10 33 110.44 (1.50x) 0.85 0.99 7.52

A.6 NUMBER OF INFERENCE STEPS ABLATION

We examine how the number of inference steps affects the performance of ECAD-generated schedules.
Since ECAD produces schedules optimized for a particular step count, this ablation evaluates their
robustness when applied at a different inference step setting.

We first learn ECAD schedules using 10 steps on DPM-Solver++ for 100 generations with standard
hyperparameters, then upscale the binary mask of the schedule with the highest TMACs to 20 steps by
duplicating each step. Formally, given a 10-step schedule S10, we define step i of the corresponding
20-step schedule S20 as

S20 [i] = S10

[⌊
i
2

⌋]
, i = 0, 1, . . . , 19

We similarly learn schedules at 20 steps and downscale to 10 steps by caching a component at step i
of S10 only if it is cached in both corresponding steps 2i and 2i+1 of S20. Recalling that 0 indicates
caching in S, for each block b and component c we define

S10[i, b, c] = S20[2i, b, c] ∨ S20[2i+ 1, b, c], i = 0, 1, . . . , 9

Table 11 presents evaluation results. Applying a 10-step ECAD schedule at 20 inference steps yields
improvements in both Image Reward and FID compared to the unaccelerated baseline. Conversely,
using a conservative downscaling strategy reduces the overall speedup but still maintains performance
gains over the baseline. Note that while the schedules here are evaluated as-is, they could also serve
as starting points for further refinement or adaptation.

Table 11: Inference step ablation. We optimize ECAD on PixArt-α for 100 generations with
standard hyperparameters, for 10 and 20 inference steps on DPM-Solver++. We then evaluate the
highest-TMACs schedule from the Pareto frontier for both 10 and 20 steps, up- and down-scaling
the learned caching schedules appropriately. Reported metrics include latency, Image Reward
performance on the Image Reward prompt set (Calib. IR) and the unseen PartiPrompts set (PP IR), as
well as both FID and CLIP scores on MJHQ-30K and MS-COCO2017-30K.

Acceleration Type Train Steps Eval Steps ms / img↓ (speedup↑) Calib. IR↑ PP IR↑ MJHQ FID↓ MJHQ CLIP↑ COCO FID↓ COCO CLIP↑
None 20 20 165.74 (1.00x) 0.90 0.97 9.75 32.77 24.84 31.29
ECAD 20 20 100.68 (1.65x) 0.94 1.00 8.18 32.88 21.40 31.48
ECAD 10 20 121.04 (1.37x) 0.94 1.01 8.80 32.74 21.67 31.33

None 10 10 89.85 (1.00x) 0.84 0.90 10.83 32.77 25.82 31.42
ECAD 10 10 66.69 (1.35x) 0.93 0.97 8.35 32.62 22.02 31.40
ECAD 20 10 75.24 (1.19x) 0.89 0.95 9.30 32.87 23.75 31.57

A.7 GENETIC ALGORITHM EVOLUTIONARY STEP IN DETAIL

The evolutionary step occurs once at the end of each generation to create new offspring for the
subsequent generation. This step takes negligible time (< 1 minute) and does not require a GPU.
Formally, this step can be understood as follows:

Given a population Pg of size n at generation g, ECAD employs the NSGA-II algorithm (Blank &
Deb, 2020; Deb & Jain, 2013) to produce the next generation Pg+1 through the following steps:

1. Selection and Offspring Generation: An offspring population Qg, also of size n, is
generated from Pg via binary tournament selection by repeating the following process until

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Qg is filled. Two pairs of candidates are randomly sampled from Pg. Within each pair,
a tournament is conducted by first comparing candidates by Pareto rank, then breaking
ties using crowding distance. The winners from each pair undergo crossover, followed by
mutation, to generate offspring.

2. Crossover: With a probability of 0.9, we apply 4-point crossover to the binary caching
tensors of the parent schedules. Four distinct crossover points are randomly selected along
the flattened tensor, and two offspring are created by alternating segments between parents.
With probability 0.1, the offspring are direct copies of their respective parents.

3. Mutation: Each candidate in Qg undergoes bit-flip mutation with a probability of 0.05.
If selected, each bit in the binary tensor S ∈ {0, 1}N×B×C is independently flipped with
probability 1

N×B×C . Note that after this step, we force all components in all blocks to be
recomputed on the first step, since there is no ’cached’ value to be reused.

4. Non-Dominated Sorting: The union Pg ∪ Qg (size 2n) is sorted into Pareto fronts
F0, F1, . . . , Fd based on dominance. For each candidate c, we compute Domc(R), the
number of candidates that dominate c in some set of candidates R. Fronts are defined
iteratively as:

F0 := {c ∈ Pg ∪Qg | Domc(Pg ∪Qg) = 0}
F1 := {c ∈ (Pg ∪Qg) \ F0 | Domc((Pg ∪Qg) \ F0) = 0}

...

