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Abstract

Conditional Flow Matching (CFM) models001
have advanced text-to-speech (TTS) synthesis,002
yet their efficiency and fidelity can be hampered003
by the uncoordinated evolution of spectral fea-004
tures during the generative ODE trajectory. Our005
analysis of DWT decomposition of the mel-006
spectrogram establishes that this incoordina-007
tion between low-frequency (approximation)008
and high-frequency (detail) components often009
leads to unnecessary interference of subsequent010
iterations with the past developments and thus,011
demands prolonged iterations to achieve faith-012
ful speech. Furthermore, we demonstrate that013
directly adapting existing inference-time sta-014
bilization strategies, such as those inspired by015
MASF Qian et al., 2024 for diffusion models,016
exhibits poor generalizability to CFM-based017
TTS. This is due to fundamental differences018
in their generative dynamics, the time-varying019
reliability of intermediate clean data estimates020
in CFM, and potential mismatches with model-021
specific frequency evolution. To address these022
limitations, we propose a novel inference-time023
frequency-selective boosting strategy based on024
Wavelet decomposition, designed to explicitly025
enhance and synchronize the development of026
distinct mel-spectrogram frequency bands dur-027
ing the ODE solving process. Our experiments028
quantify significant improvements in the faith-029
fulness and quality of generated audio, as mea-030
sured by Fréchet Audio Distance (FAD), with-031
out any degradation in Word Error Rate (WER),032
showcasing a more robust and efficient path to033
high-quality speech synthesis in CFM models.034

1 Introduction035

Conditional Flow Matching (CFM) Lipman et al.,036

2023, particularly when guided by Optimal Trans-037

port (OT) principles, has significantly advanced038

text-to-speech (TTS) synthesis. This approach fa-039

cilitates high-quality, parallel sampling through040

the integration of deterministic Ordinary Differ-041

ential Equation (ODE) solvers. Prominent models,042

including Voicebox Le et al., 2023 and F5-TTS 043

Chen et al., 2024, leverage this framework. They 044

learn continuous generative trajectories where a 045

neural network parameterizes a time-dependent 046

vector field. This field defines an ODE that trans- 047

forms samples from a simple prior distribution (e.g., 048

Gaussian noise) to the complex speech data dis- 049

tribution. The target mel-spectrogram is synthe- 050

sized by numerically solving this ODE; solvers 051

approximate the continuous path by discretizing 052

it into finite steps. In this CFM framework, OT 053

principle is pivotal for establishing efficient target 054

vector fields, often defining straight (linear) trajec- 055

tories between a simple prior distribution and the 056

target data distribution. The neural network then 057

learns to parameterize this field by minimizing a 058

Flow Matching objective. Such precise guidance 059

along these simplified paths promotes stable train- 060

ing, leads to high-fidelity speech, and enables ef- 061

ficient inference. Voicebox leverages uniformly 062

discretized ODE solvers to produce high-quality 063

mel-spectrograms in a non-autoregressive manner. 064

On the other hand, F5-TTS introduces a technique 065

called Sway Sampling to accelerate inference. It 066

employs a strategy that adaptively prioritizes cer- 067

tain time steps during ODE solving, focusing com- 068

putational effort on stages most critical to the gen- 069

eration process. 070

Despite these innovations, our work identifies a 071

key limitation in Section 3.1 shared across these 072

CFM-based TTS models: an incoherent evolution 073

of different frequency components within the mel- 074

spectrogram xt during the ODE integration. A 075

similar problem was recognized by Yang et al., 076

2023 in the case of denoising diffusion models for 077

image generation, where the low-frequency fea- 078

tures of the image develop early on, while the 079

high-frequency details start developing after a de- 080

lay. Moreover, their work also suggests a limita- 081

tion of diffusion denoising generative models to 082

generate minor frequency components, which are 083
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usually in the higher frequency ranges. In order084

