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ABSTRACT

Diffusion-based image generation models excel at producing high-quality synthetic
content, but suffer from slow and computationally expensive inference. Prior work
has attempted to mitigate this by caching and reusing features within diffusion
transformers across inference steps. These methods, however, often rely on rigid
heuristics that result in limited acceleration or poor generalization across architec-
tures. We propose Evolutionary Caching to Accelerate Diffusion models (ECAD),
a genetic algorithm that learns efficient, per-model, caching schedules forming
a Pareto frontier, using only a small set of calibration prompts. ECAD requires
no modifications to network parameters or reference images. It offers significant
inference speedups, enables fine-grained control over the quality-latency trade-off,
and adapts seamlessly to different diffusion models. Notably, ECAD’s learned
schedules can generalize effectively to resolutions and model variants not seen
during calibration. We evaluate ECAD on PixArt-α, PixArt-Σ, and FLUX-1.dev
using multiple metrics (FID, CLIP, Image Reward) across diverse benchmarks
(COCO, MJHQ-30k, PartiPrompts), demonstrating consistent improvements over
previous approaches. On PixArt-α, ECAD identifies a schedule that outperforms
the previous state-of-the-art method by 4.47 COCO FID while increasing infer-
ence speedup from 2.35x to 2.58x. Our results establish ECAD as a scalable and
generalizable approach for accelerating diffusion inference.

1 INTRODUCTION

Diffusion has emerged as the backbone for state-of-the-art image and video synthesis tech-
niques (Dhariwal & Nichol, 2021; Ho et al., 2020; 2022; Liu et al., 2024c). Unlike prior methods
involving deep learning, which would train a neural network to generate images in a single forward
inference step, diffusion instead involves iterating over a prediction for many (20 to 50) steps (Lu
et al., 2023). This process is quite expensive, and many researchers and practitioners try to reduce
the latency while preserving, or even improving, the quality (Ma et al., 2023; Wimbauer et al., 2024;
Selvaraju et al., 2024; Meng et al., 2023; Sauer et al., 2023). Some of these strategies involve training
some model that can perform the inference in 1 to 4 steps, particularly with model distillation (Hinton
et al., 2015; Meng et al., 2023). Other strategies do not train or tune any neural network weights,
principally caching, where the diffusion model’s internal features are re-used across steps, allowing
that computation to be skipped (Ma et al., 2023; Wimbauer et al., 2024; Li et al., 2023a).

We introduce a new conceptual and algorithmic framework for diffusion caching by reframing the
problem and replacing existing heuristic-based approaches with a principled, optimization-driven
methodology that is generalizable across model architectures. Existing caching methods typically
offer a few discrete schedules, each with fixed trade-offs–for example, a 2x speedup with moderate
quality loss, and a 3x speedup with greater degradationwithout support for intermediate or more
aggressive configurations. However, real-world deployments often operate under variable latency or
quality constraints, necessitating further flexibility. We instead formulate caching as a multi-objective
optimization problem, aiming to discover a smooth Pareto frontier that reveals a wide spectrum of
speed-quality trade-offs. We show our frontiers for FLUX.1-dev (Labs, 2024) in Figure 1.

Such frontiers are very challenging to produce given how caching schedules are currently derived.
State-of-the-art approaches are motivated by heuristics, and key hyperparameters must be carefully
hand-tuned by human practitioners based on performance on some set of key metrics (Selvaraju et al.,
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Figure 1: We conceptualize diffusion caching as a Pareto optimization problem over image quality
and inference time and propose ECAD to discover such Pareto frontiers using a genetic algorithm.
Left: performance progression over generations for FLUX-1.dev. Right: example 1024×1024 results
with corresponding speedups.

2024; Zou et al., 2025; Liu et al., 2024b; Zou et al., 2024; Liu et al., 2025a). We propose a different
paradigm that does not rely on human-defined heuristics or hyperparameters, instead discovering
effective caching schedules via genetic algorithm.

Our Evolutionary Caching to Accelerate Diffusion models (ECAD) requires two components: (i)
some small set of text-only “calibration” prompts and (ii) some metric which computes image quality
given a prompt and generated image–we use Image Reward (Xu et al., 2023a). We formulate caching
schedules such that the genetic algorithm can automatically discover which features to cache (in
terms of blocks and layer types) and when (which timestep). ECAD can be initialized with either
random schedules or some set of promising schedules based on prior works such as Selvaraju et al.
(2024); Liu et al. (2024b). Thus, while ECAD presents a different paradigm compared to prior works,
it can also build on their valuable findings. ECAD takes these initial schedules and gradually evolves
them according to the mating rules of a genetic algorithm, optimizing their “fitness” according to
quality and computational complexity (measured in Multiply-Accumulate Operations, aka MACs).

This strategy is extremely flexible. While other methods are entirely designed around whether they
cache entire block outputs, intermediate layer outputs (such as the output of an attention layer, or a
feedforward layer), or even specific tokens, ours is orthogonal to all of these. We offer a framework
which can be used to optimize caching schedules according to any well-defined criteria. We instantiate
it with our criteria and schedule definitions in Section 3, but the general principles can be applied to
arbitrary criteria and schedules to find Pareto-optimal caching frontiers. For example, we could use
other criteria to define fitness, such as human ratings of generated samples. We could also change the
caching schedule definitions to be more granular or more coarse, to focus on certain types of layers, or
incorporate heuristics from other methods. Although our experiments target text-to-image synthesis,
the framework is agnostic to modality and naturally extends to class-conditioned or text-to-video
tasks. Furthermore, while ECAD involves some optimization, since we do not compute any gradients
or update any weights, no memory overhead is introduced. Additionally, there are no restrictions on
batch size (allowing for use of single, small GPUs that would not be feasible for distillation), and the
entire process can happen completely asynchronously. Beyond this, schedules could be optimized for
aggressively quantized diffusion models to further improve their acceleration and quality.

Figure 1 showcases our method’s strong performance and highlights flexibility across resolutions.
Although optimized for FLUX-1.dev at 256×256, the same schedule applied to 1024×1024 still
outperforms SOTA methods in both speed and quality. At 256×256, ECAD matches or surpasses un-
accelerated PixArt-α and FLUX-1.dev baselines with 1.97x and 2.58x latency reductions, respectively.
At more aggressive 2.58x and 3.37x settings, quality slightly drops but remains competitive.
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Figure 2: In the context of a transformer-based diffusion model, we describe how the transformer
architecture allows for caching of attention and feedforward results separately (left). We then give
a toy illustration of how our method might transition from one generation to the next, prioritizing
mating for schedules with the best quality-speed trade-offs (right).

2 RELATED WORK

2.1 DIFFUSION FOR IMAGE AND VIDEO SYNTHESIS

Diffusion models predict noise, given noised image inputs, to generate high-quality images (Ho et al.,
2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021) and videos (Ho et al., 2022; Blattmann
et al., 2023; Liu et al., 2024c). To save time and reduce feature sizes, these computations are typically
performed in the latent space (Rombach et al., 2022) of a pre-trained variational autoencoder (Kingma
& Welling, 2014). Although earlier works use U-Net backbones (Ronneberger et al., 2015), more
recent methods rely mainly on transformer-based models (Vaswani et al., 2017; Dosovitskiy et al.,
2020; Peebles & Xie, 2023; Bao et al., 2023), especially Diffusion Transformers (DiTs) (Peebles &
Xie, 2023), which dominate the current landscape due to their powerful scaling properties (Chen
et al., 2023; Esser et al., 2024; Liu et al., 2024c; Labs, 2024). Text-conditioning with multimodal
models like CLIP (Radford et al., 2021), or extremely powerful text models like T5 (Raffel et al.,
2023), allows for more granular control over image content (Saharia et al., 2022a; Ramesh et al.,
2022; Nichol et al., 2022; Ruiz et al., 2023; Podell et al., 2023), not only in generative pipelines but
also for editing (Kawar et al., 2023; Brooks et al., 2023; Sun et al., 2024; Ceylan et al., 2023; Chai
et al., 2023).

2.2 ACCELERATING DIFFUSION INFERENCE

Training. Many works accelerate diffusion by training or fine-tuning models. Knowledge distilla-
tion (Hinton et al., 2015) trains a smaller or faster model to mimic the teacher, reducing steps but
at high training cost and some quality loss (Salimans & Ho, 2022; Meng et al., 2023; Luo et al.,
2023; Lee et al., 2024; Sauer et al., 2023; Kohler et al., 2024; Yin et al., 2023; Xu et al., 2023b).
Other approaches train auxiliary modules to predict skip connections (Jiang et al., 2023), internal
features (Gwilliam et al., 2025), caching configurations (Ma et al., 2024), or adaptive step sched-
ules (Zhang et al., 2023). Network compression via pruning (Zhu et al., 2024; Fang et al., 2023) or
quantization similarly requires retraining to recover accuracy, while post-training quantization offers
limited gains in speed (Li et al., 2023b; Shang et al., 2023).

Training-free. An alternative direction accelerates inference without modifying model parameters
by caching and reusing intermediate features. Early strategies designed for U-Nets (Li et al., 2023a;
Ma et al., 2023; Wimbauer et al., 2024) do not transfer well to DiTs (Ma et al., 2024), which lack
encoder–decoder hierarchy and rely only on within-block skip connections. Pioneering DiT caching
works show promise, but some only cache entire blocks at fixed timestep intervals (Selvaraju et al.,
2024), which sacrifices image quality, while others cache only attention layers (Liu et al., 2024b),
which limits potential speed-ups. Recent works pursue finer-grained caching but depend heavily on
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Algorithm 1 Evolutionary Caching to Accelerate Diffusion models (ECAD)
Require: Diffusion model M , calibration prompts P , population size n, generations G, crossover

probability pc, mutation probability pm
1: P0 ← InitializePopulation(n) . Random and heuristic-based schedules
2: for g = 1 to G do
3: for each schedule S ∈ Pg−1 do
4: I ←MS(P ) . Generate images I using schedule S on prompts P
5: Compute quality metric Q(P, I) . Image Reward score
6: Compute computational cost C(S) . MACs
7: end for
8: Pg ← Selection(Pg−1) . NSGA-II with Tournament Selection
9: Pg ← Crossover(Pg, pc) . Recombine schedules with 4-Point Crossover

10: Pg ← Mutation(Pg, pm) . Bit-flip mutation
11: end for
12: F ← ComputeParetoFrontier(P1,P2, ...,PG) . Pareto frontier across all generations
13: return F

heuristics and extensive hyperparameter tuning to balance efficiency and quality (Chen et al., 2024;
Zou et al., 2025; Yuan et al., 2024; Liu et al., 2024a; 2025d; Qiu et al., 2025; Sun et al., 2025; Zou
et al., 2024; Liu et al., 2025b;a; Bu et al., 2025). We build on these caching methods by replacing
manual heuristic design and human-in-the-loop hyperparameter tuning with a genetic algorithm,
leading to superior image quality.

