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Abstract

Reinforcement Learning (RL) algorithms have shown tremendous success in simu-1

lation environments, but their application to real-world problems faces significant2

challenges, with safety being a major concern. In particular, enforcing state-wise3

constraints is essential for many challenging tasks such as autonomous driving4

and robot manipulation. However, existing safe RL algorithms under the frame-5

work of Constrained Markov Decision Process (CMDP) do not consider state-wise6

constraints. To address this gap, we propose State-wise Constrained Policy Opti-7

mization (SCPO), the first general-purpose policy search algorithm for state-wise8

constrained reinforcement learning. SCPO provides guarantees for state-wise con-9

straint satisfaction in expectation. In particular, we introduce the framework of10

Maximum Markov Decision Process, and prove that the worst-case safety violation11

is bounded under SCPO. We demonstrate the effectiveness of our approach on12

training neural network policies for extensive robot locomotion tasks, where the13

agent must satisfy a variety of state-wise safety constraints. Our results show14

that SCPO significantly outperforms existing methods and can handle state-wise15

constraints in high-dimensional robotics tasks.16

1 Introduction17

Reinforcement learning (RL) has achieved remarkable progress in games and control tasks [Mnih18

et al., 2015, Vinyals et al., 2019, Brown and Sandholm, 2018, He et al., 2022, Zhao et al., 2019].19

However, one major barrier that limits the application of RL algorithms to real-world problems is20

the lack of safety assurance. RL agents learn to make reward-maximizing decisions, which may21

violate safety constraints. For example, an RL agent controlling a self-driving car may receive high22

rewards by driving at high speeds but will be exposed to high chances of collision. Although the23

reward signals can be designed to penalize risky behaviors, there is no guarantee for safety. In other24

words, RL agents may sometimes prioritize maximizing the reward over ensuring safety, which can25

lead to unsafe or even catastrophic outcomes [Gu et al., 2022].26

Emerging in the literature, safe RL aims to provide safety guarantees during or after training. Early27

attempts have been made under the framework of constrained Markov Decision Process, where the28

majority of works enforce cumulative constraints or chance constraints [Ray et al., 2019, Achiam29

et al., 2017a, Liu et al., 2021]. In real-world applications, however, many critical constraints are30

instantaneous. For instance, collision avoidance must be enforced at all times for autonomous31

cars [Zhao et al., 2023]. Another example is that when a robot holds a glass, the robot can only32

release the glass when the glass is on a stable surface. The violation of those constraints will lead to33

irreversible failures of the task. In this work, we focus on state-wise (instantaneous) constraints.34

The State-wise Constrained Markov Decision Process (SCMDP) is a novel formulation in reinforce-35

ment learning that requires policies to satisfy hard state-wise constraints. Unlike cumulative or36

probabilistic constraints, state-wise constraints demand full compliance at each time step as for-37

malized by Zhao et al. [2023]. Existing state-wise safe RL methods can be categorized based on38
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whether safety is ensured during training. There is a fundamental limitation that it is impossible to39

guarantee hard state-wise safety during training without prior knowledge of the dynamic model. The40

best we can achieve in a model free setting is to learn to satisfy the constraints using as few samples41

as possible, which is the focus of this paper. We aim to provide theoretical guarantees on state-wise42

safety violation and worst case reward degredation during training.43

Our approach is underpinned by a key insight that constraining the maximum violation is equivalent44

to enforcing state-wise safety. This insight leads to a novel formulation of MDP called the Maximum45

Markov Decision Process (MMDP). With MMDP, we establish a new theoretical result that provides46

a bound on the difference between the maximum cost of two policies for episodic tasks. This result47

expands upon the cumulative discounted reward and cost bounds for policy search using trust regions,48

as previously documented in literature [Achiam et al., 2017b]. We leverage this result to design a49

policy improvement step that not only guarantees worst-case performance degradation but also ensures50

state-wise cost constraints. Our proposed algorithm, State-wise Constrained Policy Optimization51