Fi := {c ∈ (Pg ∪Qg) \
i−1⋃
j=0

Fj | Domc((Pg ∪Qg) \
i−1⋃
j=0

Fj) = 0}

Note candidates in front Fi are said to be of Pareto rank i; lower rank candidates are ‘fitter’
solutions. Each front Fi contains candidates not dominated by any candidate in fronts of
higher rank.

5. Population Selection: The next generation Pg+1 is filled by sequentially adding complete
fronts F0, F1, . . . until the population size n is reached. If a front Fk cannot be fully
accommodated, it is sorted by crowding distance. The most diverse candidatesthose with the
fewest close neighborsare selected to fill the remaining slots, always including the extrema
to preserve frontier diversity.

A.8 POPULATION INITIALIZATION

We initialize the first generation of schedules for PixArt-α using a diverse set of heuristic strategies
informed by prior work. Each heuristic varies caching behavior based on step/block selection patterns:

• Cross-Attention Only: Cache cross-attention at s evenly spaced steps. At each selected
step, cache the cross-attention of b DiT blocks, evenly spaced across the total 28 blocks.

• Self-Attention Only: Identical to the above, but cache only self-attention.
• Feedforward Only: Identical to the above, but cache only feedforward layers.
• Cross- & Self-Attention, All Blocks: Cache both cross- and self-attention for all blocks at

every nth step.
• FORA-inspired: Following (Selvaraju et al., 2024), cache cross-attention, self-attention,

and feedforward layers for all blocks at every nth step.
• TGATE-inspired: Following the gating mechanism from (Liu et al., 2024b), set gate step
m and interval k. After the first two warm-up steps, compute self-attention every k steps,
caching and reusing otherwise. After step m, self-attention is computed every step, while
cross-attention is not recomputed and reuses the cached output from step m. Unlike TGATE,
which averages the cross attention activation on text and null-text embeddings, we cache
only the the result from the text embedding.

The resulting Pareto frontiers for these heuristics are shown in Figure 12. From the complete set of
generated schedules, we randomly select 72 to initialize ECAD’s first generation for PixArt-α.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

For PixArt-Σ, as summarized in Section 4.2, we initialize with 72 schedules randomly sampled from
the Pareto frontier of PixArt-α after 200 generations of ECAD optimization.

For FLUX-1.dev, we start with a FORA-inspired schedule, apply a few rounds of mutation and
crossover, and randomly select 24 candidates to initialize ECAD.

When initializing populations, it is suggested to include at least one schedule that is near identical
to the uncached baseline and one that is nearly fully-cached. The former will allow ECAD to find
schedules with the highest image quality possible, and the latter will promote faster convergence to
efficient schedules.

To better understand this, we analyze two random initialization strategies. We find that a naive
random sampling of binary masks (True Random) is suboptimal; due to the Central Limit Theorem,
candidate schedules cluster around the mean sparsity, failing to explore the extremes of the Pareto
frontier (Figure 13).

To address this, we propose Uniform Random Initialization, which samples uniformly across the
computational cost spectrum [0, Cmax]. We first sample a target budget C∗ ∼ U(0, Cmax). We
then determine valid integer counts kc for each component c ∈ {FF, SA,CA} with GMAC cost
wc by solving the linear Diophantine equation

∑
wckc ≈ C∗. This is solved efficiently by iterating

over the highest-weighted component (kFF) and solving the remaining two-variable equation using
the Extended Euclidean Algorithm:

wSAkSA + wCAkCA = C∗ − wFF kFF

From the solution set, we sample a tuple (kFF , kSA, kCA) and distribute the active flags uniformly
across the N ×B spatiotemporal positions.

As detailed in Table 12, while Heuristic initialization yields the best performance (1.65× speedup,
8.18 MJHQ FID), Uniform Random significantly outperforms True Random (1.60× vs. 1.28×
speedup) and prevents the population diversity collapse observed in the naive approach.

