

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EVOLUTIONARY CACHING TO ACCELERATE YOUR OFF-THE-SHELF DIFFUSION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion-based image generation models excel at producing high-quality synthetic content, but suffer from slow and computationally expensive inference. Prior work has attempted to mitigate this by caching and reusing features within diffusion transformers across inference steps. These methods, however, often rely on rigid heuristics that result in limited acceleration or poor generalization across architectures. We propose **Evolutionary Caching to Accelerate Diffusion** models (ECAD), a genetic algorithm that learns efficient, per-model, caching schedules forming a Pareto frontier, using only a small set of calibration prompts. ECAD requires no modifications to network parameters or reference images. It offers significant inference speedups, enables fine-grained control over the quality-latency trade-off, and adapts seamlessly to different diffusion models. Notably, ECAD’s learned schedules can generalize effectively to resolutions and model variants not seen during calibration. We evaluate ECAD on PixArt- α , PixArt- Σ , and FLUX-1.dev using multiple metrics (FID, CLIP, Image Reward) across diverse benchmarks (COCO, MJHQ-30k, PartiPrompts), demonstrating consistent improvements over previous approaches. On PixArt- α , ECAD identifies a schedule that outperforms the previous state-of-the-art method by 4.47 COCO FID while increasing inference speedup from 2.35x to 2.58x. Our results establish ECAD as a scalable and generalizable approach for accelerating diffusion inference.

1 INTRODUCTION

Diffusion has emerged as the backbone for state-of-the-art image and video synthesis techniques (Dhariwal & Nichol, 2021; Ho et al., 2020; 2022; Liu et al., 2024c). Unlike prior methods involving deep learning, which would train a neural network to generate images in a single forward inference step, diffusion instead involves iterating over a prediction for many (20 to 50) steps (Lu et al., 2023). This process is quite expensive, and many researchers and practitioners try to reduce the latency while preserving, or even improving, the quality (Ma et al., 2023; Wimbauer et al., 2024; Selvaraju et al., 2024; Meng et al., 2023; Sauer et al., 2023). Some of these strategies involve training some model that can perform the inference in 1 to 4 steps, particularly with model distillation (Hinton et al., 2015; Meng et al., 2023). Other strategies do not train or tune any neural network weights, principally caching, where the diffusion model’s internal features are re-used across steps, allowing that computation to be skipped (Ma et al., 2023; Wimbauer et al., 2024; Li et al., 2023a).

We introduce a new conceptual and algorithmic framework for diffusion caching by reframing the problem and replacing existing heuristic-based approaches with a principled, optimization-driven methodology that is generalizable across model architectures. Existing caching methods typically offer a few discrete schedules, each with fixed trade-offs—for example, a 2x speedup with moderate quality loss, and a 3x speedup with greater degradation without support for intermediate or more aggressive configurations. However, real-world deployments often operate under variable latency or quality constraints, necessitating further flexibility. We instead formulate caching as a multi-objective optimization problem, aiming to discover a smooth Pareto frontier that reveals a wide spectrum of speed-quality trade-offs. We show our frontiers for FLUX-1.dev (Labs, 2024) in Figure 1.

Such frontiers are very challenging to produce given how caching schedules are currently derived. State-of-the-art approaches are motivated by heuristics, and key hyperparameters must be carefully hand-tuned by human practitioners based on performance on some set of key metrics (Selvaraju et al.,

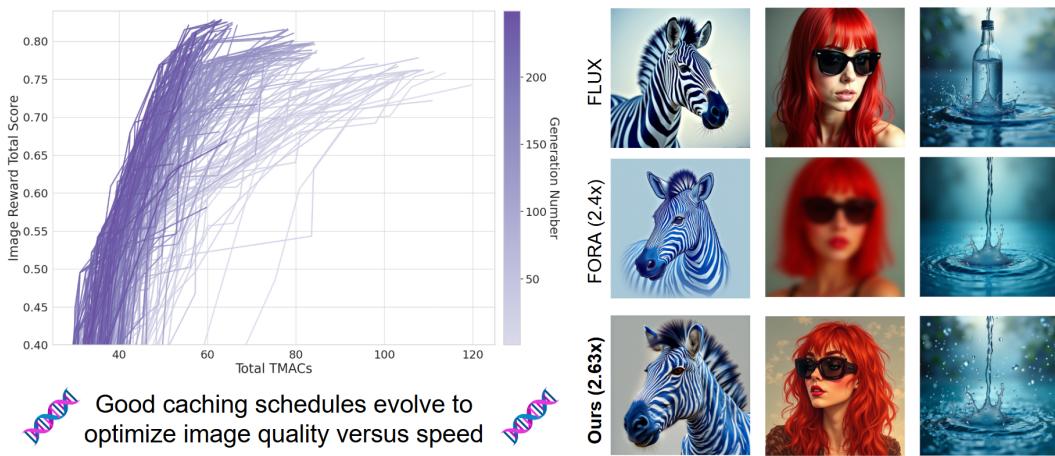


Figure 1: We conceptualize diffusion caching as a Pareto optimization problem over image quality and inference time and propose ECAD to discover such Pareto frontiers using a genetic algorithm. **Left:** performance progression over generations for FLUX-1.dev. **Right:** example 1024×1024 results with corresponding speedups.

2024; Zou et al., 2025; Liu et al., 2024b; Zou et al., 2024; Liu et al., 2025a). We propose a different paradigm that does not rely on human-defined heuristics or hyperparameters, instead discovering effective caching schedules via genetic algorithm.

Our **E**volutionary **C**aching to **A**ccelerate **D**iffusion models (ECAD) requires two components: (i) some small set of text-only “calibration” prompts and (ii) some metric which computes image quality given a prompt and generated image—we use Image Reward (Xu et al., 2023a). We formulate caching schedules such that the genetic algorithm can automatically discover which features to cache (in terms of blocks and layer types) and when (which timestep). ECAD can be initialized with either random schedules or some set of promising schedules based on prior works such as Selvaraju et al. (2024); Liu et al. (2024b). Thus, while ECAD presents a different paradigm compared to prior works, it can also build on their valuable findings. ECAD takes these initial schedules and gradually evolves them according to the mating rules of a genetic algorithm, optimizing their “fitness” according to quality and computational complexity (measured in Multiply-Accumulate Operations, *aka* MACs).

This strategy is extremely flexible. While other methods are entirely designed around whether they cache entire block outputs, intermediate layer outputs (such as the output of an attention layer, or a feedforward layer), or even specific tokens, ours is orthogonal to all of these. We offer a framework which can be used to optimize caching schedules according to any well-defined criteria. We instantiate it with our criteria and schedule definitions in Section 3, but the general principles can be applied to arbitrary criteria and schedules to find Pareto-optimal caching frontiers. For example, we could use other criteria to define fitness, such as human ratings of generated samples. We could also change the caching schedule definitions to be more granular or more coarse, to focus on certain types of layers, or incorporate heuristics from other methods. Although our experiments target text-to-image synthesis, the framework is agnostic to modality and naturally extends to class-conditioned or text-to-video tasks. Furthermore, while ECAD involves some optimization, since we do not compute any gradients or update any weights, no memory overhead is introduced. Additionally, there are no restrictions on batch size (allowing for use of single, small GPUs that would not be feasible for distillation), and the entire process can happen completely asynchronously. Beyond this, schedules could be optimized for aggressively quantized diffusion models to further improve their acceleration and quality.

Figure 1 showcases our method’s strong performance and highlights flexibility across resolutions. Although optimized for FLUX-1.dev at 256×256 , the same schedule applied to 1024×1024 still outperforms SOTA methods in both speed and quality. At 256×256 , ECAD matches or surpasses unaccelerated PixArt- α and FLUX-1.dev baselines with 1.97x and 2.58x latency reductions, respectively. At more aggressive 2.58x and 3.37x settings, quality slightly drops but remains competitive.

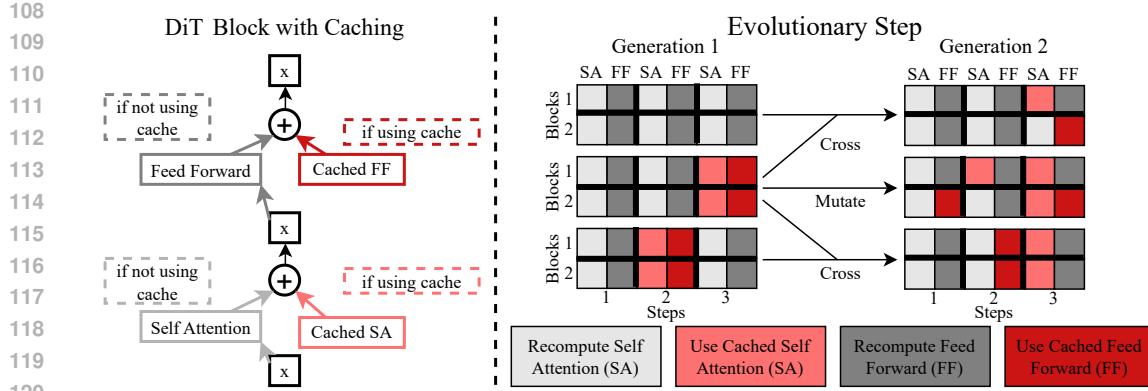


Figure 2: In the context of a transformer-based diffusion model, we describe how the transformer architecture allows for caching of attention and feedforward results separately (**left**). We then give a toy illustration of how our method might transition from one generation to the next, prioritizing mating for schedules with the best quality-speed trade-offs (**right**).

2 RELATED WORK

2.1 DIFFUSION FOR IMAGE AND VIDEO SYNTHESIS

Diffusion models predict noise, given noised image inputs, to generate high-quality images (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) and videos (Ho et al., 2022; Blattmann et al., 2023; Liu et al., 2024c). To save time and reduce feature sizes, these computations are typically performed in the latent space (Rombach et al., 2022) of a pre-trained variational autoencoder (Kingma & Welling, 2014). Although earlier works use U-Net backbones (Ronneberger et al., 2015), more recent methods rely mainly on transformer-based models (Vaswani et al., 2017; Dosovitskiy et al., 2020; Peebles & Xie, 2023; Bao et al., 2023), especially Diffusion Transformers (DiTs) (Peebles & Xie, 2023), which dominate the current landscape due to their powerful scaling properties (Chen et al., 2023; Esser et al., 2024; Liu et al., 2024c; Labs, 2024). Text-conditioning with multimodal models like CLIP (Radford et al., 2021), or extremely powerful text models like T5 (Raffel et al., 2023), allows for more granular control over image content (Saharia et al., 2022a; Ramesh et al., 2022; Nichol et al., 2022; Ruiz et al., 2023; Podell et al., 2023), not only in generative pipelines but also for editing (Kawar et al., 2023; Brooks et al., 2023; Sun et al., 2024; Ceylan et al., 2023; Chai et al., 2023).

2.2 ACCELERATING DIFFUSION INFERENCE

Training. Many works accelerate diffusion by training or fine-tuning models. Knowledge distillation (Hinton et al., 2015) trains a smaller or faster model to mimic the teacher, reducing steps but at high training cost and some quality loss (Salimans & Ho, 2022; Meng et al., 2023; Luo et al., 2023; Lee et al., 2024; Sauer et al., 2023; Kohler et al., 2024; Yin et al., 2023; Xu et al., 2023b). Other approaches train auxiliary modules to predict skip connections (Jiang et al., 2023), internal features (Gwilliam et al., 2025), caching configurations (Ma et al., 2024), or adaptive step schedules (Zhang et al., 2023). Network compression via pruning (Zhu et al., 2024; Fang et al., 2023) or quantization similarly requires retraining to recover accuracy, while post-training quantization offers limited gains in speed (Li et al., 2023b; Shang et al., 2023).

Training-free. An alternative direction accelerates inference without modifying model parameters by caching and reusing intermediate features. Early strategies designed for U-Nets (Li et al., 2023a; Ma et al., 2023; Wimbauer et al., 2024) do not transfer well to DiTs (Ma et al., 2024), which lack encoder-decoder hierarchy and rely only on within-block skip connections. Pioneering DiT caching works show promise, but some only cache entire blocks at fixed timestep intervals (Selvaraju et al., 2024), which sacrifices image quality, while others cache only attention layers (Liu et al., 2024b), which limits potential speed-ups. Recent works pursue finer-grained caching but depend heavily on

162 **Algorithm 1** Evolutionary Caching to Accelerate Diffusion models (ECAD)

163 **Require:** Diffusion model M , calibration prompts P , population size n , generations G , crossover

164 probability p_c , mutation probability p_m

165 1: $\mathcal{P}_0 \leftarrow \text{InitializePopulation}(n)$ ▷ Random and heuristic-based schedules

166 2: **for** $g = 1$ to G **do**

167 3: **for** each schedule $S \in \mathcal{P}_{g-1}$ **do**

168 4: $I \leftarrow M_S(P)$ ▷ Generate images I using schedule S on prompts P

169 5: Compute quality metric $Q(P, I)$ ▷ Image Reward score

170 6: Compute computational cost $C(S)$ ▷ MACs

171 7: **end for**

172 8: $\mathcal{P}_g \leftarrow \text{Selection}(\mathcal{P}_{g-1})$ ▷ NSGA-II with Tournament Selection

173 9: $\mathcal{P}_g \leftarrow \text{Crossover}(\mathcal{P}_g, p_c)$ ▷ Recombine schedules with 4-Point Crossover

174 10: $\mathcal{P}_g \leftarrow \text{Mutation}(\mathcal{P}_g, p_m)$ ▷ Bit-flip mutation

175 11: **end for**

176 12: $\mathcal{F} \leftarrow \text{ComputeParetoFrontier}(\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_G)$ ▷ Pareto frontier across all generations

177 13: **return** \mathcal{F}

179 heuristics and extensive hyperparameter tuning to balance efficiency and quality (Chen et al., 2024;
 180 Zou et al., 2025; Yuan et al., 2024; Liu et al., 2024a; 2025d; Qiu et al., 2025; Sun et al., 2025; Zou
 181 et al., 2024; Liu et al., 2025b;a; Bu et al., 2025). We build on these caching methods by replacing
 182 manual heuristic design and human-in-the-loop hyperparameter tuning with a genetic algorithm,
 183 leading to superior image quality.

184

185 3 METHODS

186

187 We begin by outlining key preliminaries for caching with DiTs (see Appendix A.1 for a general
 188 diffusion background). We then detail our method for modeling caching as a Pareto optimization
 189 problem over speed and quality, and the genetic algorithm used to optimize these frontiers.

190

191 3.1 PRELIMINARY: CACHING DIFFUSION TRANSFORMERS

192

193 DiTs utilize a modified transformer architecture optimized for the diffusion denoising process. A
 194 typical DiT block takes three inputs: a sequence of tokens z' representing the noisy image, a
 195 conditioning vector c (e.g., text embeddings), and a timestep embedding t . Caching in DiTs exploits
 196 temporal coherence between consecutive denoising steps. As the diffusion process proceeds from z'_t
 197 to z'_{t-1} , the inputs to each block change gradually, creating an opportunity to reuse computed features
 198 from previous timesteps (Ma et al., 2023; Selvaraju et al., 2024). Rather than caching entire blocks,
 199 we employ component-level caching. For each transformer block, we selectively cache the outputs of
 200 specific functional components: self-attention (f_{SA}), cross-attention (f_{CA}), and feedforward networks
 201 (f_{FFN}). Formally, for a component f_{comp} in block b at timestep t , we can decide whether to compute
 202 it directly or reuse its cached value:

$$f_{\text{comp}}^b(z'_t, t, c) = \begin{cases} \text{compute}(z'_t, c, t) & \text{if recompute} \\ \text{cache}[f_{\text{comp}}^b, t+1] & \text{if cached} \end{cases}$$

203 When recomputing, the new value is stored in the cache for potential reuse in subsequent steps.
 204 Figure 2 demonstrates this for a DiT block with two components: self-attention and feedforward.
 205 The DiT’s per-component residual connections allow features from the current inference step to be
 206 combined with cached features from previous steps smoothly.

207 This selective computation strategy can be represented as a binary tensor $S \in \{0, 1\}^{N \times B \times C}$, where
 208 N is the number of diffusion steps, B is the number of transformer blocks, and C is the number of
 209 cacheable components per block. A value of 0 at position (n, b, c) in S , which we show with shades
 210 of red in Figure 2, indicates that we reuse the cached value of component c in block b at diffusion
 211 step n rather than recomputing it. A caching schedule directly impacts both computational efficiency
 212 and generation quality; aggressive caching (more 0’s in S) reduces computation but may degrade
 213 output quality. Our method finds caching schedules with optimal trade-offs between computation and
 214 quality by identifying which components can be safely cached, in which blocks and timesteps.

216
217 **Table 1: Main results, 256×256 , 20-step text-to-image generation.** We select schedules from our
218 evolutionary Pareto Frontier and compare them to prior works across various datasets and models on
219 Image Reward, CLIP Score, and FID. Despite being optimized *only* on Image Reward, *only* on the 100
220 calibration prompts, our method achieves superior results across other metrics and for unseen prompts.