(SCPO), approximates the theoretically-justified update, which achieves a state-of-the-art trade-off52

between safety and performance. Through experiments, we demonstrate that SCPO effectively53

trains neural network policies with thousands of parameters on high-dimensional simulated robot54

locomotion tasks; and is able to optimize rewards while enforcing state-wise safety constraints. This55

work represents a significant step towards developing practical safe RL algorithms that can be applied56

to many real-world problems.57

2 Related Work58

2.1 Cumulative Safety59

Cumulative safety requires that the expected discounted return with respect to some cost function is60

upper-bounded over the entire trajectory. One representative approach is constrained policy optimiza-61

tion (CPO) [Achiam et al., 2017a], which builds on a theoretical bound on the difference between62

the costs of different policies and derives a policy improvement procedure to ensure constraints63

satisfaction. Another approach is interior-point policy optimization (IPO) [Liu et al., 2019], which64

augments the reward-maximizing objective with logarithmic barrier functions as penalty functions65

to accommodate the constraints. Other methods include Lagrangian methods [Ray et al., 2019]66

which use adaptive penalty coefficients to enforce constraints and projection-based constrained67

policy optimization (PCPO) [Yang et al., 2020a] which projects trust-region policy updates onto the68

constraint set. Although our focus is on a different setting of constraints, existing methods are still69

valuable references for illustrating the advantages of our SCPO. By utilizing MMDP, SCPO breaks70

the conventional safety-reward trade-off, which results in stronger convergence of state-wise safety71

constraints and guaranteed performance degradation bounds.72

2.2 State-wise Safety73

Hierarchical Policy One way to enforce state-wise safety constraints is to use hierarchical policies,74

with an RL policy generating reward-maximizing actions, and a safety monitor modifying the actions75

to satisfy state-wise safety constraints. Such an approach often requires a perfect safety critic to76

function well. For example, conservative safety critics (CSC) [Bharadhwaj et al., 2020] propose77

a safe critic QC(s, a), providing a conservative estimate of the likelihood of being unsafe given a78

state-action pair. If the safety violation exceeds a predefined threshold, a new action is re-sampled79

from the policy until it passes the safety critic. However, this approach is time-consuming. On80

the other hand, optimization-based methods such as gradient descent or quadratic programming81

can be used to find a safe action that satisfies the constraint while staying close to the reference82

action. Unrolling safety layer (USL) [Zhang et al., 2022a] follows a similar hierarchical structure as83

CSC but performs gradient descent on the reference action iteratively until the constraint is satisfied84

based on learned safety critic QC(s, a). Finally, instead of using gradient descent, Lyapunov-based85

policy gradient (LPG) [Chow et al., 2019] and SafeLayer [Dalal et al., 2018] directly solve quadratic86

programming (QP) to project actions to the safe action set induced by the linearized versions of some87

learned critic QC(s, a). All these approaches suffer from safety violations due to imperfect critic88

QC(s, a), while those solving QPs further suffer from errors due to the linear approximation of the89

critic. To avoid those issues, we propose SCPO as an end-to-end policy which does not explicitly90

maintain a safety monitor.91
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End-to-End Policy End-to-end policies maximize task rewards while ensuring safety at the same92

time. Related work regarding state-wise safety after convergence has been explored recently. Some93

approaches [Liang et al., 2018, Tessler et al., 2018] solve a primal-dual optimization problem to94

satisfy the safety constraint in expectation. However, the associated optimization is hard in practice95

because the optimization problem changes at every learning step. Bohez et al. [2019] approaches96

the same setting by augmenting the reward with the sum of the constraint penalty weighted by the97

Lagrangian multiplier. Although claimed state-wise safety performance, the aforementioned methods98

do not provide theoretical guarantee and fail to achieve near-zero safety violation in practice. He99

et al. [2023] proposes AutoCost to automatically find an appropriate cost function using evolutionary100

search over the space of cost functions as parameterized by a simple neural network. It is empirically101

shown that the evolved cost functions achieve near-zero safety violation, however, no theoretical102

guarantee is provided, and extensive computation is required. FAC [Ma et al., 2021] does provide103

theoretically guaranteed state-wise safety via parameterized Lagrange functions. However, FAC104

replies on strong assumptions and performs poorly in practice. To resolve the above issues, we105

propose SCPO as an easy-to-implement and theoretically sound approach with no prior assumptions106

on the underlying safety functions.107

3 Problem Formulation108

3.1 Preliminaries109

In this paper, we are especially interested in guaranteeing safety for episodic tasks, which falls within110

in the scope of finite-horizon Markov Decision Process (MDP). An MDP is specified by a tuple111