1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Caching Cross-Attention Evenly Across Blocks
Caching Self-Attention Evenly Across Blocks
Caching Feed Forward Evenly Across Blocks
Caching Self-, Cross-Attention on All Blocks Every N Steps
FORA
TGATE Inspired
Unaccelerated

Figure 12: Pareto frontiers of Image Reward vs. computational cost for the handcrafted schedules
described in Section A.8, evaluated on the Image Reward Benchmark. Notably, caching a single
component (e.g., cross-attention or feedforward) offers slight gains over baseline. Among all
heuristics, FORA achieves the best trade-off, with slightly lower quality but superior efficiency.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Total TMACs

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Im
ag

e
Re

wa
rd

Heuristic Initialization

0 1 2 3 4 5
Total TMACs

Random Initialization Over Compute Complexity

0 1 2 3 4 5
Total TMACs

Random Initialization Over Schedule Tensors

Schedule Type
Heuristic Init
Heuristic Init (Gen 1)
Random By Compute
Random By Compute (Gen 1)
Random By Tensor
Random By Tensor (Gen 1)
Frontier Across All Generations
Unaccelerated

20

40

60

80

100

Generation Num
ber

20

40

60

80

100

Generation Num
ber

20

40

60

80

100

Generation Num
ber

Figure 13: Schedule Initialization Ablation. We initialize the first 72 candidates of generation
1 with three methods: heuristics as described in Section A.8, a random sample over the binary
caching tensors, and sampling such that we have a uniform spread of compute complexity (TMACs).
Heuristics converge the quickest, and achieve higher Image Reward performance. Uniform sampling
over TMACs performs well, while randomly sampling caching schedule results in heavy grouping
which prevents ECAD from optimizing effectively.

Table 12: Ablation of initialization strategies. Comparison of ECAD performance using different
initialization methods. Heuristic initialization yields the highest speedup and fidelity metrics
compared to random initialization baselines. All evaluations are conducted on the schedule with the
highest TMACs after 100 generations on default settings, except for ‘Uniform Random (Closest)’,
which is selected to have the closest speedup to the Heuristic schedule for a more fair comparison.

Initialization ms / img↓ (speedup↑) ImageReward IR↑ PP IR↑ MJHQ FID↓ MJHQ CLIP↑ COCO FID↓ COCO CLIP↑
Heuristic 100.68 (1.65x) 0.94 1.00 8.18 32.88 21.40 31.48
Uniform Random 150.52 (1.10x) 0.92 0.95 9.37 32.71 22.35 31.32
Uniform Random (Closest) 103.79 (1.60x) 0.91 0.93 9.29 32.70 23.40 31.34
True Random 129.88 (1.28x) 0.64 0.61 13.77 31.74 24.14 30.68

Table 13: FLUX-1.dev Performance on GenEval and DPG Bench. We compare our and other
methods from Table 1 on the GenEval and DPG Bench benchmarks using FLUX-1.dev (20 steps,
256× 256). Our method does not impact GenEval Overall score at 2.58× acceleration while other
methods result in 2% to 22% quality decrease for lower acceleration. Our method achieves the
highest speedups while even slightly improving the DPG Bench score, whereas other aggressive
caching strategies degrade performance.

Setting Latency GenEval Overall DPG Bench

Caching Setting TMACs↓ ms / img↓ (speedup↑) Score % Decrease Score % Decrease

None 198.69 2620.09 (1.00x) 0.5842 – 22.7058 –
ToCa N = 4, R = 90% 42.96∗ 1576.97 (1.66x)∗ 0.5517 5.56% 22.8215 -0.51%
DiCache 62.23 1161.86 (2.26x) 0.5699 2.45% 22.6946 0.05%
TaylorSeer N = 5, O = 2 59.88∗ 1028.66 (2.55x)∗ 0.4531 22.44% 22.4695 1.04%
TaylorSeer N = 6, O = 1 49.97∗ 865.97 (3.03x)∗ 0.3399 41.81% 21.6869 4.49%
Ours Fast 63.02 1016.59 (2.58x) 0.5892 -0.86% 22.8364 -0.58%
Ours Fastest 43.60 778.17 (3.37x) 0.5258 10.00% 23.5098 -3.54%

∗Refer to Appendix A.11 for a detailed explanation of MAC and latency calculations.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.9 ADDITIONAL FLUX-1.DEV RESULTS

To further demonstrate the robustness of our method, we include supplementary quantitative results
on the GenEval (Ghosh et al., 2023) and DPG Bench (Hu et al., 2024) in Table 13. Both methods
use the official prompt sets provided by each respective method, with 4 images generated per
prompt. Our method “Fast” schedule from Table 1 achieves 2.58× acceleration with slightly higher
performance on each metric as compared with the uncached baseline, while other methods result
in quality degradation. Our “Fastest” schedule trades only some image quality to achieve 3.37×
acceleration.

A.10 OPTIMIZATION COST AND LIMITATIONS OF ECAD

ECAD introduces an offline optimization phase that searches over binary caching schedules. This
search is a one-time cost per model family: once a schedule (or set of schedules) is learned, it can
be reused for that architecture and shared with downstream users, who simply choose an operating
point on the qualitylatency frontier.