3 METHODS

We begin by outlining key preliminaries for caching with DiTs (see Appendix A.1 for a general
diffusion background). We then detail our method for modeling caching as a Pareto optimization
problem over speed and quality, and the genetic algorithm used to optimize these frontiers.

3.1 PRELIMINARY: CACHING DIFFUSION TRANSFORMERS

DiTs utilize a modified transformer architecture optimized for the diffusion denoising process. A
typical DiT block takes three inputs: a sequence of tokens z′ representing the noisy image, a
conditioning vector c (e.g., text embeddings), and a timestep embedding t. Caching in DiTs exploits
temporal coherence between consecutive denoising steps. As the diffusion process proceeds from z′t
to z′t−1, the inputs to each block change gradually, creating an opportunity to reuse computed features
from previous timesteps (Ma et al., 2023; Selvaraju et al., 2024). Rather than caching entire blocks,
we employ component-level caching. For each transformer block, we selectively cache the outputs of
specific functional components: self-attention (fSA), cross-attention (fCA), and feedforward networks
(fFFN). Formally, for a component fcomp in block b at timestep t, we can decide whether to compute
it directly or reuse its cached value:

f b
comp(z

′
t, t, c) =

{
compute(z′t, c, t) if recompute
cache[f b

comp, t+ 1] if cached

When recomputing, the new value is stored in the cache for potential reuse in subsequent steps.
Figure 2 demonstrates this for a DiT block with two components: self-attention and feedforward.
The DiT’s per-component residual connections allow features from the current inference step to be
combined with cached features from previous steps smoothly.

This selective computation strategy can be represented as a binary tensor S ∈ {0, 1}N×B×C , where
N is the number of diffusion steps, B is the number of transformer blocks, and C is the number of
cacheable components per block. A value of 0 at position (n, b, c) in S, which we show with shades
of red in Figure 2, indicates that we reuse the cached value of component c in block b at diffusion
step n rather than recomputing it. A caching schedule directly impacts both computational efficiency
and generation quality; aggressive caching (more 0’s in S) reduces computation but may degrade
output quality. Our method finds caching schedules with optimal trade-offs between computation and
quality by identifying which components can be safely cached, in which blocks and timesteps.
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Table 1: Main results, 256×256, 20-step text-to-image generation. We select schedules from our
evolutionary Pareto Frontier and compare them to prior works across various datasets and models on
Image Reward, CLIP Score, and FID. Despite being optimized only on Image Reward, only on the 100
calibration prompts, our method achieves superior results across other metrics and for unseen prompts.

Settings Latency Calibration PartiPrompts MS-COCO2017-30K MJHQ-30K

ms / img↓ Image Image
Model Caching Setting TMACs↓ (speedup↑) Reward↑ Reward↑ CLIP↑ FID↓ CLIP↑ FID↓ CLIP↑

None 5.71 165.74 (1.00x) 0.90 0.97 32.01 24.84 31.29 9.75 32.77
TGATE m = 15, k = 1 4.86 144.77 (1.14x) 0.78 0.87 31.70 23.90 31.12 10.38 32.33
TGATE m = 10, k = 5 3.47 108.52 (1.53x) -0.051 -0.27 28.90 29.78 28.29 17.52 29.38
FORA N = 2 2.87 100.57 (1.65x) 0.83 0.91 32.03 24.80 31.37 10.33 32.74
FORA N = 3 2.02 82.55 (2.01x) 0.60 0.83 31.94 24.50 31.35 11.11 32.63
ToCa N = 3,R = 60% 3.17∗ 90.71 (1.83x)∗ 0.71 0.76 31.46 22.05 30.99 12.01 32.37
ToCa N = 3,R = 90% 2.13∗ 70.58 (2.35x)∗ 0.60 0.68 31.35 24.01 30.92 11.80 32.35
DuCa N = 3,R = 60% 3.20 72.53 (2.29x)∗ 0.76 0.79 31.53 23.13 31.03 11.69 32.48
DuCa N = 3,R = 90% 2.30 64.08 (2.59x)∗ 0.76 0.74 31.42 24.69 30.96 12.53 32.39
Ours fast 2.13 84.09 (1.97x) 0.96 0.99 31.94 20.58 31.40 8.02 32.78
Ours faster 1.46 69.17 (2.40x) 0.90 0.88 31.44 21.93 31.10 9.92 32.34

PixArt-α

Ours fastest 1.18 64.24 (2.58x) 0.81 0.77 31.53 19.54 31.28 8.67 32.24

None 5.71 167.62 (1.00x) 0.85 1.08 31.90 24.63 31.11 10.53 32.65
FORA N = 3 2.02 82.12 (2.04x) 0.65 0.81 31.91 27.69 31.16 12.70 32.28
ToCa† N = 3,R = 60% 3.17∗ 94.28 (1.78x)∗ 0.11 0.19 31.03 54.80 30.34 35.42 30.64
ToCa† N = 3,R = 90% 2.13∗ 73.03 (2.30x)∗ 0.07 0.14 30.89 56.48 30.25 36.53 30.55

PixArt-Σ

Ours fast 1.91 84.84 (1.98x) 0.85 1.02 31.86 22.17 31.25 8.91 32.52

None 198.69 2620.09 (1.00x) 0.69 1.04 31.88 25.76 30.95 17.77 31.06
FORA N = 3 69.80 1073.70 (2.44x) 0.67 0.93 31.88 23.51 31.30 19.38 31.10
ToCa N = 4,R = 90% 42.96∗ 1576.97 (1.66x)∗ 0.63 0.93 31.81 23.78 31.26 21.59 30.88
DiCache 62.23 1161.86 (2.26x) 0.61 0.97 31.97 26.18 31.12 20.70 31.18
TaylorSeer N = 5,O = 2 59.88∗ 1028.66 (2.55x)∗ 0.29 0.54 31.16 29.66 30.19 24.36 30.64
TaylorSeer N = 6,O = 1 49.97∗ 865.97 (3.03x)∗ -0.07 0.02 29.88 49.02 29.02 37.98 29.38
Ours fast 63.02 1016.59 (2.58x) 0.83 1.04 32.24 21.61 31.58 16.14 31.69

FLUX.1-dev

Ours fastest 43.60 778.17 (3.37x) 0.69 0.89 32.27 26.66 31.63 21.43 31.67

†ToCa is not optimized for PixArt-Σ, so we re-use the hyperparameters from PixArt-α. Suboptimal results do
not indicate that ToCa is not suitable for PixArt-Σ; instead, ToCa should be hand-optimized per-model.

∗Refer to Appendix A.11 for a detailed explanation of MAC and latency calculations.

3.2 GENETIC ALGORITHM AS A PARADIGM FOR CACHING

Caching, as Pareto Frontiers. The caching optimization problem inherently exhibits a trade-off
between computational efficiency and generation quality. This can be formalized as a multi-objective
optimization problem:

min
S

(C(S), Q(S))

where C(S) denotes the computational cost function (lower is better) and Q(S) represents the
generation quality metric (lower is better, e.g., FID) for a caching schedule S. This optimization
operates directly on the binary caching tensor S ∈ {0, 1}N×B×C introduced previously. Possible
configurations for S naturally induce sets of solutions that form Pareto frontiers – improving one
objective necessarily degrades the other. However, this search space is intractable to exhaustively
explore, even for small DiTs, given current compute. Prior acceleration methods have predominantly
relied on fixed heuristics that typically provide only isolated operating points. By contrast, our
proposed approach explores a greater search space and discovers Pareto-optimal configurations,
enabling practitioners to select schedules based on application-specific constraints.

Evolutionary Caching to Accelerate Diffusion models (ECAD). We introduce ECAD, an evolution-
ary algorithm-based framework for discovering efficient caching schedules for diffusion models, in
Algorithm 1. Our approach’s key insight is that the optimal caching configuration can be discovered
through a population-based search over the space of possible caching schedules, using a small set of
calibration prompts to evaluate candidate solutions. ECAD is a framework with 4 simple customizable
components.

The practitioner may adjust granularity with the (1) binary caching tensor shape by adjusting N , B,
and C (the defaults we define for S allow any component with a skip connection to be cached, on
any block, for any timestep). While it does not require any image data, ECAD needs (2) calibration
prompts, which we instantiate with the 100 prompts from the Image Reward Benchmark (Xu et al.,
2023a). The practitioner can also select their preferred (3) metrics, where ideally both can be
computed quickly online. We use Image Reward for quality, and MACs for speed (to avoid hardware
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Figure 3: PartiPrompt Pareto frontiers at 256× 256 for PixArt-α (left) and FLUX.1-dev (right).

dependencies). Then, we choose an (4) initial population of caching schedules, which should be
diverse, and can be seeded based on prior knowledge (such as using FORA schedules) or initialized
randomly. We utilize NSGA-II (Deb & Jain, 2013) for our genetic algorithm due to its efficient
non-dominated sorting approach and proven effectiveness in multi-criteria optimization problems.

With all components defined, ECAD runs for the desired number of generations. In each generation,
images are generated per caching tensor, and top-performing tensors (in quality and speed) evolve
to form the next generation. This process incrementally improves Pareto frontiers for the selected
model, scheduler, and timestep combination.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Model Architectures We provide experiments on three popular text-to-image DiT models:
PixArt-α, PixArt-Σ, FLUX-1.dev. Each model uses its default sampling method at 20 steps: DPM-
Solver++ (Lu et al., 2023) for both PixArt models and FlowMatchEulerDiscreteScheduler (Esser
et al., 2024) for FLUX-1.dev. Guidance scales are 4.5 for PixArt models and 5 for FLUX-1.dev.
Both PixArt models employ 28 identical transformer blocks containing three components we enable
caching for: self-attention, cross-attention, and feedforward. In contrast, FLUX-1.dev implements
an MMDiT-based architecture (Esser et al., 2024) with 19 “full” and 38 “single” blocks. We enable
caching for attention, feedforward, and feedforward context components in full blocks, and attention,
MLP projection, and MLP output for single blocks. Cacheable component selection is discussed in
Appendix A.2. We calibrate all models at 256×256 but evaluate at both 256×256 and 1024×1024.