(S,A, �, R, P, µ), where S is the state space, and A is the control space, R : S ⇥ A 7! R is the112

reward function, 0  � < 1 is the discount factor, µ : S 7! R is the initial state distribution, and113

P : S⇥A⇥S 7! R is the transition probability function. P (s0|s, a) is the probability of transitioning114

to state s
0 given that the previous state was s and the agent took action a at state s. A stationary115

policy ⇡ : S 7! P(A) is a map from states to a probability distribution over actions, with ⇡(a|s)116

denoting the probability of selecting action a in state s. We denote the set of all stationary policies by117

⇧. Subsequently, we denote ⇡✓ as the policy that is parameterized by the parameter ✓.118

The standard goal for MDP is to learn a policy ⇡ that maximizes a performance measure J0(⇡) which119

is computed via the discounted sum of reward:120

J0(⇡) = E⌧⇠⇡

"
HX

t=0

�
t
R(st, at, st+1)

#
, (1)

where H 2 N is the horizon, ⌧ = [s0, a0, s1, · · · ], and ⌧ ⇠ ⇡ is shorthand for that the distribution121

over trajectories depends on ⇡ : s0 ⇠ µ, at ⇠ ⇡(·|st), st+1 ⇠ P (·|st, at).122

3.2 State-wise Constrained Markov Decision Process123

A constrained Markov Decision Process (CMDP) is an MDP augmented with constraints that restrict124

the set of allowable policies. Specifically, CMDP introduces a set of cost functions, C1, C2, · · · , Cm,125

where Ci : S ⇥A⇥ S 7! R maps the state action transition tuple into a cost value. Analogous to (1),126

we denote127

JCi(⇡) = E⌧⇠⇡

"
HX

t=0

�
t
Ci(st, at, st+1)

#
(2)

as the cost measure for policy ⇡ with respect to cost function Ci. Hence, the set of feasible stationary128

policies for CMDP is then defined as follows, where di 2 R:129

⇧C = {⇡ 2 ⇧
�� 8i,JCi(⇡)  di}. (3)

In CMDP, the objective is to select a feasible stationary policy ⇡✓ that maximizes the performance130

measure:131

max
⇡

J0(⇡), s.t.⇡ 2 ⇧C . (4)
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In this paper, we are interested in a special type of CMDP where the safety specification is to persis-132

tently satisfy a hard cost constraint at every step (as opposed to cumulative costs over trajectories),133

which we refer to as State-wise Constrained Markov Decision Process (SCMDP). Like CMDP,134

SCMDP uses the set of cost functions C1, C2, · · · , Cm to evaluate the instantaneous cost of state135

action transition tuples. Unlike CMDP, SCMDP requires the cost for every state action transition to136

satisfy a hard constraint. Hence, the set of feasible stationary policies for SCMDP is defined as137

⇧̄C = {⇡ 2 ⇧
��8i, E(st,at,st+1)⇠⌧,⌧⇠⇡

⇥
Ci(st, at, st+1)

⇤
 wi} (5)

where wi 2 R. Then the objective for SCMDP is to find a feasible stationary policy from ⇧̄C that138

maximizes the performance measure. Formally,139

max
⇡

J0(⇡), s.t.⇡ 2 ⇧̄C (6)

3.3 Maximum Markov Decision Process140

Note that for (6), every state-action transition pair corresponds to a constraint, which is intractable to141

solve using conventional reinforement learning algorithms. Our intuition is that, instead of directly142

constraining the cost of each possible state-action transition, we can constrain the expected maximum143

state-wise cost along the trajectory, which is much easier to solve. Following that intuition, we define144

a novel Maximum Markov-Decision Process (MMDP), which further extends CMDP via (i) a set of145

up-to-now maximum state-wise costs M .
= [M1,M2, · · · ,Mm] where Mi 2 M ⇢ R, and (ii) a set146

of cost increment functions, D1, D2, · · · , Dm, where Di : (S,Mm)⇥A⇥ S 7! [0,R+] maps the147

augmented state action transition tuple into a non-negative cost increment. We define the augmented148

state ŝ = (s,M) 2 (S,Mm)
.
= Ŝ , where Ŝ is the augmented state space. Formally,149