Settings			Latency		Calibration		PartiPrompts		MS-COCO2017-30K		MJHQ-30K	
Model	Caching	Setting	TMACs↓	ms / img↓ (speedup↓)	Image Reward↑	Image Reward↑	CLIP↑	FID↓	CLIP↑	FID↓	CLIP↑	
PixArt- α	None		5.71	165.74 (1.00x)	0.90	0.97	32.01	24.84	31.29	9.75	32.77	
	TGATE	$m = 15, k = 1$	4.86	144.77 (1.14x)	0.78	0.87	31.70	23.90	31.12	10.38	32.33	
	TGATE	$m = 10, k = 5$	3.47	108.52 (1.53x)	-0.051	-0.27	28.90	29.78	28.29	17.52	29.38	
	FORA	$N = 2$	2.87	100.57 (1.65x)	0.83	0.91	32.03	24.80	31.37	10.33	32.74	
	FORA	$N = 3$	2.02	82.55 (2.01x)	0.60	0.83	31.94	24.50	31.35	11.11	32.63	
	ToCa	$N = 3, \mathcal{R} = 60\%$	3.17*	90.71 (1.83x)*	0.71	0.76	31.46	22.05	30.99	12.01	32.37	
	ToCa	$N = 3, \mathcal{R} = 90\%$	2.13*	70.58 (2.35x)*	0.60	0.68	31.35	24.01	30.92	11.80	32.35	
	DuCa	$N = 3, \mathcal{R} = 60\%$	3.20	72.53 (2.29x)*	0.76	0.79	31.53	23.13	31.03	11.69	32.48	
	DuCa	$N = 3, \mathcal{R} = 90\%$	2.30	64.08 (2.59x)*	0.76	0.74	31.42	24.69	30.96	12.53	32.39	
	Ours	fast	2.13	84.09 (1.97x)	0.96	0.99	31.94	20.58	31.40	8.02	32.78	
PixArt- Σ	Ours	faster	1.46	69.17 (2.40x)	0.90	0.88	31.44	21.93	31.10	9.92	32.34	
	Ours	fastest	1.18	64.24 (2.58x)	0.81	0.77	31.53	19.54	31.28	8.67	32.24	
	None		5.71	167.62 (1.00x)	0.85	1.08	31.90	24.63	31.11	10.53	32.65	
	FORA	$N = 3$	2.02	82.12 (2.04x)	0.65	0.81	31.91	27.69	31.16	12.70	32.28	
	ToCa †	$N = 3, \mathcal{R} = 60\%$	3.17*	94.28 (1.78x)*	0.11	0.19	31.03	54.80	30.34	35.42	30.64	
	ToCa †	$N = 3, \mathcal{R} = 90\%$	2.13*	73.03 (2.30x)*	0.07	0.14	30.89	56.48	30.25	36.53	30.55	
FLUX.1-dev	Ours	fast	1.91	84.84 (1.98x)	0.85	1.02	31.86	22.17	31.25	8.91	32.52	
	None		198.69	2620.09 (1.00x)	0.69	1.04	31.88	25.76	30.95	17.77	31.06	
	FORA	$N = 3$	69.80	1073.70 (2.44x)	0.67	0.93	31.88	23.51	31.30	19.38	31.10	
	ToCa	$N = 4, \mathcal{R} = 90\%$	42.96*	1576.97 (1.66x)*	0.63	0.93	31.81	23.78	31.26	21.59	30.88	
	DiCache		62.23	1161.86 (2.26x)	0.61	0.97	31.97	26.18	31.12	20.70	31.18	
	TaylorSeer	$N = 5, \mathcal{O} = 2$	59.88*	1028.66 (2.55x)*	0.29	0.54	31.16	29.66	30.19	24.36	30.64	
	TaylorSeer	$N = 6, \mathcal{O} = 1$	49.97*	865.97 (3.03x)*	-0.07	0.02	29.88	49.02	29.02	37.98	29.38	
	Ours	fast	63.02	1016.59 (2.58x)	0.83	1.04	32.24	21.61	31.58	16.14	31.69	
	Ours	fastest	43.60	778.17 (3.37x)	0.69	0.89	32.27	26.66	31.63	21.43	31.67	

†ToCa is not optimized for PixArt- Σ , so we re-use the hyperparameters from PixArt- α . Suboptimal results do not indicate that ToCa is not suitable for PixArt- Σ ; instead, ToCa should be hand-optimized per-model.

*Refer to Appendix A.11 for a detailed explanation of MAC and latency calculations.

3.2 GENETIC ALGORITHM AS A PARADIGM FOR CACHING

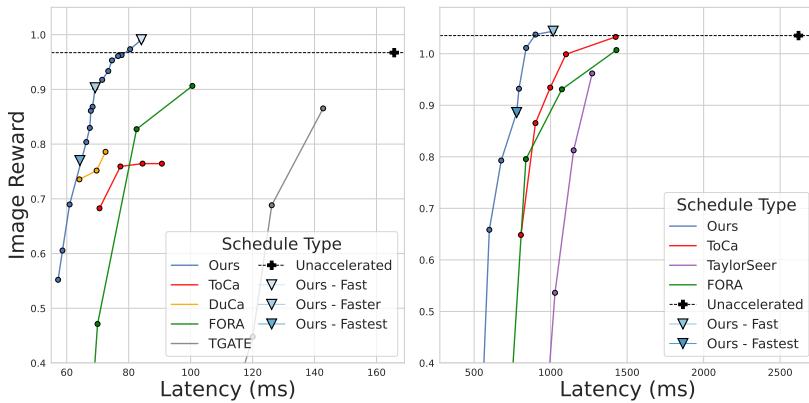
Caching, as Pareto Frontiers. The caching optimization problem inherently exhibits a trade-off between computational efficiency and generation quality. This can be formalized as a multi-objective optimization problem:

$$\min_S (C(S), Q(S))$$

where $C(S)$ denotes the computational cost function (lower is better) and $Q(S)$ represents the generation quality metric (lower is better, e.g., FID) for a caching schedule S . This optimization operates directly on the binary caching tensor $S \in \{0, 1\}^{N \times B \times C}$ introduced previously. Possible configurations for S naturally induce sets of solutions that form Pareto frontiers – improving one objective necessarily degrades the other. However, this search space is intractable to exhaustively explore, even for small DiTs, given current compute. Prior acceleration methods have predominantly relied on fixed heuristics that typically provide only isolated operating points. By contrast, our proposed approach explores a greater search space and discovers Pareto-optimal configurations, enabling practitioners to select schedules based on application-specific constraints.

Evolutionary Caching to Accelerate Diffusion models (ECAD). We introduce ECAD, an evolutionary algorithm-based framework for discovering efficient caching schedules for diffusion models, in Algorithm 1. Our approach’s key insight is that the optimal caching configuration can be discovered through a population-based search over the space of possible caching schedules, using a small set of calibration prompts to evaluate candidate solutions. ECAD is a framework with 4 simple customizable components.

The practitioner may adjust granularity with the (1) **binary caching tensor shape** by adjusting N, B , and C (the defaults we define for S allow any component with a skip connection to be cached, on any block, for any timestep). While it does not require any image data, ECAD needs (2) **calibration prompts**, which we instantiate with the 100 prompts from the Image Reward Benchmark (Xu et al., 2023a). The practitioner can also select their preferred (3) **metrics**, where ideally both can be computed quickly online. We use Image Reward for quality, and MACs for speed (to avoid hardware

Figure 3: **PartiPrompt Pareto frontiers** at 256×256 for PixArt- α (**left**) and FLUX.1-dev (**right**).

dependencies). Then, we choose an (4) **initial population** of caching schedules, which should be diverse, and can be seeded based on prior knowledge (such as using FORA schedules) or initialized randomly. We utilize NSGA-II (Deb & Jain, 2013) for our genetic algorithm due to its efficient non-dominated sorting approach and proven effectiveness in multi-criteria optimization problems.

With all components defined, ECAD runs for the desired number of generations. In each generation, images are generated per caching tensor, and top-performing tensors (in quality and speed) evolve to form the next generation. This process incrementally improves Pareto frontiers for the selected model, scheduler, and timestep combination.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Model Architectures We provide experiments on three popular text-to-image DiT models: PixArt- α , PixArt- Σ , FLUX-1.dev. Each model uses its default sampling method at 20 steps: DPM-Solver++ (Lu et al., 2023) for both PixArt models and FlowMatchEulerDiscreteScheduler (Esser et al., 2024) for FLUX-1.dev. Guidance scales are 4.5 for PixArt models and 5 for FLUX-1.dev. Both PixArt models employ 28 identical transformer blocks containing three components we enable caching for: self-attention, cross-attention, and feedforward. In contrast, FLUX-1.dev implements an MMDiT-based architecture (Esser et al., 2024) with 19 “full” and 38 “single” blocks. We enable caching for attention, feedforward, and feedforward context components in full blocks, and attention, MLP projection, and MLP output for single blocks. Cacheable component selection is discussed in Appendix A.2. We calibrate all models at 256×256 but evaluate at both 256×256 and 1024×1024 .

Evaluation Metrics We evaluate performance using Image Reward (Xu et al., 2023a), FID (Seitzer, 2020), and CLIP score (Zhengwendai, 2023) with ViT-B/32 (Dosovitskiy et al., 2020) on the Image Reward Benchmark prompts set (Xu et al., 2023a), the PartiPrompts set (Yu et al., 2022), MS-COCO2017-30K (Lin et al., 2015) (we use the same prompts and images as ToCa (Zou et al., 2025)) and MJHQ-30K (Li et al., 2024). On the Image Reward Benchmark prompts set, we generate each of 100 prompts at 10 different, fixed seeds for 1,000 total images. For PartiPrompts we generate a single image for each of the 1,632 prompts. To measure the speed of a particular caching schedule, we use two metrics: multiply-accumulate operations (MACs) and direct image generation latency. Except where otherwise stated, we utilize `calfflops` (Ye, 2023) to measure MACs. We average end-to-end image generation latency using precomputed text embeddings on 1 NVIDIA A6000 GPU after discarding warmup runs; full details in Appendix A.11.

4.2 MAIN RESULTS

We optimize ECAD on three diffusion models: PixArt- α , PixArt- Σ , and FLUX-1.dev and present results for select schedules in Table 1. For PixArt- α at 256×256 resolution with 20 inference steps,

Figure 4: **Qualitative results** comparing our “fast” schedule for PixArt- α 256×256 with ToCa; see Figure 26 for FLUX-1.dev. “...” represent omitted text, see Appendix A.15 for full prompts.

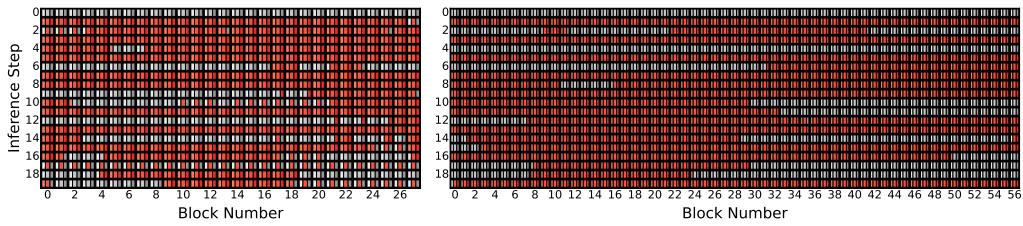


Figure 5: Figure that shows our “fast” schedule for PixArt- α (**left**) and FLUX-1.dev (**right**). Reds are cached components and grays are recomputed (for PixArt- α , from left to right: self-attention, cross-attention, and feedforward). See Appendix A.14 for more details.

we run 550 generations with 72 candidate schedules per generation, where each candidate generates 1,000 images (10 per each of 100 Image Reward Benchmark prompts). For FLUX-1.dev, we reduce the population to 24 schedules and train for 250 generations under otherwise identical settings. We initialize both using variants inspired by FORA and TGATE, detailed in Appendix A.8. For PixArt- Σ , we transfer 72 schedules from PixArt- α ’s 200th-generation Pareto frontier and run 50 additional generations, leveraging the models shared DiT architecture.

Across all models, ECAD achieves strong performance on Image Reward (which correlates strongly with human preference (Xu et al., 2023a)) and FID. On PixArt- α , our ‘fastest’ schedule reduces FID by 9.3 over baseline and by 2.51 over ToCas best setting. On PixArt- Σ and FLUX-1.dev, ECAD schedules outperform prior work and baseline by a significant margin. On FLUX-1.dev, our ‘fast’ schedule at 2.58x matches baseline Image Reward and the ‘fastest’ schedule at 3.37x maintains competitive quality. For prompt-image alignment, measured via CLIP score, ECAD roughly matches prior works, which is expected as caching should not affect prompt-image alignment.

We show full Pareto frontiers in Figure 3 on unseen prompts. ECAD discovers schedules that consistently outperform prior works across evaluation metrics while providing fine-grained control over the quality-latency tradeoff. We provide some qualitative results which highlight ECAD’s good quality despite impressive speedups in Figure 4. We show the composition of the “fast” ECAD schedules for PixArt- α and FLUX-1.dev in Figure 5, with more schedules in Appendix A.14.

Scaling Properties. Unlike existing approaches, practitioners have the flexibility to run ECAD for as many generations as their time and compute constraints allow. While competitive schedules emerge within a few iterations, continued optimization yields steady improvements. To illustrate this, we track the ‘slowest’ schedule throughout the genetic process for PixArt- α and report results in Table 2.

378
379 **Table 2: Genetic scaling results.** We show performance changes
380 as more iterations (generations) of ECAD run in terms of
381 latency, PartiPrompts Image
382 Reward, and MJHQ-30K FID.
383 We select the schedule with
384 highest TMACs per generation.
385

# Gens	ms / img \downarrow (speedup \uparrow)	Image Reward \uparrow	FID \downarrow
1	145.09 (1.14x)	1.00	9.40
50	92.76 (1.79x)	0.98	7.97
150	87.11 (1.90x)	1.00	8.11
300	86.62 (1.91x)	0.99	8.04
500	76.52 (2.17x)	0.96	8.49

386
387 **Table 3: Model transfer results.** ECAD is first optimized on
388 PixArt- α for 200 generations, and the resulting schedules are
389 used to initialize optimization on PixArt- Σ for an additional 50
390 generations (shown in the last row). Settings for both schedule
391 discovery and evaluation are detailed below. We report TMACs,
392 latency, Image Reward on the calibration and PartiPrompts set, and
393 FID for MJHQ-30K. Transferring ECAD schedules between these
394 two models results in only slight penalties to performance.
395

Genetic Settings	Evaluation Settings			Latency		Metrics		
	Model	Gens	Model	Res.	TMACs \downarrow	s / img \downarrow (speedup \uparrow)	Calibration \uparrow	PartiPrompts \uparrow
PixArt- α	200	PixArt- α	256	2.59	94.04 (1.76x)	0.96	1.02	8.00
PixArt- α	200	PixArt- Σ	256	2.59	103.47 (1.62x)	0.84	1.09	9.27
PixArt- α	250	PixArt- α	256	2.22	86.59 (1.91x)	0.96	0.99	8.09
PixArt- α	250	PixArt- Σ	256	2.22	93.68 (1.79x)	0.79	1.06	9.06
PixArt- Σ	50	PixArt- Σ	256	1.91	84.84 (1.98x)	0.85	1.02	8.91

396 **Table 4: FLUX-1.dev detailed transfer results, 1024 \times 1024 resolution, 20-step text-to-image**

397 **generation.** We reuse our ‘fast’ schedule trained on FLUX-1.dev at 256x256 resolution, as well as

398 an older, ‘slow’ schedule. We apply them for 1024 \times 1024 image generation and compare them to

399 prior works in terms of Image Reward, CLIP Score, and FID. Our results are competitive with prior

400 work despite being evaluated at a different resolution than optimization.

Model Settings		Latency		Calibration		PartiPrompts		MS-COCO2017-30K		MJHQ-30K	
Caching	Setting	TMACs \downarrow	s/img \downarrow (speedup \uparrow)	Image Reward \uparrow	Image Reward \uparrow	CLIP \uparrow	FID \downarrow	CLIP \uparrow	FID \downarrow	CLIP \uparrow	
None		1190.25	18.30 (1.00x)	0.68	1.14	31.98	25.45	31.08	14.63	31.99	
None	40% steps	476.10	7.61 (2.41x)	0.43	0.83	31.38	25.20	30.73	21.68	30.99	
FORA	$\mathcal{N} = 3$	416.88	7.62 (2.40x)	0.27	0.69	31.20	29.45	30.52	24.65	30.69	
ToCa	$\mathcal{N} = 4, \mathcal{R} = 90\%$	300.41*	7.42 (2.47x)*	0.66	1.09	32.05	26.88	31.32	15.39	31.93	
TaylorSeer	$\mathcal{N} = 5, \mathcal{O} = 2$	357.39*	7.20 (2.54x)*	0.50	0.94	32.28	42.81	31.74	29.89	31.92	
Ours	slow _{256 \rightarrow 1024}	644.05	10.59 (1.73x)	0.74	1.05	31.82	22.15	31.00	15.98	31.79	
Ours	fast _{256 \rightarrow 1024}	376.62	6.96 (2.63x)	0.71	1.05	31.88	26.69	30.91	17.76	31.99	

401 After just 50 generations, this schedule outperforms the unaccelerated baseline and all prior methods
402 on Image Reward for unseen PartiPrompts and MJHQ FID. Further generations reduce latency at
403 a slight cost in quality. Figure 6 shows the Pareto frontier for each generation on the calibration
404 prompts; initial generations rapidly improve while later generations show incremental improvements.
405

4.3 EMERGENT GENERALIZATION CAPABILITIES

414 **Model Transfer Results.** To demonstrate ECAD’s advantage over handcrafted heuristics, we transfer
415 pre-optimized schedules between model variants. In Table 3, we select the “slowest” schedule from
416 the Pareto-frontier across the first 200 generations of PixArt- α ECAD optimization and evaluate it on
417 PixArt- Σ as is, to demonstrate direct transfer results. Then, we perform an additional 50 optimization
418 generations on PixArt- Σ using 72 schedules transferred from the PixArt- α ECAD frontier at 200
419 generations. Although with direct transfer from PixArt- α , PixArt- Σ has higher latency than PixArt- α
420 at 200 generations, after only 50 generations of optimization, it surpasses PixArt- α ’s speedup while
421 improving calibration Image Reward and MJHQ FID. By comparison, simply transferring the 250
422 generation PixArt- α configuration yields only a 1.79x speedup instead of 1.98x, and has worse
423 calibration Image Reward and MJHQ FID. This is a departure from recent caching innovations; for
424 example, ToCa’s carefully tuned PixArt- α settings cannot be transferred to PixArt- Σ (see Table 1),
425 despite the similarities between the two models.