Evaluation Metrics We evaluate performance using Image Reward (Xu et al., 2023a), FID (Seitzer,
2020), and CLIP score (Zhengwentai, 2023) with ViT-B/32 (Dosovitskiy et al., 2020) on the Image
Reward Benchmark prompts set (Xu et al., 2023a), the PartiPrompts set (Yu et al., 2022), MS-
COCO2017-30K (Lin et al., 2015) (we use the same prompts and images as ToCa (Zou et al., 2025))
and MJHQ-30K (Li et al., 2024). On the Image Reward Benchmark prompts set, we generate each
of 100 prompts at 10 different, fixed seeds for 1,000 total images. For PartiPrompts we generate a
single image for each of the 1,632 prompts. To measure the speed of a particular caching schedule,
we use two metrics: multiply-accumulate operations (MACs) and direct image generation latency.
Except where otherwise stated, we utilize calflops (Ye, 2023) to measure MACs. We average
end-to-end image generation latency using precomputed text embeddings on 1 NVIDIA A6000 GPU
after discarding warmup runs; full details in Appendix A.11.

4.2 MAIN RESULTS

We optimize ECAD on three diffusion models: PixArt-α, PixArt-Σ, and FLUX-1.dev and present
results for select schedules in Table 1. For PixArt-α at 256×256 resolution with 20 inference steps,
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Figure 5: Figure that shows our “fast” schedule for PixArt-α (left) and FLUX-1.dev (right). Reds
are cached components and grays are recomputed (for PixArt-α, from left to right: self-attention,
cross-attention, and feedforward). See Appendix A.14 for more details.

we run 550 generations with 72 candidate schedules per generation, where each candidate generates
1,000 images (10 per each of 100 Image Reward Benchmark prompts). For FLUX-1.dev, we reduce
the population to 24 schedules and train for 250 generations under otherwise identical settings. We
initialize both using variants inspired by FORA and TGATE, detailed in Appendix A.8. For PixArt-Σ,
we transfer 72 schedules from PixArt-α’s 200th-generation Pareto frontier and run 50 additional
generations, leveraging the models shared DiT architecture.

Across all models, ECAD achieves strong performance on Image Reward (which correlates strongly
with human preference (Xu et al., 2023a)) and FID. On PixArt-α, our ‘fastest’ schedule reduces FID
by 9.3 over baseline and by 2.51 over ToCas best setting. On PixArt-Σ and FLUX-1.dev, ECAD
schedules outperform prior work and baseline by a significant margin. On FLUX-1.dev, our ‘fast’
schedule at 2.58x matches baseline Image Reward and the ‘fastest’ schedule at 3.37x maintains
competitive quality. For prompt-image alignment, measured via CLIP score, ECAD roughly matches
prior works, which is expected as caching should not affect prompt-image alignment.

We show full Pareto frontiers in Figure 3 on unseen prompts. ECAD discovers schedules that
consistently outperform prior works across evaluation metrics while providing fine-grained control
over the quality-latency tradeoff. We provide some qualitative results which highlight ECAD’s good
quality despite impressive speedups in Figure 4. We show the composition of the “fast” ECAD
schedules for PixArt-α and FLUX.1-dev in Figure 5, with more schedules in Appendix A.14.

Scaling Properties. Unlike existing approaches, practitioners have the flexibility to run ECAD for as
many generations as their time and compute constraints allow. While competitive schedules emerge
within a few iterations, continued optimization yields steady improvements. To illustrate this, we
track the ‘slowest’ schedule throughout the genetic process for PixArt-α and report results in Table 2.
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Table 2: Genetic scaling results.
We show performance changes
as more iterations (generations)
of ECAD run in terms of
latency, PartiPrompts Image
Reward, and MJHQ-30K FID.
We select the schedule with
highest TMACs per generation.

# Gens ms / img↓ Image FID↓(speedup↑) Reward↑
1 145.09 (1.14x) 1.00 9.40
50 92.76 (1.79x) 0.98 7.97

150 87.11 (1.90x) 1.00 8.11
300 86.62 (1.91x) 0.99 8.04
500 76.52 (2.17x) 0.96 8.49

Table 3: Model transfer results. ECAD is first optimized on
PixArt-α for 200 generations, and the resulting schedules are
used to initialize optimization on PixArt-Σ for an additional 50
generations (shown in the last row). Settings for both schedule
discovery and evaluation are detailed below. We report TMACs,
latency, Image Reward on the calibration and PartiPrompts set, and
FID for MJHQ-30K. Transferring ECAD schedules between these
two models results in only slight penalties to performance.

Genetic Settings Evaluation Settings Latency Metrics

Model Gens Model Res. TMACs↓ s / img↓ (speedup↑) Calibration↑ PartiPrompts↑ FID↓
PixArt-α 200 PixArt-α 256 2.59 94.04 (1.76x) 0.96 1.02 8.00
PixArt-α 200 PixArt-Σ 256 2.59 103.47 (1.62x) 0.84 1.09 9.27

PixArt-α 250 PixArt-α 256 2.22 86.59 (1.91x) 0.96 0.99 8.09
PixArt-α 250 PixArt-Σ 256 2.22 93.68 (1.79x) 0.79 1.06 9.06
PixArt-Σ 50 PixArt-Σ 256 1.91 84.84 (1.98x) 0.85 1.02 8.91

Table 4: FLUX-1.dev detailed transfer results, 1024× 1024 resolution, 20-step text-to-image
generation. We reuse our ‘fast’ schedule trained on FLUX-1.dev at 256x256 resolution, as well as
an older, ‘slow’ schedule. We apply them for 1024× 1024 image generation and compare them to
prior works in terms of Image Reward, CLIP Score, and FID. Our results are competitive with prior
work despite being evaluated at a different resolution than optimization.

Model Settings Latency Calibration PartiPrompts MS-COCO2017-30K MJHQ-30K

Caching Setting TMACs↓ s/img↓ (speedup↑) Image Reward↑ Image Reward↑ CLIP↑ FID↓ CLIP↑ FID↓ CLIP↑
None 1190.25 18.30 (1.00x) 0.68 1.14 31.98 25.45 31.08 14.63 31.99
None 40% steps 476.10 7.61 (2.41x) 0.43 0.83 31.38 25.20 30.73 21.68 30.99
FORA N = 3 416.88 7.62 (2.40x) 0.27 0.69 31.20 29.45 30.52 24.65 30.69
ToCa N = 4,R = 90% 300.41∗ 7.42 (2.47x)∗ 0.66 1.09 32.05 26.88 31.32 15.39 31.93
TaylorSeer N = 5,O = 2 357.39∗ 7.20 (2.54x)∗ 0.50 0.94 32.28 42.81 31.74 29.89 31.92
Ours slow256→1024 644.05 10.59 (1.73x) 0.74 1.05 31.82 22.15 31.00 15.98 31.79
Ours fast256→1024 376.62 6.96 (2.63x) 0.71 1.05 31.88 26.69 30.91 17.76 31.99

After just 50 generations, this schedule outperforms the unaccelerated baseline and all prior methods
on Image Reward for unseen PartiPrompts and MJHQ FID. Further generations reduce latency at
a slight cost in quality. Figure 6 shows the Pareto frontier for each generation on the calibration
prompts; initial generations rapidly improve while later generations show incremental improvements.

4.3 EMERGENT GENERALIZATION CAPABILITIES

Model Transfer Results. To demonstrate ECAD’s advantage over handcrafted heuristics, we transfer
pre-optimized schedules between model variants. In Table 3, we select the “slowest” schedule from
the Pareto-frontier across the first 200 generations of PixArt-α ECAD optimization and evaluate it on
PixArt-Σ as is, to demonstrate direct transfer results. Then, we perform an additional 50 optimization
generations on PixArt-Σ using 72 schedules transferred from the PixArt-α ECAD frontier at 200
generations. Although with direct transfer from PixArt-α, PixArt-Σ has higher latency than PixArt-α
at 200 generations, after only 50 generations of optimization, it surpasses PixArt-α’s speedup while
improving calibration Image Reward and MJHQ FID. By comparison, simply transferring the 250
generation PixArt-α configuration yields only a 1.79x speedup instead of 1.98x, and has worse
calibration Image Reward and MJHQ FID. This is a departure from recent caching innovations; for
example, ToCa’s carefully tuned PixArt-α settings cannot be transferred to PixArt-Σ (see Table 1),
despite the similarities between the two models.

Resolution Transfer Results. We present ECAD’s performance on FLUX-1.dev at 1024×1024
resolution after optimization on 256×256 in Table 4, and highlight its superior performance compared
to FORA and the “None” approaches. We apply schedules as-is, with no further optimization of
schedules at the higher resolution. While it is likely preferable to optimize ECAD at the target
evaluation resolution if sufficient compute is available, we show this is not necessary in practice. In
addition to the same ‘fast’ FLUX-1.dev schedule from Table 1 at 256×256 resolution, we select a
‘slow’ model from just 50 generations of training at 256×256. Despite ToCa being optimized for high

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e 
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated

100

200

300

400

500

Generation Num
ber

Figure 6: ECAD evolution. ECAD iteratively
improves quality/time trade-offs as it evolves
across generations as measured by Image Re-
ward (PixArt-α 256×256).
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Figure 7: Faster ECAD optimization strate-
gies. We compare “Full” ECAD to smaller pop-
ulation size, fewer images per prompt, and fewer
prompts (PixArt-α 256×256).

resolution and ours for low, our fast setting achieves superior Calibration Image Reward (a proxy for
human preference) and COCO FID, and further surpasses concurrent TaylorSeers on unseen-prompt
Image Reward, while avoiding its prohibitive memory overhead which reduced its batch size by 66%.

4.4 ABLATION ANALYSIS

To better explore the evolutionary algorithm’s behavior, especially with respect to optimization time,
we run three ablations with different hyperparameters on PixArt-α for 100 generations, varying the
population size (from 72 to 24), the number of images generated per prompt (from 10 to 3), and the
number of prompts used (from 100 to 33, selected randomly), each approximately reducing GPU time
by 66%. The shape of the frontier of the reduced population setting in Figure 7 resembles previous
generations of full populations settings, suggesting that reducing the population size is akin to running
the model for less generations. Reducing the number of images per prompt is not notably harmful,
while using a smaller set of only 33 prompts is very detrimental. However, as shown in Appendix A.4,
this effect stems from size rather than diversity: smaller sets degrade quality, but equally sized sets
with less diversity do not. Appendix A.4 further shows a 100-prompt calibration set generated via
ChatGPT performs comparably to the human-curated Image Reward set, demonstrating that large,
diverse prompt collections are straightforward to assemble. In addition, we include ablations on
NSGA-II hyperparameters in Appendix A.5, and display the effectiveness of alternative quality
metrics in Appendix A.3.