Di

�
ŝt, at, ŝt+1

�
= max{Ci(st, at, st+1)�Mit, 0}. (7)

By setting Di

�
ŝ0, a0, ŝ1

�
= Ci(s0, a0, s1), we have Mit =

P
t�1
k=0 Di

�
ŝk, ak, ŝk+1

�
for t � 1.150

Hence, we define expected maximum state-wise cost (or Di-return) for ⇡:151

JDi(⇡) = E⌧s⇡

"
HX

t=0

Di

�
ŝt, at, ŝt+1

�
#
. (8)

Importantly, (8) is the key component of MMDP and differs our work from existing safe RL ap-152

proaches that are based on CMDP cost measure (2). With (8), (6) can be rewritten as:153

max
⇡

J (⇡), s.t. 8i,JDi(⇡)  wi, (9)

where J (⇡) = E⌧⇠⇡

hP
H

t=0 �
t
R(ŝt, at, ŝt+1)

i
and R(ŝ, a, ŝ0)

.
= R(s, a, s0). With R(⌧) being the154

discounted return of a trajectory, we define the on-policy value function as V ⇡(ŝ)
.
= E⌧⇠⇡[R(⌧)|ŝ0 =155

ŝ], the on-policy action-value function as Q⇡(ŝ, a)
.
= E⌧⇠⇡[R(⌧)|ŝ0 = ŝ, a0 = a], and the advantage156

function as A⇡(ŝ, a)
.
= Q

⇡(ŝ, a)� V
⇡(ŝ). Lastly, we define on-policy value functions, action-value157

functions, and advantage functions for the cost increments in analogy to V
⇡, Q⇡, and A

⇡, with Di158

replacing R, respectively. We denote those by V
⇡

Di
, Q⇡

Di
and A

⇡

Di
.159

4 State-wise Constrained Policy Optimization160

To solve large and continuous MDPs, policy search algorithms search for the optimal policy within a161

set ⇧✓ ⇢ ⇧ of parametrized policies. In local policy search [Peters and Schaal, 2008], the policy is162

iteratively updated by maximizing J (⇡) over a local neighborhood of the most recent policy ⇡k. In163

local policy search for SCMDPs, policy iterates must be feasible, so optimization is over ⇧✓

T
⇧̄C .164

The optimization problem is:165

⇡k+1 = argmax
⇡2⇧✓

J (⇡), (10)

s.t.Dist(⇡,⇡k)  �,

JDi(⇡)  wi, i = 1, · · · ,m.
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where Dist is some distance measure, and � > 0 is a step size. For actual implementation, we need166

to evaluate the constraints first in order to determine the feasible set. However, it is challenging to167

evaluate the constraints using samples during the learning process. In this work, we propose SCPO168

inspired by recent trust region optimization methods Schulman et al. [2015]. SCPO approximates169

(10) using (i) KL divergence distance metric Dist and (ii) surrogate functions for the objective and170

constraints, which can be easily estimated from samples on ⇡k. Mathematically, SCPO requires171

the policy update at each iteration is bounded within a trust region, and updates policy via solving172

following optimization:173

⇡k+1 = argmax
⇡2⇧✓

E
ŝ⇠d

⇡k

a⇠⇡

[A⇡k(ŝ, a)] (11)

s.t. E
ŝ⇠d̄

⇡k [DKL(⇡k⇡k)[ŝ]]  �,

JDi(⇡k) + E
ŝ⇠d̄

⇡k

a⇠⇡

"
A

⇡k
Di

(ŝ, a)

#
+ 2(H + 1)✏⇡

Di

r
1

2
�  wi, i = 1, · · · ,m.

where DKL(⇡0k⇡)[ŝ] is KL divergence between two policy (⇡0
,⇡) at state ŝ, the set {⇡ 2174

⇧✓ : E
ŝ⇠d̄

⇡k [DKL(⇡k⇡k)[ŝ]]  �} is called trust region, d⇡k
.
= (1 � �)