to verify the existence of such an issue in CFM-085

based TTS models, we apply the Discrete Wavelet086

Transform (DWT) to analyze xt and observe that its087

low-frequency (approximation) and high-frequency088

(detail) constituents often develop incoherently.089

Wavelet Transforms (DWT/CWT) are estab-090

lished tools in audio and signal processing, with091

applications ranging from extracting speech param-092

eters like pitch and formants Hamzenejadi et al.,093

2019 and enhancing mel-spectrograms for synthe-094

sis Hu et al., 2024, to creating robust features for095

tasks such as spoken language identification Dey096

et al., 2023 and analyzing biomedical signals like097

EEG data Goerttler et al., 2024. While these diverse098

applications underscore the versatility of wavelets099

in signal analysis and manipulation, our work in-100

troduces a distinct application. To the best of our101

knowledge, we are the first to employ DWT to102

specifically analyze and modulate the frequency103

sub-band evolution within the generative trajectory104

of Conditional Flow Matching (CFM) based text-105

to-speech models, addressing the internal dynamics106

of CFM generation in a novel way.107

This spectral misalignment, persistent across var-108

ious ODE solving strategies including adaptive109

sampling like Sway Sampling, often results in audi-110

ble artifacts and generation inefficiencies. Such in-111

coherent frequency development can destabilize the112

generative process, demanding more solver steps113

for perceptual convergence and thus hampering114

suitability for real-time deployment.115

Previous work in image generation, such as116

the Moving Average Sampling in the Frequency117

Domain (MASF) technique Qian et al., 2024 for118

diffusion models, has demonstrated the utility of119

inference-time, frequency-specific smoothing to120

improve generative stability. Inspired by these121

principles, we investigated their applicability to122

CFM-based mel-spectrogram synthesis, including123

an analogous data-space projection to estimate124

clean mel-spectrograms from intermediate states.125

However, we found that directly adapting such126

inference-time smoothing strategies was insuffi-127

cient for CFM models, explained in detail in Sec-128

tion 3.2.129

To overcome these challenges, we introduce a130

novel frequency-selective boosting strategy in Sec-131

tion 3.3 that guides the training of CFM-based mod-132

els by explicitly enhancing or suppressing the de-133

velopment of features in different sub-bands of the134

mel-spectrogram based on model-specific behavior. 135

This targeted modulation fosters better synchroniza- 136

tion of spectral components and encourages stable 137

convergence throughout the generative process by 138

boosting the contribution of lagging-behind com- 139

ponents while penalizing any aggressive growth in 140

other sub-bands. 141

We validate our approach across benchmarks us- 142

ing both Voicebox and F5-TTS frameworks, show- 143

ing that our method improves perceptual audio 144

quality as measured by Fréchet Audio Distance 145

(FAD) Kilgour et al., 2019 while maintaining Word 146

Error Rate (WER), ensuring that intelligibility is 147

not compromised. 148

Key Contributions: The key contributions of 149

this work are summarized below: 150

1. We establish that the CFM-based TTS mod- 151

els suffer (take longer iterations) to generate 152

faithful speech because of the uncoordinated 153

development of the approximation and detail 154

features of the mel-spectrogram. 155

2. We demonstrate the poor generalizability of 156

the MASF-based strategies for CFM-based 157

models in stabilizing the generative process. 158

3. We propose a novel frequency-selective boost- 159

ing strategy to enhance mel-spectrogram fea- 160

ture development in CFM-based TTS models. 161

4. We also quantify the improvement in faithful- 162

ness and quality of the generated audio using 163

Fréchet Audio Distance (FAD), without any 164

degradation in the Word Error Rate (WER). 165

2 Preliminaries 166

2.1 CNF/Flow Matching 167

Flow Matching with optimal transport continuous 168

normalization flows (CNFs) Chen et al., 2018 pro- 169

vides a powerful framework for learning complex 170

data distributions by transforming a simple prior 171

distribution p0 into a target data distribution p1. 172

This transformation is achieved through a time- 173

dependent vector field vt : [0, 1] × Rd → Rd, 174

which constructs a flow ϕt governed by the ODE: 175

d

dt
ϕt(x) = vt(ϕt(x));ϕ0(x) = x (1) 176

For a given flow ϕt : [0, 1] × Rd → Rd, we can 177

derive the probability path pt(x) using the change 178
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of variables formula:179

pt(x) = p0(ϕ
−1
t (x))

∣∣∣∣det(∂ϕ−1
t

∂x
(x)

)∣∣∣∣ (2)180

The vector field vt(x; θ) parameterized by neural181

network θ can be trained with the Flow Matching182

objective:183

LFM (θ) = Et,pt(x) ∥ut(x)− vt(x; θ)∥2 (3)184

where ut is the vector field that generates pt and185

t ∼ U [0, 1], x ∼ pt(x). However, directly com-186

puting this objective is challenging, as we lack prior187

knowledge of pt or vt. Thus, a conditional proba-188

bility path pt(x|x1) = N (x|x1, σ2
t I), a Gaussian189

distribution centered at x1 with a sufficiently small190

σ, is considered in actual training. The Conditional191

Flow Matching (CFM) objective is:192

LCFM (θ)