In our PixArt configurations, the full “fast/faster/fastest” frontier requires ≈ 700 NVIDIA A6000
GPU-hours with a research-oriented implementation. However, competitive operating points can
be obtained much more cheaply: the “fast” schedule with SOTA performance is discovered in
only 358 generations (just 470 GPU-hours). 100 generations with default settings, resulting in the
schedule with a 16% reduction in MJHQ FID over baseline, costs 145 GPU-hours. But with minor
engineering changes, we achieve a schedule with an identical 1.65× speedup, 11.8% MJHQ FID
reduction over baseline, in only 44 GPU-hours. As such, these figures should be viewed as upper
bounds given an under-optimized research framework.

The focus of this work is the algorithmic framework: formulating diffusion caching as a multi-
objective optimization problem and demonstrating that a simple genetic algorithm can discover
strong Pareto fronts across models and resolutions. System-level engineering—e.g., optimized
kernels, greater hardware utilization, and torch.compile integration—is orthogonal to ECAD
and can further reduce wall-clock search time without changing the method.

A key limitation is that ECAD adds an up-front compute cost. Nevertheless, unlike training-based
accelerations, ECAD does not require gradients or weight updates, has lower VRAM requirements,
and can be run asynchronously across heterogeneous, lower-end GPUs. For large-scale services
employing ECAD, the one-time optimization cost is quickly amortized by the per-sample latency
savings.

Table 14: Parameters used for latency evaluation. W is the number of warm-up batches discarded, N
is the number of batches used to compute the average latency, and B is the largest batch size that fits
in memory on a single NVIDIA A6000 GPU. All values are empirically chosen to ensure stable and
consistent measurements.

Model Name Resolution Warm-up (W) Measured (N) Batch Size (B)

PixArt-α 256× 256 1 5 100
PixArt-Σ 256× 256 1 5 100
FLUX-1.dev 256× 256 1 10 18
FLUX-1.dev 1024× 1024 5 25 3

A.11 MAC AND LATENCY COMPUTATIONS

Latency Setup: Latency measurements are conducted on a single NVIDIA A6000 GPU for all
models. For each model, we discard the first W warm-up batches and compute the mean latency
over the subsequent N measured batches, using prompts from the Image Reward Benchmark. The
reported per-image latency is obtained by dividing the average batch latency by the batch size B,
except in the case of ToCa (see section below). Detailed configuration parameters are provided in
Table 14.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Latency Results: The publicly available implementation for some prior works, denoted by ∗ in
tables, differed substantially from the infrastructure employed in our framework. While all methods
use the same GPU (NVIDIA A6000) and identical warm-up and batch settings, ToCa and DuCa,
for example, consistently produces higher latency measurements. To enable fair comparison, we
normalize reported latencies by computing the relative speedup of each setting over its own baseline,
then applying this speedup to our unaccelerated baseline latency:

Normalized LatencyOther =
Latencycached

Other

Latencyunaccelerated
Other

× Latencyunaccelerated
Ours

This procedure ensures that the reported values reflect performance improvements relative to each
methods own baseline, enabling direct comparison across implementations. See Table 15 for details.

ToCa MAC Results: Multiply-accumulate operation (MAC) counts for ToCa are derived using the
analytical formulations provided in the original work (Zou et al., 2025), specifically Section A.4. The
relevant expressions are:

MACsSA ≈ 4N1D
2 + 2N2

1D +
5

2
N2

1H

MACsCA ≈ 2D2(N1 +N2) + 2N1N2D +
5

2
N1N2H

MACsFFN ≈ 8N1D
2
FFN + 12N1DFFN

Here, N1 and N2 denote the number of image and text tokens respectively, D is the hidden state
dimensionality, DFFN refers to the dimensionality within the feedforward network, and H is the
number of attention heads. Results from DuCa (Zou et al., 2024), a concurrent method that builds
upon ToCa, confirm that these approximations closely match empirical MAC counts.

TaylorSeer MAC Results: We compute MACs and FLOPs for all DiT models with the calflops
from Ye (2023). However, when matching our configuration to that reported in Liu et al. (2025a), we
find our computed FLOPs to always be different by a factor of exactly 1.249× due to differences in
implementation. As such, we report our computed values as is for consistency with other models, and
note this scaling factor here.

