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Abstract

Conditional Flow Matching (CFM) models
have advanced text-to-speech (TTS) synthesis,
yet their efficiency and fidelity can be hampered
by the uncoordinated evolution of spectral fea-
tures during the generative ODE trajectory. Our
analysis of DWT decomposition of the mel-
spectrogram establishes that this incoordina-
tion between low-frequency (approximation)
and high-frequency (detail) components often
leads to unnecessary interference of subsequent
iterations with the past developments and thus,
demands prolonged iterations to achieve faith-
ful speech. Furthermore, we demonstrate that
directly adapting existing inference-time sta-
bilization strategies, such as those inspired by
MASF Qian et al., 2024 for diffusion models,
exhibits poor generalizability to CFM-based
TTS. This is due to fundamental differences
in their generative dynamics, the time-varying
reliability of intermediate clean data estimates
in CFM, and potential mismatches with model-
specific frequency evolution. To address these
limitations, we propose a novel inference-time
frequency-selective boosting strategy based on
Wavelet decomposition, designed to explicitly
enhance and synchronize the development of
distinct mel-spectrogram frequency bands dur-
ing the ODE solving process. Our experiments
quantify significant improvements in the faith-
fulness and quality of generated audio, as mea-
sured by Fréchet Audio Distance (FAD), with-
out any degradation in Word Error Rate (WER),
showcasing a more robust and efficient path to
high-quality speech synthesis in CFM models.

1 Introduction

Conditional Flow Matching (CFM) Lipman et al.,
2023, particularly when guided by Optimal Trans-
port (OT) principles, has significantly advanced
text-to-speech (TTS) synthesis. This approach fa-
cilitates high-quality, parallel sampling through
the integration of deterministic Ordinary Differ-
ential Equation (ODE) solvers. Prominent models,

including Voicebox Le et al., 2023 and F5-TTS
Chen et al., 2024, leverage this framework. They
learn continuous generative trajectories where a
neural network parameterizes a time-dependent
vector field. This field defines an ODE that trans-
forms samples from a simple prior distribution (e.g.,
Gaussian noise) to the complex speech data dis-
tribution. The target mel-spectrogram is synthe-
sized by numerically solving this ODE; solvers
approximate the continuous path by discretizing
it into finite steps. In this CFM framework, OT
principle is pivotal for establishing efficient target
vector fields, often defining straight (linear) trajec-
tories between a simple prior distribution and the
target data distribution. The neural network then
learns to parameterize this field by minimizing a
Flow Matching objective. Such precise guidance
along these simplified paths promotes stable train-
ing, leads to high-fidelity speech, and enables ef-
ficient inference. Voicebox leverages uniformly
discretized ODE solvers to produce high-quality
mel-spectrograms in a non-autoregressive manner.
On the other hand, F5-TTS introduces a technique
called Sway Sampling to accelerate inference. It
employs a strategy that adaptively prioritizes cer-
tain time steps during ODE solving, focusing com-
putational effort on stages most critical to the gen-
eration process.

Despite these innovations, our work identifies a
key limitation in Section 3.1 shared across these
CFM-based TTS models: an incoherent evolution
of different frequency components within the mel-
spectrogram z; during the ODE integration. A
similar problem was recognized by Yang et al.,
2023 in the case of denoising diffusion models for
image generation, where the low-frequency fea-
tures of the image develop early on, while the
high-frequency details start developing after a de-
lay. Moreover, their work also suggests a limita-
tion of diffusion denoising generative models to
generate minor frequency components, which are



usually in the higher frequency ranges. In order
to verify the existence of such an issue in CFM-
based TTS models, we apply the Discrete Wavelet
Transform (DWT) to analyze x; and observe that its
low-frequency (approximation) and high-frequency
(detail) constituents often develop incoherently.