P
H

t=0 �
t
P (ŝt = ŝ|⇡k),175

d̄
⇡k

.
=

P
H

t=0 P (ŝt = ŝ|⇡k) and ✏
⇡

Di

.
= maxŝ|Ea⇠⇡[A

⇡k
Di

(ŝ, a)]|. We then show that SCPO guaran-176

tees (i) worst case maximum state-wise cost violation, and (ii) worst case performance degradation177

for policy update, by establishing new bounds on the difference in returns between two stochastic178

policies ⇡ and ⇡
0 for MMDPs.179

Theoretical Guarantees for SCPO We start with the theoretical foundation for our approach,180

i.e. a new bound on the difference in state-wise maximum cost between two arbitrary policies. The181

following theorem connects the difference in maximum state-wise cost between two arbitrary policies182

to the total variation divergence between them. Here total variation divergence between discrete183

probability distributions p, q is defined as DTV (pkq) = 1
2

P
i
|pi � qi|. This measure can be easily184

extended to continuous states and actions by replacing the sums with integrals. Thus, the total variation185

divergence between two policy (⇡0
,⇡) at state ŝ is defined as: DTV (⇡0k⇡)[ŝ] = DTV (⇡0(·|ŝ)k⇡(·|ŝ)).186

Theorem 1 (Trust Region Update State-wise Maximum Cost Bound). For any policies ⇡
0
,⇡, with187

✏
⇡
0

D

.
= maxŝ|Ea⇠⇡0 [A⇡

D
(ŝ, a)]|, and define d̄

⇡ =
P

H

t=0 P (ŝt = ŝ|⇡) as the non-discounted aug-188

mented state distribution using ⇡, then the following bound holds:189

JD(⇡0)� JD(⇡)  E
ŝ⇠d̄

⇡

a⇠⇡
0

h
A

⇡

D
(ŝ, a) + 2(H + 1)✏⇡

0

D
DTV (⇡

0||⇡)[ŝ]
i
. (12)

The proof for Theorem 1 is summarized in Appendix A. Next, we note the following relationship190

between the total variation divergence and the KL divergence [Boyd et al., 2003, Achiam et al., 2017a]:191

E
ŝ⇠d̄⇡ [DTV (pkq)[ŝ]] 

q
1
2Eŝ⇠d̄⇡ [DKL(pkq)[ŝ]]. The following bound then follows directly from192

Theorem 1:193

JD(⇡0)  JD(⇡) + E
ŝ⇠d̄

⇡

a⇠⇡
0

"
A

⇡

D
(ŝ, a) + 2(H + 1)✏⇡

0

D

r
1

2
E
ŝ⇠d̄⇡ [DKL(⇡0k⇡)[ŝ]]

#
. (13)

By Equation (13), we have a guarantee for satisfaction of maximum state-wise constraints:194

Proposition 1 (SCPO Update Constraint Satisfaction). Suppose ⇡k,⇡k+1 are related by (11), then195

Di-return for ⇡k+1 satisfies196

8i,JDi(⇡k+1)  wi.

197

Proposition 1 presents the first constraint satisfaction guarantee under MMDP. Unlike trust region198

methods such as CPO and TRPO, which assume a discounted sum characteristic, MMDP’s non-199

discounted sum characteristic invalidates these theories. As the maximum state-wise cost is calculated200
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through a summation of non-discounted increments, analysis must be performed on a finite horizon to201

upper bound the worst-case summation. In contrast, the theory behind CPO relies on infinite horizon202

analysis with discounted constraint assumptions, which is not applicable for MMDP settings.203

Next, we provide the performance guarantee of SCPO. Previous analyses of performance guarantees204

have focused on infinite-horizon MDP. We generalize the analysis to finite-horizon MDP, inspired205

by previous work [Kakade and Langford, 2002, Schulman et al., 2015, Achiam et al., 2017a], and206

prove it in Appendix B. The infinite-horizon case can be viewed as a special case of the finite-horizon207

setting.208

Proposition 2 (SCPO Update Worst Performance Degradation). Suppose ⇡k,⇡k+1 are related by209

(11), with ✏
⇡k+1

.
= maxŝ|Ea⇠⇡k+1 [A

⇡k(ŝ, a)]|, then performance return for ⇡k+1 satisfies210

J (⇡k+1)� J (⇡k) � �
p
2��✏⇡k+1

1� �
.