A.12 COMPARISON TO CONCURRENT WORKS

Although our method is thoroughly evaluated against established baselines (prior works), comparison
with concurrent works is limited. Neither SpeCa (Liu et al., 2025c) nor ClusCa (Zheng et al., 2025)
currently have completely functional public code. The high acceleration figures reported for these
works are partly attributable to their choice of a 50-step setting. In our experiments, we focus on the
20 steps setting, which is already 2.5x faster than 50 step with minimal reduction in image quality.
We also note that ClusCa shows improvements in memory overhead compared to TaylorSeer (Liu
et al., 2025a), but still incurs roughly 10% additional cost (Zheng et al., 2025), which in practice
constrains batch size. In contrast, ECAD introduces no memory overhead. Finally, because SpeCa
and ClusCa depend on human-tuned hyperparameters (e.g., propagation ratio, cluster size, and cache
interval), ECAD’s optimization framework could, in principle, be extended to automatically learn
such parameters to tune these methods.

A.13 ADDITIONAL ECAD OPTIMIZATION PLOTS

Figure 14 illustrates the progression of ECAD optimization for PixArt-Σ and FLUX-1.dev at 256×256
resolution. PixArt-Σ converges rapidly, likely due to its initialization from pre-optimized schedules
learned on PixArt-α. FLUX-1.dev converges to a steeper Pareto frontier, with its resulting schedules
substantially outperforming the unaccelerated baseline on the Image Reward benchmark. We hypoth-
esize that this steep convergence is facilitated by an initial population with a relatively high mean
acceleration. See Section A.8 for additional details on population initialization.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 15: Latency normalization details across different models and resolutions. “True ms / img”
refers to direct latency measured from the official implementation. “Speedup” is computed relative to
each methods own unaccelerated baseline, and “Normalized ms / img” applies that speedup to our
unaccelerated latency for fair comparison. Note we reduced batch size for TaylorSeer due to its high
VRAM requirements.

Model Resolution Implementation Caching Setting True ms / img↓ Speedup↑ Normalized ms / img↓
Ours None 165.736
ToCa None 948.688 1.000x 165.736
ToCa ToCa N = 3,R = 60% 519.258 1.827x 90.715
ToCa ToCa N = 3,R = 90% 403.989 2.348x 70.577

DuCa None 981.263 1.000x 165.736
DuCa DuCa N = 3,R = 60% 429.405 2.285x 72.527

PixArt-α 256×256

DuCa DuCa N = 3,R = 90% 379.411 2.586x 64.083

Ours None 167.624
ToCa None 925.024 1.000x 167.624
ToCa ToCa N = 3,R = 60% 520.286 1.778x 94.281PixArt-Σ 256×256
ToCa ToCa N = 3,R = 90% 403.038 2.295x 73.035

Ours None 2620.095
ToCa None 3385.153 1.000x 2620.095
ToCa ToCa N = 4,R = 90% 2037.433 1.661x 1576.965
ToCa ToCa N = 5,R = 90% 1935.554 1.747x 1499.949

TaylorSeer None batch = 10 2657.782 1.000x
TaylorSeer TaylorSeer N = 5,O = 2 1043.457 2.547x 1028.661
TaylorSeer None batch = 18 2630.581 1.000x

256×256

TaylorSeer TaylorSeer N = 6,O = 1 869.438 3.026x 865.972

Ours None 18297.603
ToCa None 34109.719 1.000x 18297.603
ToCa ToCa N = 4,R = 90% 13832.082 2.466x 7419.995

TaylorSeer None batch = 1 18947.390 1.000x
TaylorSeer TaylorSeer N = 5,O = 2 7452.669 2.542x 7197.085

FLUX-1.dev

1024×1024

TaylorSeer TaylorSeer N = 6,O = 1 6219.621 3.046x 6006.323

Additionally, we include the Pareto frontier of PixArt-Σ as measured by Image Reward on the unseen
PartiPrompts set vs. image generation latency in Figure 15. Our method achieves Pareto dominance
over FORA but does reach the unaccelerated baseline’s level of performance.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Total TMACs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Im
ag

e
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated - 5.71 TMACs

10

20

30

40

50

Generation Num
ber

20 40 60 80 100 120 140 160
Total TMACs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Im
ag

e
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated - 198.69 TMACs

50

100

150

200

Generation Num
ber

Figure 14: Progress of ECAD optimization as measured by Image Reward and TMACs. Left:
PixArt-Σ optimized for 50 generations, initialized using 200 generations of PixArt-α optimization.
Right: FLUX-1.dev optimized for 250 generations, initialized using basic heuristics.