Wavelet Transforms (DWT/CWT) are estab-
lished tools in audio and signal processing, with
applications ranging from extracting speech param-
eters like pitch and formants Hamzenejadi et al.,
2019 and enhancing mel-spectrograms for synthe-
sis Hu et al., 2024, to creating robust features for
tasks such as spoken language identification Dey
et al., 2023 and analyzing biomedical signals like
EEG data Goerttler et al., 2024. While these diverse
applications underscore the versatility of wavelets
in signal analysis and manipulation, our work in-
troduces a distinct application. To the best of our
knowledge, we are the first to employ DWT to
specifically analyze and modulate the frequency
sub-band evolution within the generative trajectory
of Conditional Flow Matching (CFM) based text-
to-speech models, addressing the internal dynamics
of CFM generation in a novel way.

This spectral misalignment, persistent across var-
ious ODE solving strategies including adaptive
sampling like Sway Sampling, often results in audi-
ble artifacts and generation inefficiencies. Such in-
coherent frequency development can destabilize the
generative process, demanding more solver steps
for perceptual convergence and thus hampering
suitability for real-time deployment.

Previous work in image generation, such as
the Moving Average Sampling in the Frequency
Domain (MASF) technique Qian et al., 2024 for
diffusion models, has demonstrated the utility of
inference-time, frequency-specific smoothing to
improve generative stability. Inspired by these
principles, we investigated their applicability to
CFM-based mel-spectrogram synthesis, including
an analogous data-space projection to estimate
clean mel-spectrograms from intermediate states.
However, we found that directly adapting such
inference-time smoothing strategies was insuffi-
cient for CFM models, explained in detail in Sec-
tion 3.2.

To overcome these challenges, we introduce a
novel frequency-selective boosting strategy in Sec-
tion 3.3 that guides the training of CFM-based mod-
els by explicitly enhancing or suppressing the de-
velopment of features in different sub-bands of the

mel-spectrogram based on model-specific behavior.
This targeted modulation fosters better synchroniza-
tion of spectral components and encourages stable
convergence throughout the generative process by
boosting the contribution of lagging-behind com-
ponents while penalizing any aggressive growth in
other sub-bands.

We validate our approach across benchmarks us-
ing both Voicebox and F5-TTS frameworks, show-
ing that our method improves perceptual audio
quality as measured by Fréchet Audio Distance
(FAD) Kilgour et al., 2019 while maintaining Word
Error Rate (WER), ensuring that intelligibility is
not compromised.

Key Contributions: The key contributions of
this work are summarized below:

1. We establish that the CFM-based TTS mod-
els suffer (take longer iterations) to generate
faithful speech because of the uncoordinated
development of the approximation and detail
features of the mel-spectrogram.

2. We demonstrate the poor generalizability of
the MASF-based strategies for CFM-based
models in stabilizing the generative process.

3. We propose a novel frequency-selective boost-
ing strategy to enhance mel-spectrogram fea-
ture development in CFM-based TTS models.

4. We also quantify the improvement in faithful-
ness and quality of the generated audio using
Fréchet Audio Distance (FAD), without any
degradation in the Word Error Rate (WER).

2 Preliminaries

2.1 CNF/Flow Matching

Flow Matching with optimal transport continuous
normalization flows (CNFs) Chen et al., 2018 pro-
vides a powerful framework for learning complex
data distributions by transforming a simple prior
distribution pg into a target data distribution p;.
This transformation is achieved through a time-
dependent vector field v; : [0,1] x R? — R,
which constructs a flow ¢; governed by the ODE:

d
£¢t($) = v(d¢(2)); do(x) = @ (1)
For a given flow ¢; : [0,1] x RY — R?, we can
derive the probability path p;(x) using the change



of variables formula:
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The vector field v,(x; ) parameterized by neural
network 6 can be trained with the Flow Matching
objective:

Lrn(0) = By pya lue(@) —vi(z:0)* (3

where u; is the vector field that generates p; and
t ~U[0,1], x ~ p¢(x). However, directly com-
puting this objective is challenging, as we lack prior
knowledge of p; or v;. Thus, a conditional proba-
bility path p(z|z1) = N (z|x1,021), a Gaussian
distribution centered at x; with a sufficiently small
o, is considered in actual training. The Conditional
Flow Matching (CFM) objective is:

Loru(0)

= Bt go1)pu(aler) llue(@lzr) — vi(a; 0)]°
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The CFM loss is proved to have identical gradients
with respect to 6. Here, x; is the random variable
corresponding to training data. and u; and o, are
the time-dependent mean and scalar standard devi-
ation of the Gaussian distribution.