426 **Resolution Transfer Results.** We present ECAD’s performance on FLUX-1.dev at 1024 \times 1024
427 resolution after optimization on 256 \times 256 in Table 4, and highlight its superior performance compared
428 to FORA and the “None” approaches. We apply schedules as-is, with no further optimization of
429 schedules at the higher resolution. While it is likely preferable to optimize ECAD at the target
430 evaluation resolution if sufficient compute is available, we show this is not necessary in practice. In
431 addition to the same ‘fast’ FLUX-1.dev schedule from Table 1 at 256 \times 256 resolution, we select a
432 ‘slow’ model from just 50 generations of training at 256 \times 256. Despite ToCa being optimized for high

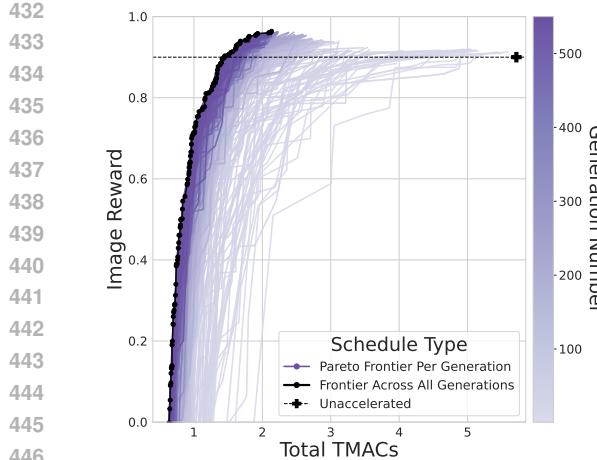


Figure 6: **ECAD evolution.** ECAD iteratively improves quality/time trade-offs as it evolves across generations as measured by Image Reward (PixArt- α 256×256).

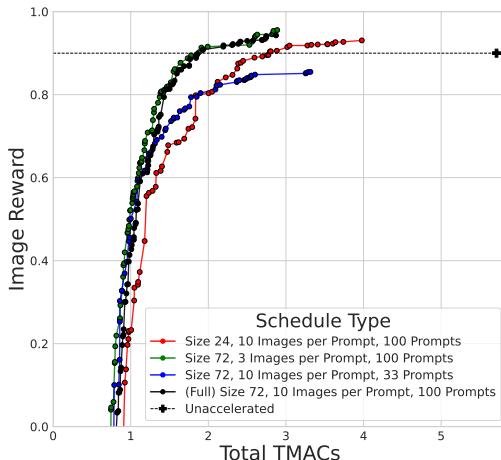


Figure 7: **Faster ECAD optimization strategies.** We compare ‘‘Full’’ ECAD to smaller population size, fewer images per prompt, and fewer prompts (PixArt- α 256×256).

resolution and ours for low, our fast setting achieves superior Calibration Image Reward (a proxy for human preference) and COCO FID, and further surpasses concurrent TaylorSeers on unseen-prompt Image Reward, while avoiding its prohibitive memory overhead which reduced its batch size by 66%.

4.4 ABLATION ANALYSIS

To better explore the evolutionary algorithm’s behavior, especially with respect to optimization time, we run three ablations with different hyperparameters on PixArt- α for 100 generations, varying the population size (from 72 to 24), the number of images generated per prompt (from 10 to 3), and the number of prompts used (from 100 to 33, selected randomly), each approximately reducing GPU time by 66%. The shape of the frontier of the reduced population setting in Figure 7 resembles previous generations of full populations settings, suggesting that reducing the population size is akin to running the model for less generations. Reducing the number of images per prompt is not notably harmful, while using a smaller set of only 33 prompts is very detrimental. However, as shown in Appendix A.4, this effect stems from size rather than diversity: smaller sets degrade quality, but equally sized sets with less diversity do not. Appendix A.4 further shows a 100-prompt calibration set generated via ChatGPT performs comparably to the human-curated Image Reward set, demonstrating that large, diverse prompt collections are straightforward to assemble. In addition, we include ablations on NSGA-II hyperparameters in Appendix A.5, and display the effectiveness of alternative quality metrics in Appendix A.3.

5 DISCUSSION

Limitations and Broader Impacts. Optimizing on automatic metrics ties our performance to the quality of those metrics. We use Image Reward for the sake of cost and time; however, if we replace it with ranking by human users, for example, results could improve. ECAD does not introduce new societal risks beyond those inherent to diffusion models. While reduced inference cost may increase potential for misuse, it also promotes broader image-generation accessibility and mitigates some environmental impact of image generation.

Conclusion. In this work, we reconceptualize diffusion caching as a Pareto optimization problem that enables fine-grained trade-offs between speed and quality. We provide a method, ECAD, which converts this problem into a search over binary masks, and can discover a best-case caching Pareto frontier. With only 100 text prompts, our method runs asynchronously with much lower memory requirements than training or fine-tuning a diffusion model. We achieve state-of-the-art results for training-free acceleration of diffusion models in both speed and quality.

486 REFERENCES
487

488 Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth words:
489 A vit backbone for diffusion models, 2023. URL <https://arxiv.org/abs/2209.12152>.

490 J. Blank and K. Deb. pymoo: Multi-objective optimization in python. *IEEE Access*, 8:89497–89509,
491 2020.

492 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
493 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
494 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
495 pp. 22563–22575, June 2023.

496 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image
497 editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
498 Recognition (CVPR)*, pp. 18392–18402, June 2023.

499 Jiazi Bu, Pengyang Ling, Yujie Zhou, Yibin Wang, Yuhang Zang, Tong Wu, Dahua Lin, and Jiaqi
500 Wang. Dicache: Let diffusion model determine its own cache. *arXiv preprint arXiv:2508.17356*,
501 2025.

502 Duygu Ceylan, Chun-Hao Paul Huang, and Niloy J Mitra. Pix2video: Video editing using image diffu-
503 sion. In *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 23149–23160,
504 2023. doi: 10.1109/ICCV51070.2023.02121.

505 Wenhao Chai, Xun Guo, Gaoang Wang, and Yan Lu. Stablevideo: Text-driven consistency-aware
506 diffusion video editing. In *Proceedings of the IEEE/CVF International Conference on Computer
507 Vision*, pp. 23040–23050, 2023.

508 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
509 James Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for
510 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

511 Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis, Yiren
512 Zhao, and Tao Chen. δ -dit: A training-free acceleration method tailored for diffusion transformers,
513 2024. URL <https://arxiv.org/abs/2406.01125>.

514 Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
515 using reference-point-based nondominated sorting approach, part i: solving problems with box
516 constraints. *IEEE transactions on evolutionary computation*, 18(4):577–601, 2013.

517 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
518 in neural information processing systems*, 34:8780–8794, 2021.

519 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
520 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
521 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
522 arXiv:2010.11929*, 2020.

523 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
524 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
525 Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow trans-
526 formers for high-resolution image synthesis, 2024. URL <https://arxiv.org/abs/2403.03206>.

527 Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In *Advances
528 in Neural Information Processing Systems*, 2023.

529 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused
530 framework for evaluating text-to-image alignment. In A. Oh, T. Naumann, A. Globerson,
531 K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing
532 Systems*, volume 36, pp. 52132–52152. Curran Associates, Inc., 2023. URL
533 https://proceedings.neurips.cc/paper_files/paper/2023/file/a3bf71c7c63f0c3bcb7ff67c67b1e7b1-Paper-Datasets_and_Benchmarks.pdf.

540 Matthew Gwilliam, Han Cai, Di Wu, Abhinav Shrivastava, and Zhiyu Cheng. Accelerate high-quality
 541 diffusion models with inner loop feedback. *arXiv preprint arXiv:2501.13107*, 2025.

542

543 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
 544 URL <https://arxiv.org/abs/1503.02531>.

545

546 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 547 Neural Information Processing Systems*, 33:6840–6851, 2020.

548

549 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 550 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 551 2022.

552

553 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 554 with llm for enhanced semantic alignment, 2024.

555

556 Zeyinzi Jiang, Chaojie Mao, Yulin Pan, Zhen Han, and Jingfeng Zhang. Scedit: Efficient and
 557 controllable image diffusion generation via skip connection editing, 2023. URL <https://arxiv.org/abs/2312.11392>.

558

559 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
 560 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Proceedings of the
 561 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6007–6017, June
 2023.

562

563 Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014. URL <https://arxiv.org/abs/1312.6114>.

564

565 Jonas Kohler, Albert Pumarola, Edgar Schönfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda,
 566 and Ali Thabet. Imagine flash: Accelerating emu diffusion models with backward distillation,
 567 2024. URL <https://arxiv.org/abs/2405.05224>.

568

569 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

570

571 Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju Lee, and Sung Ju Hwang. Koala: Empirical
 572 lessons toward memory-efficient and fast diffusion models for text-to-image synthesis, 2024. URL
 573 <https://arxiv.org/abs/2312.04005>.

574

575 Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
 576 v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024.

577

578 Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan Li, Shiqi Yang, Yaxing Wang, Ming-Ming
 579 Cheng, and Jian Yang. Faster diffusion: Rethinking the role of unet encoder in diffusion models,
 580 2023a. URL <https://arxiv.org/abs/2312.09608>.

581

582 Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang,
 583 and Kurt Keutzer. Q-diffusion: Quantizing diffusion models. In *Proceedings of the IEEE/CVF
 584 International Conference on Computer Vision (ICCV)*, pp. 17535–17545, October 2023b.

585

586 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 587 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
 588 in context, 2015. URL <https://arxiv.org/abs/1405.0312>.

589

590 Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
 591 Qixiang Ye, and Fang Wan. Timestep embedding tells: It's time to cache for video diffusion model,
 592 2024a. URL <https://arxiv.org/abs/2411.19108>.

593

594 Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Faccio, Mengmeng Xu, Tao Xiang, Mike Zheng
 595 Shou, Juan-Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffusion via temporal attention
 596 decomposition, 2024b. URL <https://arxiv.org/abs/2404.02747>.

597

598 Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to
 599 forecasting: Accelerating diffusion models with taylorseers. *arXiv preprint arXiv:2503.06923*,
 600 2025a.

594 Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to
 595 forecasting: Accelerating diffusion models with taylorseers, 2025b. URL <https://arxiv.org/abs/2503.06923>.

596

597 Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Fei Ren, Shaobo Wang, Kaixin Li, and Linfeng Zhang.
 598 Speca: Accelerating diffusion transformers with speculative feature caching, 2025c. URL <https://arxiv.org/abs/2509.11628>.

599

600

601 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
 602 Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on background, technology,
 603 limitations, and opportunities of large vision models, 2024c. URL <https://arxiv.org/abs/2402.17177>.

604

605

606 Ziming Liu, Yifan Yang, Chengruidong Zhang, Yiqi Zhang, Lili Qiu, Yang You, and Yuqing Yang.
 607 Region-adaptive sampling for diffusion transformers, 2025d. URL <https://arxiv.org/abs/2502.10389>.

608

609

610 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 611 solver for guided sampling of diffusion probabilistic models, 2023. URL <https://arxiv.org/abs/2211.01095>.

612

613

614 Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
 615 Synthesizing high-resolution images with few-step inference, 2023. URL <https://arxiv.org/abs/2310.04378>.

616

617

618 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache: Accelerating diffusion models for free,
 2023. URL <https://arxiv.org/abs/2312.00858>.

619

620

621 Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao Wang. Learning-to-cache: Accelerating dif-
 fusion transformer via layer caching, 2024. URL <https://arxiv.org/abs/2406.01733>.

622

623

624 Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and
 625 Tim Salimans. On distillation of guided diffusion models, 2023. URL <https://arxiv.org/abs/2210.03142>.

626

627

628 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 629 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 630 text-guided diffusion models, 2022. URL <https://arxiv.org/abs/2112.10741>.

631

632

633 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 634 In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.

635

636

637 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

638

639

640 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 641 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 642 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.

643

644 Junxiang Qiu, Shuo Wang, Jinda Lu, Lin Liu, Houcheng Jiang, Xingyu Zhu, and Yanbin Hao.
 645 Accelerating diffusion transformer via error-optimized cache, 2025. URL <https://arxiv.org/abs/2501.19243>.

646

647 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 648 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 649 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

650

651

652 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 653 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
 654 transformer, 2023. URL <https://arxiv.org/abs/1910.10683>.

648 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 649 conditional image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

650

651 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 652 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.

653

654 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 655 image segmentation, 2015. URL <https://arxiv.org/abs/1505.04597>.

656

657 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 658 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 659 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 660 22500–22510, June 2023.

661

662 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 663 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho, David J
 664 Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with deep language
 665 understanding. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Ad-
 666 vances in Neural Information Processing Systems*, volume 35, pp. 36479–36494. Curran Associates,
 667 Inc., 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf.

668

669 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L. Denton, Kamyar
 670 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan Ho,
 671 David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion models with
 672 deep language understanding. In *Advances in Neural Information Processing Systems*, vol-
 673 ume 35, 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/ec795aeadae0b7d230fa35cbaf04c041-Paper-Conference.pdf.

674

675 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
 676 URL <https://arxiv.org/abs/2202.00512>.

677

678 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
 679 distillation, 2023. URL <https://arxiv.org/abs/2311.17042>.

680

681 Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. <https://github.com/mseitzer/pytorch-fid>, August 2020. Version 0.3.0.

682

683 Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
 684 caching in diffusion transformer acceleration, 2024. URL <https://arxiv.org/abs/2407.01425>.

685

686 Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on
 687 diffusion models. In *CVPR*, 2023.

688

689 Wenhao Sun, Rong-Cheng Tu, Jingyi Liao, and Dacheng Tao. Diffusion model-based video editing:
 690 A survey, 2024. URL <https://arxiv.org/abs/2407.07111>.

691

692 Wenzhang Sun, Qirui Hou, Donglin Di, Jiahui Yang, Yongjia Ma, and Jianxun Cui. Unicp: A
 693 unified caching and pruning framework for efficient video generation, 2025. URL <https://arxiv.org/abs/2502.04393>.

694

695 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 696 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 697 systems*, 30, 2017.

698

699 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 700 of images. In *AAAI*, 2023.

701

Lilian Weng. What are diffusion models? lilianweng.github.io, Jul 2021. URL <https://lilianweng.github.io/posts/2021-07-11-diffusion-models/>.

702 Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu,
 703 Peizhao Zhang, Sam Tsai, Jonas Kohler, Christian Rupprecht, Daniel Cremers, Peter Vajda, and
 704 Jialiang Wang. Cache me if you can: Accelerating diffusion models through block caching, 2024.
 705 URL <https://arxiv.org/abs/2312.03209>.

706 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 707 Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023a.
 708 URL <https://arxiv.org/abs/2304.05977>.

710 Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan,
 711 Shen Yang, Qunlin Jin, Shurun Li, Jiayan Teng, Zhuoyi Yang, Wendi Zheng, Xiao Liu, Ming
 712 Ding, Xiaohan Zhang, Xiaotao Gu, Shiyu Huang, Minlie Huang, Jie Tang, and Yuxiao Dong.
 713 Visionreward: Fine-grained multi-dimensional human preference learning for image and video
 714 generation, 2024. URL <https://arxiv.org/abs/2412.21059>.

715 Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
 716 text-to-image generation via diffusion gans, 2023b. URL <https://arxiv.org/abs/2311.09257>.

718 Xiaoju Ye. calfflops: a flops and params calculate tool for neural networks in pytorch framework,
 719 2023. URL <https://github.com/MrYxJ/calculate-flops.pytorch>.

721 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T. Freeman,
 722 and Taesung Park. One-step diffusion with distribution matching distillation, 2023. URL <https://arxiv.org/abs/2311.18828>.

724 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 725 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
 726 Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
 727 text-to-image generation, 2022. URL <https://arxiv.org/abs/2206.10789>.

729 Zhihang Yuan, Hanling Zhang, Pu Lu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
 730 Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models,
 731 2024. URL <https://arxiv.org/abs/2406.08552>.

732 Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang Jiang. Adadiff: Adaptive step selection
 733 for fast diffusion, 2023. URL <https://arxiv.org/abs/2311.14768>.

735 Zhixin Zheng, Xinyu Wang, Chang Zou, Shaobo Wang, and Linfeng Zhang. Compute only 16 tokens
 736 in one timestep: Accelerating diffusion transformers with cluster-driven feature caching, 2025.
 737 URL <https://arxiv.org/abs/2509.10312>.

738 SUN Zhengwentai. clip-score: CLIP Score for PyTorch. <https://github.com/taited/clip-score>, March 2023. Version 0.2.1.