A.14 VISUALIZING ECAD SCHEDULES

To better understand how ECAD optimizes caching schedules under different constraints and settings,
we visualize selected schedules using heatmaps. Each heatmap represents a schedule, where red

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

60 80 100 120 140 160
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Ours
ToCa PixArt-
FORA
Unaccelerated
Ours - Fast

Figure 15: PartiPrompt Image Reward vs. latency for PixArt-Σ. Note that ToCa is not optimized
for PixArt-Σ and its parameters are transferred from PixArt-α. Our method achieves Pareto domi-
nance with a significant margin, but does not reach baseline performance.

shades indicate cached components and gray shades indicate recomputed components. For PixArt
models, the component order left-to-right is self-attention, cross-attention, and feedforward. FLUX-
1.dev uses two types of DiT blocks. Block numbers 0 to 18 are full FLUX DiT blocks, whose
components are multi-stream joint-attention, feedforward, and feedforward context. Blocks 19 to 56
are single blocks with components single-stream joint-attention, linear MLP input projection, and
linear MLP output projection. Figure 21 and Figure 24 show representative schedules for PixArt-α
and PixArt-Σ used throughout the paper. Figure 22 compares FLUX-1.dev’s ‘slow’ and ‘fastest’
schedules. Furthermore, Figure 23 visualizes how ECAD schedules evolve over time for PixArt-α,
comparing the highest-TMACs candidate at generations 50, 200, and 400. Finally, Figure 25 presents
the highest-TMACs schedules resulting from our genetic hyperparameter ablations, illustrating how
variations in population size impact the structure of learned caching strategies.

A.15 FURTHER QUALITATIVE RESULTS

In addition to the PixArt-α 256×256 results shown in Figure 4, we present further qualitative
comparisons using FLUX-1.dev at 256×256 (Figure 26) and 1024×1024 (Figure 27). Notably, in
prompts such as “I want to supplement vitamin c, please help me paint related food,” our method
exhibits stronger prompt adherence than both the uncached baseline and ToCa. This behavior is
likely influenced by ECAD’s optimization for the Image Reward metric, which emphasizes semantic
alignment with the prompt.

Full Prompts from Figure 4, from left to right:

• “Three-quarters front view of a blue 1977 Porsche 911 coming around a curve in a mountain
road and looking over a green valley on a cloudy day.”

• “a portrait of an old man”
• “A section of the Great Wall in the mountains. detailed charcoal sketch.”
• “a still life painting of a pair of shoes”
• “a blue cow is standing next to a tree with red leaves and yellow fruit. the cow is standing in

a field with white flowers. impressionistic painting”
• “the Parthenon”

Full Prompts from Figure 26, 27, from top-to-bottom:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• “Drone view of waves crashing against the rugged cliffs along Big Surs Garay Point beach.
The crashing blue waters create white-tipped waves, while the golden light of the setting
sun illuminates the rocky shore.”

• “Bright scene, aerial view, ancient city, fantasy, gorgeous light, mirror reflection, high detail,
wide angle lens.”

• “3d digital art of an adorable ghost, glowing within, holding a heart shaped pumpkin,
Halloween, super cute, spooky haunted house background”

• “8k uhd A man looks up at the starry sky, lonely and ethereal, Minimalism, Chaotic compo-
sition Op Art”

• “I want to supplement vitamin c, please help me paint related food.”

• “A deep forest clearing with a mirrored pond reflecting a galaxy-filled night sky.”

• “A person standing on the desert, desert waves, gossip illustration, half red, half blue, abstract
image of sand, clear style, trendy illustration, outdoor, top view, clear style, precision art,
ultra high definition image”

Full Prompts from Figure 28, from top-to-bottom:

• “Eiffel Tower was Made up of more than 2 million translucent straws to look like a cloud,
with the bell tower at the top of the building, Michel installed huge foam-making machines
in the forest to blow huge amounts of unpredictable wet clouds in the building’s classic
architecture.”

• “Mural Painted of Prince in Purple Rain on side of 5 story brick building next to zen garden
vacant lot in the urban center district, rgb”

• “Editorial photoshoot of a old woman, high fashion 2000s fashion Steampunk makeup, in
the style of vray tracing, colorful impasto, uhd image, indonesian art, fine feather details
with bright red and yellow and green and pink and orange colours, intricate patterns and
details, dark cyan and amber makeup. Rich colourful plumes. Victorian style.”

Full Prompts from Figure 29, from top-to-bottom:

• “a handsome villain in his early 40s with very short bleach blonde hair and glowing red eyes
wearing a blue armor and red cape. hyperrealistic, mythological, regal, 8k, medieval.”