For leveraging the optimal transport (OT) path,
which defines the conditional probability and vec-
tor field as:

pi(z]x1) = N(z|tzr, (1 — (1 — opmin)t)2) (5)
and
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The OT path is particularly advantageous as it
ensures points move with constant speed and direc-
tion, leading to more stable training and efficient in-
ference. This choice simplifies the learning process
while maintaining the model’s expressive power.

2.2 Discrete Wavelet Transform

Wavelets are a class of special mathematical func-
tions that are often used in the representation of
data or other functions. Wavelets are often defined
by a pair of functions consisting of a wavelet func-
tion and a scaling function, serving as a high-pass
filter and a low-pass filter, respectively. Wavelet-
based analyses and transforms process data at dif-
ferent scales or resolutions Graps, 1995.

Sub-Band Frequency Axis Time Axis
LL Low-Pass Low-Pass
LH Low-Pass High-Pass
HL High-Pass Low-Pass
HH High-Pass High-Pass

Table 1: Naming convention of the DWT sub-bands
for the mel-spectrogram based on the direction of the
low-pass and high-pass filters.

The 2D Discrete Wavelet Transform (2D-DWT)
decomposes a two-dimensional signal z[m, n] into
four frequency sub-bands: zj; (approximation),
TrLH, THL, and x g (details), by applying sepa-
rable low-pass and high-pass filtering along both
dimensions followed by subsampling. This trans-
form is invertible, allowing perfect reconstruction
of the original signal from its sub-band coefficients
via the inverse DWT (IDWT). The DWT and IDWT
can be described as in (7).

DWT(z) = {xrr, TLm, toL, tam}
v =IDWT(zLL, TLH, THL, THEH)

(N

Figure 1 illustrates the DWT decomposition of a
mel-spectrogram (z). Table 1 shows the naming
convention for the sub-bands used in this work.

3 Methodology

Our methodology first analyzes DWT decomposi-
tions of intermediate mel-spectrograms across the
inference trajectory, revealing disordered frequency
sub-band dynamics in CFM-based TTS models.
We demonstrate that inconsistent growth rates be-
tween low-frequency (LL) and high-frequency (LH,
HL, and HH) components degrade output quality,
a problem mitigated in diffusion models but whose
solutions fail to generalize to CFM architectures.
To resolve this, we propose frequency-selective
boosting, a lightweight compensation mechanism
that explicitly coordinates sub-band evolution dur-
ing generation while maintaining the CFM frame-
work’s efficiency.

3.1 Problem: Behavior of the Generative
Process in CFM-based TTS Models

Figures 2 and 3 illustrate the development of ¢2-
norm of the DWT sub-bands in mel-spectrograms
during ODE function evaluations for F5-TTS and
Voicebox respectively. In F5-TTS, the approxima-
tion (LL) sub-band develops rapidly from initializa-
tion, while high-frequency components (LH, HL,



Mel-Spectrogram

DWT Decompostion of Mel-Spectrogram

Figure 1: 2D-discrete wavelet transform of a mel-spectrogram. The original mel-spectrogram is shown on the top.
The bottom four images show the DWT decomposition coefficients of the same mel-spectrogram. The approximation
(LL) coefficient is shown at first, followed by the detail coefficients (LH, HL, HH).
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Figure 2: Evolution of the net content (/2-norm) of dif-
ferent frequency sub-bands obtained by discrete wavelet
transform of the intermediate mel-spectrograms gener-
ated during various function evaluation steps (iteration)
at the inference in F5-TTS. Each line corresponds to a
different generative process.