741 Huawei Zhu, Dehua Tang, Ji Liu, Mingjie Lu, Jintu Zheng, Jinzhang Peng, Dong Li, Yu Wang,
 742 Fan Jiang, Lu Tian, Spandan Tiwari, Ashish Sirasao, Junhai Yong, Bin Wang, and Emad
 743 Barsoum. Dip-go: A diffusion pruner via few-step gradient optimization. In A. Globerson,
 744 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 92581–92604. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/a845fdc3f87751710218718adb634fe7-Paper-Conference.pdf.

748 Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng
 749 Zhang. Accelerating diffusion transformers with dual feature caching, 2024. URL <https://arxiv.org/abs/2412.18911>.

751 Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
 752 transformers with token-wise feature caching, 2025. URL <https://arxiv.org/abs/2410.05317>.

754

755

756 **A APPENDIX**
757758 **A.1 DIFFUSION PRELIMINARY**
759760 Diffusion models have emerged as powerful generative models capable of producing high-quality
761 images. In this section, we provide a brief overview of the diffusion process, the denoising objective,
762 and the specific formulation for Diffusion Transformers (DiT).763 **Basic Diffusion Process:** The diffusion process follows a Markov chain that gradually adds
764 Gaussian noise to data. Given an image x_0 sampled from a data distribution $q(x_0)$, the forward
765 diffusion process sequentially transforms the data into a standard Gaussian distribution through
766 T timesteps by adding noise according to a pre-defined schedule. This forward process can be
767 formulated as:
768

769
$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t}x_{t-1}, \beta_t \mathbf{I}) \quad (1)$$

770

771 where $\{\beta_t \in (0, 1)\}_{t=1}^T$ represents the noise schedule (Weng, 2021). We define $\alpha_t = 1 - \beta_t$ and
772 $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$ for convenience. A key property arising from this process is that we can sample x_t at
773 any arbitrary timestep t directly from x_0 without having to sample the intermediate states as:
774

775
$$x_t = \sqrt{\bar{\alpha}_t}x_0 + \sqrt{1 - \bar{\alpha}_t}\epsilon \quad (2)$$

776

777 where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. This property is particularly useful during training as it allows for efficient
778 parallel sampling across different timesteps.
779780 **Denoising Objective:** The denoising process aims to reverse the forward diffusion by learning to
781 predict the noise added at each step. This is typically accomplished by training a neural network
782 $\epsilon_\theta(x_t, t)$ to estimate the noise component in x_t . Its training objective is formulated as:
783

784
$$\mathcal{L} = \mathbb{E}_{t, x_0, \epsilon} [\|\epsilon - \epsilon_\theta(x_t, t)\|^2] \quad (3)$$

785

786 where t is uniformly sampled from $\{1, 2, \dots, T\}$, x_0 from the data distribution, and ϵ from $\mathcal{N}(0, \mathbf{I})$.
787 During sampling, the noisy image is gradually denoised using various strategies. In the DDPM
788 algorithm (Ho et al., 2020), the reverse process takes the form:
789

790
$$p_\theta(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_\theta(x_t, t), \sigma_t^2 \mathbf{I}) \quad (4)$$

791

792 where $\mu_\theta(x_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(x_t, t) \right)$. While effective, DDPM typically requires hundreds
793 to thousands of denoising steps. For more efficient sampling, DPM-Solver++ (Lu et al., 2023) (used
794 in both PixArt- α and PixArt- Σ) reformulates the diffusion process as an ordinary differential equation
795 of the (simplified) form below:
796

797
$$\frac{dx}{dt} = -\frac{1}{2} \beta_t \nabla_x \log p_t(x) \quad (5)$$

798

799 DPM-Solver++ then applies high-order numerical methods to solve this ODE more efficiently. This
800 leads to update rules that enable high-quality image generation in as few as 20 steps rather than the
801 hundreds required by DDPM. However, each step still requires a forward pass through the noise
802 prediction network, making the sampling process computationally intensive and a primary target for
803 acceleration.
804805 **DiT-specific Processing** Diffusion Transformers (DiT) adapt the transformer architecture for
806 diffusion models, offering improved scalability compared to conventional UNet architectures. The
807 processing pipeline for DiTs follows several key steps: first, the input image $x \in \mathbb{R}^{H \times W \times C}$ is
808 encoded into a lower-dimensional latent representation using a pre-trained variational autoencoder
809 (VAE): $z = \mathcal{E}(x) \in \mathbb{R}^{h \times w \times d}$, where h , w , and d represent the height, width, and channel dimensions
810 of the latent space, respectively. The latent representation is then divided into non-overlapping
811 patches and linearly projected to form a sequence of tokens $z' = \text{Patch}(z) \in \mathbb{R}^{N \times d'}$, where $N = \frac{h \cdot w}{p^2}$
812 is the number of patches with patch size $p \times p$, and d' is the embedding dimension of the transformer.
813 Additionally, timestep embeddings and class or text condition embeddings are incorporated into the
814 model to condition the generation process. Finally, the DiT model processes these tokens through
815 a series of transformer blocks, each typically containing self-attention and cross-attention (or joint
816 attention as in FLUX.1-dev), and feedforward network components.
817

810
 811 Table 5: Computation breakdown of a single transformer block forward pass for PixArt- α , PixArt- Σ ,
 812 and FLUX-1.dev at 256×256 resolution. We report GMACs and each component’s share of total
 813 block computation. Components marked as cache-enabled are those selected for caching in ECAD,
 814 as they dominate the computational cost. Components not selected are omitted for efficiency, not due
 815 to any fundamental limitation in their cacheability.

Model	Component	Cache-Enabled	GMACs	% of Block Total
PixArt- α and PixArt- Σ	Feedforward	Yes	5.440	53.6 %
	Self-Attention	Yes	2.720	26.8 %
	Cross-Attention	Yes	2.000	19.7 %
	Ada Layer Norm Single	No	0.000	0.0 %
Total: PixArt Transformer Block			10.150	100 %
FLUX-1.dev	Feedforward (Context)	Yes	77.310	44.39 %
	Joint Attention (Multi-stream)	Yes	57.980	33.29 %
	Feedforward (Regular)	Yes	38.650	22.19 %
	Ada Layer Norm Zero	No	0.226	0.14 %
	Layer Norm	No	0.000	0.00 %
	Total: Flux Transformer Block, Full		174.170	100 %
	Linear (MLP Input Projection)	Yes	72.480	41.66 %
	Linear (MLP Output Projection)	Yes	57.980	33.32 %
	Joint Attention (Single-stream)	Yes	43.490	24.99 %
	Ada Layer Norm Zero Single	No	0.057	0.03 %
	GELU	No	0.000	0.00 %
Total: Flux Transformer Block, Single			174.000	100 %

A.2 CACHEABLE COMPONENT SELECTION

836 To enable ECAD on an off-the-shelf model, one must first select which components are cacheable.
 837 Any computation whose output can be stored at one step and reused at another—while introducing
 838 only minimal, acceptable inaccuracy—can be considered for caching. The number of such components
 839 determines the value of C in the binary caching tensor $S \in \{0, 1\}^{N \times B \times C}$, introduced in Section 3.
 840 Since the search space grows linearly with C , careful selection is essential to ensure efficient and
 841 effective caching.

842 Note that the tensor notation is simplified for clarity. In cases where the model uses k different types
 843 of DiT blocks, each with a different number of cacheable components, the caching tensor would
 844 instead take the form $S \in \{0, 1\}^{N \times (\sum_{i=1}^k B_i \times C_i)}$.

845 Table 5 enumerates the computational complexity of each DiT blocks forward pass. We enable
 846 caching for the three most computationally expensive components per block, as they collectively
 847 dominate the total cost. Computations outside the DiT blocks forward pass (e.g., timestep and position
 848 embeddings) are not currently considered as they contribute less than 1% of the total compute.

853 Table 6: Comparison of ECAD performance when using Image Reward (IR) versus a weighted sum
 854 of CLIP Score and CLIP Image Quality Assessment (IQA) as a quality metric. The first 4 rows are
 855 duplicated from Table 1, while the final row displays results after running ECAD for 150 generations,
 856 where we optimize for TMACs and a weighted combination of CLIP Score (30%) and CLIP IQA. For
 857 CLIP IQA we specifically use Good (30%), Clean (20%), and Sharpness (20%) scores. CLIP Score
 858 encourages prompt-alignment, while CLIP IQA ensures the generated images are of high quality.

Method	ms / img \downarrow (speedup \uparrow)	TMACs	MJHQ FID \downarrow	COCO FID \downarrow	Calibration IR \uparrow	PartiPrompts IR \uparrow
PixArt- α Baseline	164.74 (1.00x)	5.71	9.75	24.84	0.90	0.97
FORA $N = 2$	100.57 (1.65x)	2.87	10.33	24.80	0.83	0.91
ToCa $R = 60\%$	90.71 (1.83x)	3.17	12.01	22.05	0.71	0.76
Ours (IR)	84.09 (1.97x)	2.13	8.02	20.58	0.96	0.99
Ours (CLIP)	97.65 (1.68x)	2.60	9.86	23.86	0.80	0.82

864 A.3 QUALITY METRIC SELECTION
865

866

867 We select Image Reward as it is a strong indicator of human preference and is fast (Xu et al.,
868 2023a). However, the ECAD framework supports a Bring-Your-Own-Reward paradigm, since image
869 evaluation is done offline after each generation with image-prompt pairs. This makes human scoring
870 easier than other, online-methods.871 We include an ablation in Table 6 utilizing a weighted combination of CLIP Score and CLIP Image
872 Quality Assessment (Wang et al., 2023), *aka* IQA, score to demonstrate the feasibility of alternative
873 rewards. Since CLIP Score and CLIP IQA can be computed using the same CLIP image features,
874 and we can dump the text features for the calibration prompts offline, we still only need to perform a
875 single ViT-L forward pass on the image to compute the metric. Thus, the cost is essentially the same
876 Image Reward. However, Image Reward is generally a superior metric to CLIP Score and CLIP IQA
877 to judge image quality, so it is unsurprising that the results using it outperform CLIP variants.878 Still, ECAD’s robustness allows it to achieve good results, even with other metrics, which is a
879 favorable property for application in more niche uses cases. For example, one could utilize a human
880 preference for video model, such as VisionReward (Xu et al., 2024), for text-to-video generation.
881 Note that any number of metrics can be ensembled to dampen noisy reward signals (such as a
882 combination of Image Reward, CLIP Score, and CLIP IQA).

883

884

885 *Generate 100 prompts for benchmarking image generation models (such
886 as PixArt Alpha, Stable Diffusion, etc.). The prompts should be diverse
887 and cover a wide range of styles, including photorealism, painting, anime,
888 pixel art, and more. Each prompt should be crafted to evaluate aspects like
889 aesthetics, compositional accuracy, text rendering, and subject diversity, in
890 order to comprehensively test model quality.*

891

892 Figure 8: ChatGPT prompt used to generate a set of 100 diverse prompts.
893

894

895

896

897

898 *“Oil painting of rolling hills at sunrise, vibrant sky, wildflowers in foreground”
899 “Impressionist painting of a snowy mountain pass at twilight, soft pastels”
900 “Watercolor painting of a misty forest in autumn, golden leaves, tranquil stream”
901 “Classical landscape painting of a medieval village by a river, ornate details”
902 “Surrealist painting of a desert landscape with floating rocks and melting clocks”
903 “Abstract painting of a coastal landscape, bold shapes, bright primary colors”*

904

905

906 Figure 9: Sample of painting-style landscape prompts.
907

908

909

910

911

912

913

914

915

916

917

918 *Generate 10 prompts for benchmarking image generation models (such as PixArt
919 Alpha, Stable Diffusion, etc.). The prompts should be diverse and cover a wide
920 range of styles, including photorealism, painting, anime, pixel art, and more.
921 Each prompt should be crafted to evaluate aspects like aesthetics, compositional
922 accuracy, text rendering, and subject diversity, in order to comprehensively test
923 model quality.*

924 Figure 10: ChatGPT prompt used to generate the compact set of 10 diverse prompts.

918

A.4 CALIBRATION PROMPT SELECTION

919

920

To demonstrate the ease of assembling a calibration prompt set and to isolate the factors that influence schedule quality, such as prompt source, domain specificity, and granularity, we evaluate ECAD across five distinct calibration strategies.

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

Source and Curation: We first compare the baseline *Image Reward Benchmark* (100 prompts) against two alternatives: *DrawBench200* (Saharia et al., 2022b), a human-curated set of 200 prompts with frequent repetitions, and a *GPT-Generated* set of 100 diverse prompts created via ChatGPT (see Appendix 8). As shown in Table 7, the schedule calibrated on the ChatGPT-generated set achieves nearly identical performance to the baseline. Interestingly, the Image Reward-calibrated schedule demonstrates superior generalization to DrawBench200 compared to the reverse scenario, suggesting that a smaller, more diverse set (Image Reward) provides a more robust foundation than a larger, repetitive one (DrawBench).

Domain Specificity: To test if the calibration domain restricts generalizability, we generate a set of 100 prompts exclusively describing *Painted Landscapes* (see Appendix 9). Despite this narrow semantic focus, the resulting schedule maintains competitive performance on general-purpose benchmarks (COCO and MJHQ), performing similarly to the baseline. This indicates that ECAD relies less on semantic content matching and more on the complexity of the generation task itself.

Quantity and Granularity: Finally, we probe the limits of calibration data efficiency. We construct a *5-Word Prompts* set (100 coarse, short prompts) and a minimal *10 Prompts* set. Table 8 reveals that prompt granularity is not a bottleneck; the schedule learned from 5-word prompts outperforms prior state-of-the-art methods with only a slight reduction in speedup. However, reducing the volume to just 10 prompts causes noticeable degradation in MJHQ FID (rising to 10.02).

Conclusion: These results suggest that the *quantity* of prompts is the primary driver of schedule robustness, whereas the specific source, length, or semantic domain of the prompts is secondary. As such, gathering a sufficiently large (approx. 100) set of calibration prompts for ECAD is surprisingly simple and flexible.

Generate 100 prompts for benchmarking image generation models (such as PixArt Alpha, Stable Diffusion, etc.). The prompts should be brief (e.g. not granular), with no more than 5 words per prompt.

Figure 11: ChatGPT prompt used to generate the set of 100 short (5-word) prompts.

Table 7: **Ablation of calibration prompt set source.** Comparison of ECAD performance when calibrated on human-curated prompt sets Image Reward Benchmark and DrawBench200 versus a ChatGPT-generated set. Metrics include Image Reward (IR) on each prompt set, MJHQ-30K FID, CLIP score, and latency. Each result reflects the highest-TMACs schedule from the Pareto frontier after 100 generations. IRB, DB200, GPT-Gen, and PP refer to the Image Reward Benchmark, DrawBench200, GPT Generated, and PartiPrompts prompt sets, respectively.

Calibration Prompt Set	# of calib. prompts	# imgs per prompt	ms / img \downarrow (speedup \uparrow)	IRB IR \uparrow	DB200 IR \uparrow	GPT-Gen IR \uparrow	PP IR \uparrow	FID \downarrow	CLIP \uparrow
Image Reward Benchmark	100	10	100.68 (1.65x)	0.94	0.77	1.21	1.00	8.18	32.88
DrawBench200	200	5	99.53 (1.67x)	0.87	0.79	1.19	1.00	8.90	32.93
GPT Generated	100	10	104.66 (1.58x)	0.93	0.79	1.24	1.00	8.05	32.85

A.5 HYPERPARAMETER ABLATIONS

To better characterize the behavior of ECAD, we conduct two ablations on two different sets of hyperparameters. The first is over the hyperparameters that are agnostic to the genetic algorithm used – population size, the number of images generated per prompt, and the number of prompts. The second is over the NSGA-II hyperparameters, but it should be noted that other genetic algorithms can be employed.

972

973 Table 8: **Ablation of calibration prompt diversity and size.** We compare the baseline (Image
 974 Reward Benchmark) against domain-specific (Painted Landscapes), coarse (5-Word), and minimal
 975 (10 Prompts) calibration sets. Metrics include Image Reward (IR), MJHQ, and COCO. Each result
 976 reflects the highest-TMACs schedule from the Pareto frontier after 100 generations, except for “5
 977 Word Prompts (Faster)”, which is selected to provide an additional reference point for high-speed
 978 performance.