5 Practical Implementation211

In this section, we show how to (a) implement an efficient approximation to the update (11), (b)212

encourage learning even when (11) becomes infeasible, and (c) handle the difficulty of fitting213

augmented value V
⇡

Di
which is unique to our novel MMDP formulation. The full SCPO pseudocode214

is given as algorithm 1 in appendix C.215

Practical implementation with sample-based estimation We first estimate the objective and216

constraints in (11) using samples. Note that we can replace the expected advantage on rewards using217

an importance sampling estimator with a sampling distribution ⇡k [Achiam et al., 2017a] as218

Eŝ⇠d
⇡k , a⇠⇡[A

⇡k(ŝ, a)] = Eŝ⇠d
⇡k , a⇠⇡k


⇡(a|ŝ)
⇡k(a|ŝ)

A
⇡k(ŝ, a)

�
. (14)

(14) allows us to replace A
⇡k with empirical estimates at each state-action pair (ŝ, a) from rollouts219

by the previous policy ⇡k. The empirical estimate of reward advantage is given by R(ŝ, a, ŝ0) +220

�V
⇡k(ŝ0) � V

⇡k(ŝ). V
⇡k(ŝ) can be computed at each augmented state by taking the discounted221

future return. The same can be applied to the expected advantage with respect to cost increments, with222

the sample estimates given by Di(ŝ, a, ŝ0) + V
⇡k
Di

(ŝ0)� V
⇡k
Di

(ŝ). V ⇡k
Di

(ŝ) is computed by taking the223

non-discounted future Di-return. To proceed, we convexify (11) by approximating the objective and224

cost constraint via first-order expansions, and the trust region constraint via second-order expansions.225

Then, (11) can be efficiently solved using duality [Achiam et al., 2017a].226

Infeasible constraints An update to ✓ is computed every time (11) is solved. However, due to227

approximation errors, sometimes (11) can become infeasible. In that case, we follow [Achiam228

et al., 2017a] to propose an recovery update that only decreases the constraint value within the trust229

region. In addition, approximation errors can also cause the proposed policy update (either feasible230

or recovery) to violate the original constraints in (11). Hence, each policy update is followed by231

a backtracking line search to ensure constraint satisfaction. If all these fails, we relax the search232

condition by also accepting decreasing expected advantage with respect to the costs, when the cost233

constraints are already violated. Denoting ci
.
= JDi(⇡k)+2(H+1)✏⇡

D

p
�/2�wi, the above criteria234

can be summarized as235

E
ŝ⇠d̄

⇡k [DKL(⇡k⇡k)[ŝ]]  � (15)
E
ŝ⇠d̄

⇡k ,a⇠⇡

⇥
A

⇡k
Di

(ŝ, a)
⇤
� E

ŝ⇠d̄
⇡k ,a⇠⇡k

⇥
A

⇡k
Di

(ŝ, a)
⇤
 max(�ci, 0). (16)

Note that the previous expected advantage E
ŝ⇠d̄

⇡k ,a⇠⇡k

⇥
A

⇡k
Di

(ŝ, a)
⇤

is also estimated from rollouts236

by ⇡k and converges to zero asymptotically, which recovers the original cost constraints in (11).237

Imbalanced cost value targets A critical step in solving (11) is to fit the cost increment value238

functions V ⇡k
Di

(ŝt). By definition, V ⇡k
Di

(ŝt) is equal to the maximum cost increment in any future239

state over the maximal state-wise cost so far. In other words, the true V
⇡k
Di

will always be zero for all240

ŝt:H when the maximal state-wise cost has already occurred before time t. In practice, this causes241

the distribution of cost increment value function to be highly zero-skewed and makes the fitting very242

hard. To mitigate the problem, we sub-sample the zero-valued targets to match the population of243

non-zero values. We provide more analysis on this trick in Q3 in section 6.2.244
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6 Experiments245

(a) Ant-Hazard-8 (b) Walker-Hazard-8

Figure 1: Comparison of results from two repre-
sentative test suites in high dimensional systems
(Ant and Walker).