• “logo, simplistic, art style, multiple parallel universes together, different ages and themes
over an open book ”

• “professional Food photography, BeerenProteinSmoothie in a glass decorated with a mint
leaf, high quality, hyper, detailed, beautifully color, beautifully color graded, cinematic ”

• “iphone wallpaper, conceptual art colorful design, splash of colors, racing car drifting, ultra
fine detailed art ”

A.16 CLARIFYING FRONTIER VISUALIZATIONS

Several frontier plots–such as Figures 16, 17, and 18–show both the Pareto frontier of individual
generations (typically shown in color) and the overall frontier aggregated across all generations
(typically in black). At first glance, it may seem that a generational frontier occasionally surpasses
the overall frontier. This apparent contradiction arises from interpolation between discrete candidate
schedules. As illustrated in Figure 20, the frontier from generation G appears to extend beyond the
overall frontier. However, the aggregated frontier integrates more finely sampled points, including
high-performing candidates from earlier generations (e.g., generation G−1), which are not always
aligned with the interpolated curves of later generations. The overall frontier, therefore, forms a
tighter envelope of all known Pareto-optimal schedules, even if it may visually appear to be exceeded
due to interpolation artifacts.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Total TMACs

Im
ag

e
R

ew
ar

d

Ove
ral

l F
ron

tie
r

G
en

er
at

io
n

G
 F

ro
nt

ie
r

G
en

er
at

io
n

G
 -

1
Fr

on
tie

r

Figure 20: Illustrative example of per-generation and overall Pareto frontiers in ECAD. Points
represent candidate schedules, with lines interpolated between them for visualization. Half-colored
points lie on both the generational and overall frontiers. In this example, the frontier from generation
G appears to exceed the overall frontier, highlighting interpolation ‘artifacts’ that can occur between
discrete candidate solutions.

A.17 LLM USAGE

We utilized LLMs to proof-read, check grammar, and make revision suggestions during the writing
of this manuscript.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated

20

40

60

80

100

Generation Num
ber

Figure 16: ECAD optimization progress and final Pareto frontier using a reduced population size
of 24 (compared to the default of 72), with 100 prompts and 10 images per prompt. The resulting
frontiers are noisier and exhibit slower convergence.

0 1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated

20

40

60

80

100

Generation Num
ber

Figure 17: ECAD optimization progress and final Pareto frontier using only 3 images per prompt
(default is 10), with 100 prompts and a population size of 72. This configuration demonstrates stable
convergence and achieves stronger overall performance.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated

20

40

60

80

100

Generation Num
ber

Figure 18: ECAD optimization progress and final Pareto frontier using only 33 prompts (a random
subset of the default 100), with 10 images per prompt and population size 72. Although convergence
is relatively smooth, the final frontier is constrained by the reduced prompt diversity.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Im
ag

e
Re

wa
rd

Calibration vs Evaluation Set
Calibration: IR Benchmark; Eval: IR Benchmark
Calibration: IR Benchmark; Eval: DrawBench200
Calibration: IR Benchmark; Eval: GPT Generated
Calibration: DrawBench200; Eval: DrawBench200
Calibration: DrawBench200; Eval: IR Benchmark
Calibration: DrawBench200; Eval: GPT Generated
Calibration: GPT Generated; Eval: GPT Generated
Calibration: GPT Generated; Eval: IR Benchmark
Calibration: GPT Generated; Eval: DrawBench200
Unaccelerated on DrawBench200
Unaccelerated on IR Benchmark
Unaccelerated on GPT Generated Prompts

Figure 19: ECAD calibration prompt set ablation. We show performance change when using the
DrawBench200 prompts benchmark set for calibration instead of the Image Reward set. Performance
is measured in Image Reward (IR) on the both calibration prompts, unseen PartiPrompts, and MJHQ-
30K FID and CLIP. Latency is provided as well. The schedule with the most TMACs that lies on the
Pareto frontier across all 100 generations is used in each instance.

Inference Step

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Inference Step
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 21: ECAD schedules for PixArt-α from Table 1: “faster” (left) and “fastest” (right). Despite
being separate schedules with no guarantee of relation, the “faster” schedule has near identical
structure to “fast”, with more caching along steps 6 and 16. Furthermore, it appears cross-attention
matters less than self-attention and the feedforward network during steps 16 and 17 and can safely be
cached.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556

Inference Step

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

01234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556

Figure 22: ECAD schedules “slow” (left) and “fastest” (right) for FLUX-1.dev from Table 4 and
Table 1 respectively. Despite being almost 200 generations apart, both schedules share similar
structures for the first 5 steps, particularly at step 2 for blocks 9 through 12.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Inference Step

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 23: Highest-TMACs schedules from generation 50 (left), 200 (center), and 400 (right) during
PixArt-α ECAD optimization. While steps between 8 and 15 remain somewhat similar in structure,
early and late steps change more.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Inference Step

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 24: ECAD schedule for PixArt-Σ “fast” from Table 1. Initial DiT blocks in steps 6, 9, and 12
are more important to recompute than the final blocks. Cross-attention has less of an impact than the
other components in the final three steps, with it as the only component cached in step 17.