HH) emerge later. LH and HH sub-bands even-
tually saturate, while LL and HL continue steep
growth. Contrastingly, Voicebox exhibits near-
linear LL sub-band growth. LH and HL sub-bands
show a fall and then delayed growth in the net
content, while the contents of HH sub-band see a
consistent fall.

Although models demonstrate consistent pat-
terns in the respective sub-band developments
across generative events, the uncoordinated evolu-
tion between approximation and detail features po-
tentially increases computational complexity. This
occurs when later developments in one sub-band
disturb the contents of another sub-band, necessitat-
ing corrections to earlier developments, requiring
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Figure 3: Evolution of the net content (£2-norm) of dif-
ferent frequency sub-bands obtained by discrete wavelet
transform of the intermediate mel-spectrograms gener-
ated during various function evaluation steps (iteration)
at the inference in Voicebox. Each line corresponds to a
different generative process.

additional function evaluations to achieve desired
outputs. Consequently, this implies a poorer qual-
ity of generated speech than what could have been
possible in the same number of iterations. Our
experiments in Section 4 show that introducing a
penalizing strategy to suppress aggressive changes
while boosting the slower changes significantly im-
proves the quality and faithfulness of the generated
speech, supporting our analysis.

3.2 Stabilizing Mel-Spectrogram Generation
with Frequency-Aware Trajectory
Smoothing

fOur initial exploration into stabilizing mel-
spectrogram generation in Conditional Flow Match-



ing (CFM) models drew inspiration from tech-
niques successful in image diffusion, notably the
Moving Average Sampling in Frequency domain
(MASF) methodology Qian et al., 2024. MASF en-
hances the stability of Denoising Diffusion Implicit
Models (DDIMs) Song et al., 2021 at inference
time by first projecting noisy intermediate states
to an estimate of the clean data, then decomposing
this estimate into frequency sub-bands using Dis-
crete Wavelet Transform (DWT), and subsequently
applying frequency-specific Moving Averages com-
bined with dynamic reweighting.

To adapt these principles to our CFM context,
where mel-spectrograms z; evolve along an Ordi-
nary Differential Equation (ODE) trajectory (¢ €
[0,1], from noise z( to data x;), the first step
involved obtaining an analogous estimate of the
clean target mel-spectrogram. For CFM models
like F5-TTS and Voicebox, where the learned neu-
ral network vy (¢, t) approximates the vector field
x1 — X, this data-space projection at time ¢ is de-
noted by #!:

&) = vg(ay, t) + mo (®)

where g is the initial noise sample correspond-
ing to the trajectory of x;. The intention was then
to explore the application of MASF-like inference-
time smoothing mechanisms to the sequence of
these 2! estimates derived at various points ¢ along
the ODE trajectory.

However, this approach of directly adapting
MASF’s inference-time smoothing strategies us-
ing the 2} sequence (from Eq. 8) did not yield the
anticipated improvements in generation stability or
quality for our CFM-based TTS models: it is noted
that the characteristic of instability observed in Fig-
ure 2 is preserved in Figure 4. We identified several
fundamental distinctions and challenges that render
such a direct adaptation problematic:

Time-Varying Reliability of 2| Estimates: A
key challenge when considering smoothing strate-
gies for our Conditional Flow Matching (CFM)
framework is the time-varying reliability of the
data-space projected estimates, &¢ = vg(z¢, t)+xo.
These %} estimates are typically accurate repre-
sentations of the target mel-spectrogram at early
ODE stages (t =~ 0), as vg(xy, t) is trained to map
from initial noise towards clean data. However, &}
tends to degrade and distort as ¢ — 1 (when x; ap-
proaches the target data z1). This occurs because
while the #} formula relies on vg(xy, t) predicting

Evolution of LL Evolution of HL
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Evolution of LH