= Et,q(x1),pt(x|x1) ∥ut(x|x1)− vt(x; θ)∥2
(4)193

The CFM loss is proved to have identical gradients194

with respect to θ. Here, x1 is the random variable195

corresponding to training data. and µt and σt are196

the time-dependent mean and scalar standard devi-197

ation of the Gaussian distribution.198

For leveraging the optimal transport (OT) path,199

which defines the conditional probability and vec-200

tor field as:201

pt(x|x1) = N (x|tx1, (1− (1− σmin)t)
2I) (5)202

and203

ut(x|x1) =
x1 − (1− σmin)x

1− (1− σmin)t
(6)204

The OT path is particularly advantageous as it205

ensures points move with constant speed and direc-206

tion, leading to more stable training and efficient in-207

ference. This choice simplifies the learning process208

while maintaining the model’s expressive power.209

2.2 Discrete Wavelet Transform210

Wavelets are a class of special mathematical func-211

tions that are often used in the representation of212

data or other functions. Wavelets are often defined213

by a pair of functions consisting of a wavelet func-214

tion and a scaling function, serving as a high-pass215

filter and a low-pass filter, respectively. Wavelet-216

based analyses and transforms process data at dif-217

ferent scales or resolutions Graps, 1995.218

Sub-Band Frequency Axis Time Axis
LL Low-Pass Low-Pass
LH Low-Pass High-Pass
HL High-Pass Low-Pass
HH High-Pass High-Pass

Table 1: Naming convention of the DWT sub-bands
for the mel-spectrogram based on the direction of the
low-pass and high-pass filters.

The 2D Discrete Wavelet Transform (2D-DWT) 219

decomposes a two-dimensional signal x[m,n] into 220

four frequency sub-bands: xLL (approximation), 221

xLH , xHL, and xHH (details), by applying sepa- 222

rable low-pass and high-pass filtering along both 223

dimensions followed by subsampling. This trans- 224

form is invertible, allowing perfect reconstruction 225

of the original signal from its sub-band coefficients 226

via the inverse DWT (IDWT). The DWT and IDWT 227

can be described as in (7). 228

DWT(x) = {xLL, xLH , xHL, xHH}
x = IDWT(xLL, xLH , xHL, xHH)

(7) 229

Figure 1 illustrates the DWT decomposition of a 230

mel-spectrogram (x). Table 1 shows the naming 231

convention for the sub-bands used in this work. 232

3 Methodology 233

Our methodology first analyzes DWT decomposi- 234

tions of intermediate mel-spectrograms across the 235

inference trajectory, revealing disordered frequency 236

sub-band dynamics in CFM-based TTS models. 237

We demonstrate that inconsistent growth rates be- 238

tween low-frequency (LL) and high-frequency (LH, 239

HL, and HH) components degrade output quality, 240

a problem mitigated in diffusion models but whose 241

solutions fail to generalize to CFM architectures. 242

To resolve this, we propose frequency-selective 243

boosting, a lightweight compensation mechanism 244

that explicitly coordinates sub-band evolution dur- 245

ing generation while maintaining the CFM frame- 246

work’s efficiency. 247

3.1 Problem: Behavior of the Generative 248

Process in CFM-based TTS Models 249

Figures 2 and 3 illustrate the development of ℓ2- 250

norm of the DWT sub-bands in mel-spectrograms 251

during ODE function evaluations for F5-TTS and 252

Voicebox respectively. In F5-TTS, the approxima- 253

tion (LL) sub-band develops rapidly from initializa- 254

tion, while high-frequency components (LH, HL, 255
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Figure 1: 2D-discrete wavelet transform of a mel-spectrogram. The original mel-spectrogram is shown on the top.
The bottom four images show the DWT decomposition coefficients of the same mel-spectrogram. The approximation
(LL) coefficient is shown at first, followed by the detail coefficients (LH, HL, HH).

Figure 2: Evolution of the net content (ℓ2-norm) of dif-
ferent frequency sub-bands obtained by discrete wavelet
transform of the intermediate mel-spectrograms gener-
ated during various function evaluation steps (iteration)
at the inference in F5-TTS. Each line corresponds to a
different generative process.