Calibration Set	ms / img \downarrow (speedup \uparrow)	Calib. Set IR \uparrow	PP IR \uparrow	MJHQ FID \downarrow	MJHQ CLIP \uparrow	COCO FID \downarrow	COCO CLIP \uparrow
ImageReward Benchmark	100.68 (1.65x)	0.94	1.00	8.18	32.88	21.40	31.48
Painted Landscapes	95.41 (1.74x)	1.20	0.97	8.55	32.85	20.82	31.58
10 Prompts	97.87 (1.69x)	1.31	0.94	10.02	32.84	25.27	31.51
5 Word Prompts (Highest TMACs)	109.18 (1.52x)	1.01	0.98	7.42	32.82	20.05	31.46
5 Word Prompts (Faster)	95.27 (1.74x)	1.00	1.00	8.76	32.76	21.68	31.36

979

980

981

982

983

984

985

986

The former ablation is shown in Figure 7 and we include plots of the evolution over generations for each configuration. Figure 16 illustrates the impact of reducing the population size. This setting results in slightly noisier frontiers and slight performance degradation across all metrics: the MJHQ-30K FID worsens slightly and latency increases by 22 ms over the baseline—the largest increase among all ablations. Figure 17 examines the effect of reducing the number of images per prompt from 10 to 3, while keeping 100 prompts and a population of 72. This configuration achieves the fastest latency at 100.30 ms, the highest calibration Image Reward of 0.96, and the smallest increase in MJHQ-30K FID. In Figure 18, we reduce the number of prompts from 100 to 33 while maintaining 10 images per prompt. This setup exhibits the cleanest convergence behavior but significantly underperforms on calibration Image Reward and its final Pareto frontier is dominated by other settings. However, its PartiPrompts score remains competitive and it produces the best FID, suggesting the subset of prompts were challenging enough for some generalization. Detailed results for the highest-TMACs schedule after 100 generations under each hyperparameter setting are shown in Table 10.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

The latter ablation, with results in Table 9, modifies one of each of the following hyperparameters: the number of crossover points, mutation probability, and if direct copies are allowed. Refer to Appendix A.7 for the purpose of each of these. The results show disallowing direct copies of parents improves inference speed but significantly worsens FID (8.60 \rightarrow 9.64), as strong schedules are more frequently ‘churned’ with lower quality ones. Reducing the mutation rate to 1% has the greatest inference speed-up, as it reduces exploration and increases exploitation, but results in poor quality. Conversely, both reducing crossover to 1 point and increasing mutation rate to 15% both slow convergence. The high mutation rate promotes exploration and seems to prevent the high-FID local-minima seen in 1% mutation rate. Metrics across most configurations remain relatively stable, meaning a set of good-enough standard hyperparameters for your genetic algorithm is sufficient for ECAD.

1012 Table 9: **Ablation comparing the effects of hyperparameters on NSGA-II.** Each row modifies
 1013 exactly one hyperparameter, examining effects on computational cost (TMACs), latency, image
 1014 quality metrics (Calibration Image Reward (IR), PartiPrompts IR), and MJHQ FID. All experiments
 1015 use the highest-TMAC schedule after 100 generations, generating 3 images per prompt, with 100
 1016 prompts from the Image Reward prompt set, and with a population size of 72. Crossover probability
 1017 ($P(\text{Cross})$) is the probability the parent’s DNA is not directly copied to the offspring. k Point
 1018 crossover refers to the number of splices made to connect the parent’s DNA, and the $P(\text{Mut})$ is the
 1019 probability that an offspring will be mutated.

Experiment Condition	TMACs	ms / img \downarrow (speedup \uparrow)	Calibration IR \uparrow	PartiPrompts IR \uparrow	FID \downarrow
Baseline: $P(\text{Cross}) = 0.9$, 4 Point Cross, $P(\text{Mut}) = 0.05$	2.89	100.30 (1.65x)	0.96	0.99	8.60
No Direct Copies ($P(\text{cross}) = 1.0$)	2.46	94.02 (1.76x)	0.97	0.99	9.64
1 Point Crossover	3.51	114.78 (1.44x)	0.96	1.01	8.87
6 Point Crossover	2.38	93.52 (1.77x)	0.98	1.01	8.57
$P(\text{Mutation}) = 0.01$	2.35	90.40 (1.83x)	0.97	0.98	9.11
$P(\text{Mutation}) = 0.15$	3.97	127.83 (1.30x)	0.96	1.00	8.70

1020

1021

1022

1023

1024

1025

1026
1027 **Table 10: Genetic hyperparameter ablations.** Performance of ECAD when varying population
1028 size, number of images per prompt, and number of calibration prompts. We report latency, Image
1029 Reward on calibration and unseen PartiPrompts, and MJHQ-30K FID. Each result corresponds to the
1030 highest-TMACs schedule lying on the Pareto frontier after 100 generations.

Population Size	# imgs per prompt	# of calibration prompts	ms / img \downarrow (speedup \uparrow)	Calibration IR \uparrow	PartiPrompts IR \uparrow	FID \downarrow
72	10	100	100.68 (1.65x)	0.94	1.00	8.18
24	10	100	122.96 (1.35x)	0.93	1.00	8.92
72	3	100	100.30 (1.65x)	0.96	0.99	8.60
72	10	33	110.44 (1.50x)	0.85	0.99	7.52

A.6 NUMBER OF INFERENCE STEPS ABLATION

We examine how the number of inference steps affects the performance of ECAD-generated schedules. Since ECAD produces schedules optimized for a particular step count, this ablation evaluates their robustness when applied at a different inference step setting.

We first learn ECAD schedules using 10 steps on DPM-Solver++ for 100 generations with standard hyperparameters, then upscale the binary mask of the schedule with the highest TMACs to 20 steps by duplicating each step. Formally, given a 10-step schedule S_{10} , we define step i of the corresponding 20-step schedule S_{20} as

$$S_{20}[i] = S_{10}\left[\left\lfloor \frac{i}{2} \right\rfloor\right], \quad i = 0, 1, \dots, 19$$

We similarly learn schedules at 20 steps and downscale to 10 steps by caching a component at step i of S_{10} only if it is cached in both corresponding steps $2i$ and $2i + 1$ of S_{20} . Recalling that 0 indicates caching in S , for each block b and component c we define

$$S_{10}[i, b, c] = S_{20}[2i, b, c] \vee S_{20}[2i + 1, b, c], \quad i = 0, 1, \dots, 9$$

Table 11 presents evaluation results. Applying a 10-step ECAD schedule at 20 inference steps yields improvements in both Image Reward and FID compared to the unaccelerated baseline. Conversely, using a conservative downscaling strategy reduces the overall speedup but still maintains performance gains over the baseline. Note that while the schedules here are evaluated *as-is*, they could also serve as starting points for further refinement or adaptation.

1058
1059 **Table 11: Inference step ablation.** We optimize ECAD on PixArt- α for 100 generations with
1060 standard hyperparameters, for 10 and 20 inference steps on DPM-Solver++. We then evaluate the
1061 highest-TMACs schedule from the Pareto frontier for both 10 and 20 steps, up- and down-scaling
1062 the learned caching schedules appropriately. Reported metrics include latency, Image Reward
1063 performance on the Image Reward prompt set (Calib. IR) and the unseen PartiPrompts set (PP IR), as
1064 well as both FID and CLIP scores on MJHQ-30K and MS-COCO2017-30K.

Acceleration Type	Train Steps	Eval Steps	ms / img \downarrow (speedup \uparrow)	Calib. IR \uparrow	PP IR \uparrow	MJHQ FID \downarrow	MJHQ CLIP \uparrow	COCO FID \downarrow	COCO CLIP \uparrow
None	20	20	165.74 (1.00x)	0.90	0.97	9.75	32.77	24.84	31.29
ECAD	20	20	100.68 (1.65x)	0.94	1.00	8.18	32.88	21.40	31.48
ECAD	10	20	121.04 (1.37x)	0.94	1.01	8.80	32.74	21.67	31.33
None	10	10	89.85 (1.00x)	0.84	0.90	10.83	32.77	25.82	31.42
ECAD	10	10	66.69 (1.35x)	0.93	0.97	8.35	32.62	22.02	31.40
ECAD	20	10	75.24 (1.19x)	0.89	0.95	9.30	32.87	23.75	31.57

A.7 GENETIC ALGORITHM EVOLUTIONARY STEP IN DETAIL

The evolutionary step occurs once at the end of each generation to create new offspring for the subsequent generation. This step takes negligible time (< 1 minute) and does not require a GPU. Formally, this step can be understood as follows:

Given a population P_g of size n at generation g , ECAD employs the NSGA-II algorithm (Blank & Deb, 2020; Deb & Jain, 2013) to produce the next generation P_{g+1} through the following steps:

1. **Selection and Offspring Generation:** An offspring population Q_g , also of size n , is generated from P_g via binary tournament selection by repeating the following process until

1080 Q_g is filled. Two pairs of candidates are randomly sampled from P_g . Within each pair,
 1081 a tournament is conducted by first comparing candidates by Pareto rank, then breaking
 1082 ties using crowding distance. The winners from each pair undergo crossover, followed by
 1083 mutation, to generate offspring.

1084 2. **Crossover:** With a probability of 0.9, we apply 4-point crossover to the binary caching
 1085 tensors of the parent schedules. Four distinct crossover points are randomly selected along
 1086 the flattened tensor, and two offspring are created by alternating segments between parents.
 1087 With probability 0.1, the offspring are direct copies of their respective parents.

1088 3. **Mutation:** Each candidate in Q_g undergoes bit-flip mutation with a probability of 0.05.
 1089 If selected, each bit in the binary tensor $S \in \{0, 1\}^{N \times B \times C}$ is independently flipped with
 1090 probability $\frac{1}{N \times B \times C}$. Note that after this step, we force all components in all blocks to be
 1091 recomputed on the first step, since there is no ‘cached’ value to be reused.

1092 4. **Non-Dominated Sorting:** The union $P_g \cup Q_g$ (size $2n$) is sorted into Pareto fronts
 1093 F_0, F_1, \dots, F_d based on dominance. For each candidate c , we compute $\text{Dom}_c(R)$, the
 1094 number of candidates that dominate c in some set of candidates R . Fronts are defined
 1095 iteratively as:

$$\begin{aligned} F_0 &:= \{c \in P_g \cup Q_g \mid \text{Dom}_c(P_g \cup Q_g) = 0\} \\ F_1 &:= \{c \in (P_g \cup Q_g) \setminus F_0 \mid \text{Dom}_c((P_g \cup Q_g) \setminus F_0) = 0\} \\ &\vdots \\ F_i &:= \{c \in (P_g \cup Q_g) \setminus \bigcup_{j=0}^{i-1} F_j \mid \text{Dom}_c((P_g \cup Q_g) \setminus \bigcup_{j=0}^{i-1} F_j) = 0\} \end{aligned}$$

1104 Note candidates in front F_i are said to be of Pareto rank i ; lower rank candidates are ‘fitter’
 1105 solutions. Each front F_i contains candidates not dominated by any candidate in fronts of
 1106 higher rank.

1107 5. **Population Selection:** The next generation P_{g+1} is filled by sequentially adding complete
 1108 fronts F_0, F_1, \dots until the population size n is reached. If a front F_k cannot be fully
 1109 accommodated, it is sorted by crowding distance. The most diverse candidates those with the
 1110 fewest close neighbors are selected to fill the remaining slots, always including the extrema
 1111 to preserve frontier diversity.

1113 A.8 POPULATION INITIALIZATION

1115 We initialize the first generation of schedules for PixArt- α using a diverse set of heuristic strategies
 1116 informed by prior work. Each heuristic varies caching behavior based on step/block selection patterns:

- 1117 • **Cross-Attention Only:** Cache cross-attention at s evenly spaced steps. At each selected
 1118 step, cache the cross-attention of b DiT blocks, evenly spaced across the total 28 blocks.
- 1119 • **Self-Attention Only:** Identical to the above, but cache only self-attention.
- 1120 • **Feedforward Only:** Identical to the above, but cache only feedforward layers.
- 1121 • **Cross- & Self-Attention, All Blocks:** Cache both cross- and self-attention for all blocks at
 1122 every n th step.
- 1123 • **FORA-inspired:** Following (Selvaraju et al., 2024), cache cross-attention, self-attention,
 1124 and feedforward layers for all blocks at every n th step.
- 1125 • **TGATE-inspired:** Following the gating mechanism from (Liu et al., 2024b), set gate step
 1126 m and interval k . After the first two warm-up steps, compute self-attention every k steps,
 1127 caching and reusing otherwise. After step m , self-attention is computed every step, while
 1128 cross-attention is not recomputed and reuses the cached output from step m . Unlike TGATE,
 1129 which averages the cross attention activation on text and null-text embeddings, we cache
 1130 only the the result from the text embedding.

1132 The resulting Pareto frontiers for these heuristics are shown in Figure 12. From the complete set of
 1133 generated schedules, we randomly select 72 to initialize ECAD’s first generation for PixArt- α .

1134 For PixArt- Σ , as summarized in Section 4.2, we initialize with 72 schedules randomly sampled from
 1135 the Pareto frontier of PixArt- α after 200 generations of ECAD optimization.
 1136

1137 For FLUX-1.dev, we start with a FORA-inspired schedule, apply a few rounds of mutation and
 1138 crossover, and randomly select 24 candidates to initialize ECAD.
 1139

1140 When initializing populations, it is suggested to include at least one schedule that is near identical
 1141 to the uncached baseline and one that is nearly fully-cached. The former will allow ECAD to find
 1142 schedules with the highest image quality possible, and the latter will promote faster convergence to
 1143 efficient schedules.
 1144

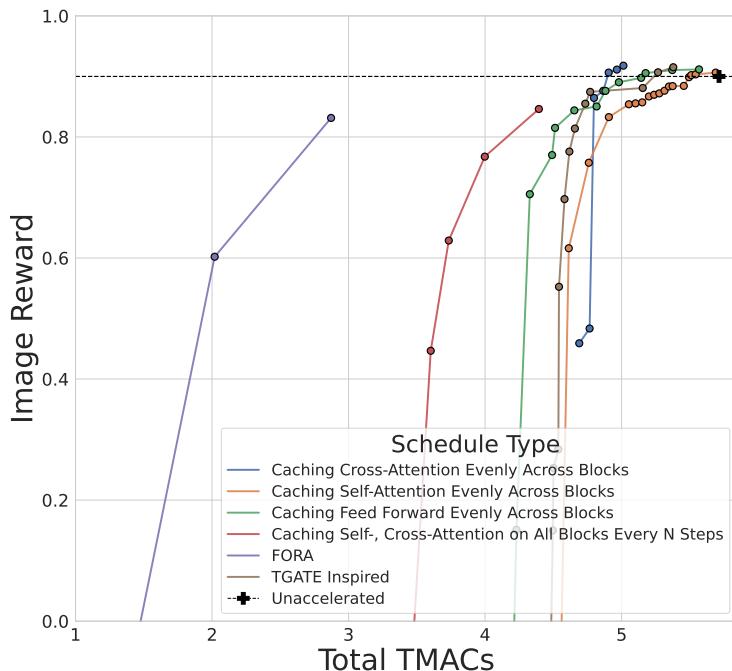
1145 To better understand this, we analyze two random initialization strategies. We find that a naive
 1146 random sampling of binary masks (*True Random*) is suboptimal; due to the Central Limit Theorem,
 1147 candidate schedules cluster around the mean sparsity, failing to explore the extremes of the Pareto
 1148 frontier (Figure 13).
 1149

1150 To address this, we propose *Uniform Random Initialization*, which samples uniformly across the
 1151 computational cost spectrum $[0, C_{max}]$. We first sample a target budget $C^* \sim \mathcal{U}(0, C_{max})$. We
 1152 then determine valid integer counts k_c for each component $c \in \{FF, SA, CA\}$ with GMAC cost
 1153 w_c by solving the linear Diophantine equation $\sum w_c k_c \approx C^*$. This is solved efficiently by iterating
 1154 over the highest-weighted component (k_{FF}) and solving the remaining two-variable equation using
 1155 the Extended Euclidean Algorithm:
 1156

$$w_{SA}k_{SA} + w_{CA}k_{CA} = C^* - w_{FF}k_{FF}$$

1157 From the solution set, we sample a tuple (k_{FF}, k_{SA}, k_{CA}) and distribute the active flags uniformly
 1158 across the $N \times B$ spatiotemporal positions.
 1159

1160 As detailed in Table 12, while Heuristic initialization yields the best performance ($1.65 \times$ speedup,
 1161 8.18 MJHQ FID), *Uniform Random* significantly outperforms *True Random* ($1.60 \times$ vs. $1.28 \times$
 1162 speedup) and prevents the population diversity collapse observed in the naive approach.
 1163



1184 Figure 12: Pareto frontiers of Image Reward vs. computational cost for the handcrafted schedules
 1185 described in Section A.8, evaluated on the Image Reward Benchmark. Notably, caching a single
 1186 component (e.g., cross-attention or feedforward) offers slight gains over baseline. Among all
 1187 heuristics, FORA achieves the best trade-off, with slightly lower quality but superior efficiency.
 1188

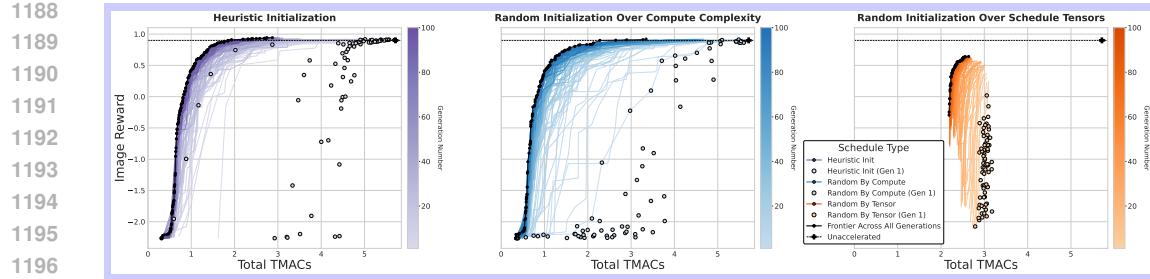


Figure 13: Schedule Initialization Ablation. We initialize the first 72 candidates of generation 1 with three methods: heuristics as described in Section A.8, a random sample over the binary caching tensors, and sampling such that we have a uniform spread of compute complexity (TMACs). Heuristics converge the quickest, and achieve higher Image Reward performance. Uniform sampling over TMACs performs well, while randomly sampling caching schedule results in heavy grouping which prevents ECAD from optimizing effectively.