Figure 4: Dataspace moving average on FSTTS model
does not yield the anticipated benefits

the total displacement (x; — zg), its role as the
ODE velocity % necessitates a diminishing mag-
nitude for smooth convergence near x1, causing the
#! estimate to become corrupted by adding zg.
This behavior differs from estimates like
DDIM’s 336, where a noise prediction €y within ¢,
along with a precisely defined algebraic inversion
based on a noise schedule &y, naturally handles the
progression towards the clean state without such
systematic distortion of the estimate’s target. Con-
sequently, applying consistent smoothing (e.g., an
Exponential Moving Average) across our sequence
of &% estimates, which vary significantly in relia-
bility, is inherently problematic, as later, unreliable
estimates can corrupt the smoothed average.
Mismatch with Model-Specific Mel-
Spectrogram Frequency Dynamics: MASF
utilizes pre-defined or linearly scheduled dynamic
reweighting factors (e.g., 3¢(t) in its formulation)
to modulate the influence of different frequency
bands over its operational range. Such schedules,
developed for image diffusion, may not align
with the diverse, model-specific, and often non-
linear evolutionary patterns of mel-spectrogram
frequency components we observed in different
CFM architectures. For example, low-frequency
(LL) wavelet sub-bands exhibit quadratic-like
energy growth in F5-TTS but a more linear trend
in Voicebox (see Figure 3). A fixed or generic
scheduling is unlikely to optimally cater to these
distinct spectral dynamics in speech CFMs.

3.3 Framework: Model Specific Rescheduling

The sub-band norm evolution is plotted against the
ODE solver steps. For every sub-band, we attempt



to fit a curve f(¢) and then define the reweighting
coefficients B7(t) as min(dn, m). Moti-
vation is to counteract the dynamics of f(¢) with
coefficients of the form 1/f(¢). The parameters
0n, 04,10 are tuned by observing the sub-band
norms with the aim of achieving saturation in the
last few steps of the ODE. The clipping constant d,,
is necessary as repeated multiplication by a number
greater than one(beyond a certain limit) will lead
to divergence of the energy.

The frequency reweighting is performed in the
DWT domain:

2! = IDWT(B(t) - DWTf(2"));

)
Vf € {LL, HL, LH, HH}

While it is possible to fit multiple families of curves
for the a given set of discrete points, not all fam-
ilies produce a stable output. Depending on the
family, the reweighting may result in the energy
either diverging or decaying to zero. Empirically,
we evaluated polynomial, exponential, and logistic
curve families. While polynomial curves showed
high fitting accuracy, they often led to oscillatory
or unstable rescaling, especially in later ODE steps.
Exponential and clipped exponential forms were
ultimately selected for their bounded growth and
interpretability. The rescheduling curve is finally
chosen through careful observation of the sub-band
norms, such that it helps stabilise the evolution of
the energies. The four sub-bands interact with and
influence each other, but a degree of decoupling
is assumed so that 3¢(t) can be tuned indepen-
dently for each f. With this rescheduling, we aim
to emphasize/de-emphasize the frequency content
in the mel spectrogram at every iteration step, and
target a synchronised convergence of the sub-band
energies.

We observe that this reweighting may reduce the
resulting norms of the sub-bands, especially the
LL band. To ensure perceptual loudness is pre-
served post-rescheduling, we scale the final output
mel-spectrogram by a global energy normalization
constant derived from original dataset statistics.

This process can be performed for a multiple
‘number of function evaluation’ (NFE) values, and
the rescheduling coefficient B}V (t) will be tuned for
different V. NFE is defined as the number of times
the ODE is solved. Once B}V (t) is parameterised
over N, an explicit expression can be obtained
through curve-fitting as will be demonstrated in
Section 4.

4 Experiments and Analysis

We evaluate our proposed methodology on two
distinct Conditional Flow Matching (CFM) based
text-to-speech (TTS) models, operating on differ-
ent languages to demonstrate broader applicability.
For Hindi, we utilize an in-house implementation
based on the Voicebox Le et al., 2023 architec-
ture, trained on approximately 2k hours of Pub-
lically available Hindi speech data. This model
comprises 103M parameters, featuring 12 layers
and a 512-dimensional feed-forward hidden layer,
and employs a standard deterministic ODE solver
with fixed discretization steps for mel-spectrogram
generation. We use the publicly available base F5-
TTS model !, which consists of approximately 350
parameters and is pre-trained on a multi-speaker
English corpus with varied prosody as mentioned
in (Chen et al., 2024). The F5-TTS model uniquely
employs Sway Sampling to accelerate inference
by adaptively prioritizing timesteps during ODE
solving.