HH) emerge later. LH and HH sub-bands even-256

tually saturate, while LL and HL continue steep257

growth. Contrastingly, Voicebox exhibits near-258

linear LL sub-band growth. LH and HL sub-bands259

show a fall and then delayed growth in the net260

content, while the contents of HH sub-band see a261

consistent fall.262

Although models demonstrate consistent pat-263

terns in the respective sub-band developments264

across generative events, the uncoordinated evolu-265

tion between approximation and detail features po-266

tentially increases computational complexity. This267

occurs when later developments in one sub-band268

disturb the contents of another sub-band, necessitat-269

ing corrections to earlier developments, requiring270

Figure 3: Evolution of the net content (ℓ2-norm) of dif-
ferent frequency sub-bands obtained by discrete wavelet
transform of the intermediate mel-spectrograms gener-
ated during various function evaluation steps (iteration)
at the inference in Voicebox. Each line corresponds to a
different generative process.

additional function evaluations to achieve desired 271

outputs. Consequently, this implies a poorer qual- 272

ity of generated speech than what could have been 273

possible in the same number of iterations. Our 274

experiments in Section 4 show that introducing a 275

penalizing strategy to suppress aggressive changes 276

while boosting the slower changes significantly im- 277

proves the quality and faithfulness of the generated 278

speech, supporting our analysis. 279

3.2 Stabilizing Mel-Spectrogram Generation 280

with Frequency-Aware Trajectory 281

Smoothing 282

fOur initial exploration into stabilizing mel- 283

spectrogram generation in Conditional Flow Match- 284
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ing (CFM) models drew inspiration from tech-285

niques successful in image diffusion, notably the286

Moving Average Sampling in Frequency domain287

(MASF) methodology Qian et al., 2024. MASF en-288

hances the stability of Denoising Diffusion Implicit289

Models (DDIMs) Song et al., 2021 at inference290

time by first projecting noisy intermediate states291

to an estimate of the clean data, then decomposing292

this estimate into frequency sub-bands using Dis-293

crete Wavelet Transform (DWT), and subsequently294

applying frequency-specific Moving Averages com-295

bined with dynamic reweighting.296

To adapt these principles to our CFM context,297

where mel-spectrograms xt evolve along an Ordi-298

nary Differential Equation (ODE) trajectory (t ∈299

[0, 1], from noise x0 to data x1), the first step300

involved obtaining an analogous estimate of the301

clean target mel-spectrogram. For CFM models302

like F5-TTS and Voicebox, where the learned neu-303

ral network vθ(xt, t) approximates the vector field304

x1 − x0, this data-space projection at time t is de-305

noted by x̂t1:306

x̂t1 = vθ(xt, t) + x0 (8)307

where x0 is the initial noise sample correspond-308

ing to the trajectory of xt. The intention was then309

to explore the application of MASF-like inference-310

time smoothing mechanisms to the sequence of311

these x̂t1 estimates derived at various points t along312

the ODE trajectory.313

However, this approach of directly adapting314

MASF’s inference-time smoothing strategies us-315

ing the x̂t1 sequence (from Eq. 8) did not yield the316

anticipated improvements in generation stability or317

quality for our CFM-based TTS models: it is noted318

that the characteristic of instability observed in Fig-319

ure 2 is preserved in Figure 4. We identified several320

fundamental distinctions and challenges that render321

such a direct adaptation problematic:322

Time-Varying Reliability of x̂t1 Estimates: A323

key challenge when considering smoothing strate-324

gies for our Conditional Flow Matching (CFM)325

framework is the time-varying reliability of the326

data-space projected estimates, x̂t1 = vθ(xt, t)+x0.327

These x̂t1 estimates are typically accurate repre-328

sentations of the target mel-spectrogram at early329

ODE stages (t ≈ 0), as vθ(xt, t) is trained to map330

from initial noise towards clean data. However, x̂t1331

tends to degrade and distort as t → 1 (when xt ap-332

proaches the target data x1). This occurs because333

while the x̂t1 formula relies on vθ(xt, t) predicting334

Figure 4: Dataspace moving average on F5TTS model
does not yield the anticipated benefits