5 DISCUSSION

Limitations and Broader Impacts. Optimizing on automatic metrics ties our performance to the
quality of those metrics. We use Image Reward for the sake of cost and time; however, if we replace
it with ranking by human users, for example, results could improve. ECAD does not introduce new
societal risks beyond those inherent to diffusion models. While reduced inference cost may increase
potential for misuse, it also promotes broader image-generation accessibility and mitigates some
environmental impact of image generation.

Conclusion. In this work, we reconceptualize diffusion caching as a Pareto optimization problem
that enables fine-grained trade-offs between speed and quality. We provide a method, ECAD, which
converts this problem into a search over binary masks, and can discover a best-case caching Pareto
frontier. With only 100 text prompts, our method runs asynchronously with much lower memory
requirements than training or fine-tuning a diffusion model. We achieve state-of-the-art results for
training-free acceleration of diffusion models in both speed and quality.
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A APPENDIX

A.1 DIFFUSION PRELIMINARY

Diffusion models have emerged as powerful generative models capable of producing high-quality
images. In this section, we provide a brief overview of the diffusion process, the denoising objective,
and the specific formulation for Diffusion Transformers (DiT).

Basic Diffusion Process: The diffusion process follows a Markov chain that gradually adds
Gaussian noise to data. Given an image x0 sampled from a data distribution q(x0), the forward
diffusion process sequentially transforms the data into a standard Gaussian distribution through
T timesteps by adding noise according to a pre-defined schedule. This forward process can be
formulated as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

where {βt ∈ (0, 1)}Tt=1 represents the noise schedule (Weng, 2021). We define αt = 1 − βt and
ᾱt =

∏t
s=1 αs for convenience. A key property arising from this process is that we can sample xt at

any arbitrary timestep t directly from x0 without having to sample the intermediate states as:

xt =
√
ᾱtx0 +

√
1− ᾱtε (2)

where ε ∼ N (0, I). This property is particularly useful during training as it allows for efficient
parallel sampling across different timesteps.

Denoising Objective: The denoising process aims to reverse the forward diffusion by learning to
predict the noise added at each step. This is typically accomplished by training a neural network
εθ(xt, t) to estimate the noise component in xt. Its training objective is formulated as:

L = Et,x0,ε[||ε− εθ(xt, t)||2] (3)

where t is uniformly sampled from {1, 2, ..., T}, x0 from the data distribution, and ε from N (0, I).
During sampling, the noisy image is gradually denoised using various strategies. In the DDPM
algorithm (Ho et al., 2020), the reverse process takes the form:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) (4)

where µθ(xt, t) =
1√
αt

(
xt − βt√

1−ᾱt
εθ(xt, t)

)
. While effective, DDPM typically requires hundreds

to thousands of denoising steps. For more efficient sampling, DPM-Solver++ (Lu et al., 2023) (used
in both PixArt-α and PixArt-Σ) reformulates the diffusion process as an ordinary differential equation
of the (simplified) form below:

dx

dt
= −1

2
βt∇x log pt(x) (5)

DPM-Solver++ then applies high-order numerical methods to solve this ODE more efficiently. This
leads to update rules that enable high-quality image generation in as few as 20 steps rather than the
hundreds required by DDPM. However, each step still requires a forward pass through the noise
prediction network, making the sampling process computationally intensive and a primary target for
acceleration.

DiT-specific Processing Diffusion Transformers (DiT) adapt the transformer architecture for
diffusion models, offering improved scalability compared to conventional UNet architectures. The
processing pipeline for DiTs follows several key steps: first, the input image x ∈ RH×W×C is
encoded into a lower-dimensional latent representation using a pre-trained variational autoencoder
(VAE): z = E(x) ∈ Rh×w×d, where h, w, and d represent the height, width, and channel dimensions
of the latent space, respectively. The latent representation is then divided into non-overlapping
patches and linearly projected to form a sequence of tokens z′ = Patch(z) ∈ RN×d′

, where N = hw
p2

is the number of patches with patch size p× p, and d′ is the embedding dimension of the transformer.
Additionally, timestep embeddings and class or text condition embeddings are incorporated into the
model to condition the generation process. Finally, the DiT model processes these tokens through
a series of transformer blocks, each typically containing self-attention and cross-attention (or joint
attention as in FLUX.1-dev), and feedforward network components.
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Table 5: Computation breakdown of a single transformer block forward pass for PixArt-α, PixArt-Σ,
and FLUX-1.dev at 256× 256 resolution. We report GMACs and each component’s share of total
block computation. Components marked as cache-enabled are those selected for caching in ECAD,
as they dominate the computational cost. Components not selected are omitted for efficiency, not due
to any fundamental limitation in their cacheability.

Model Component Cache-Enabled GMACs % of Block Total
Feedforward Yes 5.440 53.6 %
Self-Attention Yes 2.720 26.8 %
Cross-Attention Yes 2.000 19.7 %
Ada Layer Norm Single No 0.000 0.0 %

PixArt-α
and

PixArt-Σ
Total: PixArt Transformer Block 10.150 100 %
Feedforward (Context) Yes 77.310 44.39 %
Joint Attention (Mutli-stream) Yes 57.980 33.29 %
Feedforward (Regular) Yes 38.650 22.19 %
Ada Layer Norm Zero No 0.226 0.14 %
Layer Norm No 0.000 0.00 %

Total: Flux Transformer Block, Full 174.170 100 %
Linear (MLP Input Projection) Yes 72.480 41.66 %
Linear (MLP Output Projection) Yes 57.980 33.32 %
Joint Attention (Single-stream) Yes 43.490 24.99 %
Ada Layer Norm Zero Single No 0.057 0.03 %
GELU No 0.000 0.00 %

FLUX-1.dev

Total: Flux Transformer Block, Single 174.000 100 %

A.2 CACHEABLE COMPONENT SELECTION

To enable ECAD on an off-the-shelf model, one must first select which components are cacheable.
Any computation whose output can be stored at one step and reused at another–while introducing
only minimal, acceptable inaccuracy–can be considered for caching. The number of such components
determines the value of C in the binary caching tensor S ∈ {0, 1}N×B×C , introduced in Section 3.
Since the search space grows linearly with C, careful selection is essential to ensure efficient and
effective caching.

Note that the tensor notation is simplified for clarity. In cases where the model uses k different types
of DiT blocks, each with a different number of cacheable components, the caching tensor would
instead take the form S ∈ {0, 1}N×(

∑k
i=1 Bi×Ci).

Table 5 enumerates the computational complexity of each DiT blocks forward pass. We enable
caching for the three most computationally expensive components per block, as they collectively
dominate the total cost. Computations outside the DiT blocks forward pass (e.g., timestep and position
embeddings) are not currently considered as they contribute less than 1% of the total compute.

Table 6: Comparison of ECAD performance when using Image Reward (IR) versus a weighted sum
of CLIP Score and CLIP Image Quality Assessment (IQA) as a quality metric. The first 4 rows are
duplicated from Table 1, while the final row displays results after running ECAD for 150 generations,
where we optimize for TMACs and a weighted combination of CLIP Score (30%) and CLIP IQA. For
CLIP IQA we specifically use Good (30%), Clean (20%), and Sharpness (20%) scores. CLIP Score
encourages prompt-alignment, while CLIP IQA ensures the generated images are of high quality.

Method ms / img↓ (speedup↑) TMACs MJHQ FID↓ COCO FID↓ Calibration IR↑ PartiPrompts IR↑
PixArt-α Baseline 164.74 (1.00x) 5.71 9.75 24.84 0.90 0.97
FORA N = 2 100.57 (1.65x) 2.87 10.33 24.80 0.83 0.91
ToCa R = 60% 90.71 (1.83x) 3.17 12.01 22.05 0.71 0.76
Ours (IR) 84.09 (1.97x) 2.13 8.02 20.58 0.96 0.99
Ours (CLIP) 97.65 (1.68x) 2.60 9.86 23.86 0.80 0.82
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A.3 QUALITY METRIC SELECTION

We select Image Reward as it is a strong indicator of human preference and is fast (Xu et al.,
2023a). However, the ECAD framework supports a Bring-Your-Own-Reward paradigm, since image
evaluation is done offline after each generation with image-prompt pairs. This makes human scoring
easier than other, online-methods.

We include an ablation in Table 6 utilizing a weighted combination of CLIP Score and CLIP Image
Quality Assessment (Wang et al., 2023), aka IQA, score to demonstrate the feasibility of alternative
rewards. Since CLIP Score and CLIP IQA can be computed using the same CLIP image features,
and we can dump the text features for the calibration prompts offline, we still only need to perform a
single ViT-L forward pass on the image to compute the metric. Thus, the cost is essentially the same
Image Reward. However, Image Reward is generally a superior metric to CLIP Score and CLIP IQA
to judge image quality, so it is unsurprising that the results using it outperform CLIP variants.

Still, ECAD’s robustness allows it to achieve good results, even with other metrics, which is a
favorable property for application in more niche uses cases. For example, one could utilize a human
preference for video model, such as VisionReward (Xu et al., 2024), for text-to-video generation.
Note that any number of metrics can be ensembled to dampen noisy reward signals (such as a
combination of Image Reward, CLIP Score, and CLIP IQA).

Generate 100 prompts for benchmarking image generation models (such
as PixArt Alpha, Stable Diffusion, etc.). The prompts should be diverse
and cover a wide range of styles, including photorealism, painting, anime,
pixel art, and more. Each prompt should be crafted to evaluate aspects like
aesthetics, compositional accuracy, text rendering, and subject diversity, in
order to comprehensively test model quality.

Figure 8: ChatGPT prompt used to generate a set of 100 diverse prompts.

“Oil painting of rolling hills at sunrise, vibrant sky, wildflowers in foreground"
“Impressionist painting of a snowy mountain pass at twilight, soft pastels"
“Watercolor painting of a misty forest in autumn, golden leaves, tranquil stream"
“Classical landscape painting of a medieval village by a river, ornate details"
“Surrealist painting of a desert landscape with floating rocks and melting clocks"
“Abstract painting of a coastal landscape, bold shapes, bright primary colors"

Figure 9: Sample of painting-style landscape prompts.

Generate 10 prompts for benchmarking image generation models (such as PixArt
Alpha, Stable Diffusion, etc.). The prompts should be diverse and cover a wide
range of styles, including photorealism, painting, anime, pixel art, and more.
Each prompt should be crafted to evaluate aspects like aesthetics, compositional
accuracy, text rendering, and subject diversity, in order to comprehensively test
model quality.

Figure 10: ChatGPT prompt used to generate the compact set of 10 diverse prompts.
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A.4 CALIBRATION PROMPT SELECTION

To demonstrate the ease of assembling a calibration prompt set and to isolate the factors that
influence schedule quality, such as prompt source, domain specificity, and granularity, we evaluate
ECAD across five distinct calibration strategies.