4.1 Experiments on F5-TTS

To assess real-world performance, we curated a test
set of 100 utterances (10 diverse speakers/voice
styles, 10 utterances each), recorded in various
ambient environments on our campus. This dataset
evaluates synthesis faithfulness for unseen speakers
and prompts under these diverse conditions. As
observed in Figure 2, the LL and HL bands tend
to diverge towards the end of the process. LH and
HH bands saturate and need not be rescheduled.

Qian et al., 2024 implements moving average in
dataspace domain. We confirm with experiments
on F5-TTS model that this technique does not help
in improving results for CNF models and infact
oberve a decline in performance (See figure 7).
We therefore employ a rescheduling scheme in the
DWT domain, without any projections onto the
dataspace domain.

The LL band can be fit by an exponential curve
and we choose the following template for 3% (t):

BRL(t) = exp (— ¥ (10)

t
(alN + b1)>
for HL sub-band:

N _ t
Brr(t) = exp <_N(a2N2 TN+ c2>>

(11)

'Official github repo for code and

checkpoint:https://github.com/SWivid/F5-TTS



We tune the rescheduling coefficients manually
for a discrete set of N = {10, 20, 30, 45, 60} and by
parameterising B}V (t) as above, we can fit curves
to obtain the values of (a;, b;, ¢;).
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Figure 5: Sub-band norm evolution on F5-TTS model
after frequency rescheduling

We observed that the sub-band norms (mainly
LL) were saturating a few steps before the final step,
and also explored the model performance by early-
stopping the process. This ‘knee point’ beyond
which the norms saturate, is empirically estimated:

knee point = [aN? + bN + c| (12)

Thus, we are able to reduce the number of iteration
steps that need to be computed, without any loss in
performance.

4.2 Experiments on Voicebox

We employ a frequency scheduling scheme on
Voicebox for NFE steps = 30. The coefficients,
which are manually tuned, follow the following
schedule(these are multiplied to x’}):

Sub-band Reweighting schedule

LL (1 —(t/N)=0.04)

LH (1 —(t/N)=0.0001)

HL (1 —(t/N)=0.03)

HH min(1.06, (0,4g+(t/N1—30/32-0)2))

Table 2: Reweighting schedule coefficients for Voicebox

For quantitative evaluation of the Voicebox
model, particularly to measure Fréchet Audio Dis-
tance (FAD) over multiple utterances from single
speakers across genders, we utilized test samples
from the IndicTTS dataset Kumar et al., 2023. We
selected samples from both male and female speak-
ers for this analysis.

4.3 Evaluation Metrics

To evaluate the efficacy of our work, we quantita-
tively evaluate the generated audios on the follow-
ing metrics:

1. Word Error Rate (WER): We utilized Ope-
nAl’s Whisper Radford et al., 2022 model to tran-
scribe the generated audio files and calculate the
WER between the transcribed text and the target
text. WER is defined as

S+D+1

ER =
WER N

(13)
where S is the number of substituted words in the
transcribed text, D is the number of deleted words
in the transcribed text, I is the number of inserted
words in the transcribed text, and N is the total
number of words in the target text. Consistently, we
observed, audio generated by utilizing our strategy
had no increase in the word error rate as compared
to the speech generated by the original TTS model.