Table 12: Ablation of initialization strategies. Comparison of ECAD performance using different initialization methods. Heuristic initialization yields the highest speedup and fidelity metrics compared to random initialization baselines. All evaluations are conducted on the schedule with the highest TMACs after 100 generations on default settings, except for ‘Uniform Random (Closest)’, which is selected to have the closest speedup to the Heuristic schedule for a more fair comparison.

Initialization	ms / img \downarrow (speedup \uparrow)	ImageReward IR \uparrow	PP IR \uparrow	MJHQ FID \downarrow	MJHQ CLIP \uparrow	COCO FID \downarrow	COCO CLIP \uparrow
Heuristic	100.68 (1.65x)	0.94	1.00	8.18	32.88	21.40	31.48
Uniform Random	150.52 (1.10x)	0.92	0.95	9.37	32.71	22.35	31.32
Uniform Random (Closest)	103.79 (1.60x)	0.91	0.93	9.29	32.70	23.40	31.34
True Random	129.88 (1.28x)	0.64	0.61	13.77	31.74	24.14	30.68

Table 13: FLUX-1.dev Performance on GenEval and DPG Bench. We compare our and other methods from Table 1 on the GenEval and DPG Bench benchmarks using FLUX-1.dev (20 steps, 256×256). Our method does not impact GenEval Overall score at $2.58 \times$ acceleration while other methods result in 2% to 22% quality decrease for lower acceleration. Our method achieves the highest speedups while even slightly improving the DPG Bench score, whereas other aggressive caching strategies degrade performance.

Caching	Setting	Latency		GenEval Overall		DPG Bench	
		TMACs \downarrow	ms / img \downarrow (speedup \uparrow)	Score	% Decrease	Score	% Decrease
None		198.69	2620.09 (1.00x)	0.5842	—	22.7058	—
ToCa	$N = 4, R = 90\%$	42.96*	1576.97 (1.66x)*	0.5517	5.56%	22.8215	-0.51%
DiCache		62.23	1161.86 (2.26x)	0.5699	2.45%	22.6946	0.05%
TaylorSeer	$N = 5, O = 2$	59.88*	1028.66 (2.55x)*	0.4531	22.44%	22.4695	1.04%
TaylorSeer	$N = 6, O = 1$	49.97*	865.97 (3.03x)*	0.3399	41.81%	21.6869	4.49%
Ours	Fast	63.02	1016.59 (2.58x)	0.5892	-0.86%	22.8364	-0.58%
Ours	Fastest	43.60	778.17 (3.37x)	0.5258	10.00%	23.5098	-3.54%

*Refer to Appendix A.11 for a detailed explanation of MAC and latency calculations.

1242
1243

A.9 ADDITIONAL FLUX-1.DEV RESULTS

1244
1245
1246
1247
1248
1249
1250

To further demonstrate the robustness of our method, we include supplementary quantitative results on the GenEval (Ghosh et al., 2023) and DPG Bench (Hu et al., 2024) in Table 13. Both methods use the official prompt sets provided by each respective method, with 4 images generated per prompt. Our method “Fast” schedule from Table 1 achieves $2.58\times$ acceleration with slightly higher performance on each metric as compared with the uncached baseline, while other methods result in quality degradation. Our “Fastest” schedule trades only some image quality to achieve $3.37\times$ acceleration.

1251
1252

A.10 OPTIMIZATION COST AND LIMITATIONS OF ECAD

1253
1254
1255
1256
1257

ECAD introduces an offline optimization phase that searches over binary caching schedules. This search is a one-time cost per model family: once a schedule (or set of schedules) is learned, it can be reused for that architecture and shared with downstream users, who simply choose an operating point on the quality-latency frontier.

1258
1259
1260
1261
1262
1263
1264
1265

In our PixArt configurations, the full “fast/faster/fastest” frontier requires ≈ 700 NVIDIA A6000 GPU-hours with a research-oriented implementation. However, competitive operating points can be obtained much more cheaply: the “fast” schedule with SOTA performance is discovered in only 358 generations (just 470 GPU-hours). 100 generations with default settings, resulting in the schedule with a 16% reduction in MJHQ FID over baseline, costs 145 GPU-hours. But with minor engineering changes, we achieve a schedule with an identical $1.65\times$ speedup, 11.8% MJHQ FID reduction over baseline, in *only 44 GPU-hours*. As such, these figures should be viewed as upper bounds given an under-optimized research framework.

1266
1267
1268
1269
1270

The focus of this work is the algorithmic framework: formulating diffusion caching as a multi-objective optimization problem and demonstrating that a simple genetic algorithm can discover strong Pareto fronts across models and resolutions. System-level engineering—e.g., optimized kernels, greater hardware utilization, and `torch.compile` integration—is orthogonal to ECAD and can further reduce wall-clock search time without changing the method.

1271
1272
1273
1274
1275
1276

A key limitation is that ECAD adds an up-front compute cost. Nevertheless, unlike training-based accelerations, ECAD does not require gradients or weight updates, has lower VRAM requirements, and can be run asynchronously across heterogeneous, lower-end GPUs. For large-scale services employing ECAD, the one-time optimization cost is quickly amortized by the per-sample latency savings.

1277

1278
1279
1280
1281

Table 14: Parameters used for latency evaluation. W is the number of warm-up batches discarded, N is the number of batches used to compute the average latency, and B is the largest batch size that fits in memory on a single NVIDIA A6000 GPU. All values are empirically chosen to ensure stable and consistent measurements.

1282
1283
1284
1285
1286
1287

Model Name	Resolution	Warm-up (W)	Measured (N)	Batch Size (B)
PixArt- α	256×256	1	5	100
PixArt- Σ	256×256	1	5	100
FLUX-1.dev	256×256	1	10	18
FLUX-1.dev	1024×1024	5	25	3

1288
1289
1290

A.11 MAC AND LATENCY COMPUTATIONS

1291
1292
1293
1294
1295

Latency Setup: Latency measurements are conducted on a single NVIDIA A6000 GPU for all models. For each model, we discard the first W warm-up batches and compute the mean latency over the subsequent N measured batches, using prompts from the Image Reward Benchmark. The reported per-image latency is obtained by dividing the average batch latency by the batch size B , except in the case of ToCa (see section below). Detailed configuration parameters are provided in Table 14.

1296 **Latency Results:** The publicly available implementation for some prior works, denoted by * in
 1297 tables, differed substantially from the infrastructure employed in our framework. While all methods
 1298 use the same GPU (NVIDIA A6000) and identical warm-up and batch settings, ToCa and DuCa,
 1299 for example, consistently produces higher latency measurements. To enable fair comparison, we
 1300 normalize reported latencies by computing the relative speedup of each setting over its own baseline,
 1301 then applying this speedup to our unaccelerated baseline latency:

$$\text{Normalized Latency}_{\text{Other}} = \frac{\text{Latency}_{\text{Other}}^{\text{cached}}}{\text{Latency}_{\text{Other}}^{\text{unaccelerated}}} \times \text{Latency}_{\text{Ours}}^{\text{unaccelerated}}$$

1302
 1303 1304 This procedure ensures that the reported values reflect performance improvements relative to each
 1305 1306 methods own baseline, enabling direct comparison across implementations. See Table 15 for details.

1307 **ToCa MAC Results:** Multiply-accumulate operation (MAC) counts for ToCa are derived using the
 1308 1309 analytical formulations provided in the original work (Zou et al., 2025), specifically Section A.4. The
 1310 1311 relevant expressions are:

$$\begin{aligned} \text{MACs}_{SA} &\approx 4N_1D^2 + 2N_1^2D + \frac{5}{2}N_1^2H \\ \text{MACs}_{CA} &\approx 2D^2(N_1 + N_2) + 2N_1N_2D + \frac{5}{2}N_1N_2H \\ \text{MACs}_{FFN} &\approx 8N_1D_{FFN}^2 + 12N_1D_{FFN} \end{aligned}$$

1312
 1313 1314 Here, N_1 and N_2 denote the number of image and text tokens respectively, D is the hidden state
 1315 1316 dimensionality, D_{FFN} refers to the dimensionality within the feedforward network, and H is the
 1317 1318 number of attention heads. Results from DuCa (Zou et al., 2024), a concurrent method that builds
 1319 1320 upon ToCa, confirm that these approximations closely match empirical MAC counts.

1321 **TaylorSeer MAC Results:** We compute MACs and FLOPs for all DiT models with the `calflops`
 1322 1323 from Ye (2023). However, when matching our configuration to that reported in Liu et al. (2025a), we
 1324 1325 find our computed FLOPs to always be different by a factor of exactly $1.249\times$ due to differences in
 1326 1327 implementation. As such, we report our computed values as is for consistency with other models, and
 1328 1329 note this scaling factor here.

1330 A.12 COMPARISON TO CONCURRENT WORKS

1331
 1332 Although our method is thoroughly evaluated against established baselines (prior works), comparison
 1333 1334 with concurrent works is limited. Neither SpeCa (Liu et al., 2025c) nor ClusCa (Zheng et al., 2025)
 1335 1336 currently have completely functional public code. The high acceleration figures reported for these
 1337 1338 works are partly attributable to their choice of a 50-step setting. In our experiments, we focus on the
 1339 1340 20 steps setting, which is already 2.5x faster than 50 step with minimal reduction in image quality.
 1341 1342 We also note that ClusCa shows improvements in memory overhead compared to TaylorSeer (Liu
 1343 1344 et al., 2025a), but still incurs roughly 10% additional cost (Zheng et al., 2025), which in practice
 1345 1346 constrains batch size. In contrast, ECAD introduces no memory overhead. Finally, because SpeCa
 1347 1348 and ClusCa depend on human-tuned hyperparameters (e.g., propagation ratio, cluster size, and cache
 1349 1350 interval), ECAD’s optimization framework could, in principle, be extended to automatically learn
 1351 such parameters to tune these methods.

1352 A.13 ADDITIONAL ECAD OPTIMIZATION PLOTS

1353
 1354 Figure 14 illustrates the progression of ECAD optimization for PixArt- Σ and FLUX-1.dev at 256×256
 1355 1356 resolution. PixArt- Σ converges rapidly, likely due to its initialization from pre-optimized schedules
 1357 1358 learned on PixArt- α . FLUX-1.dev converges to a steeper Pareto frontier, with its resulting schedules
 1359 1360 substantially outperforming the unaccelerated baseline on the Image Reward benchmark. We hypothe-
 1361 1362 size that this steep convergence is facilitated by an initial population with a relatively high mean
 1363 1364 acceleration. See Section A.8 for additional details on population initialization.

1350

Table 15: Latency normalization details across different models and resolutions. “True ms / img” refers to direct latency measured from the official implementation. “Speedup” is computed relative to each methods own unaccelerated baseline, and “Normalized ms / img” applies that speedup to our unaccelerated latency for fair comparison. Note we reduced batch size for TaylorSeer due to its high VRAM requirements.

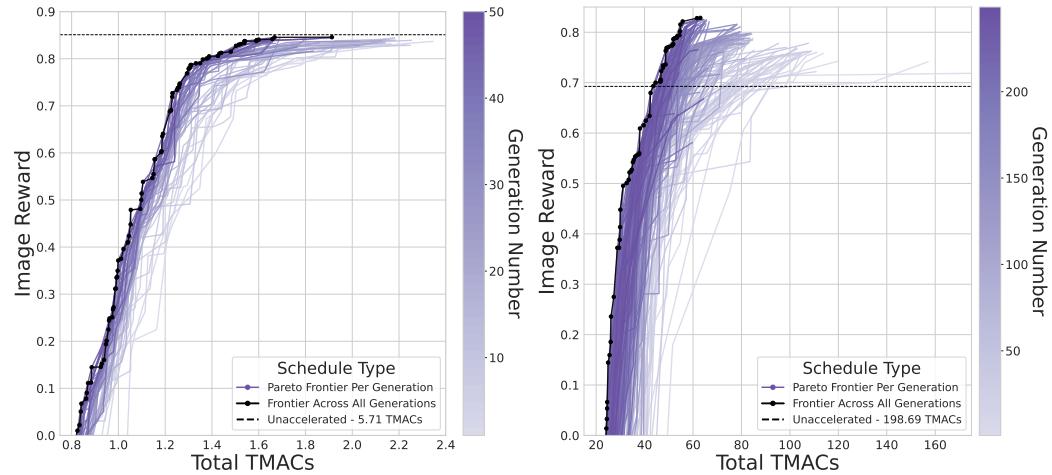
1356

Model	Resolution	Implementation	Caching	Setting	True ms / img↓	Speedup↑	Normalized ms / img↓
PixArt- α	256×256	Ours	None		165.736		
		ToCa	None		948.688	1.000x	165.736
		ToCa	ToCa	$\mathcal{N} = 3, \mathcal{R} = 60\%$	519.258	1.827x	90.715
		ToCa	ToCa	$\mathcal{N} = 3, \mathcal{R} = 90\%$	403.989	2.348x	70.577
		DuCa	None		981.263	1.000x	165.736
		DuCa	DuCa	$\mathcal{N} = 3, \mathcal{R} = 60\%$	429.405	2.285x	72.527
		DuCa	DuCa	$\mathcal{N} = 3, \mathcal{R} = 90\%$	379.411	2.586x	64.083
		Ours	None		167.624		
		ToCa	None		925.024	1.000x	167.624
PixArt- Σ	256×256	ToCa	ToCa	$\mathcal{N} = 3, \mathcal{R} = 60\%$	520.286	1.778x	94.281
		ToCa	ToCa	$\mathcal{N} = 3, \mathcal{R} = 90\%$	403.038	2.295x	73.035
		Ours	None		2620.095		
		ToCa	None		3385.153	1.000x	2620.095
FLUX-1.dev	1024×1024	ToCa	ToCa	$\mathcal{N} = 4, \mathcal{R} = 90\%$	2037.433	1.661x	1576.965
		ToCa	ToCa	$\mathcal{N} = 5, \mathcal{R} = 90\%$	1935.554	1.747x	1499.949
		TaylorSeer	None	batch = 10	2657.782	1.000x	
		TaylorSeer	TaylorSeer	$\mathcal{N} = 5, \mathcal{O} = 2$	1043.457	2.547x	1028.661
		TaylorSeer	None	batch = 18	2630.581	1.000x	
		TaylorSeer	TaylorSeer	$\mathcal{N} = 6, \mathcal{O} = 1$	869.438	3.026x	865.972
		Ours	None		18297.603		
		ToCa	None		34109.719	1.000x	18297.603
		ToCa	ToCa	$\mathcal{N} = 4, \mathcal{R} = 90\%$	13832.082	2.466x	7419.995
		TaylorSeer	None	batch = 1	18947.390	1.000x	
		TaylorSeer	TaylorSeer	$\mathcal{N} = 5, \mathcal{O} = 2$	7452.669	2.542x	7197.085
		TaylorSeer	TaylorSeer	$\mathcal{N} = 6, \mathcal{O} = 1$	6219.621	3.046x	6006.323

1376

Additionally, we include the Pareto frontier of PixArt- Σ as measured by Image Reward on the unseen PartiPrompts set vs. image generation latency in Figure 15. Our method achieves Pareto dominance over FORA but does reach the unaccelerated baseline’s level of performance.

1380



1396

Figure 14: Progress of ECAD optimization as measured by Image Reward and TMACs. **Left:** PixArt- Σ optimized for 50 generations, initialized using 200 generations of PixArt- α optimization. **Right:** FLUX-1.dev optimized for 250 generations, initialized using basic heuristics.

1400

A.14 VISUALIZING ECAD SCHEDULES

1402

To better understand how ECAD optimizes caching schedules under different constraints and settings, we visualize selected schedules using heatmaps. Each heatmap represents a schedule, where red

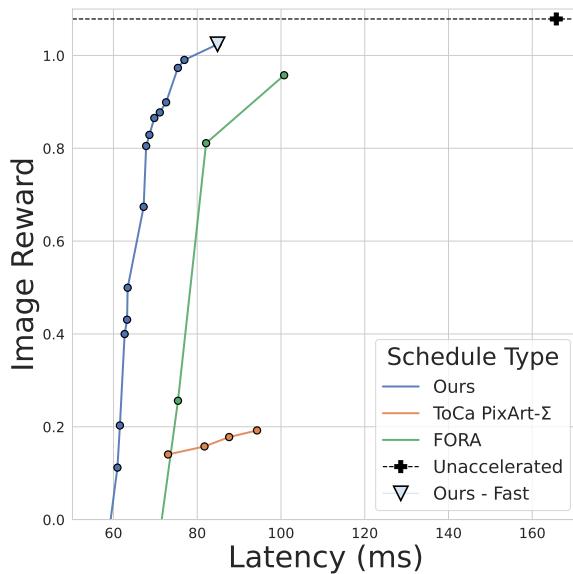


Figure 15: **PartiPrompt Image Reward vs. latency** for PixArt- Σ . Note that ToCa is not optimized for PixArt- Σ and its parameters are transferred from PixArt- α . Our method achieves Pareto dominance with a significant margin, but does not reach baseline performance.

shades indicate cached components and gray shades indicate recomputed components. For PixArt models, the component order left-to-right is self-attention, cross-attention, and feedforward. FLUX-1.dev uses two types of DiT blocks. Block numbers 0 to 18 are full FLUX DiT blocks, whose components are multi-stream joint-attention, feedforward, and feedforward context. Blocks 19 to 56 are single blocks with components single-stream joint-attention, linear MLP input projection, and linear MLP output projection. Figure 21 and Figure 24 show representative schedules for PixArt- α and PixArt- Σ used throughout the paper. Figure 22 compares FLUX-1.dev’s ‘slow’ and ‘fastest’ schedules. Furthermore, Figure 23 visualizes how ECAD schedules evolve over time for PixArt- α , comparing the highest-TMACs candidate at generations 50, 200, and 400. Finally, Figure 25 presents the highest-TMACs schedules resulting from our genetic hyperparameter ablations, illustrating how variations in population size impact the structure of learned caching strategies.