Source and Curation: We first compare the baseline Image Reward Benchmark (100 prompts)
against two alternatives: DrawBench200 (Saharia et al., 2022b), a human-curated set of 200 prompts
with frequent repetitions, and a GPT-Generated set of 100 diverse prompts created via ChatGPT
(see Appendix 8). As shown in Table 7, the schedule calibrated on the ChatGPT-generated set
achieves nearly identical performance to the baseline. Interestingly, the Image Reward-calibrated
schedule demonstrates superior generalization to DrawBench200 compared to the reverse scenario,
suggesting that a smaller, more diverse set (Image Reward) provides a more robust foundation than
a larger, repetitive one (DrawBench).

Domain Specificity: To test if the calibration domain restricts generalizability, we generate a set
of 100 prompts exclusively describing Painted Landscapes (see Appendix 9). Despite this narrow
semantic focus, the resulting schedule maintains competitive performance on general-purpose
benchmarks (COCO and MJHQ), performing similarly to the baseline. This indicates that ECAD
relies less on semantic content matching and more on the complexity of the generation task itself.

Quantity and Granularity: Finally, we probe the limits of calibration data efficiency. We construct
a 5-Word Prompts set (100 coarse, short prompts) and a minimal 10 Prompts set. Table 8 reveals that
prompt granularity is not a bottleneck; the schedule learned from 5-word prompts outperforms prior
state-of-the-art methods with only a slight reduction in speedup. However, reducing the volume to
just 10 prompts causes noticeable degradation in MJHQ FID (rising to 10.02).

Conclusion: These results suggest that the quantity of prompts is the primary driver of schedule
robustness, whereas the specific source, length, or semantic domain of the prompts is secondary. As
such, gathering a sufficiently large (approx. 100) set of calibration prompts for ECAD is surprisingly
simple and flexible.

Generate 100 prompts for benchmarking image generation models (such as PixArt
Alpha, Stable Diffusion, etc.). The prompts should be brief (e.g. not granular),
with no more than 5 words per prompt.

Figure 11: ChatGPT prompt used to generate the set of 100 short (5-word) prompts.

Table 7: Ablation of calibration prompt set source. Comparison of ECAD performance
when calibrated on human-curated prompt sets Image Reward Benchmark and DrawBench200
versus a ChatGPT-generated set. Metrics include Image Reward (IR) on each prompt set,
MJHQ-30K FID, CLIP score, and latency. Each result reflects the highest-TMACs schedule
from the Pareto frontier after 100 generations. IRB, DB200, GPT-Gen, and PP refer to the Im-
age Reward Benchmark, DrawBench200, GPT Generated, and PartiPrompts prompt sets, respectively.

Calibration Prompt Set # of calib. prompts # imgs per prompt ms / img↓ (speedup↑) IRB IR↑ DB200 IR↑ GPT-Gen IR↑ PP IR↑ FID↓ CLIP↑
Image Reward Benchmark 100 10 100.68 (1.65x) 0.94 0.77 1.21 1.00 8.18 32.88
DrawBench200 200 5 99.53 (1.67x) 0.87 0.79 1.19 1.00 8.90 32.93
GPT Generated 100 10 104.66 (1.58x) 0.93 0.79 1.24 1.00 8.05 32.85

A.5 HYPERPARAMETER ABLATIONS

To better characterize the behavior of ECAD, we conduct two ablations on two different sets of
hyperparameters. The first is over the hyperparameters that are agnostic to the genetic algorithm
used – population size, the number of images generated per prompt, and the number of prompts. The
second is over the NSGA-II hyperparameters, but it should be noted that other genetic algorithms can
be employed.
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Table 8: Ablation of calibration prompt diversity and size. We compare the baseline (Image
Reward Benchmark) against domain-specific (Painted Landscapes), coarse (5-Word), and minimal
(10 Prompts) calibration sets. Metrics include Image Reward (IR), MJHQ, and COCO. Each result
reflects the highest-TMACs schedule from the Pareto frontier after 100 generations, except for “5
Word Prompts (Faster)”, which is selected to provide an additional reference point for high-speed
performance.
Calibration Set ms / img↓ (speedup↑) Calib. Set IR↑ PP IR↑ MJHQ FID↓ MJHQ CLIP↑ COCO FID↓ COCO CLIP↑
ImageReward Benchmark 100.68 (1.65x) 0.94 1.00 8.18 32.88 21.40 31.48
Painted Landscapes 95.41 (1.74x) 1.20 0.97 8.55 32.85 20.82 31.58
10 Prompts 97.87 (1.69x) 1.31 0.94 10.02 32.84 25.27 31.51
5 Word Prompts (Highest TMACs) 109.18 (1.52x) 1.01 0.98 7.42 32.82 20.05 31.46
5 Word Prompts (Faster) 95.27 (1.74x) 1.00 1.00 8.76 32.76 21.68 31.36

The former ablation is shown in Figure 7 and we include plots of the evolution over generations for
each configuration. Figure 16 illustrates the impact of reducing the population size. This setting
results in slightly noisier frontiers and slight performance degradation across all metrics: the MJHQ-
30K FID worsens slightly and latency increases by 22 ms over the baseline–the largest increase among
all ablations. Figure 17 examines the effect of reducing the number of images per prompt from 10 to
3, while keeping 100 prompts and a population of 72. This configuration achieves the fastest latency
at 100.30 ms, the highest calibration Image Reward of 0.96, and the smallest increase in MJHQ-30K
FID. In Figure 18, we reduce the number of prompts from 100 to 33 while maintaining 10 images
per prompt. This setup exhibits the cleanest convergence behavior but significantly underperforms
on calibration Image Reward and its final Pareto frontier is dominated by other settings. However,
its PartiPrompts score remains competitive and it produces the best FID, suggesting the subset of
prompts were challenging enough for some generalization. Detailed results for the highest-TMACs
schedule after 100 generations under each hyperparameter setting are shown in Table 10.

The latter ablation, with results in Table 9, modifies one of each of the following hyperparameters:
the number of crossover points, mutation probability, and if direct copies are allowed. Refer to
Appendix A.7 for the purpose of each of these. The results show disallowing direct copies of
parents improves inference speed but significantly worsens FID (8.60→ 9.64), as strong schedules
are more frequently ‘churned’ with lower quality ones. Reducing the mutation rate to 1% has the
greatest inference speed-up, as it reduces exploration and increases exploitation, but results in poor
quality. Conversely, both reducing crossover to 1 point and increasing mutation rate to 15% both
slow convergence. The high mutation rate promotes exploration and seems to prevent the high-FID
local-minima seen in 1% mutation rate. Metrics across most configurations remain relatively stable,
meaning a set of good-enough standard hyperparameters for your genetic algorithm is sufficient for
ECAD.

Table 9: Ablation comparing the effects of hyperparameters on NSGA-II. Each row modifies
exactly one hyperparameter, examining effects on computational cost (TMACs), latency, image
quality metrics (Calibration Image Reward (IR), PartiPrompts IR), and MJHQ FID. All experiments
use the highest-TMAC schedule after 100 generations, generating 3 images per prompt, with 100
prompts from the Image Reward prompt set, and with a population size of 72. Crossover probability
(P (Cross)) is the probability the parent’s DNA is not directly copied to the offspring. k Point
crossover refers to the number of splices made to connect the parent’s DNA, and the P (Mut) is the
probability that an offspring will be mutated.

Experiment Condition TMACs ms / img↓ (speedup↑) Calibration IR↑ PartiPrompts IR↑ FID↓
Baseline: P (Cross) = 0.9, 4 Point Cross, P (Mut) = 0.05) 2.89 100.30 (1.65x) 0.96 0.99 8.60
No Direct Copies (P (cross = 1.0) 2.46 94.02 (1.76x) 0.97 0.99 9.64
1 Point Crossover 3.51 114.78 (1.44x) 0.96 1.01 8.87
6 Point Crossover 2.38 93.52 (1.77x) 0.98 1.01 8.57
P (Mutation) = 0.01 2.35 90.40 (1.83x) 0.97 0.98 9.11
P (Mutation) = 0.15 3.97 127.83 (1.30x) 0.96 1.00 8.70
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Table 10: Genetic hyperparameter ablations. Performance of ECAD when varying population
size, number of images per prompt, and number of calibration prompts. We report latency, Image
Reward on calibration and unseen PartiPrompts, and MJHQ-30K FID. Each result corresponds to the
highest-TMACs schedule lying on the Pareto frontier after 100 generations.

Population Size # imgs per prompt # of calibration prompts ms / img↓ (speedup↑) Calibration IR↑ PartiPrompts IR↑ FID↓
72 10 100 100.68 (1.65x) 0.94 1.00 8.18
24 10 100 122.96 (1.35x) 0.93 1.00 8.92
72 3 100 100.30 (1.65x) 0.96 0.99 8.60
72 10 33 110.44 (1.50x) 0.85 0.99 7.52

A.6 NUMBER OF INFERENCE STEPS ABLATION

We examine how the number of inference steps affects the performance of ECAD-generated schedules.
Since ECAD produces schedules optimized for a particular step count, this ablation evaluates their
robustness when applied at a different inference step setting.

We first learn ECAD schedules using 10 steps on DPM-Solver++ for 100 generations with standard
hyperparameters, then upscale the binary mask of the schedule with the highest TMACs to 20 steps by
duplicating each step. Formally, given a 10-step schedule S10, we define step i of the corresponding
20-step schedule S20 as

S20 [ i ] = S10

[ ⌊
i
2

⌋ ]
, i = 0, 1, . . . , 19

We similarly learn schedules at 20 steps and downscale to 10 steps by caching a component at step i
of S10 only if it is cached in both corresponding steps 2i and 2i+1 of S20. Recalling that 0 indicates
caching in S, for each block b and component c we define

S10[ i, b, c ] = S20[ 2i, b, c ] ∨ S20[ 2i+ 1, b, c ], i = 0, 1, . . . , 9

Table 11 presents evaluation results. Applying a 10-step ECAD schedule at 20 inference steps yields
improvements in both Image Reward and FID compared to the unaccelerated baseline. Conversely,
using a conservative downscaling strategy reduces the overall speedup but still maintains performance
gains over the baseline. Note that while the schedules here are evaluated as-is, they could also serve
as starting points for further refinement or adaptation.

Table 11: Inference step ablation. We optimize ECAD on PixArt-α for 100 generations with
standard hyperparameters, for 10 and 20 inference steps on DPM-Solver++. We then evaluate the
highest-TMACs schedule from the Pareto frontier for both 10 and 20 steps, up- and down-scaling
the learned caching schedules appropriately. Reported metrics include latency, Image Reward
performance on the Image Reward prompt set (Calib. IR) and the unseen PartiPrompts set (PP IR), as
well as both FID and CLIP scores on MJHQ-30K and MS-COCO2017-30K.