In our experiments, we aim to answer these questions:246

Q1 How does SCPO compare with other state-of-the-247

art methods for safe RL?248

Q2 What benefits are demonstrated by constraining249

the maximum state-wise cost?250

Q3 How do the sub-sampling trick of SCPO impact251

its performance?252

6.1 Experiment Setups253

New Safety Gym To showcase the effectiveness254

of our state-wise constrained policy optimization ap-255

proach, we enhance the widely recognized safe rein-256

forcement learning benchmark environment, Safety257

Gym Ray et al. [2019], by incorporating additional258

robots and constraints. Subsequently, we perform a259

series of experiments on this augmented environment.260

Our experiments are based on five different robots: (i)261

Point: Figure 2a A point-mass robot (A ✓ R2) that262

can move on the ground. (ii) Swimmer: Figure 2b263

A three-link robot (A ✓ R2) that can move on the264

ground. (iii) Walker: Figure 2d A bipedal robot265

(A ✓ R10) that can move on the ground. (iv) Ant: Figure 2c A quadrupedal robot (A ✓ R8) that266

can move on the ground. (v) Drone: Figure 2e A quadrotor robot (A ✓ R4) that can move in the air.267

All of the experiments are based on the goal task where the robot must navigate to a goal. Additionally,268

since we are interested in episodic tasks (finite-horizon MDP), the environment will be reset once the269

goal is reached. For the robots that can move in 3D spaces (e.g, the Drone robot), we also design a270

new 3D goal task with a sphere goal floating in the 3D space. Three different types of constraints are271

considered: (i) Hazard: Dangerous areas as shown in Figure 3a. Hazards are trespassable circles on272

the ground. The agent is penalized for entering them. (ii) 3D Hazard: 3D Dangerous areas as shown273

in Figure 3b. 3D Hazards are trespassable spheres in the air. The agent is penalized for entering them.274

(iii) Pillar: Fixed obstacles as shown in Figure 3c. The agent is penalized for hitting them.

(a) Point (b) Swimmer (c) Ant (d) Walker (e) Drone

Figure 2: Robots for benchmark problems in upgraded Safety Gym.

(a) Hazard (b) 3D Hazard (c) Pillar

Figure 3: Constraints for benchmark problems in upgraded Safety Gym.

275
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(a) Point-Hazard-8 (b) Point-Pillar-4 (c) Swimmer-Hazard-8 (d) Drone-3DHazard-8

Figure 4: Comparison of results from four representative test suites in low dimensional systems (Point, Swimmer,
and Drone).

Considering different robots, constraint types, and constraint difficulty levels, we design 14 test suites276

with 5 types of robots and 9 types of constraints, which are summarized in Table 1 in Appendix. We277

name these test suites as {Robot}-{Constraint Type}-{Constraint Number}.278

Comparison Group The methods in the comparison group include: (i) unconstrained RL algorithm279

TRPO [Schulman et al., 2015] (ii) end-to-end constrained safe RL algorithms CPO [Achiam et al.,280

2017a], TRPO-Lagrangian [Bohez et al., 2019], TRPO-FAC [Ma et al., 2021], TRPO-IPO [Liu et al.,281

2020], PCPO [Yang et al., 2020b], and (iii) hierarchical safe RL algorithms TRPO-SL (TRPO-Safety282

Layer) [Dalal et al., 2018], TRPO-USL (TRPO-Unrolling Safety Layer) [Zhang et al., 2022b]. We283

select TRPO as our baseline method since it is state-of-the-art and already has safety-constrained284

derivatives that can be tested off-the-shelf. For hierarchical safe RL algorithms, we employ a warm-up285

phase (1/3 of the whole epochs) which does unconstrained TRPO training, and the generated data286

will be used to pre-train the safety critic for future epochs. For all experiments, the policy ⇡, the value287

(V ⇡
, V

⇡

D
) are all encoded in feedforward neural networks using two hidden layers of size (64,64)288

with tanh activations. More details are provided in Appendix D.289

Evaluation Metrics For comparison, we evaluate algorithm performance based on (i) reward290

performance, (ii) average episode cost and (iii) cost rate. Comparison metric details are provided291

in Appendix D.3. We set the limit of cost to 0 for all the safe RL algorithms since we aim to avoid292

any violation of the constraints. For our comparison, we implement the baseline safe RL algorithms293

exactly following the policy update / action correction procedure from the original papers. We294

emphasize that in order for the comparison to be fair, we give baseline safe RL algorithms every295

advantage that is given to SCPO, including equivalent trust region policy updates.296

6.2 Evaluating SCPO and Comparison Analysis297

Low Dimension System We select four representative test suites on low dimensional system298