A.15 FURTHER QUALITATIVE RESULTS

In addition to the PixArt- α 256×256 results shown in Figure 4, we present further qualitative comparisons using FLUX-1.dev at 256×256 (Figure 26) and 1024×1024 (Figure 27). Notably, in prompts such as “I want to supplement vitamin c, please help me paint related food,” our method exhibits stronger prompt adherence than both the uncached baseline and ToCa. This behavior is likely influenced by ECAD’s optimization for the Image Reward metric, which emphasizes semantic alignment with the prompt.

Full Prompts from Figure 4, from left to right:

- “Three-quarters front view of a blue 1977 Porsche 911 coming around a curve in a mountain road and looking over a green valley on a cloudy day.”
- “a portrait of an old man”
- “A section of the Great Wall in the mountains. detailed charcoal sketch.”
- “a still life painting of a pair of shoes”
- “a blue cow is standing next to a tree with red leaves and yellow fruit. the cow is standing in a field with white flowers. impressionistic painting”
- “the Parthenon”

Full Prompts from Figure 26, 27, from top-to-bottom:

- “Drone view of waves crashing against the rugged cliffs along Big Surs Garay Point beach. The crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the rocky shore.”
- “Bright scene, aerial view, ancient city, fantasy, gorgeous light, mirror reflection, high detail, wide angle lens.”
- “3d digital art of an adorable ghost, glowing within, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background”
- “8k uhd A man looks up at the starry sky, lonely and ethereal, Minimalism, Chaotic composition Op Art”
- “I want to supplement vitamin c, please help me paint related food.”
- “A deep forest clearing with a mirrored pond reflecting a galaxy-filled night sky.”
- “A person standing on the desert, desert waves, gossip illustration, half red, half blue, abstract image of sand, clear style, trendy illustration, outdoor, top view, clear style, precision art, ultra high definition image”

Full Prompts from Figure 28, from top-to-bottom:

- “Eiffel Tower was Made up of more than 2 million translucent straws to look like a cloud, with the bell tower at the top of the building, Michel installed huge foam-making machines in the forest to blow huge amounts of unpredictable wet clouds in the building’s classic architecture.”
- “Mural Painted of Prince in Purple Rain on side of 5 story brick building next to zen garden vacant lot in the urban center district, rgb”
- “Editorial photoshoot of a old woman, high fashion 2000s fashion Steampunk makeup, in the style of vray tracing, colorful impasto, uhd image, indonesian art, fine feather details with bright red and yellow and green and pink and orange colours, intricate patterns and details, dark cyan and amber makeup. Rich colourful plumes. Victorian style.”

Full Prompts from Figure 29, from top-to-bottom:

- “a handsome villain in his early 40s with very short bleach blonde hair and glowing red eyes wearing a blue armor and red cape. hyperrealistic, mythological, regal, 8k, medieval.”
- “logo, simplistic, art style, multiple parallel universes together, different ages and themes over an open book ”
- “professional Food photography, BeerenProteinSmoothie in a glass decorated with a mint leaf, high quality, hyper, detailed, beautifully color, beautifully color graded, cinematic ”
- “iphone wallpaper, conceptual art colorful design, splash of colors, racing car drifting, ultra fine detailed art ”

A.16 CLARIFYING FRONTIER VISUALIZATIONS

Several frontier plots—such as Figures 16, 17, and 18—show both the Pareto frontier of individual generations (typically shown in color) and the overall frontier aggregated across all generations (typically in black). At first glance, it may seem that a generational frontier occasionally surpasses the overall frontier. This apparent contradiction arises from interpolation between discrete candidate schedules. As illustrated in Figure 20, the frontier from generation G appears to extend beyond the overall frontier. However, the aggregated frontier integrates more finely sampled points, including high-performing candidates from earlier generations (e.g., generation $G-1$), which are not always aligned with the interpolated curves of later generations. The overall frontier, therefore, forms a tighter envelope of all known Pareto-optimal schedules, even if it may visually appear to be exceeded due to interpolation artifacts.

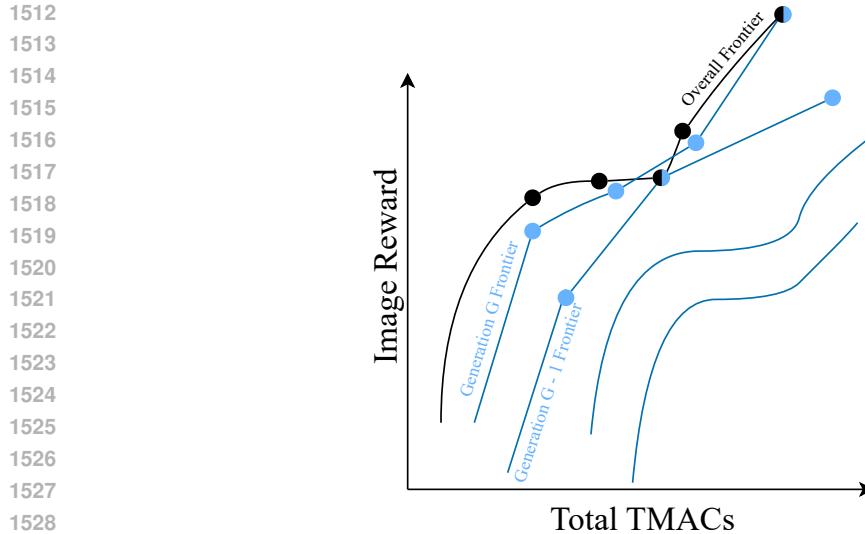


Figure 20: Illustrative example of per-generation and overall Pareto frontiers in ECAD. Points represent candidate schedules, with lines interpolated between them for visualization. Half-colored points lie on both the generational and overall frontiers. In this example, the frontier from generation G appears to exceed the overall frontier, highlighting interpolation ‘artifacts’ that can occur between discrete candidate solutions.

A.17 LLM USAGE

We utilized LLMs to proof-read, check grammar, and make revision suggestions during the writing of this manuscript.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

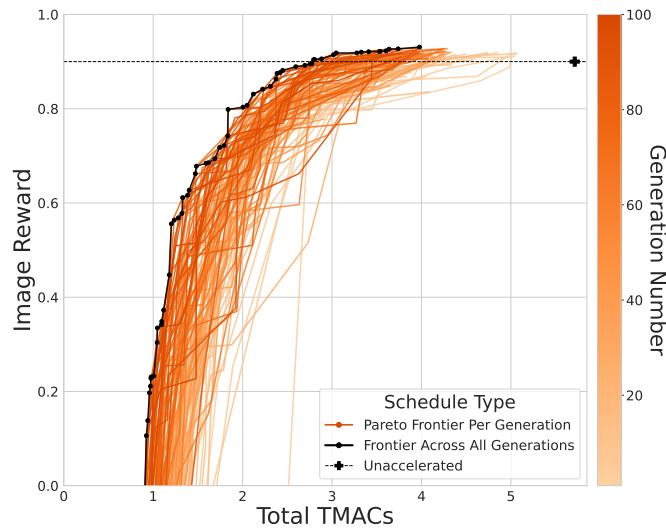


Figure 16: ECAD optimization progress and final Pareto frontier using a reduced population size of 24 (compared to the default of 72), with 100 prompts and 10 images per prompt. The resulting frontiers are noisier and exhibit slower convergence.

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

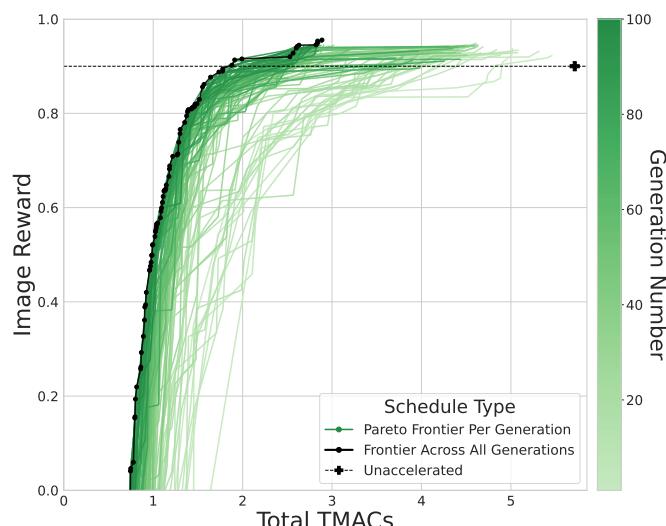


Figure 17: ECAD optimization progress and final Pareto frontier using only 3 images per prompt (default is 10), with 100 prompts and a population size of 72. This configuration demonstrates stable convergence and achieves stronger overall performance.

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

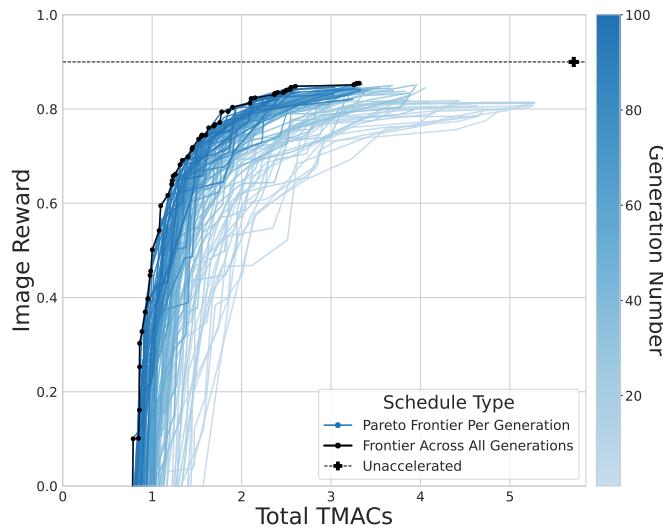


Figure 18: ECAD optimization progress and final Pareto frontier using only 33 prompts (a random subset of the default 100), with 10 images per prompt and population size 72. Although convergence is relatively smooth, the final frontier is constrained by the reduced prompt diversity.

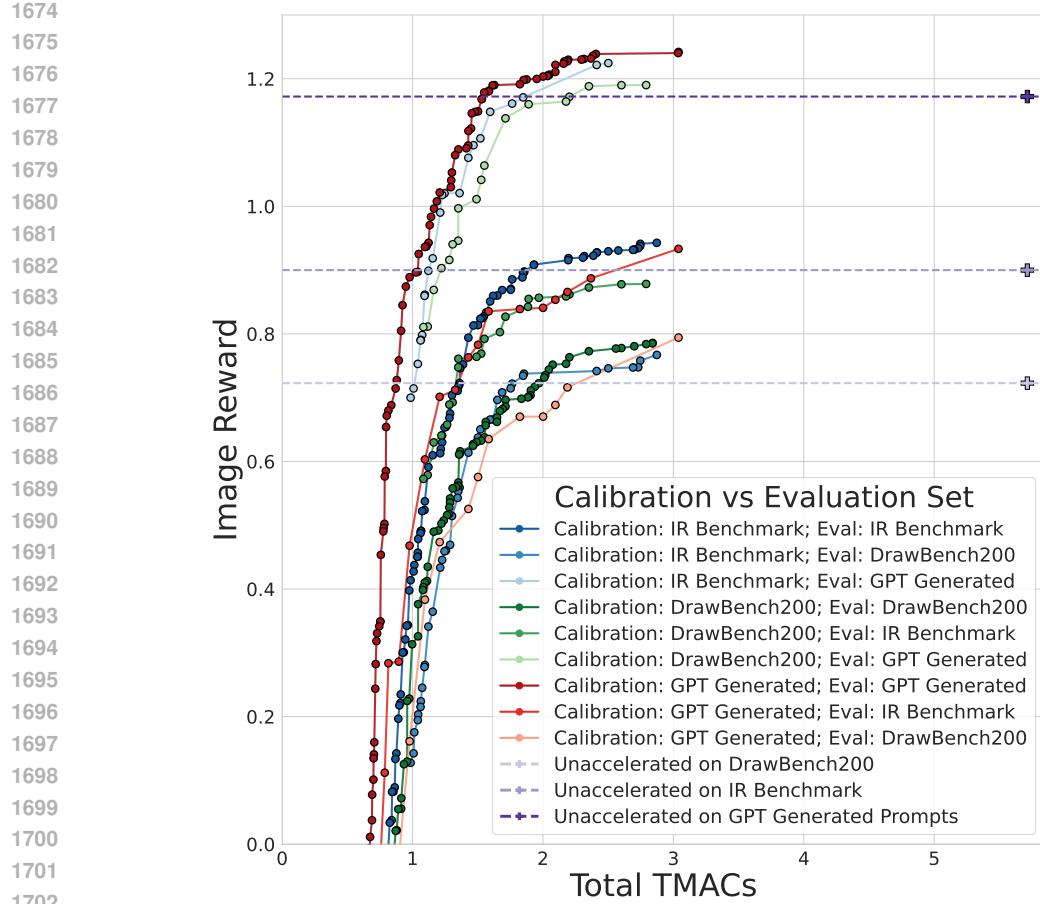


Figure 19: **ECAD calibration prompt set ablation.** We show performance change when using the DrawBench200 prompts benchmark set for calibration instead of the Image Reward set. Performance is measured in Image Reward (IR) on the both calibration prompts, unseen PartiPrompts, and MJHQ-30K FID and CLIP. Latency is provided as well. The schedule with the most TMACs that lies on the Pareto frontier across all 100 generations is used in each instance.

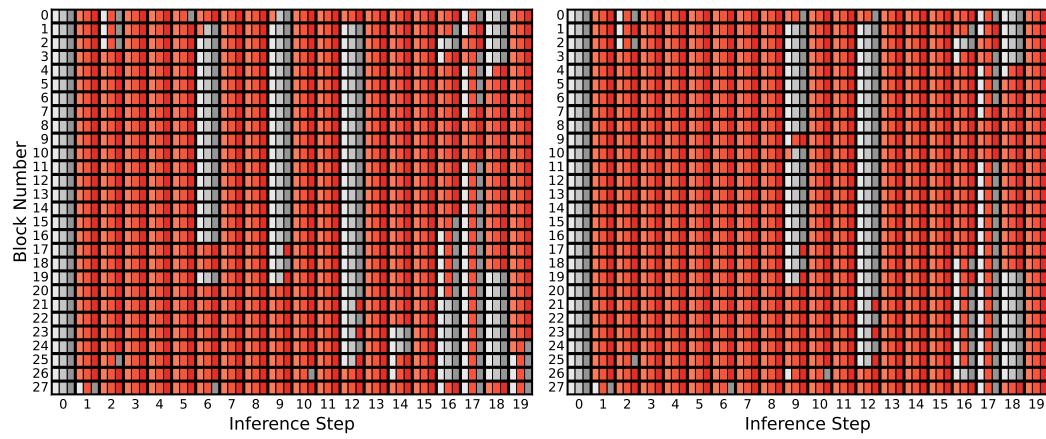


Figure 21: ECAD schedules for PixArt- α from Table 1: “faster” (left) and “fastest” (right). Despite being separate schedules with no guarantee of relation, the “faster” schedule has near identical structure to “fast”, with more caching along steps 6 and 16. Furthermore, it appears cross-attention matters less than self-attention and the feedforward network during steps 16 and 17 and can safely be cached.

1780 Figure 22: ECAD schedules “slow” (**left**) and “fastest” (**right**) for FLUX-1.dev from Table 4 and
 1781 Table 1 respectively. Despite being almost 200 generations apart, both schedules share similar
 structures for the first 5 steps, particularly at step 2 for blocks 9 through 12.