Acceleration Type Train Steps Eval Steps ms / img↓ (speedup↑) Calib. IR↑ PP IR↑ MJHQ FID↓ MJHQ CLIP↑ COCO FID↓ COCO CLIP↑
None 20 20 165.74 (1.00x) 0.90 0.97 9.75 32.77 24.84 31.29
ECAD 20 20 100.68 (1.65x) 0.94 1.00 8.18 32.88 21.40 31.48
ECAD 10 20 121.04 (1.37x) 0.94 1.01 8.80 32.74 21.67 31.33

None 10 10 89.85 (1.00x) 0.84 0.90 10.83 32.77 25.82 31.42
ECAD 10 10 66.69 (1.35x) 0.93 0.97 8.35 32.62 22.02 31.40
ECAD 20 10 75.24 (1.19x) 0.89 0.95 9.30 32.87 23.75 31.57

A.7 GENETIC ALGORITHM EVOLUTIONARY STEP IN DETAIL

The evolutionary step occurs once at the end of each generation to create new offspring for the
subsequent generation. This step takes negligible time (< 1 minute) and does not require a GPU.
Formally, this step can be understood as follows:

Given a population Pg of size n at generation g, ECAD employs the NSGA-II algorithm (Blank &
Deb, 2020; Deb & Jain, 2013) to produce the next generation Pg+1 through the following steps:

1. Selection and Offspring Generation: An offspring population Qg, also of size n, is
generated from Pg via binary tournament selection by repeating the following process until
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Qg is filled. Two pairs of candidates are randomly sampled from Pg. Within each pair,
a tournament is conducted by first comparing candidates by Pareto rank, then breaking
ties using crowding distance. The winners from each pair undergo crossover, followed by
mutation, to generate offspring.

2. Crossover: With a probability of 0.9, we apply 4-point crossover to the binary caching
tensors of the parent schedules. Four distinct crossover points are randomly selected along
the flattened tensor, and two offspring are created by alternating segments between parents.
With probability 0.1, the offspring are direct copies of their respective parents.

3. Mutation: Each candidate in Qg undergoes bit-flip mutation with a probability of 0.05.
If selected, each bit in the binary tensor S ∈ {0, 1}N×B×C is independently flipped with
probability 1

N×B×C . Note that after this step, we force all components in all blocks to be
recomputed on the first step, since there is no ’cached’ value to be reused.

4. Non-Dominated Sorting: The union Pg ∪ Qg (size 2n) is sorted into Pareto fronts
F0, F1, . . . , Fd based on dominance. For each candidate c, we compute Domc(R), the
number of candidates that dominate c in some set of candidates R. Fronts are defined
iteratively as:

F0 := {c ∈ Pg ∪Qg | Domc(Pg ∪Qg) = 0}
F1 := {c ∈ (Pg ∪Qg) \ F0 | Domc((Pg ∪Qg) \ F0) = 0}

...

Fi := {c ∈ (Pg ∪Qg) \
i−1⋃
j=0

Fj | Domc((Pg ∪Qg) \
i−1⋃
j=0

Fj) = 0}

Note candidates in front Fi are said to be of Pareto rank i; lower rank candidates are ‘fitter’
solutions. Each front Fi contains candidates not dominated by any candidate in fronts of
higher rank.

5. Population Selection: The next generation Pg+1 is filled by sequentially adding complete
fronts F0, F1, . . . until the population size n is reached. If a front Fk cannot be fully
accommodated, it is sorted by crowding distance. The most diverse candidatesthose with the
fewest close neighborsare selected to fill the remaining slots, always including the extrema
to preserve frontier diversity.

A.8 POPULATION INITIALIZATION

We initialize the first generation of schedules for PixArt-α using a diverse set of heuristic strategies
informed by prior work. Each heuristic varies caching behavior based on step/block selection patterns:

• Cross-Attention Only: Cache cross-attention at s evenly spaced steps. At each selected
step, cache the cross-attention of b DiT blocks, evenly spaced across the total 28 blocks.

• Self-Attention Only: Identical to the above, but cache only self-attention.
• Feedforward Only: Identical to the above, but cache only feedforward layers.
• Cross- & Self-Attention, All Blocks: Cache both cross- and self-attention for all blocks at

every nth step.
• FORA-inspired: Following (Selvaraju et al., 2024), cache cross-attention, self-attention,

and feedforward layers for all blocks at every nth step.
• TGATE-inspired: Following the gating mechanism from (Liu et al., 2024b), set gate step
m and interval k. After the first two warm-up steps, compute self-attention every k steps,
caching and reusing otherwise. After step m, self-attention is computed every step, while
cross-attention is not recomputed and reuses the cached output from step m. Unlike TGATE,
which averages the cross attention activation on text and null-text embeddings, we cache
only the the result from the text embedding.

The resulting Pareto frontiers for these heuristics are shown in Figure 12. From the complete set of
generated schedules, we randomly select 72 to initialize ECAD’s first generation for PixArt-α.
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For PixArt-Σ, as summarized in Section 4.2, we initialize with 72 schedules randomly sampled from
the Pareto frontier of PixArt-α after 200 generations of ECAD optimization.

For FLUX-1.dev, we start with a FORA-inspired schedule, apply a few rounds of mutation and
crossover, and randomly select 24 candidates to initialize ECAD.

When initializing populations, it is suggested to include at least one schedule that is near identical
to the uncached baseline and one that is nearly fully-cached. The former will allow ECAD to find
schedules with the highest image quality possible, and the latter will promote faster convergence to
efficient schedules.

To better understand this, we analyze two random initialization strategies. We find that a naive
random sampling of binary masks (True Random) is suboptimal; due to the Central Limit Theorem,
candidate schedules cluster around the mean sparsity, failing to explore the extremes of the Pareto
frontier (Figure 13).

To address this, we propose Uniform Random Initialization, which samples uniformly across the
computational cost spectrum [0, Cmax]. We first sample a target budget C∗ ∼ U(0, Cmax). We
then determine valid integer counts kc for each component c ∈ {FF, SA,CA} with GMAC cost
wc by solving the linear Diophantine equation

∑
wckc ≈ C∗. This is solved efficiently by iterating

over the highest-weighted component (kFF ) and solving the remaining two-variable equation using
the Extended Euclidean Algorithm:

wSAkSA + wCAkCA = C∗ − wFF kFF

From the solution set, we sample a tuple (kFF , kSA, kCA) and distribute the active flags uniformly
across the N ×B spatiotemporal positions.

As detailed in Table 12, while Heuristic initialization yields the best performance (1.65× speedup,
8.18 MJHQ FID), Uniform Random significantly outperforms True Random (1.60× vs. 1.28×
speedup) and prevents the population diversity collapse observed in the naive approach.
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Figure 12: Pareto frontiers of Image Reward vs. computational cost for the handcrafted schedules
described in Section A.8, evaluated on the Image Reward Benchmark. Notably, caching a single
component (e.g., cross-attention or feedforward) offers slight gains over baseline. Among all
heuristics, FORA achieves the best trade-off, with slightly lower quality but superior efficiency.
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Figure 13: Schedule Initialization Ablation. We initialize the first 72 candidates of generation
1 with three methods: heuristics as described in Section A.8, a random sample over the binary
caching tensors, and sampling such that we have a uniform spread of compute complexity (TMACs).
Heuristics converge the quickest, and achieve higher Image Reward performance. Uniform sampling
over TMACs performs well, while randomly sampling caching schedule results in heavy grouping
which prevents ECAD from optimizing effectively.

Table 12: Ablation of initialization strategies. Comparison of ECAD performance using different
initialization methods. Heuristic initialization yields the highest speedup and fidelity metrics
compared to random initialization baselines. All evaluations are conducted on the schedule with the
highest TMACs after 100 generations on default settings, except for ‘Uniform Random (Closest)’,
which is selected to have the closest speedup to the Heuristic schedule for a more fair comparison.

Initialization ms / img↓ (speedup↑) ImageReward IR↑ PP IR↑ MJHQ FID↓ MJHQ CLIP↑ COCO FID↓ COCO CLIP↑
Heuristic 100.68 (1.65x) 0.94 1.00 8.18 32.88 21.40 31.48
Uniform Random 150.52 (1.10x) 0.92 0.95 9.37 32.71 22.35 31.32
Uniform Random (Closest) 103.79 (1.60x) 0.91 0.93 9.29 32.70 23.40 31.34
True Random 129.88 (1.28x) 0.64 0.61 13.77 31.74 24.14 30.68

Table 13: FLUX-1.dev Performance on GenEval and DPG Bench. We compare our and other
methods from Table 1 on the GenEval and DPG Bench benchmarks using FLUX-1.dev (20 steps,
256× 256). Our method does not impact GenEval Overall score at 2.58× acceleration while other
methods result in 2% to 22% quality decrease for lower acceleration. Our method achieves the
highest speedups while even slightly improving the DPG Bench score, whereas other aggressive
caching strategies degrade performance.

Setting Latency GenEval Overall DPG Bench

Caching Setting TMACs↓ ms / img↓ (speedup↑) Score % Decrease Score % Decrease

None 198.69 2620.09 (1.00x) 0.5842 – 22.7058 –
ToCa N = 4, R = 90% 42.96∗ 1576.97 (1.66x)∗ 0.5517 5.56% 22.8215 -0.51%
DiCache 62.23 1161.86 (2.26x) 0.5699 2.45% 22.6946 0.05%
TaylorSeer N = 5, O = 2 59.88∗ 1028.66 (2.55x)∗ 0.4531 22.44% 22.4695 1.04%
TaylorSeer N = 6, O = 1 49.97∗ 865.97 (3.03x)∗ 0.3399 41.81% 21.6869 4.49%
Ours Fast 63.02 1016.59 (2.58x) 0.5892 -0.86% 22.8364 -0.58%
Ours Fastest 43.60 778.17 (3.37x) 0.5258 10.00% 23.5098 -3.54%

∗Refer to Appendix A.11 for a detailed explanation of MAC and latency calculations.
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A.9 ADDITIONAL FLUX-1.DEV RESULTS

To further demonstrate the robustness of our method, we include supplementary quantitative results
on the GenEval (Ghosh et al., 2023) and DPG Bench (Hu et al., 2024) in Table 13. Both methods
use the official prompt sets provided by each respective method, with 4 images generated per
prompt. Our method “Fast” schedule from Table 1 achieves 2.58× acceleration with slightly higher
performance on each metric as compared with the uncached baseline, while other methods result
in quality degradation. Our “Fastest” schedule trades only some image quality to achieve 3.37×
acceleration.