the total displacement (x1 − x0), its role as the 335

ODE velocity dxt
dt necessitates a diminishing mag- 336

nitude for smooth convergence near x1, causing the 337

x̂t1 estimate to become corrupted by adding x0. 338

This behavior differs from estimates like 339

DDIM’s x̂t0, where a noise prediction ϵθ within xt, 340

along with a precisely defined algebraic inversion 341

based on a noise schedule ᾱt, naturally handles the 342

progression towards the clean state without such 343

systematic distortion of the estimate’s target. Con- 344

sequently, applying consistent smoothing (e.g., an 345

Exponential Moving Average) across our sequence 346

of x̂t1 estimates, which vary significantly in relia- 347

bility, is inherently problematic, as later, unreliable 348

estimates can corrupt the smoothed average. 349

Mismatch with Model-Specific Mel- 350

Spectrogram Frequency Dynamics: MASF 351

utilizes pre-defined or linearly scheduled dynamic 352

reweighting factors (e.g., βf (t) in its formulation) 353

to modulate the influence of different frequency 354

bands over its operational range. Such schedules, 355

developed for image diffusion, may not align 356

with the diverse, model-specific, and often non- 357

linear evolutionary patterns of mel-spectrogram 358

frequency components we observed in different 359

CFM architectures. For example, low-frequency 360

(LL) wavelet sub-bands exhibit quadratic-like 361

energy growth in F5-TTS but a more linear trend 362

in Voicebox (see Figure 3). A fixed or generic 363

scheduling is unlikely to optimally cater to these 364

distinct spectral dynamics in speech CFMs. 365

3.3 Framework: Model Specific Rescheduling 366

The sub-band norm evolution is plotted against the 367

ODE solver steps. For every sub-band, we attempt 368
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to fit a curve f(t) and then define the reweighting369

coefficients βf (t) as min(δn,
1

δd+f(t−t0)
). Moti-370

vation is to counteract the dynamics of f(t) with371

coefficients of the form 1/f(t). The parameters372

δn, δd, t0 are tuned by observing the sub-band373

norms with the aim of achieving saturation in the374

last few steps of the ODE. The clipping constant δn375

is necessary as repeated multiplication by a number376

greater than one(beyond a certain limit) will lead377

to divergence of the energy.378

The frequency reweighting is performed in the379

DWT domain:380

xt+1 = IDWT(βf (t) · DWTf (x
t));