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Inference Step

Bl
oc

k
Nu

m
be

r

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Inference Step
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Figure 25: HighestTMACs schedules after 100 generations for PixArt-α under different hyperparam-
eter ablations: (topleft) reduced population size; (topright) fewer images per prompt; (bottomleft)
fewer prompts; (bottomright) baseline configuration. All configurations realize the cacheability of
cross attention for steps where other components cannot safely be cached.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

... waves crashing
against the rugged

cliffs along Big Sur’s
Garay Point …

white-tipped waves
… golden light …

illuminates the rocky
shore

Bright scene, aerial
view, ancient city,
fantasy, gorgeous

light, mirror
reflection, high

detail, wide angle
lens.

3d digital art of an
adorable ghost,
glowing within,
holding a heart

shaped pumpkin,
Halloween, super

cute, spooky haunted
house background

... a man looks up at
the starry sky, lonely

and ethereal,
Minimalism, Chaotic

composition ...

I want to supplement
vitamin c, please help
me paint related food.

A deep forest clearing
with a mirrored pond

reflecting a
galaxy-filled night

sky.

Unaccelerated (1.00x) ToCa (1.75x) Ours (1.97x)

Figure 26: FLUX-1.dev 256×256 qualitative comparisons. Displayed left-to-right are generations
from the uncached baseline, ToCa (N = 5,R = 90%; 1.75x speedup), and our “fast” ECAD
schedule (Table 1; 1.97x speedup). ECAD consistently yields sharper images with improved prompt
adherence.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

A person standing on the desert, desert waves ... half red, half blue,
abstract image of sand ... top view, clear style, precision art

Ours (2.63x)

ToCa (2.47x)

Figure 27: FLUX-1.dev 1024×1024 qualitative comparisons. Outputs, top-to-bottom, are ToCa
(N = 4,R = 90%; 2.47x speedup), and our “fast” ECAD schedule (as shown in Table 4; 2.63x
speedup). Our method yields greater visual complexity with stronger prompt-alignment, despite
higher acceleration.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

a handsome villain in his early 40s with very short bleach
blonde hair and glowing red eyes wearing a blue armor and

red cape …

logo, simplistic … multiple parallel universes together …
over an open book

professional Food photography, BeerenProteinSmoothie in a
glass decorated with a mint leaf … detailed, beautifully color

graded …

iphone wallpaper, conceptual art … splash of colors, racing
car drifting, ultra fine detailed …

Ours (2.63x) TaylorSeer (2.54x) Ours (2.63x) TaylorSeer (2.54x)

Figure 28: FLUX-1.dev 1024×1024 further qualitative comparisons. Outputs, left-to-right, are our
“fast” ECAD schedule (as shown in Table 4; 2.63x speedup), and TaylorSeer (N = 5,O = 2; 2.54x
speedup). Prompts, from the MJHQ-30K set, and are shown without omission in Appendix A.15.
TaylorSeer’s method leads to visible patches on solid backgrounds, lower resolution, and color
distortion.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Eiffel Tower … Made
… of … translucent
straws to look like a

cloud …
foam-making

machines … blow
huge … clouds in the

building …

Mural Painted of
Prince in Purple Rain
on … brick building
next to … vacant lot

…

Editorial photoshoot
of a old woman …

2000s fashion

Steampunk makeup
… feather … with

bright red and yellow
and green and pink
and orange colours
… dark cyan and
amber makeup …

Unaccelerated (1.00x) DuCa (2.29x) Ours (2.40x)

Figure 29: PixArt-α 256×256 further qualitative comparisons. Outputs, left-to-right, are the
unaccelerated baseline, DuCa (N = 3,R = 60%; 2.29x speedup), and our “faster” ECAD schedule
(as shown in Table 1; 2.40x speedup). Our method introduces fewer artifacts and distortions.

39

	Introduction
	Related Work
	Diffusion for Image and Video Synthesis
	Accelerating Diffusion Inference

	Methods
	Preliminary: Caching Diffusion Transformers
	Genetic Algorithm as a Paradigm for Caching

	Experiments
	Experimental Settings
	Main Results
	Emergent Generalization Capabilities
	Ablation Analysis

	Discussion
	Appendix
	Diffusion Preliminary
	Cacheable Component Selection
	Quality Metric Selection
	Calibration Prompt Selection
	Hyperparameter Ablations
	Number of Inference Steps Ablation
	Genetic Algorithm Evolutionary Step in Detail
	Population Initialization
	Additional FLUX-1.dev Results
	Optimization Cost and Limitations of ECAD
	MAC and Latency Computations
	Comparison to Concurrent Works
	Additional ECAD Optimization Plots
	Visualizing ECAD Schedules
	Further Qualitative Results
	Clarifying Frontier Visualizations
	LLM Usage