A.10 OPTIMIZATION COST AND LIMITATIONS OF ECAD

ECAD introduces an offline optimization phase that searches over binary caching schedules. This
search is a one-time cost per model family: once a schedule (or set of schedules) is learned, it can
be reused for that architecture and shared with downstream users, who simply choose an operating
point on the qualitylatency frontier.

In our PixArt configurations, the full “fast/faster/fastest” frontier requires ≈ 700 NVIDIA A6000
GPU-hours with a research-oriented implementation. However, competitive operating points can
be obtained much more cheaply: the “fast” schedule with SOTA performance is discovered in
only 358 generations (just 470 GPU-hours). 100 generations with default settings, resulting in the
schedule with a 16% reduction in MJHQ FID over baseline, costs 145 GPU-hours. But with minor
engineering changes, we achieve a schedule with an identical 1.65× speedup, 11.8% MJHQ FID
reduction over baseline, in only 44 GPU-hours. As such, these figures should be viewed as upper
bounds given an under-optimized research framework.

The focus of this work is the algorithmic framework: formulating diffusion caching as a multi-
objective optimization problem and demonstrating that a simple genetic algorithm can discover
strong Pareto fronts across models and resolutions. System-level engineering—e.g., optimized
kernels, greater hardware utilization, and torch.compile integration—is orthogonal to ECAD
and can further reduce wall-clock search time without changing the method.

A key limitation is that ECAD adds an up-front compute cost. Nevertheless, unlike training-based
accelerations, ECAD does not require gradients or weight updates, has lower VRAM requirements,
and can be run asynchronously across heterogeneous, lower-end GPUs. For large-scale services
employing ECAD, the one-time optimization cost is quickly amortized by the per-sample latency
savings.

Table 14: Parameters used for latency evaluation. W is the number of warm-up batches discarded, N
is the number of batches used to compute the average latency, and B is the largest batch size that fits
in memory on a single NVIDIA A6000 GPU. All values are empirically chosen to ensure stable and
consistent measurements.

Model Name Resolution Warm-up (W ) Measured (N ) Batch Size (B)

PixArt-α 256× 256 1 5 100
PixArt-Σ 256× 256 1 5 100
FLUX-1.dev 256× 256 1 10 18
FLUX-1.dev 1024× 1024 5 25 3

A.11 MAC AND LATENCY COMPUTATIONS

Latency Setup: Latency measurements are conducted on a single NVIDIA A6000 GPU for all
models. For each model, we discard the first W warm-up batches and compute the mean latency
over the subsequent N measured batches, using prompts from the Image Reward Benchmark. The
reported per-image latency is obtained by dividing the average batch latency by the batch size B,
except in the case of ToCa (see section below). Detailed configuration parameters are provided in
Table 14.
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Latency Results: The publicly available implementation for some prior works, denoted by ∗ in
tables, differed substantially from the infrastructure employed in our framework. While all methods
use the same GPU (NVIDIA A6000) and identical warm-up and batch settings, ToCa and DuCa,
for example, consistently produces higher latency measurements. To enable fair comparison, we
normalize reported latencies by computing the relative speedup of each setting over its own baseline,
then applying this speedup to our unaccelerated baseline latency:

Normalized LatencyOther =
Latencycached

Other

Latencyunaccelerated
Other

× Latencyunaccelerated
Ours

This procedure ensures that the reported values reflect performance improvements relative to each
methods own baseline, enabling direct comparison across implementations. See Table 15 for details.

ToCa MAC Results: Multiply-accumulate operation (MAC) counts for ToCa are derived using the
analytical formulations provided in the original work (Zou et al., 2025), specifically Section A.4. The
relevant expressions are:

MACsSA ≈ 4N1D
2 + 2N2

1D +
5

2
N2

1H

MACsCA ≈ 2D2(N1 +N2) + 2N1N2D +
5

2
N1N2H

MACsFFN ≈ 8N1D
2
FFN + 12N1DFFN

Here, N1 and N2 denote the number of image and text tokens respectively, D is the hidden state
dimensionality, DFFN refers to the dimensionality within the feedforward network, and H is the
number of attention heads. Results from DuCa (Zou et al., 2024), a concurrent method that builds
upon ToCa, confirm that these approximations closely match empirical MAC counts.

TaylorSeer MAC Results: We compute MACs and FLOPs for all DiT models with the calflops
from Ye (2023). However, when matching our configuration to that reported in Liu et al. (2025a), we
find our computed FLOPs to always be different by a factor of exactly 1.249× due to differences in
implementation. As such, we report our computed values as is for consistency with other models, and
note this scaling factor here.

A.12 COMPARISON TO CONCURRENT WORKS

Although our method is thoroughly evaluated against established baselines (prior works), comparison
with concurrent works is limited. Neither SpeCa (Liu et al., 2025c) nor ClusCa (Zheng et al., 2025)
currently have completely functional public code. The high acceleration figures reported for these
works are partly attributable to their choice of a 50-step setting. In our experiments, we focus on the
20 steps setting, which is already 2.5x faster than 50 step with minimal reduction in image quality.
We also note that ClusCa shows improvements in memory overhead compared to TaylorSeer (Liu
et al., 2025a), but still incurs roughly 10% additional cost (Zheng et al., 2025), which in practice
constrains batch size. In contrast, ECAD introduces no memory overhead. Finally, because SpeCa
and ClusCa depend on human-tuned hyperparameters (e.g., propagation ratio, cluster size, and cache
interval), ECAD’s optimization framework could, in principle, be extended to automatically learn
such parameters to tune these methods.

A.13 ADDITIONAL ECAD OPTIMIZATION PLOTS

Figure 14 illustrates the progression of ECAD optimization for PixArt-Σ and FLUX-1.dev at 256×256
resolution. PixArt-Σ converges rapidly, likely due to its initialization from pre-optimized schedules
learned on PixArt-α. FLUX-1.dev converges to a steeper Pareto frontier, with its resulting schedules
substantially outperforming the unaccelerated baseline on the Image Reward benchmark. We hypoth-
esize that this steep convergence is facilitated by an initial population with a relatively high mean
acceleration. See Section A.8 for additional details on population initialization.
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Table 15: Latency normalization details across different models and resolutions. “True ms / img”
refers to direct latency measured from the official implementation. “Speedup” is computed relative to
each methods own unaccelerated baseline, and “Normalized ms / img” applies that speedup to our
unaccelerated latency for fair comparison. Note we reduced batch size for TaylorSeer due to its high
VRAM requirements.

Model Resolution Implementation Caching Setting True ms / img↓ Speedup↑ Normalized ms / img↓
Ours None 165.736
ToCa None 948.688 1.000x 165.736
ToCa ToCa N = 3,R = 60% 519.258 1.827x 90.715
ToCa ToCa N = 3,R = 90% 403.989 2.348x 70.577

DuCa None 981.263 1.000x 165.736
DuCa DuCa N = 3,R = 60% 429.405 2.285x 72.527

PixArt-α 256×256

DuCa DuCa N = 3,R = 90% 379.411 2.586x 64.083

Ours None 167.624
ToCa None 925.024 1.000x 167.624
ToCa ToCa N = 3,R = 60% 520.286 1.778x 94.281PixArt-Σ 256×256
ToCa ToCa N = 3,R = 90% 403.038 2.295x 73.035

Ours None 2620.095
ToCa None 3385.153 1.000x 2620.095
ToCa ToCa N = 4,R = 90% 2037.433 1.661x 1576.965
ToCa ToCa N = 5,R = 90% 1935.554 1.747x 1499.949

TaylorSeer None batch = 10 2657.782 1.000x
TaylorSeer TaylorSeer N = 5,O = 2 1043.457 2.547x 1028.661
TaylorSeer None batch = 18 2630.581 1.000x

256×256

TaylorSeer TaylorSeer N = 6,O = 1 869.438 3.026x 865.972

Ours None 18297.603
ToCa None 34109.719 1.000x 18297.603
ToCa ToCa N = 4,R = 90% 13832.082 2.466x 7419.995

TaylorSeer None batch = 1 18947.390 1.000x
TaylorSeer TaylorSeer N = 5,O = 2 7452.669 2.542x 7197.085

FLUX-1.dev

1024×1024

TaylorSeer TaylorSeer N = 6,O = 1 6219.621 3.046x 6006.323

Additionally, we include the Pareto frontier of PixArt-Σ as measured by Image Reward on the unseen
PartiPrompts set vs. image generation latency in Figure 15. Our method achieves Pareto dominance
over FORA but does reach the unaccelerated baseline’s level of performance.
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Figure 14: Progress of ECAD optimization as measured by Image Reward and TMACs. Left:
PixArt-Σ optimized for 50 generations, initialized using 200 generations of PixArt-α optimization.
Right: FLUX-1.dev optimized for 250 generations, initialized using basic heuristics.

A.14 VISUALIZING ECAD SCHEDULES

To better understand how ECAD optimizes caching schedules under different constraints and settings,
we visualize selected schedules using heatmaps. Each heatmap represents a schedule, where red
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Figure 15: PartiPrompt Image Reward vs. latency for PixArt-Σ. Note that ToCa is not optimized
for PixArt-Σ and its parameters are transferred from PixArt-α. Our method achieves Pareto domi-
nance with a significant margin, but does not reach baseline performance.

shades indicate cached components and gray shades indicate recomputed components. For PixArt
models, the component order left-to-right is self-attention, cross-attention, and feedforward. FLUX-
1.dev uses two types of DiT blocks. Block numbers 0 to 18 are full FLUX DiT blocks, whose
components are multi-stream joint-attention, feedforward, and feedforward context. Blocks 19 to 56
are single blocks with components single-stream joint-attention, linear MLP input projection, and
linear MLP output projection. Figure 21 and Figure 24 show representative schedules for PixArt-α
and PixArt-Σ used throughout the paper. Figure 22 compares FLUX-1.dev’s ‘slow’ and ‘fastest’
schedules. Furthermore, Figure 23 visualizes how ECAD schedules evolve over time for PixArt-α,
comparing the highest-TMACs candidate at generations 50, 200, and 400. Finally, Figure 25 presents
the highest-TMACs schedules resulting from our genetic hyperparameter ablations, illustrating how
variations in population size impact the structure of learned caching strategies.