(Point, Swimmer, Drone) and summarize the comparison results on Figure 4, which demonstrate299

that SCPO is successful at approximately enforcing zero constraints violation safety performance300

in all environments after the policy converges. Specifically, compared with the baseline safe RL301

methods, SCPO is able to achieve (i) near zero average episode cost and (ii) significantly lower302

cost rate without sacrificing reward performance. The baseline end-to-end safe RL methods (TRPO-303

Lagrangian, TRPO-FAC, TRPO-IPO, CPO, PCPO) fail to achieve the near zero cost performance304
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even when the cost limit is set to be 0. The baseline hierarchical safe RL methods (TRPO-SL,305

TRPO-USL) also fail to achieve near zero cost performance even with an explicit safety layer to306

correct the unsafe action at every time step. End-to-end safe RL algorithms fail since all methods307

rely on CMDP to minimize the discounted cumulative cost while SCPO directly work with MMDP308

to restrict the state-wise maximum cost by Proposition 1. We also observe that TRPO-SL fails to309

lower the violation during training, due to the fact that the linear approximation of cost function310

C(ŝt, a, ŝt+1) [Dalal et al., 2018] becomes inaccurate when the dynamics are highly nonlinear like311

the ones we used in MuJoCo [Todorov et al., 2012]. More detailed metrics for comparison and312

experimental results on test suites with low dimension systems are summarized in Appendix D.3.313

Figure 5:
Maximum state-wise cost

High Dimension System To demonstrate the scalability and per-314

formance of SCPO in high-dimensional systems, we conducted ad-315

ditional tests on the Ant-Hazard-8 and Walker-Hazard-8 suites, with316

8-dimensional and 10-dimensional control spaces, respectively. The317

comparison results for high-dimensional systems are summarized in318

Figure 1, which show that SCPO outperforms all other baselines in319

enforcing zero safety violation without compromising performance320

in terms of return. SCPO rapidly stabilizes the cost return around321

zero and significantly reduces the cost rate, while the other baselines322

fail to converge to a policy with near-zero cost. The comparison323

results of both low dimension and high dimension systems answer324

Q1.325

Maximum State-wise Cost As pointed in Section 3.3, the under-326

lying magic for enabling near-zero safety violation is to restrict the maximum state-wise cost to stay327

around zero. To have a better understanding of this process, we visualize the evolution of maximum328

state-wise cost for SCPO on the challenging high-dimensional Ant-Hazard-8 and Walker-Hazard-8329

test suites in Figure 5 , which answers Q2.330

Figure 6: SCPO sub-sampling ablation study with
Drone-3DHazard-8

Ablation on Sub-sampling Imbalanced Cost Incre-331

ment Value Targets As pointed in Section 5, fit-332

ting V
⇡k
Di

(ŝt) is a critical step towards solving SCPO,333

which is challenging due to zero-skewed distribution334

of cost increment value function. To demonstrate335

the necessity of sub-sampling for solving this chal-336

lenge, we compare the performance of SCPO with337

and without sub-sampling trick on the aerial robot338

test suite, summarized in Figure 6. It is evident that339

with sub-sampling, the agent achieves higher rewards340

and more importantly, converges to near-zero costs.341

That is because sub-sampling effectively balances the cost increment value targets and improves342

the fitting of V ⇡k
Di

(ŝt). We also attempted to solve the imbalance issue via over-sampling non-zero343

targets, but did not observe promising results. This ablation study provides insights into Q3.344

7 Conclusion and Future Work345

This paper proposed SCPO, the first general-purpose policy search algorithm for state-wise con-346

strained RL. Our approach provides guarantees for state-wise constraint satisfaction at each iteration,347

allows training of high-dimensional neural network policies while ensuring policy behavior, and is348

based on a new theoretical result on Maximum Markov Decision Process. We demonstrate SCPO’s349

effectiveness on robot locomotion tasks, showing its significant performance improvement compared350

to existing methods and ability to handle state-wise constraints.351

Limitation and future work One limitation of our work is that, although SCPO satisfies state-wise352

constraints, the theoretical results are valid only in expectation, meaning that constraint violations353

are still possible during deployment. To address that, we will study absolute state-wise constraint354

satisfaction, i.e. bounding the maximal possible state-wise cost, which is even stronger than the355

current result (satisfaction in expectation).356
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