2. Fréchet Audio Distance (FAD): TTS mod-
els, apart from producing the correct words, also
need to be faithful to the reference audio’s speaking
style. To verify the faithfulness of the speech, we
employ FAD Kilgour et al., 2019, a metric which
compares the difference in styles of groups of au-
dio samples, giving a better quantization of styles
Gui et al., 2024. Lower FAD scores correspond
to similar audio styles. The audio files are con-
verted into embeddings using the VGGish model
Hershey et al., 2017, which converts the waveform
into 128-D embedding representations of its se-
mantic content. The embeddings of speeches under
evaluation are put in one group, and those of the
reference speeches are put in another group. A
multivariate Gaussian distribution is fit over these
groups, named N (jie, 2¢) and N (-, ;) respec-
tively. The FAD between these distributions is
defined as:

F(-/\[eaNT) :H,U'e - MrH2+
tr(Se + 2 — 2/ 5,)

(14)

4.4 Results

In this section, we present the results of the evalua-
tion of two well-known CFM-based TTS models,
F5-TTS Chen et al., 2024 and Voicebox Le et al.,
2023, on the metrics described above.

44.1 F5-TTS

Simulation. The results are demonstrated for
speech generation for NFE steps set to 32. We call
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Figure 6: FAD score comparison between Frequency rescheduling early stop (Re-weighting Score) and baseline
early stop (Cutoff Score) for F5-TTS model across 10 styles

the audio output of running the original model for
32 NFE steps the ‘Original Full’ audio. We observe
the knee point at 25'” ODE evaluation. To evaluate,
we construct the audio from the mel-spectrogram
generated after 25" NFE step in both the original
and boosted model. The audio outputs of these
are respectively named ‘Original Cutoff’ audio and
‘Reweighted Cutoff’ audio.

WER. We record no change in WER on our
Reweighted Cutoff audio when compared to the
Original Full audio.

FAD. We compare the following FAD scores:

1. Cutoff” score: FAD score between Original
Cutoff audio and Original Full audio.

2. Re-weighting’ score: FAD score between
Reweighted Cutoff audio and Original Full audio.

These scores are calculated for 10 different styles
of reference audios, namely Style 0-9, and 10 dif-
ferent speeches were generated for each style. The
scores are compared in Figure 6. We can see that
for 90% of the styles, we observe a significant de-
crease in the "Re-weighting’ score, when compared
to the ’Cutoff’ score, implying that the boosted
model starts resembling the style of the original
model faster.

Frechet Audio Distance Comparision

Figure 7: Comparison of moving average in data space
(blue) based strategy with early cutoff (orange) of base-
line model in F5-TTS. The significant increase in FAD
scores signify that the method worsens the audio quality.

Input Style Cutoff Score Re-weighting Score
Female 5.85 2.28
Male 2.57 1.79

Table 3: FAD score comparison between Freqeucy
rescheduling early stop (25/30, Re-weighting Score)
and basline early stop (25/30, Cutoff Score) in Voicebox
Hindi, across 2 styles

4.4.2 Voicebox

The models were run for NFE steps set to 30 to gen-
erate the audio. We extract the mel-spectrogram af-
ter the 25" iteration, same as above, to compare the
effects of boosting. The ‘Cutoff” score is defined
between the styles of generated audio from the
early stopped baseline model and the original input
samples. The ‘Re-weighting’ score is defined be-
tween the generated audio from the early-stopped
boosted model and the original input samples. Ta-
ble 3 depicts the respective scores computed using
samples from the Hindi dataset Kumar et al., 2023.

5 Conclusion

Our method provides a principled inference-time
strategy to improve sample efficiency in CFM-
based TTS without any architectural modifications,
enabling lightweight deployment. Apart from a
reduction in solver steps that needed to be com-
puted, no degradation in WER is observed. Addi-
tonally, we show a stronger similarity of our early-
stopped model’s output to the input audio styles(for
Voicebox), compared to the early-stopped baseline
model’s output.



Limitations

Our current evaluation is limited to two lan-
guages—English (F5-TTS) and Hindi (Voicebox).
While the proposed frequency-selective reschedul-
ing generalizes across these models, further val-
idation across morphologically rich and tonal
languages remains pending. Additionally, the
reweighting coefficients were tuned manually and
may benefit from an automatic curve-fitting strat-
egy. Finally, while inference time improved, we
did not quantify real-time latency on constrained
hardware. The strongest framework would be an
adaptive strategy that would use the present-and-
past-iteration sub-band norm values, their deriva-
tives as well as automatic curve-fitting techniques.
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