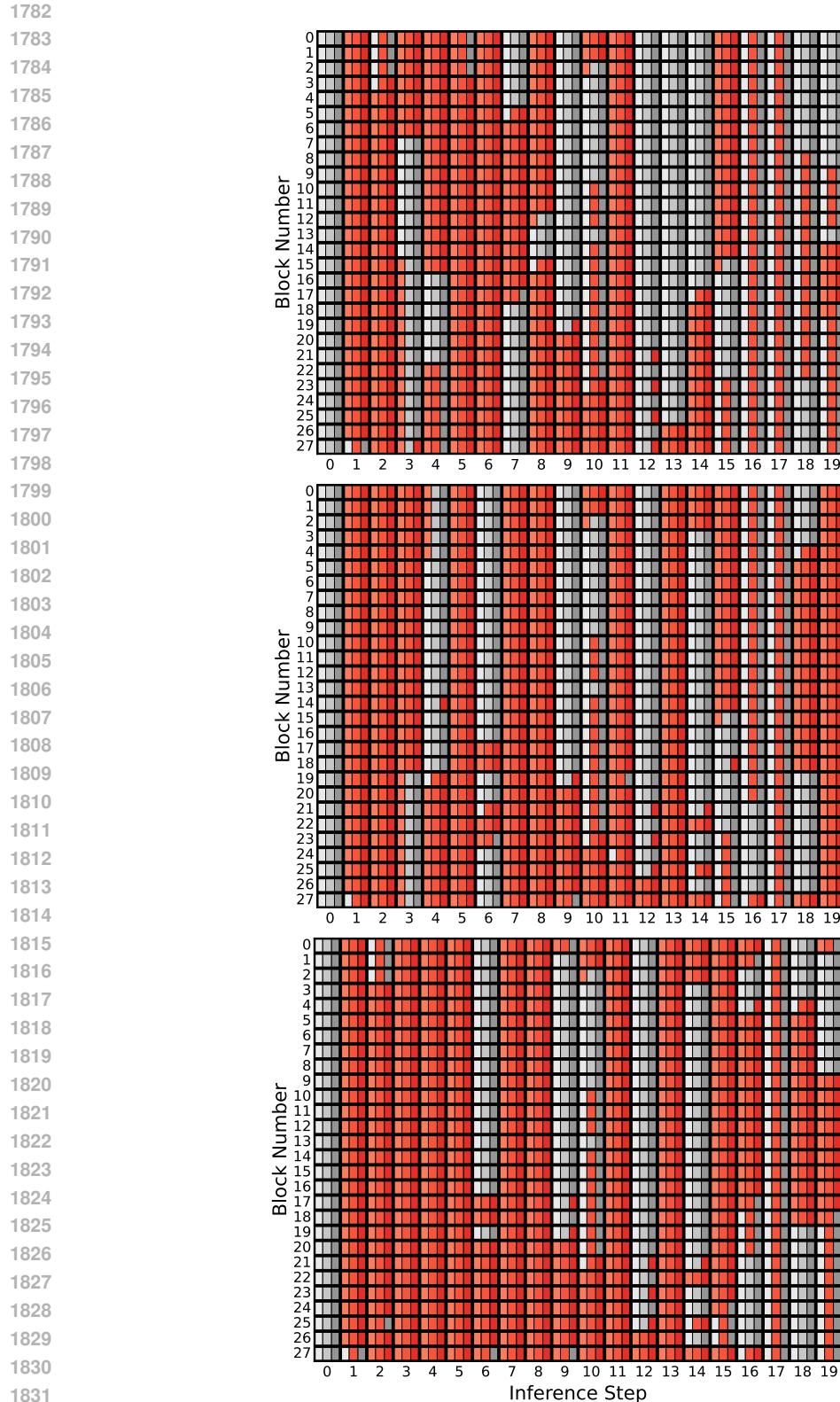


Figure 23: Highest-TMACs schedules from generation 50 (left), 200 (center), and 400 (right) during PixArt- α ECAD optimization. While steps between 8 and 15 remain somewhat similar in structure, early and late steps change more.

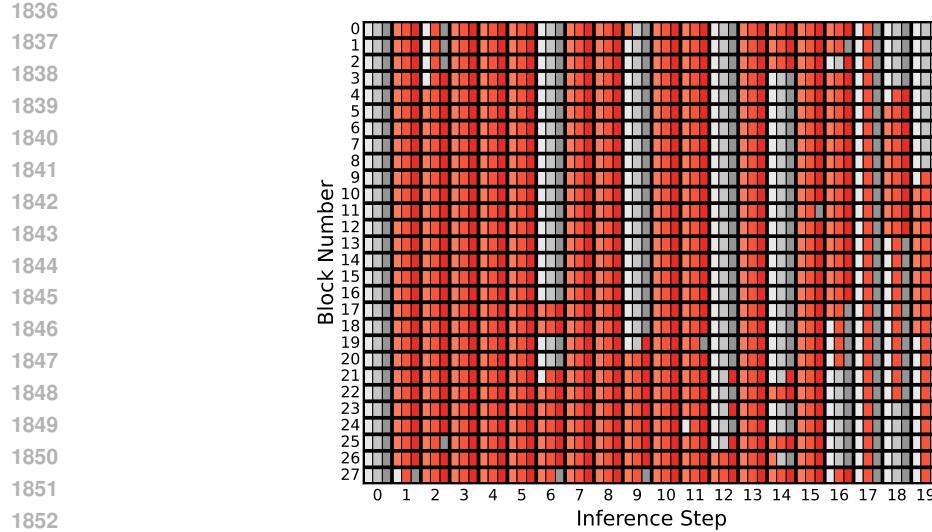


Figure 24: ECAD schedule for PixArt- Σ “fast” from Table 1. Initial DiT blocks in steps 6, 9, and 12 are more important to recompute than the final blocks. Cross-attention has less of an impact than the other components in the final three steps, with it as the only component cached in step 17.

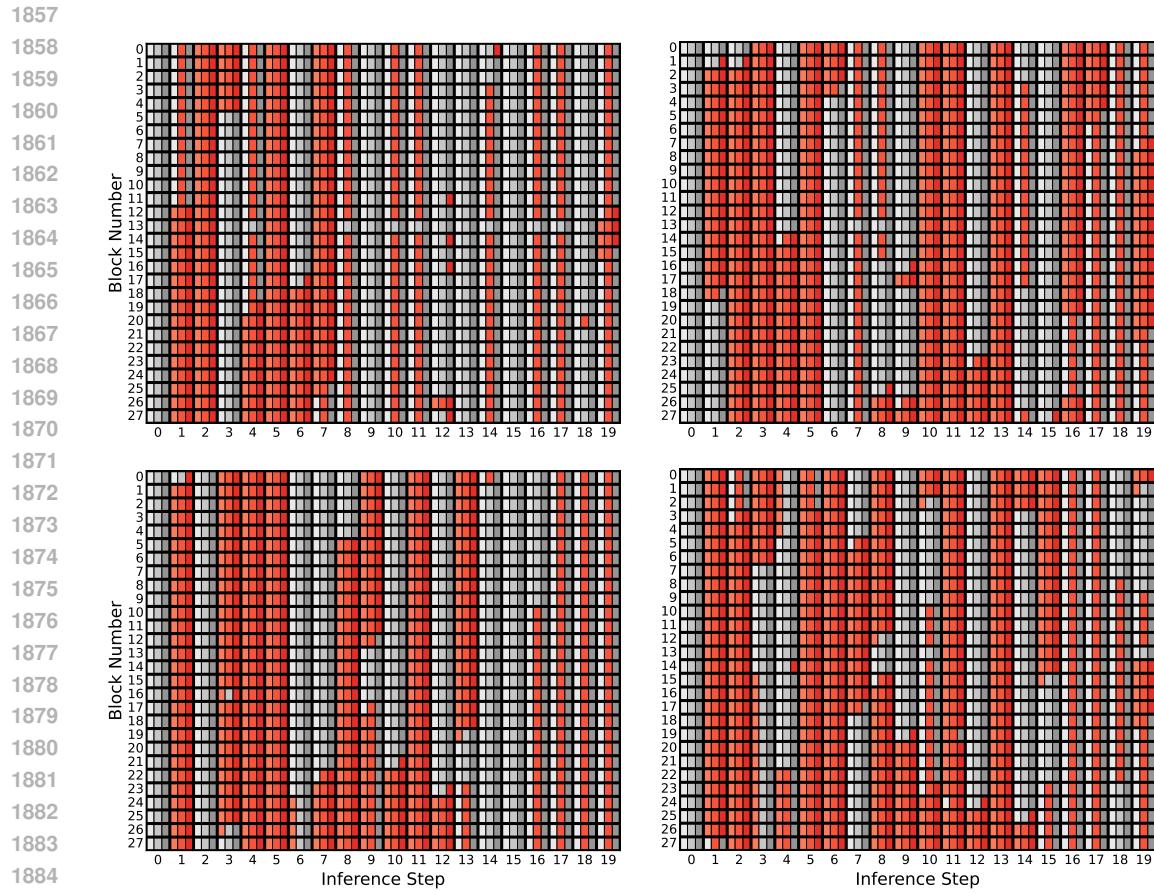


Figure 25: HighestTMACs schedules after 100 generations for PixArt- α under different hyperparameter ablations: (topleft) reduced population size; (topright) fewer images per prompt; (bottomleft) fewer prompts; (bottomright) baseline configuration. All configurations realize the cacheability of cross attention for steps where other components cannot safely be cached.

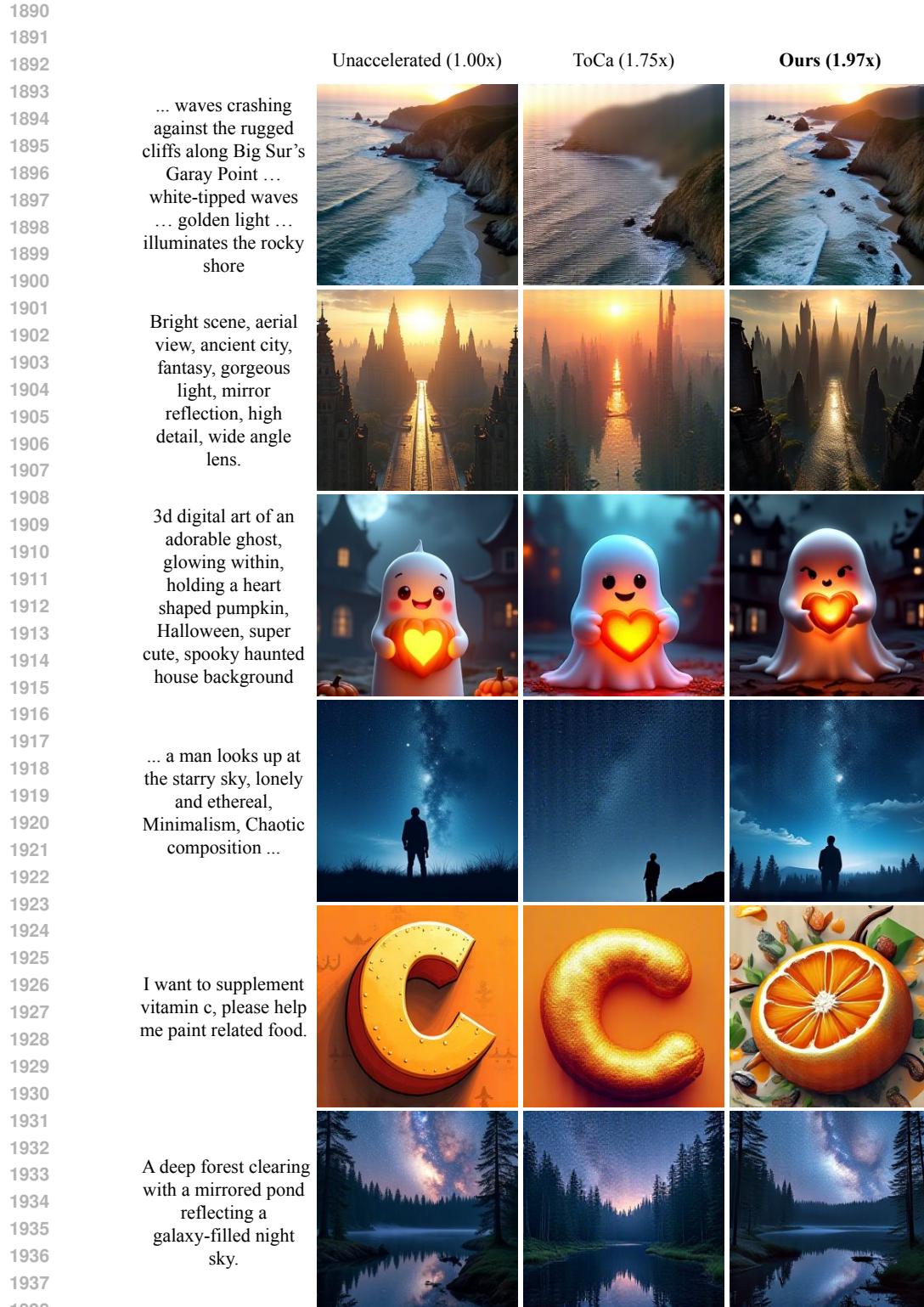


Figure 26: **FLUX-1.dev** 256×256 **qualitative comparisons**. Displayed left-to-right are generations from the uncached baseline, ToCa ($\mathcal{N} = 5$, $\mathcal{R} = 90\%$; 1.75x speedup), and our “fast” ECAD schedule (Table 1; 1.97x speedup). ECAD consistently yields sharper images with improved prompt adherence.

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

ToCa (2.47x)

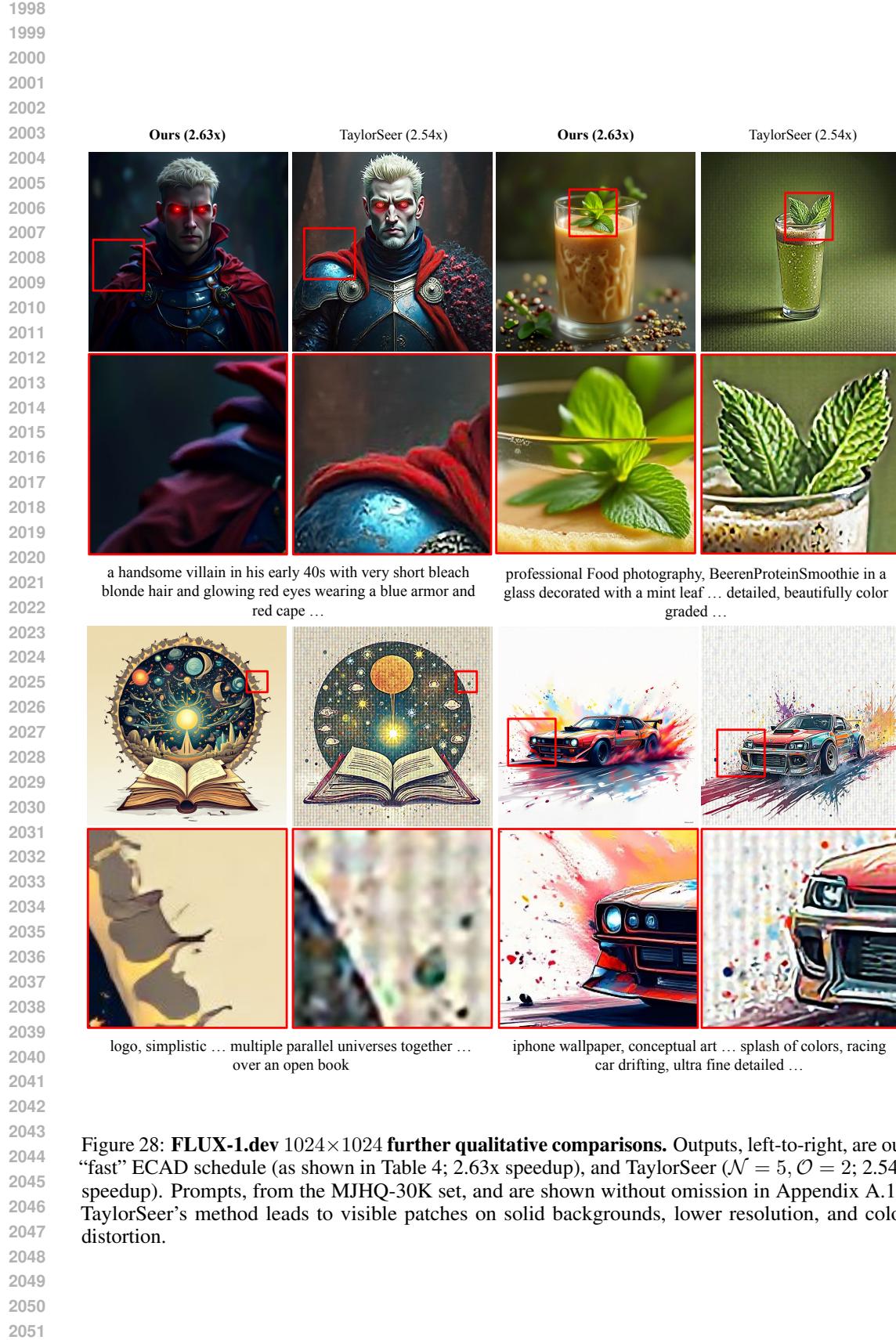
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

A person standing on the desert, desert waves ... half red, half blue, abstract image of sand ... top view, clear style, precision art

Ours (2.63x)

1992
1993
1994
1995
1996
1997

Figure 27: **FLUX-1.dev** 1024×1024 **qualitative comparisons**. Outputs, top-to-bottom, are ToCa ($\mathcal{N} = 4, \mathcal{R} = 90\%$; 2.47x speedup), and our “fast” ECAD schedule (as shown in Table 4; 2.63x speedup). Our method yields greater visual complexity with stronger prompt-alignment, despite higher acceleration.



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061 Eiffel Tower ... Made
2062 ... of ... translucent
2063 straws to look like a
2064 cloud ...
2065 foam-making
2066 machines ... blow
2067 huge ... clouds in the
2068 building ...

Mural Painted of
Prince in Purple Rain
on ... brick building
next to ... vacant lot

Editorial photoshoot of a old woman ... 2000s fashion

Steampunk makeup
... feather ... with
bright red and yellow
and green and pink
and orange colours
... dark cyan and
amber makeup ...

Unaccelerated (1.00x)

DuCa (2.29x)

Ours (2.40x)

Figure 29: **PixArt- α 256 \times 256 further qualitative comparisons.** Outputs, left-to-right, are the unaccelerated baseline, DuCa ($\mathcal{N} = 3$, $\mathcal{R} = 60\%$; 2.29x speedup), and our “faster” ECAD schedule (as shown in Table 1; 2.40x speedup). Our method introduces fewer artifacts and distortions.