∀f ∈ {LL, HL, LH, HH}
(9)381

While it is possible to fit multiple families of curves382

for the a given set of discrete points, not all fam-383

ilies produce a stable output. Depending on the384

family, the reweighting may result in the energy385

either diverging or decaying to zero. Empirically,386

we evaluated polynomial, exponential, and logistic387

curve families. While polynomial curves showed388

high fitting accuracy, they often led to oscillatory389

or unstable rescaling, especially in later ODE steps.390

Exponential and clipped exponential forms were391

ultimately selected for their bounded growth and392

interpretability. The rescheduling curve is finally393

chosen through careful observation of the sub-band394

norms, such that it helps stabilise the evolution of395

the energies. The four sub-bands interact with and396

influence each other, but a degree of decoupling397

is assumed so that βf (t) can be tuned indepen-398

dently for each f . With this rescheduling, we aim399

to emphasize/de-emphasize the frequency content400

in the mel spectrogram at every iteration step, and401

target a synchronised convergence of the sub-band402

energies.403

We observe that this reweighting may reduce the404

resulting norms of the sub-bands, especially the405

LL band. To ensure perceptual loudness is pre-406

served post-rescheduling, we scale the final output407

mel-spectrogram by a global energy normalization408

constant derived from original dataset statistics.409

This process can be performed for a multiple410

‘number of function evaluation’ (NFE) values, and411

the rescheduling coefficient βN
f (t) will be tuned for412

different N . NFE is defined as the number of times413

the ODE is solved. Once βN
f (t) is parameterised414

over N , an explicit expression can be obtained415

through curve-fitting as will be demonstrated in416

Section 4.417

4 Experiments and Analysis 418

We evaluate our proposed methodology on two 419

distinct Conditional Flow Matching (CFM) based 420

text-to-speech (TTS) models, operating on differ- 421

ent languages to demonstrate broader applicability. 422

For Hindi, we utilize an in-house implementation 423

based on the Voicebox Le et al., 2023 architec- 424

ture, trained on approximately 2k hours of Pub- 425

lically available Hindi speech data. This model 426

comprises 103M parameters, featuring 12 layers 427

and a 512-dimensional feed-forward hidden layer, 428

and employs a standard deterministic ODE solver 429

with fixed discretization steps for mel-spectrogram 430

generation. We use the publicly available base F5- 431

TTS model 1, which consists of approximately 350 432

parameters and is pre-trained on a multi-speaker 433

English corpus with varied prosody as mentioned 434

in (Chen et al., 2024). The F5-TTS model uniquely 435

employs Sway Sampling to accelerate inference 436

by adaptively prioritizing timesteps during ODE 437

solving. 438

4.1 Experiments on F5-TTS 439

To assess real-world performance, we curated a test 440

set of 100 utterances (10 diverse speakers/voice 441

styles, 10 utterances each), recorded in various 442

ambient environments on our campus. This dataset 443

evaluates synthesis faithfulness for unseen speakers 444

and prompts under these diverse conditions. As 445

observed in Figure 2, the LL and HL bands tend 446

to diverge towards the end of the process. LH and 447

HH bands saturate and need not be rescheduled. 448

Qian et al., 2024 implements moving average in 449

dataspace domain. We confirm with experiments 450

on F5-TTS model that this technique does not help 451

in improving results for CNF models and infact 452

oberve a decline in performance (See figure 7). 453

We therefore employ a rescheduling scheme in the 454

DWT domain, without any projections onto the 455

dataspace domain. 456

The LL band can be fit by an exponential curve 457

and we choose the following template for βN
LL(t): 458

βN
LL(t) = exp

(
− t

N(a1N + b1)

)
(10) 459

for HL sub-band: 460

βN
HL(t) = exp

(
− t

N(a2N2 + b2N + c2)

)
(11) 461

1Official github repo for code and
checkpoint:https://github.com/SWivid/F5-TTS
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We tune the rescheduling coefficients manually462

for a discrete set of N = {10, 20, 30, 45, 60} and by463

parameterising βN
f (t) as above, we can fit curves464

to obtain the values of (ai, bi, ci).465

Figure 5: Sub-band norm evolution on F5-TTS model
after frequency rescheduling

We observed that the sub-band norms (mainly466

LL) were saturating a few steps before the final step,467

and also explored the model performance by early-468

stopping the process. This ‘knee point’ beyond469

which the norms saturate, is empirically estimated:470

knee point =
⌊
aN2 + bN + c

⌋
(12)471

Thus, we are able to reduce the number of iteration472

steps that need to be computed, without any loss in473

performance.474

4.2 Experiments on Voicebox475

We employ a frequency scheduling scheme on476

Voicebox for NFE steps = 30. The coefficients,477

which are manually tuned, follow the following478

schedule(these are multiplied to xtf ):

Sub-band Reweighting schedule
LL (1− (t/N) ∗ 0.04)
LH (1− (t/N) ∗ 0.0001)
HL (1− (t/N) ∗ 0.03)
HH min(1.06, 1

(0.48+(t/N−30/32.0)2)
)