A.15 FURTHER QUALITATIVE RESULTS

In addition to the PixArt-α 256×256 results shown in Figure 4, we present further qualitative
comparisons using FLUX-1.dev at 256×256 (Figure 26) and 1024×1024 (Figure 27). Notably, in
prompts such as “I want to supplement vitamin c, please help me paint related food,” our method
exhibits stronger prompt adherence than both the uncached baseline and ToCa. This behavior is
likely influenced by ECAD’s optimization for the Image Reward metric, which emphasizes semantic
alignment with the prompt.

Full Prompts from Figure 4, from left to right:

• “Three-quarters front view of a blue 1977 Porsche 911 coming around a curve in a mountain
road and looking over a green valley on a cloudy day.”

• “a portrait of an old man”
• “A section of the Great Wall in the mountains. detailed charcoal sketch.”
• “a still life painting of a pair of shoes”
• “a blue cow is standing next to a tree with red leaves and yellow fruit. the cow is standing in

a field with white flowers. impressionistic painting”
• “the Parthenon”

Full Prompts from Figure 26, 27, from top-to-bottom:
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• “Drone view of waves crashing against the rugged cliffs along Big Surs Garay Point beach.
The crashing blue waters create white-tipped waves, while the golden light of the setting
sun illuminates the rocky shore.”

• “Bright scene, aerial view, ancient city, fantasy, gorgeous light, mirror reflection, high detail,
wide angle lens.”

• “3d digital art of an adorable ghost, glowing within, holding a heart shaped pumpkin,
Halloween, super cute, spooky haunted house background”

• “8k uhd A man looks up at the starry sky, lonely and ethereal, Minimalism, Chaotic compo-
sition Op Art”

• “I want to supplement vitamin c, please help me paint related food.”

• “A deep forest clearing with a mirrored pond reflecting a galaxy-filled night sky.”

• “A person standing on the desert, desert waves, gossip illustration, half red, half blue, abstract
image of sand, clear style, trendy illustration, outdoor, top view, clear style, precision art,
ultra high definition image”

Full Prompts from Figure 28, from top-to-bottom:

• “Eiffel Tower was Made up of more than 2 million translucent straws to look like a cloud,
with the bell tower at the top of the building, Michel installed huge foam-making machines
in the forest to blow huge amounts of unpredictable wet clouds in the building’s classic
architecture.”

• “Mural Painted of Prince in Purple Rain on side of 5 story brick building next to zen garden
vacant lot in the urban center district, rgb”

• “Editorial photoshoot of a old woman, high fashion 2000s fashion Steampunk makeup, in
the style of vray tracing, colorful impasto, uhd image, indonesian art, fine feather details
with bright red and yellow and green and pink and orange colours, intricate patterns and
details, dark cyan and amber makeup. Rich colourful plumes. Victorian style.”

Full Prompts from Figure 29, from top-to-bottom:

• “a handsome villain in his early 40s with very short bleach blonde hair and glowing red eyes
wearing a blue armor and red cape. hyperrealistic, mythological, regal, 8k, medieval.”

• “logo, simplistic, art style, multiple parallel universes together, different ages and themes
over an open book ”

• “professional Food photography, BeerenProteinSmoothie in a glass decorated with a mint
leaf, high quality, hyper, detailed, beautifully color, beautifully color graded, cinematic ”

• “iphone wallpaper, conceptual art colorful design, splash of colors, racing car drifting, ultra
fine detailed art ”

A.16 CLARIFYING FRONTIER VISUALIZATIONS

Several frontier plots–such as Figures 16, 17, and 18–show both the Pareto frontier of individual
generations (typically shown in color) and the overall frontier aggregated across all generations
(typically in black). At first glance, it may seem that a generational frontier occasionally surpasses
the overall frontier. This apparent contradiction arises from interpolation between discrete candidate
schedules. As illustrated in Figure 20, the frontier from generation G appears to extend beyond the
overall frontier. However, the aggregated frontier integrates more finely sampled points, including
high-performing candidates from earlier generations (e.g., generation G−1), which are not always
aligned with the interpolated curves of later generations. The overall frontier, therefore, forms a
tighter envelope of all known Pareto-optimal schedules, even if it may visually appear to be exceeded
due to interpolation artifacts.
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Figure 20: Illustrative example of per-generation and overall Pareto frontiers in ECAD. Points
represent candidate schedules, with lines interpolated between them for visualization. Half-colored
points lie on both the generational and overall frontiers. In this example, the frontier from generation
G appears to exceed the overall frontier, highlighting interpolation ‘artifacts’ that can occur between
discrete candidate solutions.

A.17 LLM USAGE

We utilized LLMs to proof-read, check grammar, and make revision suggestions during the writing
of this manuscript.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Total TMACs

0.0

0.2

0.4

0.6

0.8

1.0

Im
ag

e 
Re

wa
rd

Schedule Type
Pareto Frontier Per Generation
Frontier Across All Generations
Unaccelerated

20

40

60

80

100

Generation Num
ber

Figure 16: ECAD optimization progress and final Pareto frontier using a reduced population size
of 24 (compared to the default of 72), with 100 prompts and 10 images per prompt. The resulting
frontiers are noisier and exhibit slower convergence.
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Figure 17: ECAD optimization progress and final Pareto frontier using only 3 images per prompt
(default is 10), with 100 prompts and a population size of 72. This configuration demonstrates stable
convergence and achieves stronger overall performance.
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Figure 18: ECAD optimization progress and final Pareto frontier using only 33 prompts (a random
subset of the default 100), with 10 images per prompt and population size 72. Although convergence
is relatively smooth, the final frontier is constrained by the reduced prompt diversity.
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Figure 19: ECAD calibration prompt set ablation. We show performance change when using the
DrawBench200 prompts benchmark set for calibration instead of the Image Reward set. Performance
is measured in Image Reward (IR) on the both calibration prompts, unseen PartiPrompts, and MJHQ-
30K FID and CLIP. Latency is provided as well. The schedule with the most TMACs that lies on the
Pareto frontier across all 100 generations is used in each instance.
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Figure 21: ECAD schedules for PixArt-α from Table 1: “faster” (left) and “fastest” (right). Despite
being separate schedules with no guarantee of relation, the “faster” schedule has near identical
structure to “fast”, with more caching along steps 6 and 16. Furthermore, it appears cross-attention
matters less than self-attention and the feedforward network during steps 16 and 17 and can safely be
cached.
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Figure 22: ECAD schedules “slow” (left) and “fastest” (right) for FLUX-1.dev from Table 4 and
Table 1 respectively. Despite being almost 200 generations apart, both schedules share similar
structures for the first 5 steps, particularly at step 2 for blocks 9 through 12.
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Figure 23: Highest-TMACs schedules from generation 50 (left), 200 (center), and 400 (right) during
PixArt-α ECAD optimization. While steps between 8 and 15 remain somewhat similar in structure,
early and late steps change more.
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Figure 24: ECAD schedule for PixArt-Σ “fast” from Table 1. Initial DiT blocks in steps 6, 9, and 12
are more important to recompute than the final blocks. Cross-attention has less of an impact than the
other components in the final three steps, with it as the only component cached in step 17.
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Figure 25: HighestTMACs schedules after 100 generations for PixArt-α under different hyperparam-
eter ablations: (topleft) reduced population size; (topright) fewer images per prompt; (bottomleft)
fewer prompts; (bottomright) baseline configuration. All configurations realize the cacheability of
cross attention for steps where other components cannot safely be cached.
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... waves crashing
against the rugged 

cliffs along Big Sur’s 
Garay Point … 

white-tipped waves 
… golden light … 

illuminates the rocky 
shore

Bright scene, aerial 
view, ancient city, 
fantasy, gorgeous 

light, mirror 
reflection, high 

detail, wide angle 
lens.

3d digital art of an 
adorable ghost, 
glowing within, 
holding a heart 

shaped pumpkin, 
Halloween, super 

cute, spooky haunted 
house background

... a man looks up at 
the starry sky, lonely 

and ethereal, 
Minimalism, Chaotic 

composition ...

I want to supplement 
vitamin c, please help 
me paint related food.

A deep forest clearing 
with a mirrored pond 

reflecting a 
galaxy-filled night 

sky.

Unaccelerated (1.00x) ToCa (1.75x) Ours (1.97x)

Figure 26: FLUX-1.dev 256×256 qualitative comparisons. Displayed left-to-right are generations
from the uncached baseline, ToCa (N = 5,R = 90%; 1.75x speedup), and our “fast” ECAD
schedule (Table 1; 1.97x speedup). ECAD consistently yields sharper images with improved prompt
adherence.
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A person standing on the desert, desert waves ... half red, half blue, 
abstract image of sand ... top view, clear style, precision art

Ours (2.63x)

ToCa (2.47x)

Figure 27: FLUX-1.dev 1024×1024 qualitative comparisons. Outputs, top-to-bottom, are ToCa
(N = 4,R = 90%; 2.47x speedup), and our “fast” ECAD schedule (as shown in Table 4; 2.63x
speedup). Our method yields greater visual complexity with stronger prompt-alignment, despite
higher acceleration.
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a handsome villain in his early 40s with very short bleach 
blonde hair and glowing red eyes wearing a blue armor and 

red cape …

logo, simplistic … multiple parallel universes together … 
over an open book

professional Food photography, BeerenProteinSmoothie in a 
glass decorated with a mint leaf … detailed, beautifully color 

graded …

iphone wallpaper, conceptual art … splash of colors, racing 
car drifting, ultra fine detailed …

Ours (2.63x) TaylorSeer (2.54x) Ours (2.63x) TaylorSeer (2.54x)

Figure 28: FLUX-1.dev 1024×1024 further qualitative comparisons. Outputs, left-to-right, are our
“fast” ECAD schedule (as shown in Table 4; 2.63x speedup), and TaylorSeer (N = 5,O = 2; 2.54x
speedup). Prompts, from the MJHQ-30K set, and are shown without omission in Appendix A.15.
TaylorSeer’s method leads to visible patches on solid backgrounds, lower resolution, and color
distortion.
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Eiffel Tower … Made 
… of … translucent 
straws to look like a 

cloud … 
foam-making 

machines … blow 
huge … clouds in the 

building …

Mural Painted of 
Prince in Purple Rain 
on … brick building 
next to … vacant lot 

…

Editorial photoshoot 
of a old woman … 

2000s fashion

Steampunk makeup 
… feather … with 

bright red and yellow 
and green and pink 
and orange colours 
… dark cyan and 
amber makeup …

Unaccelerated (1.00x) DuCa (2.29x) Ours (2.40x)

Figure 29: PixArt-α 256×256 further qualitative comparisons. Outputs, left-to-right, are the
unaccelerated baseline, DuCa (N = 3,R = 60%; 2.29x speedup), and our “faster” ECAD schedule
(as shown in Table 1; 2.40x speedup). Our method introduces fewer artifacts and distortions.
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