Table 2: Reweighting schedule coefficients for Voicebox
479

For quantitative evaluation of the Voicebox480

model, particularly to measure Fréchet Audio Dis-481

tance (FAD) over multiple utterances from single482

speakers across genders, we utilized test samples483

from the IndicTTS dataset Kumar et al., 2023. We484

selected samples from both male and female speak-485

ers for this analysis.486

4.3 Evaluation Metrics 487

To evaluate the efficacy of our work, we quantita- 488

tively evaluate the generated audios on the follow- 489

ing metrics: 490

1. Word Error Rate (WER): We utilized Ope- 491

nAI’s Whisper Radford et al., 2022 model to tran- 492

scribe the generated audio files and calculate the 493

WER between the transcribed text and the target 494

text. WER is defined as 495

WER =
S +D + I

N
(13) 496

where S is the number of substituted words in the 497

transcribed text, D is the number of deleted words 498

in the transcribed text, I is the number of inserted 499

words in the transcribed text, and N is the total 500

number of words in the target text. Consistently, we 501

observed, audio generated by utilizing our strategy 502

had no increase in the word error rate as compared 503

to the speech generated by the original TTS model. 504

2. Fréchet Audio Distance (FAD): TTS mod- 505

els, apart from producing the correct words, also 506

need to be faithful to the reference audio’s speaking 507

style. To verify the faithfulness of the speech, we 508

employ FAD Kilgour et al., 2019, a metric which 509

compares the difference in styles of groups of au- 510

dio samples, giving a better quantization of styles 511

Gui et al., 2024. Lower FAD scores correspond 512

to similar audio styles. The audio files are con- 513

verted into embeddings using the VGGish model 514

Hershey et al., 2017, which converts the waveform 515

into 128-D embedding representations of its se- 516

mantic content. The embeddings of speeches under 517

evaluation are put in one group, and those of the 518

reference speeches are put in another group. A 519

multivariate Gaussian distribution is fit over these 520

groups, named Ne(µe,Σe) and Nr(µr,Σr) respec- 521

tively. The FAD between these distributions is 522

defined as: 523

F(Ne,Nr) =∥µe − µr∥2+

tr(Σe +Σr − 2
√

ΣeΣr)
(14) 524

4.4 Results 525

In this section, we present the results of the evalua- 526

tion of two well-known CFM-based TTS models, 527

F5-TTS Chen et al., 2024 and Voicebox Le et al., 528

2023, on the metrics described above. 529

4.4.1 F5-TTS 530

Simulation. The results are demonstrated for 531

speech generation for NFE steps set to 32. We call 532
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Figure 6: FAD score comparison between Frequency rescheduling early stop (Re-weighting Score) and baseline
early stop (Cutoff Score) for F5-TTS model across 10 styles

the audio output of running the original model for533

32 NFE steps the ‘Original Full’ audio. We observe534

the knee point at 25th ODE evaluation. To evaluate,535

we construct the audio from the mel-spectrogram536

generated after 25th NFE step in both the original537

and boosted model. The audio outputs of these538

are respectively named ‘Original Cutoff’ audio and539

‘Reweighted Cutoff’ audio.540

WER. We record no change in WER on our541

Reweighted Cutoff audio when compared to the542

Original Full audio.543

FAD. We compare the following FAD scores:544

1. Cutoff’ score: FAD score between Original545

Cutoff audio and Original Full audio.546

2. Re-weighting’ score: FAD score between547

Reweighted Cutoff audio and Original Full audio.548

These scores are calculated for 10 different styles549

of reference audios, namely Style 0–9, and 10 dif-550

ferent speeches were generated for each style. The551

scores are compared in Figure 6. We can see that552

for 90% of the styles, we observe a significant de-553

crease in the ’Re-weighting’ score, when compared554

to the ’Cutoff’ score, implying that the boosted555

model starts resembling the style of the original556

model faster.

Figure 7: Comparison of moving average in data space
(blue) based strategy with early cutoff (orange) of base-
line model in F5-TTS. The significant increase in FAD
scores signify that the method worsens the audio quality.

557

Input Style Cutoff Score Re-weighting Score
Female 5.85 2.28
Male 2.57 1.79

Table 3: FAD score comparison between Freqeucy
rescheduling early stop (25/30, Re-weighting Score)
and basline early stop (25/30, Cutoff Score) in Voicebox
Hindi, across 2 styles

4.4.2 Voicebox 558

The models were run for NFE steps set to 30 to gen- 559

erate the audio. We extract the mel-spectrogram af- 560

ter the 25th iteration, same as above, to compare the 561

effects of boosting. The ‘Cutoff’ score is defined 562

between the styles of generated audio from the 563

early stopped baseline model and the original input 564

samples. The ‘Re-weighting’ score is defined be- 565

tween the generated audio from the early-stopped 566

boosted model and the original input samples. Ta- 567

ble 3 depicts the respective scores computed using 568

samples from the Hindi dataset Kumar et al., 2023. 569

570

5 Conclusion 571

Our method provides a principled inference-time 572

strategy to improve sample efficiency in CFM- 573

based TTS without any architectural modifications, 574

enabling lightweight deployment. Apart from a 575

reduction in solver steps that needed to be com- 576

puted, no degradation in WER is observed. Addi- 577

tonally, we show a stronger similarity of our early- 578

stopped model’s output to the input audio styles(for 579

Voicebox), compared to the early-stopped baseline 580

model’s output. 581
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Limitations582

Our current evaluation is limited to two lan-583

guages—English (F5-TTS) and Hindi (Voicebox).584

While the proposed frequency-selective reschedul-585

ing generalizes across these models, further val-586

idation across morphologically rich and tonal587

languages remains pending. Additionally, the588

reweighting coefficients were tuned manually and589

may benefit from an automatic curve-fitting strat-590

egy. Finally, while inference time improved, we591

did not quantify real-time latency on constrained592

hardware. The strongest framework would be an593

adaptive strategy that would use the present-and-594

past-iteration sub-band norm values, their deriva-595

tives as well as automatic curve-fitting techniques.596
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